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This paper proposes to estimate the covariance matrix of stock returns by an optimally weighted 

average of two existing estimators. The sample covariance matrix and single-index covariance 

matrix. This method is generally known as shrinkage, and it is standard in decision theory and 

in empirical Bayesian statistics. Our shrinkage estimator can be seen as a way to account for 

extra-market covariance without having to specify an arbitrary multi-factor structure. For NYSE 

and AMEX stock returns from 1972 to 1995, it can be used to select portfolios with 

significantly lower out-of-sample variance than a set of existing estimators, including multi­

factor models. 
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1 Introd uction 

The objective of this paper is to estimate the covariance matrix of stock returns. This is a 

fundamental question in empirical Finance with implications for portfolio selection and for 

tests of asset pricing models such as the CAPM. 

The traditional estimator - the sample covariance matrix - is seldom used because it 

imposes too little structure. When the number of stocks N is of the same order of magnitude 

as the number of historical returns per stock T, the total number of parameters to estimate 

is of the same order as the total size of the data set, which is clearly problematic. When N 

is larger than T, the sample covariance matrix is always singular, even if the true covariance 

matrix is known to be non-singular. 1 

These severe problems may come as a surprise, since the sample covariance matrix has 

appealing properties, such as being maximum likelihood under normality. But this is to forget 

what maximum likelihood means. It means the most likely parameter values given the data. In 

other words: let the data speak (and only the data). This is a sound principle, provided that 

there is enough data to trust the data. Indeed, maximum likelihood is justified asymptotically 

as the number of observations per variable goes to infinity. It is a general drawback of maximum 

likelihood that it can perform poorly in small sample. For the covariance matrix, small sample 

problems occur unless T is at least one order of magnitude larger than N. 

The cure is to impose some structure on the estimator. Ideally, the particular form of 

the structure should be dictated by the problem at hand. In the case of stock returns, a 

low-dimensional factor structure seems natural. But this leaves two very important questions: 

How much structure should we impose? And what factors should we use? 

To address these questions properly, we have to be more specific about how we impose 

a low-dimensional factor structure. One possible way is to specify a K-factor model with 

uncorrelated residuals. Then K controls how much structure we impose: the fewer the factors, 

the stronger the structure. The advantages of this approach are that it is quite familiar to 

the Finance profession, and that the factors sometimes have economic interpretation. The 

disadvantages are that there is no consensus on the identity of the factors - except for the 

first one, which represents a market index -, and that there ·is no consensus on the number 

of factors K either (Connor and Korajczyk, 1992). In other words, choosing between factor 

models is very ad hoc. It does not mean that none of them works well, it means that we do not 

know which one works well a priori. For example, if we are interested in selecting portfolios 

with low out-of-sample variance, in any given data set there may exist a factor model that 

performs well, but it may be a different one for every data set, and there is no way of telling 

which one works well without looking out-of-sample, which is cheating. The art of choosing a 

factor model adapted to a given data set without seeing its out-of-sample fit is just that: an 

art. 

lIn typical applications, there can be over a thousand stocks to choose from, but rarely more than ten years 

of monthly data, i.e. N = 1,000 and T = 120. 

1 



This is why, in this paper, we study another way of imposing factor structure. It is to 

take a weighted average of the sample covariance matrix with Sharpe's (1963) single-index 

model estimator. The weight a (between zero and one) assigned to the single-index model 

controls how much structure we impose: the heavier the weight, the stronger the structure. 

This is a well-known technique in Statistics called shrinkage dating back to Stein (1956): a is 

called the shrinkage intensity, and the single-index model is our choice of shrinkage target. The 

advantages are that there is strong consensus on the nature of the single factor (a market index), 

and that there is a way of estimating the optimal shrinkage consistently. The estimation of a is 

the technically challenging part of this paper. It provides a rigorous answer to the question of 

how much structure we should impose. On any given data set, there will be a different optimal 

shrinkage intensity, and our estimation technique will find it without having to look out-of­

sample. This takes the ad-hockery out of the task of imposing structure on the covariance 

matrix of stock returns. It replaces the art of factor selection by a fully automatic procedure. 

At this point, it is worth mentioning that the paper is solely concerned with the structure 

of risk in the stock market, not with the structure of expected returns. Multi-factor models 

of the covariance matrix can still be very useful if economic arguments tie them up to the 

cross-section of expected returns, as in the Arbitrage Pricing Theory of Ross (1976). Any 

discussion of the relationship between risk factors and expected returns is outside the scope 

of the paper. There should be no ambiguity over whether we define "factors" in terms of the 

mean vector or of the covariance matrix of stock returns: it is always the latter. 

