Svoboda | Graniru | BBC Russia | Golosameriki | Facebook

Величины в ФЭЧ и их единицы измерения

Размеры

В физике элементарных частиц изучаются атомные ядра и еще более мелкие частицы. Их размеры удобно выражать в фемтометрах (фм): 1 фм = 10–15 м. Эту единицу измерения называют также ферми: 1 ферми = 10–15 м = 1 фм.

Фемтометр в миллион раз меньше нанометра — типичного размера молекул. Размер протона или нейтрона как раз составляет примерно 1 фм. Существуют составные частицы, размер которых еще меньше; например, ипсилон-мезон, состоящий из кварк-антикварковой пары b–анти-b, имеет размер примерно 0,2 фм. Другие частицы (называемые фундаментальными), например кварки, электроны, нейтрино и т. д., пока считаются точечными; если они и имеют внутреннюю структуру, то эта структура проявится при размерах, меньших, чем тысячная доля фемтометра.

Времена

В отличие от расстояний, характерные времена, использующиеся при описании превращений элементарных частиц, могут быть самые разные.

Для протон-протонных столкновений в качестве базовой единицы времени можно взять время, за которое частица с околосветовой скоростью проходит расстояние, равное размеру протона, — это составляет примерно 3·10–24 с. Эту единицу можно назвать типичным адронным масштабом времени. Для сравнения, это примерно в миллиард раз меньше, чем период колебаний световой волны.

Когда два протона сталкиваются в коллайдере, именно в течение этого промежутка времени происходит рождение некоего высокоэнергетического сгустка материи и его распад на конечные частицы. Однако сами рожденные частицы могут жить намного дольше. Например, адроны, распадающиеся за счет слабого взаимодействия, живут пикосекунды, наносекунды и иногда даже больше. Рекордсмен тут нейтрон, чье время жизни в свободном состоянии составляет примерно 15 минут. Относительно большое время жизни этих частиц вызвано тем, что распадаются они не за счет сильного, а за счет слабого или электромагнитного взаимодействия. Такие частицы успевают пролететь до распада большие дистанции — миллиметры, метры и больше; эти метастабильные частицы регистрируются непосредственно в детекторе. Частицы, распадающиеся за счет сильного взаимодействия (так называемые адронные резонансы), живут в течение адронного масштаба времени. Такие частицы до детектора не долетают, и они изучаются по следам своего распада.

Энергии

Энергии элементарных частиц измеряют в электронвольтах (эВ) и кратных единицах. По определению, 1 эВ — это энергия, которую приобретет электрон в электрическом поле при прохождении разности потенциалов в 1 вольт; 1 эВ примерно равен 1,6·10–19 Дж. Электронвольт удобен для описания атомных и оптических процессов. Например, молекулы газа при комнатной температуре имеют кинетическую энергию примерно 1/40 электронвольта. Кванты света — фотоны — в оптическом диапазоне имеют энергию около 2 эВ.

Явления, происходящие внутри ядер и элементарных частиц, сопровождаются гораздо большими изменениями энергии. Здесь уже используются мегаэлектронвольты (МэВ, 106 эВ), гигаэлектронвольты (ГэВ, 109 эВ) и даже тераэлектронвольты (ТэВ, 1012 эВ). Например, протоны и нейтроны движутся внутри ядер с кинетической энергией в несколько десятков МэВ. Энергия протон-протонных или электрон-протонных столкновений, при которых становится заметна внутренняя структура протона, составляет несколько ГэВ. Для того чтобы родить самые тяжелые из известных на сегодня частиц, топ-кварки, требуется сталкивать протоны с энергией около 1 ТэВ.

Между шкалой расстояний и шкалой энергии можно установить соответствие. Для этого можно взять фотон с длиной волны L и вычислить его энергию: E = c·h/L. Здесь c — скорость света, а h — постоянная Планка, фундаментальная квантовая константа, равная примерно 6,62·10–34 Дж·с. Это соотношение можно использовать не только для фотона, но и более широко, при оценке энергии, необходимой для изучения материи на масштабе L. В «микроскопических» единицах измерения, 1 ГэВ отвечает размеру примерно 1,2 фм.

Шкалу энергий можно также связать и со шкалой времен: E = h/T. Физический смысл этого соотношения в квантовой механике таков: процесс, сопровождающийся неопределенностью энергии E, длится примерно в течение времени T. Например, если частица распадается в течение типичного адронного масштаба времени, то неопределенность ее массы составляет порядка 1 ГэВ.

