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On Binary Channels and Their Cascades

RICHARD A. SILVERMANTY

Summary—A detailed analysis of the general binary channel is
given, with special reference to capacity (both separately and in
cascade), input and output symbol distributions, and probability of
error. The infinite number of binary channels with the same capacity
lie on double-branched equicapacity lines. Of the channels on the
lower branch of a given equicapacity line, the symmetric channel
has the smallest probability of error and the largest capacity in
cascade, unless the capacity is small, in which case the asymmetric
channel (with one noiseless symbol) has the smallest probability of
error and the largest capacity in cascade. By simply reversing the
designation of the output (or input) symbols, we can decrease the
probability of error of any channel on the upper branch of the equi-
capacity line and increase the capacity in cascade of any asymmetric
channel on the upper branch.

In a binary channel neither symbol should be transmitted with a
probability lying outside the interval [1/e, 1 — (1/e)] if capacity is
to be achieved. The maximally asymmetric input symbol distributions
are approached by certain low-capacity channels. For these channels,
redundancy coding permits an appreciable fraction of capacity in
cascade if sufficient delay can be tolerated.

CAPACITY AND SYMBOL DISTRIBUTIONS

ISCUSSION of the binary channel is usually
D confined to the symmetric case, where each of
the transmitted digits is similarly perturbed by
the noise. However, many interesting features of binary
channels are concealed if only symmetric channels are
considered. Accordingly, this paper will be devoted to a
detailed study of the arbitrary binary channel.
Let the channel be characterized by the transition-
probability matrix

a 1 —a
B 1-8
where « is the probability that a zero be received as a
zero, B the probability that a one be received as a zero, etc.
We shall use the symbol C for both the channel and its

matrix, but no confusion will arise. Computations are
simplified by defining (after Muroga') an auxiliary vector

C = ) OS&,BSl, (]-)

X,
which solves the equation
cX = —H.
Here H is the row-entropy vector of the channel C; t.e.,
B=|#e
H(B)

where H () is the entropy function

1 Formerly Dept. of Electrical Engineering, Massachusetts Insti-
tute of Technology, Cambridge, Mass.; now Institute of Mathe-
matical Sciences, Div. of Electromagnetic Res., New York Univ.,,
T, Muroga, “On the capacity of a discrete channel. I. J. Phys.
Soc. Japan, vol. 8, pp. 434-494; July—August, 1953.

Hix) = —xzlogae — (1 — o log (1 — x).

(All logarithms are to the base 2 unless otherwise indicated;
as another notation for 2°, we shall write exp, x.) Muroga'
has shown that the capacity ¢(C) of the channel C can be
written in terms of the components of the vector X as

() = log (2% 4+ 2%, (2)

The transmitted and received symbol distributions are
also simply related to X. Let P be a vector representing
the transmitted symbol distribution which achieves
capacity, z.e.,

P,
l_PO

ﬁ =

where P, is the probability with which zeros should be
chosen if capacity (maximum rate) is to be achieved.
Let P’ be a vector representing the corresponding received
symbol distribution, <.e.,

P
1—Pj

P =

where P is the probability that a zero will be received if
the transmitted symbol distribution achieves capacity.
The vectors P and P’ are related by the equation

P’ = CP,
where C' denotes the transpose of the matrix C. In terms
of the auxiliary vector X, Muroga finds that

2~c zXo 23’1
P() = det ? (3)
det (C) 8 1-8
and that
Pl = 2%7°, 4)

Our task is to express the quantities (2), (3), and (4) in
terms of the parameters « and 8 of the binary channel
(1). After some algebraic manipulation we find that

_ —BH() + oH)
8 —a

ola, B)
H(a) — H(a))], ®)

B — « 2

+ log [1 + expz<

Py, B) = BB — )"

~ -1+ om (Eﬁg{—gﬁ)] ®
H(B) — H@)]{

i @

Pita, ) = |1+ exp
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Each of the quantities (5), (6), and (7) depends on the
channel parameters @ and B: (5) gives the capacity of C,
(6) the probability with which zeros should be chosen at
the transmitter if capacity is to be achieved, and (7) the
probability of a zero appearing at the receiver if zeros are
chosen at the transmitter in accordance with (6).