Muirhead (1987) reviews the large literature on shrinkage estimators of the covariance 

matrix in finite-sample statistical decision theory. All these estimators suffer from at least two 

severe drawbacks, either of which is enough to make them ill-suited to stock returns: (i) they 

break down when N > T; (ii) they do not exploit the a priori knowledge that stock returns 

tend to be positively correlated to one another. Frost and Savarino (1986) show that the 

solution to the second problem is to use a shrinkage target that incorporates a market factor, 

but they ignore without justification the correlation between estimation error on the shrinkage 

target and on the covariance matrix, and they are still exposed to the first problem. A main 

contribution of our paper to the literature is to address the first problem through the definition 

the optimal shrinkage intensity by minimizing a loss function that does not involve the inverse 

of the covariance matrix. Moreover, the technique is so general that it is applicable to other 

shrinkage targets as well. 

A noteworthy innovation is that the optimal shrinkage intensity depends on the correlation 

between estimation error on the sample covariance matrix and on the shrinkage target. Intu­

itively, if the two of them are positively (negatively) correlated, then the benefit of combining 

the information that they contain is smaller (larger). The introduction of this correlation term 

resolves a deep logical inconsistency in earlier empirical Bayesian literature, where the prior is 

estimated from sample data, yet at the same time is assumed to be independent from sample 

data. 

We test the performance of our shrinkage estimator on stock returns data for portfolio 
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selection. Using NYSE and AMEX stocks from 1972 to 1995, we find that our estimator 

yields portfolios with significantly lower out-of-sample variance than a set of well-established 

competitors, including multi-factor models. 

The remainder of the paper is organized as follows. Section 2 presents our shrinkage 

estimator of the covariance matrix. Section 3 presents empirical evidence on its out-of-sample 

performance for portfolio selection. Finally, Section 4 concludes. 

2 Shrinkage Estimator of the Covariance Matrix 

This section presents the covariance matrix estimator that we recommend for stock returns. 

2.1 Statistical Model 

Let X denote an NxT matrix ofT observations on a system of N random variables representing 

T returns on a universe of N stocks. 

Assumption 1 Stock returns are independent and identically distributed (iid) through time. 

Even though actual stock returns do not verify Assumption 1, it is an acceptable first-cut 

approximation. This means that we abstract from lead-lag effects (Lo and MacKinlay, 1990), 

nonsynchronous trading (Shanken, 1987), and autoregressive conditional heteroskedasticity 

(Bollerslev, Engle and Woooldridge, 1988). Note that most of the current estimators for the 

covariance matrix of stock returns also use this assumption. Future research will be devoted 

to relaxing it. It is, however, not clear that by introducing extra degrees of freedom in the 

estimation process to account for dependence and conditional heteroskedasticity one will be 

able to improve out-oJ-sample performance. 

Assumption 2 The number oJ stocks N is fixed and finite, while the number oJ observations 

T goes to infinity. 

Assumption 3 Stock returns have finite Jourth moment: 

Vi, j, k, l = 1, ... ,n 'lit = 1, ... ,T 

This is so that we can apply the Central Limit Theorem to sample variances and covariances. 

Note that stock returns are not assumed to be normally distributed in this paper. 
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2.2 Sample Covariance Matrix 

The sample mean vector m and the sample covariance matrix S are defined by: 

m 

S -

1 
-Xl 
T 

1 ( 1 ') , T X 1- TII X 

(1) 

(2) 

where I denotes a conformable vector of ones and I a conformable identity matrix. 2 Equa­

tion (2) shows why the sample covariance matrix is not invertible when N ~ T: the rank of 

S is at most equal to the rank of the matrix 1- 11' IT, which is T - 1. Therefore when the 

dimension N exceeds T - 1, the sample covariance matrix is rank-deficient. Intuitively, the 

data do not contain enough information to estimate the unrestricted covariance matrix. 

2.3 Single-Index Covariance Matrix Estimator 

Sharpe's (1963) single-index model assumes that stock returns are generated by: 

where residuals Eit are uncorrelated to market returns XOt and to one another. Also, within 

stocks the variance is constant, that is, Var(Eit) = Oii. The covariance matrix implied by this 

model is: 

where 0"50 is the variance of market returns, f3 is the vector of slopes, and .a is the diagonal 

matrix containing residual variances Oii. Call <Pij the (i, j)-th entry of cl? 

This model can be estimated by running a regression of stock i's returns on the market. 

Call bi the slope estimate and dii the residual variance estimate. Then the single-index model 

yields the following estimator for the covariance matrix of stock returns; 

F = s60bb' +D 

where s50 is the sample variance of market returns, b is the vector of slope estimates, and D 

is the diagonal matrix containing residual variance estimates dii. Call fij the (i,j)-th entry 

of F. We need to make two technical assumptions. 

Assumption 4 cl? =I- ~ 

Assumption 5 The market portfolio has positive variance, that is, 0"50 > o. 