Массы

Согласно знаменитой формуле Эйнштейна E0 = mc2, энергия покоя и масса тесно взаимосвязаны. В мире элементарных частиц эта связь проявляется самым непосредственным образом: при столкновении частиц с достаточной энергией могут рождаться новые тяжелые частицы, а при распаде покоящейся тяжелой частицы разница масс переходит в кинетическую энергию получившихся частиц. По этой причине массы частиц тоже принято выражать в электронвольтах (а точнее, в электронвольтах, деленных на скорость света в квадрате). 1 эВ соответствует массе всего в 1,78·10–36 кг. Электрон в этих единицах весит 0,511 МэВ, а протон 0,938 ГэВ. Открыто множество и более тяжелых частиц; рекордсменом пока остается топ-кварк с массой около 170 ГэВ. Самые легкие из известных частиц с ненулевой массой — нейтрино — весят всего несколько десятков мэВ (миллиэлектронвольт).

Частота событий

Обсуждая вероятность того или иного процесса на коллайдере, физики обычно приводят две величины: сечение процесса и светимость коллайдера. Именно их произведение определяет, насколько часто происходит столкновение того или иного типа на данном коллайдере.

Сечение (или, по-старинному, эффективное сечение) — это, грубо говоря, та поперечная площадь в частице-мишени, в которую надо попасть налетающей частице, чтобы произошла нужная реакция. Однако не стоит понимать эти слова буквально: будто поверхность протона разделена на области: попадешь в одну — произойдет одна реакция, попадешь в другую — другая. Так могло бы быть в классической механике, но в мире квантовых частиц самые разные процессы протекают с какой-то вероятностью даже при совершенно идентичных столкновениях. Просто эти вероятности удобно выражать в виде неких сечений, отвечающих тому или иному процессу, и измерять их в единицах площади. Стандартная единица измерения сечений в физике элементарных частиц — барн (b); 1 b = 10–24 см2.

Подробнее про сечения процессов

Светимость — это «инструментальная» характеристика коллайдера, характеризующая интенсивность пучков. Светимость зависит от количества частиц в каждом пучке и от того, насколько плотно частицы собраны. Чем больше светимость, тем чаще происходят столкновения частиц из встречных пучков.

Светимость выражается в см–2·с–1. Для того чтобы узнать, как часто (то есть сколько раз в секунду) будет происходить какой-то процесс на данном коллайдере, надо умножить сечение процесса на светимость коллайдера. Например, при проектной светимости LHC, равной 1034 см–2·с–1 процесс рождения хиггсовского бозона с массой 200 ГэВ, имеющий сечение 20 pb (= 2·10–35 см2), будет происходить со средней частотой один раз в пять секунд.

Подробнее про светимость коллайдеров

Далее, частота, с которой детектор будет регистрировать данный тип событий, обычно меньше частоты, с которой это событие происходит. Так получается потому, что вовсе не на каждое событие детектор «срабатывает» нужным образом, то есть у детектора неидеальная эффективность регистрации. Например, родившиеся частицы могут пролететь мимо детектора и избежать регистрации (впрочем, благодаря высокой герметичности современных детекторов вероятность этого мала). Либо энергия частицы одной из частиц может оказаться маленькой, и детектор просто не учтет эту частицу, примет ее за случайный шум. Либо детектор может неправильно идентифицировать рожденную частицу, приняв ее за другую и на основании этого отбросив событие как неинтересное.

Все эти процессы необходимо учитывать при сравнении реально полученных данных с теоретическими расчетами. Обычно это делается путем сложного численного моделирования процессов, протекающих внутри детектора при прохождении сквозь него частиц.

Наконец, число событий, отобранных для анализа какого-то конкретного процесса (то есть та статистика, на основе которой физики, например, заявляют об открытии новой частицы), обычно намного меньше числа реально зарегистрированных событий этого типа. Дело в том, что обычно искомые события происходят довольно редко, и их приходится вылавливать из мешанины самых разнообразных фоновых процессов. Для того чтобы увеличить надежность результатов, физики обычно отбирают только самые четкие события-кандидаты, наиболее непохожие на последствия фоновых процессов. Подробнее про эту методику см. в популярной статье Анатомия одной новости, или Как на самом деле физики изучают элементарные частицы.


Элементы

© 2005–2024 «Элементы»