Each of the functions c¢(a, 8), Po(e, 8), and Pi(a, B)
defines a surface over the unit square 0 < «, 8 < 1. A
study of the expressions (5), (6), and (7) reveals the
following symmetries:

C(a’ 6) = C(ﬁ, a) = C(l — a, 1 - B)

= C(l — B, 1- 0(), (8)
Py, B) = P(1 —a,1 — B) =1 — PyB, a)
:1_P0(1_6>1_a)) (9)

P(/)(a,.B)ZPé(B;a):l_Pé(l_ayl—ﬁ)

=1-—P1 —8,1—a). (10)

B (l’ao:l'ﬂo)

3e @
*2
(I-Bo»!-ao)
Qe
(BOIGO)
ol Bzl-a
(ay,B,)

| )

Fig. 1—Tllustrating the symmetries of ¢(a, 8), P.(a, B), ete.

These symmetries are illustrated in Fig. 1, where a point
(a0, Bo) and its reflections in the 8 = aand 8 = 1 — «
lines are shown. Eq. (8) shows that the capacity has the
same value at any four such symmetrically placed points
(for a reason to be discussed shortly), (9) that P, has the
same value at points 1 and 3 and one minus that value at
points 2 and 4, and (10) that P§ has the same value at
points 1 and 4 and one minus that value at points 2 and 3.

Fig. 2 shows lines of constant capacity (equicapacity
lines). Along the line 8 = « the capacity vanishes,
corresponding to the vanishing of det (C). The line
B = 1 — ais the locus of symmetric channels, and along
this line (5) reduces to the familiar expression

cla, ) = 1 — H{a).
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Along the lines @« = 0, «a = 1,8 = 0, and 8 = 1, (5)
reduces to especially simple expressions. For example,

cla, 0) = log [1 + exp, (—H@/a)], 0<B<1.

The slope of the curves c¢(e, 0) and ¢(0, 8) at the point .
a = 8 = 01islog e/e. It is clear from Fig. 2 that there are
an infinite number of binary channels with the same
capacity. This is to be expected since {wo parameters are
required to uniquely specify a binary channel.
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a

Fig. 2—Lines of constant ¢(e, 8).

The fact that the four channels Cle, 8), C(8, «),
Cl1 — a 1 —8),and C(1 — B8, 1 — «) have the same
capacity, which produces two symmetrically placed
branches of each equicapacity curve is easily explained.
Clearly it is a matter of indifference which input (or
output) symbol we choose to call a zero and which we
choose to call a one. Reversing the designation of the
input symbols corresponds to premultiplication by the
noiseless matrix

01
10

I =

’

and maps the channel C(«, 8) into the channel C(8, «).
Reversing the designation of the output symbols corre-
sponds to postmultiplication by the matrix I and maps
the channel C{«, 8) into the channel C(1 — a, 1 — B).
Reversing the designation of both the input and output
symbols corresponds to premultiplication and post-
multiplication by the matrix I, and maps the matrix
C(a, B) into the matrix C(1 — 8, 1 — a). As (9) and (10)
show, there are properties that, unlike capacity, are not
invariant under all these mappings.

We have just seen that from a given point on an
equicapacity line at least three other points can be
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reached by multiplying the channel matrix by another
channel matrix. That there are no more such points is an

'iimmediate consequence of a theorem proved by DeSoer”
to the effect that the capacity of two channels in cascade

. 1s less than the capacity of either unless one is a noiseless
channel (7.e., the unit matrix or one of its permutations)
or unless one is a completely noisy (zero-capacity)
channel.*’* (The reader is reminded that connecting two
(or more) channels in cascade corresponds to multiplying
the corresponding matrices.) Our statement follows from
the fact that there are only two noiseless binary channels,
namely I and the unit matrix.

os|- X

0.8 .

0.6 —
0.5 ‘3'
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a

Fig. 3—Lines of constant P/,(a, 8).

Fig. 3 shows lines of constant Pj(a, 8), the probability
of receiving a zero if the input symbol distribution achieves
capacity. Along the line 8 = 1 — «, the locus of symmetric
channels, P{(a, 8) has the familiar value 1. Along the
zero-capacity line 8 = «, P{(«a, 8) has the limiting value
«, although (7) is indeterminate for 8 = «. That is

lim Pi(a + ¢, @) = lim Pj(a, &« + € = .
€0 €0

Fig. 4 shows lines of constant Py(a, 8), the probability
with which zeros should be transmitted to achieve

2 C. A. DeSoer, “Communication through channels in cascade,”
Se.D. Thesis, January, 1953, Dept. of Elect. Eng., M.I.T.

3 There is also the intermediate case where the channel matrix is
reducible and one of the submatrices is completely noisy, e.g., the
channel with matrix

0

0|l

1
2

[

1
2

Wl

0 01

This channel (cited by Shannon in reference 4) is effectively the unit
matrix, since the symbols corresponding to the first and second rows
produce indistinguishable effects at the receiver.