The exact composition of the market portfolio is not as critical here as it is for the CAPM 

(Roll, 1977). All we need is for XOt to explain a significant part of the variance of most stocks, 

2Vectors (matrices) are denoted in lower (upper) case boldface. 
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and any broad-based market index would do. As a matter of fact, equal-weighted indices are 

better at explaining stock market variance than value-weighted indices, yet another departure 

from CAPM intuition. The assumption that residuals are uncorrelated to one another should 

theoretically preclude that the portfolio which makes up the market contain any of the N stocks 

in the sample. However, as long as the size of the portfolio is large, such a violation will have 

a very small effect and is typically ignored in applications. 

2.4 General Form of the Shrinkage Estimator 

At one extreme, the single-index covariance matrix comes from a one-factor model, while at 

the other extreme, the sample covariance matrix can be interpreted as an N-factor model 

(each stock being a factor, there are no residuals). The intuition of the profession has always 

been that the best model lies somewhere between these two extremes. For example, Rosenberg 

(1974) stresses the importance of extra-market covariance, while Jobson and Korkie (1980) 

document the poor performance of the sample covariance matrix. Until now, this intuition has 

been expressed mostly through K-factor models with 1 < K < N. 

If we abstract ourselves from the Finance context and look at the broader picture from a 

statistician's point of view, we see another way of capturing the same intuition. The key is 

to recognize that the single-index model covariance matrix has a lot of bias coming from a 

stringent and misspecified structural assumption, but little in the way of estimation error, and 

that the opposite is true of the sample covariance matrix: it is unbiased (asymptotically) but 

has a lot of estimation error. A fundamental principle of statistical decision theory is that there 

exists an interior optimum in the trade-off between bias and estimation error. Since Stein's 

(1956) seminal work, we know that one way of attaining this optimal trade-off is simply to take 

a properly weighted average of the biased and unbiased estimators. This is called shrinking 

the unbiased estimator full of estimation error towards a fixed target represented by the biased 

estimator. For example, Stein (1956) showed that shrinking sample means towards a constant 

can, under certain circumstances, improve accuracy. Efron and Morris (1977) provide a general 

introduction to shrinkage, and Jorion (1986) shows its importance in the context of portfolio 

selection. 

Here this well-established statistical method suggests taking a weighted average of the 

single-index model covariance matrix and the sample covariance matrix. This is an alternative 

way of capturing the intuition that led to the development of multi-factor models. The main 

advantage of this alternative is that it does not require knowledge of the number and nature 

of factors (beyond the obvious market factor). 

2.5 Formula for the Optimal Shrinkage Intensity 

The obvious problem in the application of our method is the selection of the shrinkage intensity. 

This section discusses the optimal shrinkage intensity and its consistent estimation from the 

data. Since N is fixed and T goes to infinity, S is consistent but F is not, therefore the optimal 
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shrinkage intensity vanishes asymptotically. As will be shown below, it is of the (expected) 

order O(l/T). To simplify the estimation, we therefore will focus on shrinkage intensities of 

the form a = constant/To The goal then becomes to first find the optimal constant and to 

then estimate it consistently in order to arrive at a feasible shrinkage estimator. 

We have to choose the objective according to which the shrinkage intensity is "optimal." 

All existing shrinkage estimators from finite-sample statistical decision theory and also Frost 

and Savarino's (1986) break down when N 2: T because their loss functions involve the inverse 

of the covariance matrix. Instead, we propose a loss that does not depend on this inverse. The 

loss function is extremely intuitive: it is a quadratic measure of distance between the true and 

the estimated covariance matrices based on the Frobenius norm. 

Definition 1 The Frobenius norm of the N x N symmetric matrix Z with entries (Zij kj=l, ... ,N 

and eigenvalues (>"di=l, ... ,N is defined by: 

N N N 

IIZI1 2 
= Trace(Z2) = L I>G = L >"r 

i=l j=l i=l 

By considering the Frobenius norm of the difference between the shrinkage estimator and the 

true covariance matrix, we arrive at the following quadratic loss function: 

L(a) = lIaF + (1 - a) S - :E1I 2 , 

which gives rise to the risk function 

N N 
R(a) = E(L(a)) = L L E(afij + (1 - a) Sij - O'ij)2 

i=l j=l 
N N 

L L Var (afij + (1 - a) Sij) + lE (a fij + (1 - a) Sij - O'ij)f 
i=l j=l 

N N 

L L a 2Var(fij) + (1 - a)2Var(sij) + 2a(1 - a)Cov(fij, Sij) + a 2(cpij - O'ij)2. 
i=l j=l 

The goal now is to minimize the risk R(a) with respect to a. Calculating the first two deriva­

tives of R(a) yields after some basic algebra 

N N 
R' (a) = 2 L L aVar(fij) - (1 - a)Var(sij) + (1 - 2a)Cov(fij, Sij) + a(CPij - O'ij)2 

i=l j=l 

N N 

R"(a) = 2 L L Var(fij - Sij) + (CPij - O'ij)2. 
i=l j=l 

Setting R' (a) = 0 and solving for a* we get 

* Lf'!::l Lf=l Var(sij) - Cov(fij , Sij) 
a = N N . 

