Svoboda | Graniru | BBC Russia | Golosameriki | Facebook

Photocatalytic Degradation of Methylene Blue Using TiO2/Carbon Nanoparticles Fabricated by Electrical Arc Discharge in Liquid Medium

Article Preview

Abstract:

Herein we modified TiO2 anatase with carbon material using an electrical arc discharge technique in liquid medium to produce a nanoparticle of TiO2/Carbon photocatalyst. The electrical arc discharge was performed using two graphite electrodes submerged in TiO2 suspended in ethanol by passing electrical 20-40 V (10-50 A). X-ray Diffraction (XRD) peak profile analysis shows the successful modification confirmed from the presenting peaks which represent to crystalline TiO2 and carbon element. The fabrication was then followed by the assessment of photocatalytic activity of fabricated nanoparticles in methylebe blue degradation under mercury lamp irradiation. After 60 minutes irradiation, the photocatalytic activity of TiO2/Carbon increased more than three times higher compared to the photocatalytic activity of pristine TiO2.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

285-288

Citation:

Online since:

August 2015

Export:

Price:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Torimoto, Y. Okawa, N. Takeda, H. Yoneyama, Effect of activated carbon content in TiO2-loaded activated carbon on photodegradation behaviors of dichloromethane, J. Photochem. Photobiol., A 103 (1997) 153-157.

DOI: 10.1016/s1010-6030(96)04503-0

Google Scholar

[2] J. Qu, Research progress of novel adsorption processes in water purification: A review, J. Environ. Sci. (China) 20 (2008) 1-13.

Google Scholar

[3] M. Wojtoniszak, D. Dolat, A. Morawski, E. Mijowska, Carbon-modified TiO2 for photocatalysis, Nanoscale Res. Lett. 7 (2012) 1-6.

DOI: 10.1186/1556-276x-7-235

Google Scholar

[4] X. Qu, P.J.J. Alvarez, Q. Li, Applications of nanotechnology in water and wastewater treatment, Water Res. 47 (2013) 3931-3946.

DOI: 10.1016/j.watres.2012.09.058

Google Scholar

[5] A.W. Morawski, M. Janus, B. Tryba, M. Inagaki, K. Kałucki, TiO2-anatase modified by carbon as the photocatalyst under visible light, C. R. Chim. 9 (2006) 800-805.

DOI: 10.1016/j.crci.2005.03.021

Google Scholar

[6] S. Sakthivel, H. Kisch, Daylight photocatalysis by carbon-modified titanium dioxide, Angew. Chem. Int. Ed. 42 (2003) 4908-4911.

DOI: 10.1002/anie.200351577

Google Scholar

[7] L. Zhao, X. Chen, X. Wang, Y. Zhang, W. Wei, Y. Sun, M. Antonietti, M. -M. Titirici, One-step solvothermal synthesis of a carbon-TiO2 dyade structure effectively promoting visible-light photocatalysis, Adv. Mater. 22 (2010) 3317-3321.

DOI: 10.1002/adma.201000660

Google Scholar

[8] C.H. Kim, B. -H. Kim, K.S. Yang, TiO2 nanoparticles loaded on graphene/carbon composite nanofibers by electrospinning for increased photocatalysis, Carbon 50 (2012) 2472-2481.

DOI: 10.1016/j.carbon.2012.01.069

Google Scholar

[9] Z. Peining, A.S. Nair, P. Shengjie, Y. Shengyuan, S. Ramakrishna, Facile fabrication of TiO2–graphene composite with enhanced photovoltaic and photocatalytic properties by electrospinning, ACS Appl. Mater. Interfaces 4 (2012) 581-585.

DOI: 10.1021/am201448p

Google Scholar

[10] H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li, P25-graphene composite as a high performance photocatalyst, ACS Nano 4 (2009) 380-386.

DOI: 10.1021/nn901221k

Google Scholar

[11] A. Morawski, M. Janus, B. Tryba, M. Toyoda, T. Tsumura, M. Inagaki, Carbon modified TiO2 photocatalysts for water purification. Pol. J. Chem. Technol., Vol. 11, 2009, p.46.

DOI: 10.2478/v10026-009-0023-0

Google Scholar

[12] Y. Saito, Nanoparticles and filled nanocapsules, Carbon 33 (1995) 979-988.

DOI: 10.1016/0008-6223(95)00026-a

Google Scholar

[13] T.E. Saraswati, T. Matsuda, A. Ogino, M. Nagatsu, Surface modification of graphite encapsulated iron nanoparticles by plasma processing, Diam. Relat. Mater. 20 (2011) 359-363.

DOI: 10.1016/j.diamond.2011.01.027

Google Scholar