4C. E. Shannon and W. Weaver, The Mathematical Theory of
Communication, University of Illinois Press, 1949, pp. 44—45.
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capacity. The surface is saddle-shaped with the saddle
point at « = 8 = 3. Along the symmetric channel line
B8 =1 — a, Py, B) has the familiar value 3. Along the
zero-capacity line 8 = «, Py(e, 8) has the limiting value
1, although (6) is indeterminate for 8 = «. That is,

lim Pyle + €, @) = lim Pole, o 4 €) = 3

e—0 e—0
The behavior of Py(«, 8) at the corners o« = 8 = 0 and
a = B = 1 is sufficiently remarkable to warrant special
discussion.

Suppose we approach the point « = 8 = 0 along the
linea = ¢ B = re, where 0 < r < ;i.¢., along any line
between the positive a-axis (r = 0) and the positive
B-axis (r = o). Then lim ., P(¢, r¢) takes on all values
between 1/¢ and 1 — (1/e), depending on the value of r,
provided that for the value r = 1 (for which the single
limit is indeterminate) we take the double limit lim .,
lim, o Po(e, € + €). For example,

— ) = e S
(o] ol 0.2 03 0.4 05 o6 07 o8 09 10
a

Fig. 4—Lines of constant P,(«, 8).

lim Pyle, 0) = lim [e(1 + exp, (H(e)/e)]™
= lim [e + (1 - :26—)5]_ = 1/e,
lim Po(0, & = 1 — lim Pole, 0) = 1 — (1/e),

lim Py(e, 3¢) = llm — 14 [(e/4) + (¢/2) — (3ee/16)]7"

e—0

= (4/¢) — 1,
lim lim Py(e, € + €¢) = lim lim
e—0 €'—0 e—0 €'—0
el —¢ )y , 1
I 2 Tog ¢ H'(e) + 0(¢) = 5
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In evaluating the limits we have made free use of the
expressions

H(x) = x log (e/2) — (2°/2) log e + 0(z*),
H'(x) (d/dx)H(x) = log (1 — z)/x,
—H'"(x) = —(d*/dx)H(z) = 27 '(1 — 2)"" loge.

We see that the point o = 8 = 0 (and itsimagea = 8 = 1
in the line 8 = 1 — «) is a point of discontinuity of the
function Py(a, B8), whose limiting behavior there depends
on the direction of approach in a sort of “spiral staircase”
fashion.

The maximum value of Py(a, 8) is the limiting value
1 — (1/e) obtained when we approach the point @ = 8 = 0
along the positive B-axis, and the minimum value of
Py(a, B) 1s the limiting value 1/e¢ obtained when we
approach the point « = 8 = 0 along the positive a-axis.
(There are two corresponding limits at the point
a = B = 1.) Of course, the channel capacity is zero in
both limits, so that there is no channel with positive
capacity whose input symbol distribution is as asymmetric

as P = [1/e,1 — (1/e)] orP =11 — (1/e), 1/¢]. However, -

there are low-capacity channels whose input symbol
distributions are arbitrarily close to these maximally
asymmetric ones. These low-capacity channels will be
discussed further below.

We see that in a binary channel neither transmitted
symbol can be selected with a probability lying outside
the interval [1/e, 1 — (1/e)] if capacity is to be achieved.
If we are compelled to send digits from a more asymmetric
distribution (as we may well be), the possibility of signal-
ing at capacity is precluded from the start. Intuitively,
this means that in a binary channel no decrease in equivo-
cation obtained by skewing the input symbol distribution
can justify making the source entropy less than H(1/e),
at least if obtaining maximum rate (capacity) is the
objective.

For channels with larger alphabets it may be quite
proper to choose one or more transmitted symbols with
probability less than 1/e, or indeed to suppress one or
more transmitted symbols. Thus, for example, in the
ternary channel

a 1 —a 0
b0 4,
0 1 —a «

capacity cannot be achieved if the symbol corresponding
to the second row is transmitted, unless ¢ < «, where
ap ~ 0.64 is the solution of the equation

loga = —a.