Li=l Lj=l Var(fij - Sij) + (CPij - O'ij)2 
(3) 

Since R( a)" is positive everywhere, this solution is verified as a minimum of our risk function. 

It is easy to see that a* = O(l/T). Indeed, the following Theorem shows the first order 

asymptotic behavior of the optimal shrinkage intensity a*. 
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Theorem 1 Let 7r denote the sum of asymptotic variances of the entries of the sample covari­

ance matrix scaled by n: 7r = 'L~1 'L.f=1 AsyVar [VTSij]. Similarly, let p denote the sum of 

asymptotic covariances of the entries of the single-index covariance matrix with the entries of 

the sample covariance matrix scaled by n: p = 'L~1 'Lf=1 AsyCov [VTfij , VTSij]. Finally, 

let 'Y measure the misspecification of the singlf-index model: 'Y = 'L~1 'L.f=1 (cfJij - (Jij)2. Then 

the optimal shrinkage a* satisfies: 

*_l7r-p 0(1) a ----+ -. 
T 'Y T2 

(4) 

Proof of Theorem 1 Relation (3) implies that 

(5) 

By standard arguments, using the assumptions of iid data and finite fourth moments, it follows 

that 

N N 

L L Var( VTSij) --+ 7r 
i=l j=l 

N N 

L L Cov ( VTfij, VTSij) --+ p and 
i=l j=l 

N N (1) ?= ?= Var(fij - Sij) = 0 T . 
1=1 J=l 

(6) 

Indeed, to show the first convergence, it is sufficient to focus on an arbitrary element 

7rij = AsyVar [VTSij]. Without loss of generality assume that E(Xid = E(xjt) = O. We start 

with the statistic 
1 T 

o-ij = - L XitXjt· 
T t=l 

Note that Xi1Xj1, ... ,XiTXjT is an iid sequence with mean 7rij and finite variance (!ij, say. The 

standard CLT therefore implies that 

(7) 

where ===? denotes convergence in distribution. Let Xi. = T- 1 'Lr=l Xit and Xj. = T- 1 'Lr=l Xjt· 

Then, 

1 TIT 
VT!hT L(Xjt - Xj.) + VTXj·T L(Xit - xd + VTXi.Xj-

t=l t=l 

VTXi.Xj .. 

By the standard CLT again, nXi. has a limiting normal distribution and is thus Op(l). On 

the other hand, Xj. converges to zero almost surely and is thus op(l). Hence, it is easily seen 

that n(o-ij - Sij) = op(l). By the convergence in distribution (7) and Slutzky's theorem, it 

follows that 

Moreover, this implies that (!ij = 7rij and that Var(VTSij) --+ 7rij. Since we focused on an 

arbitrary element 7rij, the same argument can be used for the other elements as well. Combining 
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Figure 1: Geometric Interpretation of Theorem 1. The notion of orthogonality among 

N-dimensional symmetric matrices is defined by the inner product associated with the Frobe­

nius norm. 

the individual convergences (noting that there are a finite and fixed number of them), we arrive 

at 2:~1 2:.7=1 Var( VTSij) -+ 7r. 

The convergence 2:~1 2:.7=1 Cov( VTfij , VTSij) -+ p is proved analogously. 

Finally, a similar argument can be used to demonstrate that L~l L.7=1 Var{ VT{fij - Sij)) 

converges'to a positive limit, which implies that L~l L.7=1 Var{fij - Sij) = O{1/T). 

We thus have verified the claim (6). But (5) and (6) together imply (4) and this completes 

the proof. • 

The theorem shows that within the class of shrinkage intensities {a = constant/T}, the 

asymptotically optimal choice is given by constant = /), with /), = (7r - p)/,. The analysis 

of the optimal constant /), indicates the following. The weight placed on the single-index 

model jncreases in the error on the sample covariance matrix (through 7r) and decreases in the 

misspecification of the single-index model (through ,). An alternative interpretation of this 

solution is a geometric one: T F + (1 - T) S is (asymptotically) the orthogonal projection of 

the true covariance matrix E onto the line joining single-index model and sample covariance 

matrices (see Figure 1). 

Note also the appearance of the term p that measures the covariance between the estimation 

errors of S and F and was not present in the work of Frost and Savarino (1986). It is easier 

to understand within the empirical Bayesian interpretation of our shrinkage estimator: we 

can say that we have a prior based on the single-index model which we combine with sample 

information. Estimating the prior F from the same data set as S violates the pure Bayesian 

principle that prior and sample information should be independent. This is typical of the 
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empirical Bayesian approach. Yet this violation is often ignored, and there is an "art" to 

choosing the prior so that the violation is not too damaging. We get rid of the need for such 

artistry by explicitly taking into account the correlation between prior and sample information 

through p. 

Finally, the reader can verify that Theorem 1 is of general nature: nowhere did we use the 

fact that F is a single-index model estimator. Equation (4) stays the same as long as F is an 

asymptotically biased estimator of the covariance matrix and satisfies a set of weak regularity 

conditions. 

2.6 A Consistent Estimator of the Optimal Shrinkage Constant 

Note that rF + (1 - r) S is not a bona fide estimator because /'i, depends on unobservables. 

Therefore, we need to find a consistent estimator for /'i, = (7r - p)/,. We can decompose 7r 

into 7r = 2:[;:,1 2:.7=1 7rij where 7rij = AsyVar [v!Tsij], pinto p = 2:[;:,1 2:f=1 Pij where Pij = 
AsyCov [v!Tfij , v!Tsij], and, into, = 2:[;:,1 2:f=1 ,ij where Pij = (c/Jij - (Jij)2. Standard 

asymptotic theory provides consistent estimators for 7rij, Pij and 'ij. 

Lemma 1 A consistent estimator for 7rij is given by: 

Proof of Lemma 1 Pij is the usual estimator for the asymptotic variance of Sij. It converges 

in probability to Var[(xil - J,td(Xj1 - J,tj)], which is equal to 7rij· • 

Let rno denote the sample mean of market returns and SiD the sample covariance of stock i's 

returns with the market. 

Lemma 2 On the diagonal a consistent estimator of Pii is given by rii = Pii, and for i i= j a 

consistent estimator of Pij is given by rij = ~ 2:[=1 rijt where: 

rijt = SjOSOO(Xit - mi) + SiDSOO(Xjt - mj) - SiOSjO(XOt - mo) ( )( )( ) 
2 XOt - mo Xit - mi Xjt - mj 

Soo . 

-hjSij. (8) 

Proof of Lemma 2 On the diagonal hi = Sii, therefore Pii = 7rii can be consistently esti­

mated by rii = Pii. When i i= j we have: hj = bibjsoo = SiOSjO/ SOO, therefore the delta method 

yields: 

Pij AsyCov JT_l_J_, JTsij [ 
S'os'O ] 

SOO 

-AsyCov JTs iO , JTsij + -AsyCov JTsjO , JTsij SjO [ ] Sio [ ] 

Soo ~O 

SiOSjO [ ] - -2-AsyCov JTsoo , JTsij . 
SOO 

(9) 
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The usual estimator for AsyCov [VTSkO' VTSij] where k = 0, k = i or k = j is: 

1 T 
T L {(Xkt - mk)(xOt - mo) - SkO}{ (Xit - mi)(Xjt - mj) - Sij}. 

t=l 

Plugging this estimator into Equation (9) and rearranging yields Equation (8) .• 

Lemma 3 A consistent estimator for ,ij = (<pij - Uij)2 is its sample counterpart Cij = (fij -

Sij)2. 

Proof of Lemma 3 This is because hj and Sij are consistent estimators for <Pij and Uij, 

respectively .• 

Now it is easy to construct an estimator for the optimal shrinkage constant. 

Theorem 2 k = (p - r) / c is a consistent estimator for the optimal shrinkage constant K = 
(7f - p)/r. 

Proof of Theorem 2 Under Assumption 4 (t > 0), combining the results of Lemmata 1-3 

proves the theorem. • 

Using this notation, the shrinkage estimator for the covariance matrix of stock returns that we 

recommend is: 

I § ~ ~F + (1 - ~) si (10) 

Different shrinkage targets would lend themselves just as well to a corresponding estimation 

of 7f, p and ,. The formula for r would need to be readjusted on a case-by-case basis, but the 

formulas for p and c would not change. 

3 Empirical Results 

We present empirical evidence on the performance of the shrinkage estimator defined in the 

last section. We compare it to existing estimators in terms of its ability to select portfolios of 

stocks with low out-of-sample variance. 

3.1 Portfolio Selection 

Consider a universe of N stocks whose returns are distributed with mean vector J.t and covari­

ance matrix ~. Markowitz (1952) defines the problem of portfolio selection as: 

minw'~w 
w 

I w'l 1 
subject to 

w' J.L q 

(11) 
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where 1 denotes a conformable vector of ones and q is the expected rate of return that is 

required on the portfolio. The well-known solution is: 

w (12) 

where A 

Equation (12) shows that optimal portfolio weights depend on the inverse of the covariance 

matrix. This sometimes causes difficulty if the covariance matrix estimator is not invertible 

or if it is numerically ill-conditioned, which means that inverting it amplifies estimation error 

tremendously (Michaud, 1989). The shrinkage estimator § is the weighted average of two 

positive semi-definite matrices, one of which (F) is invertible, therefore it is invertible. Also, 

it inherits the good-conditioning of the single-index model estimator, not the ill-conditioning 

of the sample covariance matrix. 