Muroga gives many other examples of the need for
suppressing possible transmitted symbols in his basic
paper'. He was the first to point out the need of taking
special care that P, does not become negative in capacity
calculations.

December

The four channels which in the zero-capacity limit
achieve one of the maximally asymmetric input distri-
butions P = [1/e,1 — (1/e)] or P = [1 — (1/e), 1/e] have‘ﬂ
matrices

’e l—e’ 1 — € ¢
‘0 1 1. 0]
(11)
0 1 1 0‘
e 1 — ¢ 1 —€ €

We shall refer to these channels as ‘““é-channels’”. To the
first order in ¢, they all have capacity

log e
e

c = e ~ 0.53¢ bits. (12)
Introducing the abbreviation £ = (2 — ¢)/e ~ —0.27,
we find that the input symbol distribution which achieves

capacity for the first and second of these channels is

-1
P = (e + ke ’ (13)
1 — e+ ke
whereas for the third and fourth it is
. 1—(e+ke>-!_ (19
e+ ket |
The corresponding output symbol distributions are
-1
B — ele + ke (15)
1 — ele + ke
for the first and third channels, and
Br— 1 — ele + ke (16)
ele 4 ke

for the second and fourth channels. Eqs. (13) through (16)
are accurate only to the first order in e.

ProBaBILITY OF ERROR

We have seen that there are infinitely many binary
channels with the same capacity. It is natural to ask
whether there are contexts in which any of these channels
with the same capacity is to be preferred to the others.
Two questions that we might ask are: 1) Which of the
channels with the same capacity has the smallest prob-
ability of error (in a received digit), and 2) Which has the
largest end-to-end capacity if its output terminals are
connected to the input terminals of an identical channel?’
We answer the first question in this section and defer
discussion of the second question until the next section.

The probability of error (at capacity) is given by the
expression

Pfa,8) = B+ (1 — a = B)Pole, B), (17)

5 This question arises naturally if we consider building up a cas-
cade of repeaters, using a given binary channel as a unit.
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where Py(a, 8) is the probability of a transmitted zero as
given by (6). It is easily verified that P,.(«, 8) has the
Efollowing symmetries

Pfa,8) = P.(1 — 8,1 —a) =1 — P.(8, )
=1 -P(0—al-—4). (18)

In deriving (18) free use has been made of the symmetries
of Py(a, B) as given by (9). Referring to Fig. 1, we see
that P.(a, B8) has the same value at the points 1 and 2
and one minus that value at the points 3 and 4. (Note
that none of the functions ¢(a, 8), Po(a, B), Pila, B),
and P,(«, 8) has the same symmetries.)

Fig. 5 shows lines of constant P,(a, 8). Along the
symmetric channel line 8 = 1 — o, P,(a, 1 — «) has the
familiar value 1 — «. Along the zero-capacity line 8 = a,
P.(a, a) has the limiting value 3. At the point o =
B = 1 corresponding to the channel matrix 7, P, = 1,
whereas at the point « = 1, 8 = 0 corresponding to the
unit matrix, P, = 0.

S
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a

Fig. 5—Lines of constant P.(«, 8).

We have already noted that P,(«, 8) has discontinuities
at the corners « = 8 = 0 and o = 8 = 1, and indeed that
any value between 1/¢ and 1 — (1/e) can be obtained by
approaching these discontinuities along the proper direc-
tions. Eq. (17) shows that P,(a, 8) shares these dis-
continuities. For since

lim P.(a, ) =

lim P o(a; 6)7

a,f—0 a,f—0

¢ the limiting behavior of P,(«, 8) at the two discontinuities
is identical with that of P,(a, 8), however different the
over-all appearance of the two sets of curves. This fact is
apparent from Fig. 5. In particular, it follows that the
curve P.(a, 8) = 1/e (not shown) must come into the
pointsa = 8 = 0 and @ = 8 = 1 with zero slope.
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As we have seen, the portion of the equicapacity curve
lying in the triangular region 8 < «, 8 < 1 — « generates
the rest of the equicapacity curve under the mappings
corresponding to reversing the designation of the input
symbols or output symbols or both. Eq. (18) shows that
the probability of error for channels on the upper branch
of the equicapacity curve (above the line 8 = «) is greater
than for channels on the lower branch (below the line
B = «), and indeed is greater than 3. However, a value
of P, greater than % is artificial, for if communication is
through such a channel, the receiver can obtain infor-
mation at the same rate and with probability of error
one minus that value merely by reversing the designation
of the received symbols. (The transmitter need not be
informed of this reversal, for (9) shows that the input
symbol distribution remains the same in the reversed
channel.) Thus our problem reduces to finding which of
the channels on the portion of the equicapacity curve
lying in the triangular region 8 < «, 8 < 1 — « has the
smallest probability of error.

The question is immediately answered if we superimpose
the curves of Figs. 2 and 5. We find that a symmetric
channel with a given capacity has a smaller probability
of error than an asymmetric channel with the same
capacity, unless the channels have very low capacity. In the
latter case it is easily verified that the symmetric channel

| 1/2 + (/20"
12 = (/20

1/2 — (e/2¢)'*
1/2 4+ (e/2)'

has the same capacity as the asymmetric ¢ channel

e 1 —e€ l:
I
0 1 |
namely
loge .
¢ bits.

Using (13) and (17), we find that the probability of error
for the asymmetric channel is

(Pasym. = (1 — /(e + ko [k =(2—ee],

whereas that of the symmetric channel is obviously
(Pogm. = 1/2 — (/20"

For small ¢, 1t is apparent that

(Pe)a,sym. < (Pt)symd

as asserted. Indeed

llm (Pe>asym. = 1/@,

e—0

(19)

whereas

lim (Pe)sym. = %’

o0

(20
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CascapED CHANNELS

We turn to a discussion of the second of the questions
raised at the beginning of the preceding section: Which
of the channels with the same capacity has the largest
end-to-end capacity if its output terminals are connected
to the input terminals of an identical channel?

First we remind the reader (see the first section) that

e(C®) < (),
i.e., capacity is a decreasing function of the number of
cascaded stages, unless C is one of the noiseless channels
1o 0 1
0 1 10

or one of the zero-capacity channels

a 1 —a 1)

la 1 —a

The reader should further note that, unless C is one of
the two noiseless channels,

lim ¢(C™) = 0.

n—®

For then C is irreducible, and by a well-known theorem
on Markov chains® lim,.. C" has the form (21), and
consequently

lim ¢(C™) = ¢(lim C*) = 0.

7o n-—o

We begin by squaring the matrix C(a, 8), obtaining
o || A s 1 - 4@ B H
B, 8 1 — Bla, B
where
A, B) = o® + (1 — 0B,
B(a, f) = of + (1 — B)B.

Thus to every channel (@, 8) on a given equicapacity
curve corresponds a squared channel (cascaded with
itself with matrix elements A (e, 8) and B(«, 8). The func-
tions A (e, 8) and B(e, B) exhibit the following symmetries:

A(a; B) =1- B(l - By 1 - a); (22)
B(Ol, B) =1 A(l - ﬁ; 1 - a))

and
A(ﬂ; O:) =1- B(l ) L - B); (23)

BB,a) =1 — A1 — o, 1 — B).

However, there is no simple relation between 4 («, 8) and
A(B, @), or between B(e, 8) and B(8, ) [unless 8 = 1 — ],
so that two quite different curves are produced by squaring
the matrices corresponding to a given equicapacity line,

6 W. Feller, “Probability Theory and Its Applications,” vol. 1
New York, John Wiley and Sons, 1950. Reference is made to
Theorem 2, p. 325.
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one originating from the upper branch of the equicapacity
curve (above the line 8 = «), and the other originating
from the lower branch (below the line 8 = «). The portion:
of the (A, B) curve which originates from the upper branch*
of the equicapacity curve has no intercepts on the a- and
B-axes; we shall call it the upper branch of the (4, B) curve.”
The portion of the (4, B) curve which originates from the
lower branch of the equicapacity curve has intercepts on
the a- and B-axes; we shall call it the lower branch of the
(A4, B) curve. Eqgs. (22) and (23) show that both branches
of the (4, B) curve are symmetric in the line 8 = 1 — a.
Moreover, since

Ale, 1 —a) = Al — a, o),
Bla,1 —a) = B(l — a,a),

the two branches contact on the line 3 = 1 — a.

These facts are illustrated by Fig. 6, which shows three
(4, B) curves, those generated by squaring the channels
with capacities 0.1, 0.4, and 0.7. The («, 8) values corre-
sponding to these channels were read off the corresponding
equicapacity lines of Fig. 2. Note that all the (4, B) curves
lie below the line 3 = «. This is because 8 > « implies
B(a, 8) < A(a, B), whereas 8 < o implies B8, a) <
AB, a).