In practice, the covariance matrix is estimated from historical data available up to a given 

date, optimal portfolio weights are computed from this estimate, then the portfolio is formed 

on that date and held until the next rebalancing occurs. The performance of a covariance 

matrix estimator is measured by the variance of this optimal portfolio after it is formed. It 

is a measure of out-of-sample performance, or of predictive ability. An estimator that overfits 

in-sample data can turn out to work very poorly for portfolio selection, which is why imposing 

some structure is beneficial. 

The other input into portfolio selection is the vector of expected returns. It is sometimes 

argued that estimating the covariance matrix well is less important than estimating the ex­

pected returns well. We believe that this view is profoundly misguided. First, the essence 

of mean-variance analysis is that there is a trade-off between risk and return, therefore any 

reduction in risk translates into an increase in expected returns. Second, having a good esti­

mator of the covariance matrix helps us estimate more precisely the excess return associated 

with, for example, beta, size, or book-to-market by constructing portfolios that load on these 

characteristics and have low variance (this is related to the efficiency gain in running G LS 

cross-sectional regressions of stock returns on these characteristics). Third, it is not the role 

of just the statistician to determine expected returns, it is also the role of the economist, and 

of the portfolio manager who is paid to generate valuable private information about future 

stock price movements; whereas only statistics can generate information about the covariance 

matrix. This justifies why it is perfectly legitimate to concentrate on the covariance matrix 

alone without worrying about expected returns, as we do here. 

3.2 Data 

Stock returns were extracted from the Center for Research in Security Prices (CRSP) monthly 

database. The same procedure is repeated for every year from t = 1972 to t = 1994. We use 

data from August of year t - 10 to July of year t to estimate the covariance matrix of stock 
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returns.3 Then on the first trading day in August of year t we build a portfolio with minimum 

variance (according to this covariance matrix estimate) under certain constraints. We hold this 

portfolio until the last trading day in July of year t+ 1, at which time we liquidate it and start 

the process all over again. Thus, the in-sample period goes from August of year t -10 to July 

of year t, and the out-oJ-sample period goes from August of year t to July of year t + 1. The 

main quantity of interest is the out-of-sample standard deviation of this investment strategy 

over the 23-year period from August 1972 to July 1995. This is a predictive test, in the sense 

that our investment strategy does not require any hindsight. 

In August of year t, we consider the universe of common stocks traded on the New York 

Stock Exchange (NYSE) and the American Stock Exchange (AMEX) with valid CRSP returns 

for the last 120 months and valid Standard Industrial Classification (SIC) codes. The resulting 

number of stocks varies across years between N = 909 and N = 1,314. 

We consider two minimum variance portfolios: the global minimum variance portfolio, and 

the portfolio with minimum variance under the constraint of having 20% expected return. In 

both cases short sales are allowed, and no additional restriction is imposed (except that weights 

sum up to one). It is common practice in the investment community to impose client-specific 

constraints on portfolio weights or to minimize active risk with respect to an exogenously 

specified benchmark, but we abstract from that in order to have a "maximum stress" test of 

the performance of the covariance matrix estimator. For expected returns, we just take the 

average realized return over the last 10 years. This mayor may not be a good predictor of 

future expected returns, but our goal is not to predict expected returns: it is only to show 

what kind of reduction in out-of-sample variance our method yields under a fairly reasonable 

linear constraint. 

3.3 Competing Estimators 

Apart from our shrinkage estimator, we consider the following covariance matrix estimators 

proposed in the literature. 

Identity The simplest model is to assume that the covariance matrix is a scalar multiple of 

the identity matrix. This is the assumption implicit in running an Ordinary Least Squares 

(0 LS) cross-sectional regression of stock returns on stock characteristics, as Fama and MacBeth 

(1973) and their successors do. Interestingly, it yields the same weights for the minimum 

variance portfolios as a two-parameter model where all variances are equal to one another and 

all covariances are equal to one another. This two-parameter model is discussed by Jobson 

and Korkie (1980) and by Frost and Savarino (1986). 

3"We rebalance every August because the earliest AMEX stock returns available from CRSP are in August 

1962. 
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Constant Correlation Elton and Gruber (1973) recommend a model where every pair of 

stocks has the same correlation coefficient. Thus, there are N + 1 parameters to estimate: the 

N individual variances, and the constant correlation coefficient. 

Pseudo-Inverse It is impossible to use the sample covariance matrix directly for portfolio 

selection when the number of stocks N exceeds the number of historical returns T, which is the 

case here. The problem is that we need the inverse of the sample covariance matrix, and it does 

not exist. One possible trick to get around this problem is to use the pseudo-inverse, also called 

generalized inverse or Moore-Penrose inverse. Replacing the inverse of the sample covariance 

matrix by the pseudo-inverse into Equation (12) yields well-defined portfolio weights. 

Market Model This is the single-index covariance matrix of Sharpe (1963), which is defined 

in Section 2.3. 