0.8 -

06—

0.5+ —

03 -1

0.2

2.

[o2] -

o 1 1 |/|/1 1 1 1 I

o 0. 0.2 0.3 0.4 0.5 [o1:} 0.7 08 09 10

Fig. 6—(A, B) curves corresponding to the channels of capacities
0.1, 0.4, and 0.7.

Of all the channels with the same capacity, the two
corresponding to the end-points of the upper branch of
the (4, B) curve have the smallest capacity under cascade.
Moreover, any channel on the upper branch of the (4, B)
curve has lower capacity than its images (under multipli-
cation by I) on the lower branch. However, we can avoid
the low capacity in cascade exhibited by these channels
by an extremely simple intermediate station behavior,
namely by crossing the connections between the outputs
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of one channel and the inputs of the next. In this way we
arrive on the lower branch of the (4, B) curve, which has
higher capacity in cascade. (It will be recalled that in the
- preceding section we avoided probabilities of error greater
than } by exactly the same expedient.) We shall comment
on the significance of this intermediate station behavior
below.

The problem thus reduces to finding the channel on the
lower branch of the (4, B) curve with the highest capacity.
As in the preceding section, we resort to a superposition
of curves, this time superimposing the curves of Figs. 2
and 6. We find that a symmetric channel with a given
capacity has a higher capacity under cascade than an
asymmetric channel with the same capacity, unless the
channels have very low capacity. As an example of this
exceptional behavior at low capacity, we cite again the
two channels

[ 1/2 + (/20 1/2 — (¢/20)"
1/2 — (¢/20)' 1/2 + (¢/2¢)"*

which both have capacity of (e loge)/e bits. The squares
of the matrices (24) are

2 2
e 1 — ¢

0 1

e 1 — ¢

0 1

, (29

1/2 4 ¢/e
1/2 — ¢/e

1/2 — €/e
1/2 + ¢/e

respectively. The corresponding capacities are

’

lCosvm.] = k’—egq ¢ bits, (25)
and

(i) =2 le‘ig@ ¢’ bits (26)
Thus

e[C2m.] > c[C2 ],

as asserted.”

We can now answer both questions posed at the
beginning of the preceding section as follows: Of all the
binary channels on the lower branch of a given equi-
capacity line, the symmetric channel has the smallest
probability of error and the largest capacity in cascade,
unless the capacily is small, in which case the asymmetric
channel (with one noiseless symbol, z.e., 8 = 0) has the
smallest probability of error and the largest capacity in
cascade. Continuity requires that there be a small range
of values of the capacity for which asymmetric channels
with 8 # 0 are superior in these two respects, but we
have made no detailed study of this intermediate case.
There is no point in trying to establish a preference among
the channels on the upper branch of the equicapacity line,
since by reversing the designation of the output (or input)
symbols we arrive at a channel with a smaller probability

TTgs. (19), (20), (25), and (26) suggest the conjecture that the
capacity in cascade of channels with the same low capacity is in-
versely proportional to their probabilities of error (see also (32) in
the Appendix).
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of error and a larger capacity in cascade. (An exception
to this statement in the symmetric case is noted below.)

A particularly striking example of the difference between
the capacity in cascade of a channel on the upper branch
of the equicapacity line and its images on the lower branch
is afforded by comparing the two e-channels

1—¢€¢ €

1 0

Ce= ) (Y£=CEI=

C. is on the lower branch of the equicapacity line (with
capacity (e loge)/e bits), and C7, obtained by reversing
the designation of the output terminals of €., is on the
upper branch. The squares of ', and C’ are

c=|lc 1TF
0 1
and
ero|lmete =€
1 — ¢ €

The corresponding capacities are
o] = l"—eg‘f ¢ bits
and

elCr] = 10BL &g,
8
so that, in this extreme case, the capacity of one channel
is an order of magnitude less than that of the other.

DeSoer” has emphasized the importance of proper
intermediate station behavior in maximizing the end-to-
end capacity of a cascade of channels. In particular, he
compares the capacity of a cascade of continuous channels
perturbed by white Gaussian noise with that of a cascade
of PCM channels with the same signal-to-noise ratio. It
is assumed that in the cascade of continuous channels the
intermediate stations retransmit the received waveform
without change, whereas in the cascade of PCM channels
requantization occurs at each intermediate station.
Although the continuous channel has a higher capacity
than the PCM channel, the PCM channels deteriorate
less in cascade. Thus, for some cascade length depending
on the signal-to-noise ratio, the cascade of PCM channels
has a larger end-to-end capacity than the cascade of
continuous channels.

We have an even simpler example of how proper inter-
mediate station behavior can preserve the end-to-end
capacity of cascaded channels. For, in the example just
given, if the output symbols of the C! channel are reversed
at the intermediate station, we have

elC T ] = c[C7] > c[C].

On the other hand, the capacity of a cascade of symmetric
channels is completely insensitive to whether the identity
of the symbols is preserved or reversed at the intermediate
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stations. Graphically, this is a consequence of the point of
contact of the two branches of the (A, B) curve on the
symmetric channel line 8 = 1 — « (See Fig. 6).

Suppose we regard the behavior of the intermediate
station as a detection scheme. Then preserving the
designation of the output symbols of the preceding
channel at the intermediate station is minimum probability
of error detection® if the channel lies in the square region
a > 3,8 < 1, and reversing the designation of the output
symbols is minimum probability of error detection if the
channel lies in the square region o < %, 8 > 3. If the
channel lies in the square region o, 8 < %, then minimum
probability of error detection requires that both zeros
and ones be changed to ones, and information-destroying
mapping. Similarly, if the channel lies in the square region
a, 8 > %, then minimum probability of error detection
requires that both zeros and ones be changed to zeros.
Thus it is apparent that maximum rate in cascade and
minimum probability of error detection at intermediate
stations are not always compatible. (DeSoer® gives a
complicated example that illustrates this fact.) If in-
formation-destroying mappings are precluded, as they
must be if maximum rate is the objective, we conclude
that the larger capacity in cascade is given by minimum
probability of error detection, which requires that the
identity of the symbols be preserved at the intermediate
station if the channel lies below the line 8 = «, but
reversed if the channel lies above the line 8 = «.

The proofs of the statements of the preceding paragraph
are left to the reader. It is merely necessary to examine
the expressions for the probabilities of error of each of the
four delayless detection schemes and ascertain which is
smallest in each square region.

APPENDIX
Redundancy Coding in the e-Channel

In our discussion of cascaded channels in the last
section we considered only delayless operation of the inter-
mediate station. If sufficient intermediate station delay
is allowed, it follows from Shannon’s second coding
theorem that the end-to-end capacity of a cascade of
identical channels can be made arbitrarily close to the
common capacity of the separate channels. Studies of
probability of error and rate as a function of delay are
still in progress,” and it is perhaps too early to apply the
theory to cascaded channels. However, the e-channel is
susceptible to a simple type of redundancy coding, which
is effective just because of its low capacity. This re-
dundancy coding, although not ideal in the sense of
achieving capacity with a vanishingly small probability
of error, nonetheless achieves a rate which is an appreciable
fraction of capacity with a small probability of error.

& This is sometimes called maximum a posterior: probability detec-
tion or the ideal observer.

® Reference is made to recent work by C. E. Shannon and by
%’R%}lias, presented at the March, 1955 National Convention of the

December

Moreover, it serves to illustrate how delay can be ex-
changed for enhanced rate in a cascade of channels."

In the redundancy coding to which we refer, each trans-
mitted digit is repeated r times, and the receiver decides
whether a zero or a one was sent by examining sequences
of r digits. More specifically, let the channel have matrix

e 1 — ¢

o
1o 1

with capacity (log e)/e € bits. Have the receiver examine
the output in blocks of » symbols (properly synchronized
with the transmitter) and decode a block of r ones as a
one and a block of r digits with a zero at any position as a
zero. In other words, the symbols 0 and 1 are mapped
into the sequences 00 --- O (r times) and 11 --- 1 (r
times) at the transmitter, and the events S and F are
mapped into 0 and 1 at the receiver, where S designates
the appearance of a zero in a block of r digits, and F the
nonappearance of a zero in a block of r digits."’ Trans-
mission can then be regarded as taking place in an
equivalent channel C'(r) with matrix

1—01—-¢ (A—9
0 1

Clr) =

The capacity of C(r) is

0] = log [1 + exps (f—ff(%"_—))))]

and its probability of error is
P.(r) = (1 — §'Po(),

where by Py(r) we mean the probability that the sequence
00 --- 0 (r times) should be transmitted if the capacity
c[C(r)] is to be achieved. P,(r) is not the same as P, for
the e-channel, as given by (13) of the first section.