Industry Factors This refinement of the single-index model assumes that market residuals 

are generated by industry factors: 

K 

Xit = ai + (3i XOt + L CikZkt + cit 

k=l 

(13) 

where K is the number of industry factors, Cik is a dummy variable equal to one if stock 

i belongs to industry category k, Zkt is the return to the k-th industry factor in period t, 
and Ckt denotes residuals that are uncorrelated to the market, to industry factors, and to 

each other. Every stock is assigned to one of the 48 industries defined by Fama and French 

(1997). This high number of factors is similar to the one used by the company BARRA to 

produce commercial multi-factor estimates of the covariance matrix (Kahn, 1993).4 Industry 

factor returns are defined as the return to an equally-weighted portfolio of the stocks from this 

industry in our sample. 

Principal Components An alternative approach to multi-factor models is to extract the 

factors from the sample covariance matrix itself using a statistical method such as principal 

components. Some investment consultants such as Advanced Portfolio Technologies success­

fully use a refined version of this approach (Bender and Blin, 1997). Since principal components 

are chosen solely for their ability to explain risk, fewer factors are necessary, but they do not 

have any direct economic interpretation.5 A sophisticated test by Connor and Korajczyk 

(1993) finds between four and seven factors for the NYSE and AMEX over 1967-1991, which 

is in the same range as the original test by Roll and Ross (1980). The number of factors that 

we use here is five. 

4In addition, nARRA use proprietary methods, including other factors that are not industry-based, therefore 

this is not a test of their performance. 
5Except for the first factor, which is highly correlated with the market index. 
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Shrinkage Towards Identity A related shrinkage estimator of Ledoit and Wolf (2000) uses 

a scalar multiple of the identity matrix as shrinkage target; note that their estimator, under a 

different asymptotic framework, is suggested for general situations where no "natural" shrink­

ing target exists. This seems suboptimal for stock returns, since stock returns have different 

variances and mainly positive covariances. Hence, it seems beneficial to use a shrinkage target 

which incorporates this knowledge, such as the single-index covariance matrix. Nevertheless, 

we include this estimator. 

Shrinkage Towards Market This is the estimator § defined in (10). 

3.4 Out-of-Sample Standard Deviations 

For everyone of the eight estimators described in the previous subsection, we compute the 

out-of-sample (annualized) standard deviation of the minimum variance portfolios as per Sec­

tion 3.2. The results are in Table 1. 

Std. Deviation Std. Deviation 

Unconstrained Constrained 

Identity 17.75 (0.44) 17.94 (0.42) 

Constant Correlation 14.27 (0.19) 16.30 (0.29) 

Pseudo-Inverse 12.37 (0.23) 13.73 (0.32) 

Market Model 12.00 (0.16) 13.77 (0.27) 

Industry Factors 10.84 (0.17) 12.32 (0.23) 

Principal Components 10.31 (0.16) 11.30 (0.22) 

Shrinkage To Identity 10.21 (0.17) 11.11 (0.21) 

Shrinkage To Market 9.55 (0.15) 10.43 (0.20) 

Table 1: Risk of Minimum Variance Portfolios. "Unconstrained" refers to the global minimum 

variance portfolio, while "constrained" refers to the minimum variance portfolio with 20% 

expected return. Standard deviation is measured out-of-sample at the monthly frequency, 

annualized through multiplication by J12, and expressed in percents. Standard errors on 

these standard deviation estimates are reported in parenthesi"s. 

We can see that naive diversification (one dollar in every stock) performs the worst, while 

the shrinkage estimator developed above performs the best; somewhat surprisingly, maybe, 

shrinking towards the identity is second best and also beats all of the previously suggested 

methods. The t-statistics of whether § yields portfolios with lower variance than its seven 

competitors range from 2.73 (against the other shrinkage estimator) to 7.39 (against the con­

stant correlation model). 

To assess economic significance, the rule of thumb is that a decrease of two basis points 

in standard deviation corresponds to an increase of one basis points in expected returns, 
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using standard numbers for the risk-return tradeoff.6 For example, gains over the two multi­

factor models are 43 and 94 basis points respectively in terms of average returns for the 

constrained portfolio. By this metric, improvement over the two multi-factor models and the 

shrinkage towards the identity is reasonable. Improvement over the other estimators, including 

the sample covariance matrix and the single-index model (the ones which we are combining 

together), is large. 

3.5 Weight Distribution 

We also report descriptors of the weights of the global minimum variance portfolio: turnover, 

short interest, lowest and highest weight. When a stock has missing out-of-sample observations 

we assume that it earns the riskfree rate. Thus, it is important to report the cash position, 

defined as the total amount invested in stocks with missing observations. These weight de­

scriptors are in Table 2. 

Turnover Short Lowest Highest Cash 

Interest Weight Weight Position 

Identity 6 0 0.09 0.09 2.50 

Constant Correlation 24 68 -0.17 2.86 -1.40 

Pseudo-Inverse 96 99 -1.16 1.12 1.46 

Market Model 23 51 -0.41 2.10 0.13 

Industry Factors 43 89 -1.08 2.81 0.54 

Principal Components 49 80 -0.84 2.95 0.78 

Shrinkage To Identity 71 113 -1.23 1.19 0.99 

Shrinkage To Market 61 98 -1.01 3.81 0.78 

Table 2: Weight Descriptors. These are expressed in percents and averaged over the 23 years 

in our sample. A short interest of 68% means that for every dollar invested in the portfolio 

we short 68 cents worth of stocks, while buying $1.68 worth of other stocks. Annual turnover 

above 100% is possible because of short sales. 

If we wanted to do portfolio selection in practice, all these minimum variance portfolios 

would have too much of a short interest to be really attractive. But absolutely no effort was 

made to control for this characteristic, therefore there is considerable room for improving it 

without substantially degrading the performance reported in Table 1. In our view, Table 2 in­

dicates that the weight distribution generated by the shrinkage estimator is acceptable overall. 

The cash position due to missing out-of-sample observations is always very small, therefore 

the standard deviations in Table 1 do indeed correspond to portfolios almost fully invested in 

equities. Otherwise, it would be easy to get low risk simply by holding cash. 

6Specifically: 8.5% market risk premium and 17% market standard deviation. 
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Figure 2: Optimal Shrinkage Intensity Estimate. This is the weight kiT placed on the single­

index model covariance matrix, as defined by Theorem 2. 

3.6 Shrinkage Intensity 

Figure 2 shows how the estimate of the optimal shrinkage intensity evolves through the 23 years 

in our sample. 

It is always between zero and one, which is what we would expect. It is remarkably stable 

through time. In particular, this implies that there is very little estimation error, as predicted 

by Theorem 2. It is fairly high: around 80%. This means that there is four times as much 

estimation error in the sample covariance matrix as there is bias in the single-index model. 

While kiT is an asymptotically negligible correction, we see that in practice it can make a big 

difference. 

In spite of the large number of stocks, the computations are remarkably fast. Using a 

desktop personal computer and a Matlab program, it took us about five minutes to compute 

the optimal shrinkage intensity, the covariance matrix estimator 8, and the minimum variance 

portfolio weights for N = 1,000 stocks. 

The term r in the formula for the optimal shrinkage intensity, which is one of the major 

innovations of this paper, turns out to be critical in practice. If we had omitted it, all the 

shrinkage intensities would have been well above one and thus meaningless. 

4 Concl usion 

We have developed a flexible method for imposing some structure into a large-dimensional 

estimation problem, namely the problem of estimating the covariance matrix of a large number 
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of stock returns. The crux of the method is to shrink the unbiased but very variable sample 

covariance matrix towards the biased but less variable single-index model covariance matrix and 

to thereby obtain a more efficient estimator. In addition, the resulting estimator is invertible 

and well-conditioned, which is of crucial importance in case one needs to estimate the inverse 

of the true covariance matrix. 

The practical problem in applying our method is to to determine the shrinkage intensity, 

that is, the amount of shrinkage of the sample covariance matrix towards the single-index 

model covariance matrix. The problem was solved by first demonstrating that the optimal 

shrinking intensity, to second order, behaves like a constant over the sample size, and by then 

providing a way to consistently estimate that constant. In practice, one uses the estimated 

constant over the sample size as the shrinkage intensity. 

As a by-product, this paper also reduces the dependence on multi-factor models, which 

are surrounded by unresolved questions about the number of factors and their identity. There 

has been much debate over whether factors should have an economic interpretation or should 

explain a lot of the variation in stock returns. Ideally, they should do both. By this (admittedly 

stringent) criterion, there is one obvious factor: the market. We are not saying that extra­

market covariance is negligible, but that it lacks strong factor structure. This is precisely why 

we have developed a way to account for extra-market covariance without fitting it into an 

arbitrary factor structure. 

We compared the performance of the shrinkage method to that of various previously sug­

gested estimators for the covariance matrix of stock returns. Performance was measured in 

terms of out-of-sample standard deviation of minimum variance stock portfolios, where the esti­

mated covariance matrix is the input of the well-known portfolio selection method of Markowitz 

(1952). Our method improved upon all the other estimators included in the study. 

It should be pointed out that portfolio selection is only one of many problems that benefit 

from a more accurate estimation of the covariance matrix of stock returns. For example, 

consider tests of the Capital Asset Pricing Model (CAPM) that consist of predictive cross­

sectional regressions of average stock returns on betas and various stock attributes. Most 

studies use Ordinary Least Squares (OLS) regressions instead of Generalized Least Squares 

(GLS) regressions for lack of an invertible and accurate estimator of the covariance matrix of 

stock returns. This state of affairs is regrettable because GLS is superior to OLS for several 

reasons: it is more powerful; its economic interpretation is clearer because it is directly related 

to portfolio selection (e.g., see Kandel and Stambaugh, 1995); and correlation across stocks is 

a prominent feature of returns that should not be ignored. 
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