Suppose that each of the transmitted symbols is repeated
r = n/e times. Then, since (1 — €)™ ~ ¢ for small ¢,
the equivalent channel becomes

1—e e

C(n)=l
I o 1

with capacity

c[C(n)] = log [1 + exp, <-——Ff(1_—_e<f;n)>}, (27)

input symbol distribution

Pyn) = (1 — e‘")*l[l + exps (%“—_“—"—)ﬂ (28)

e
and probability of error

P.(n) = e "Py(n). (29)

W Tentative studies of the effect of delay in cascaded channels
have also been made by DeSoer2.

11 Of course, redundancy coding is also effective in a low capacity
symmetric channel, but the analysis is more complicated, since now
the events S and F refer to receiving more zeros than ones in a block
of r received digits, and vice versa.

.
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Of course, before comparing the capacity of the redundant
channel with the capacity of the e-channel, we must
normalize (27) by dividing it by r = n/e, since only one
information digit is transmitted every r units of time.
Moreover, we must now accept a delay of » units. The
interesting result (displayed in Table 1 at the end of
this appendix) is that even when properly normalized,
the redundancy code (which is, after all, a very simple
code) gives rates which are an appreciable fraction of the
capacity of the e-channel, with a probability of error which
becomes smaller as we tolerate more delay. (Unfortunately,
the capacity goes to zero with the probability of error,
which is not the case for ideal coding.) Note that as more
redundancy is introduced, C{n) becomes a better approxi-
mation to the unit matrix, and P,(n) approaches %.

TABLE 1
n dCn)] [Cm)(e/n) Po(n) Pe(n)
1 0.436 0.436€ 0.413 0.152
2 0.707 0.353¢ 0.448 0.061
3 0.858 0.286¢ 0.472 0.024
4 | 0.934 0.234 0.487 0.0089
5 | 0.971 0.194e 0.493 0.0033
6 0.987 0.165¢ 0.497 0.0012
7 0.994 0.142¢ 0.499 0.00045
8 0.998 0.125¢ 0.500 0.00017
9 0.999 0.111e 0.500 0.00006
10 1.000 | 0.100e 0.500 0.00002

(For no redundancy: c[C.] = 0.531¢, Py = 0.368, P, = 0.368)

Illustrating the redundancy-coded e-channel. A table of the quan-
tities given by (27), (28), and (29), corresponding to a redundancy
r = n/e

If C(n) is cascaded N times, we raise the matrix C(n)
to the N'th power:
1 —em 1—=(1—en"
0 1

The capacity of the product matrix is still normalized by
dividing it by the per-stage delay r = n/¢, but the over-all
delay that must now be tolerated is Nr. Assume that n is
large enough so that ¢ " is small and ¢[C(n)] ~ 1.0, and
suppose that we agree to let c[C"(n)] fall off only to the
value k; < 1. This amount of deterioration occurs when

(1 =" = fky), (30)

where f(k,) is the abscissa of the point of intersection of

C¥m) = ‘
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the equicapacity line k&, with the a-axis (see Fig. 2). If
we assume that N, the number of cascaded stages, is large
(30) becomes

exp (—Ne™ = (k)
or

Ne™™ = —log f(ky) = ky, > 0.

Thus

N = ke, (31

i.e., we can tolerate more channels in the cascade if we
increase n, and consequently the error-proofing and delay
per stage. Moreover, since

P.(n) ~ 3¢,

(31) can be rewritten as

ks

N~ 2P.(n)

(32)
Eq. (32) says that the amount of cascading permissible
to within a given tolerated deterioration of the end-to-end
capacity is inversely proportional to the probability of
error per stage.'”

If a noiseless feedback channel is available at the
receiver, the rate can be increased by the simple expedient
of having the receiver instruct the transmitter to begin a
new run of r repetitions whenever a zero is received. For,
since received zeros can only originate from transmitted
zeros, it is a waste of channel space to continue repeating
zeros for the rest of the run of » digits when a zero has
already been received. In the limit of high redundancy
this feedback procedure increases the rate by a factor
approaching 2, because without feedback almost half the
channel space is taken up by the needless repetition of
Zeros.
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