
Pseudospectral Convex Optimization for Powered

Descent and Landing

Marco Sagliano1

Deutsches Zentrum für Luft- und Raumfahrt, Bremen, Germany, 28359

Over the last years two new technologies to solve optimal-control problems were

successfully developed, that is pseudospectral optimal control and convex optimization,

the former for solving general nonlinear programming problem, and the latter aimed

at solving convex problems (e.g., second-order conic problems) in real-time. In this

paper a framework for combining them, with a motivational example, are described.

The bene�ts of the new proposed method are demonstrated for the descent phase of

the NASA Mars Science Laboratory. Numerical simulations show that the proposed

algorithms lead to more accurate results with respect to standard transcription meth-

ods.

Nomenclature

Roman

Ac = Continuous LTI dynamic matrix

Ad = Discrete LTI dynamic matrix

Bc = Continuous LTI control matrix

Bd = Discrete LTI control matrix

D = Discrete di�erentiation matrix

F = Discrete function vector

f ,g = Generic functions

1 GNC Engineer, Navigation and Control Department, AIAA Member

1

g = Gravity vector, [m/s2]

In = Identity matrix of dimensions n

i,j,k,m,n = Non-negative, integer indices

J = Cost function

kt = Physical time - pseudospectral time conversion factor, [s]

L̃n(τ) = Legendre polynomial of degree n

Ln(τ) = Legendre-Lobatto polynomial of degree n

m = Lander mass, [kg]

On1×n2 = Zero matrix of dimensions n1,n2

P (τ) = Lagrange polynomial

Rn(τ) = Legendre-Radau polynomial of degree n

r = Position vector, [m]

Tc = Thrust vector, [N]

t = Generic time, s

v = Velocity vector, [m/s]

xc(t), uc(t) = Generic continuous state and control

X, U = Discrete state and control vector

x(t), u(t) = Generic state and control

z = Logarithm of lander's mass

Greek

α = Thruster system parameter, [s/m]

Γ, σ = slack variables, [N, N/m]

Φ = Mayer term

Ψ = Lagrange term

ρ = Thrust limit, [N]

τ = Pseudospectral time

ω = Radau / Lobatto quadrature weights

2

Operators and subscripts

˙(·) = First time derivative, [· /s]

(·)0 = �rst element of variable (·), [·]

(·)f = �nal element of variable (·), [·]

(·)l = Lower limit, [·]

(·)max = Maximum limit, [·]

(·)(t0) = variable (·) evaluated at initial time t0, [·]

(·)(tf) = variable (·) evaluated at �nal time tf , [·]

(·)x = x component of vector (·), [·]

(·)y = y component of vector (·), [·]

(·)z = z component of vector (·), [·]

(·)u = Upper limit, [·]

I. Introduction

Over the last years the space race has seen a dramatic paradigm shift. While in the last 40

years of the 20th century the challenge was played to establish a military supremacy between the

western and the eastern blocks, the global imperative is now the economical sustainability of the

space missions. SpaceX [1] showed that the reusability is the key for a dramatic reduction of the

costs associated with space exploration �rst and commercial exploitation later on. One of the critical

factors for having an e�cient descent and landing system is the spacecraft's capability to generate

real-time guidance solutions. These include trajectories and commands, which satisfy all the criteria

of the mission while properly dealing with the uncertainties acting on the system, (for example the

spacecraft has to be able to re-compute its trajectory without violating any constraint, like a given

glideslope limit required for proper hazard-avoidance).

Several methods were developed over the years. The �rst family of methods is a heritage of the

Apollo era, and is consequently named Apollo guidance [2], originally used for the Moon landing.

In this case an acceleration pro�le was computed according to the initial and �nal (desired) position

and velocity. This method solves for the desired terminal conditions, but it is not optimal in terms

3

of propellant consumption, nor allows for including further constraints. An alternative algorithm

is the gravity turn [3�5], characterized by having the thrust direction parallel and opposite to the

velocity vector during the powered descent phase. A drawback of this approach can be the high �nal

velocity achieved by the spacecraft [6]. This risk can be mitigated by starting the maneuver earlier.

However, the correct execution of the algorithm (and therefore the achievement of the desired �nal

conditions) depends on the initial states, and therefore, requires further modi�cations to be used.

This was the case for the Viking missions [7]. The powered descent algorithm was in this case based

on the combination of the gravity-turn technique with two altitude-velocity pro�les, employed to

generate an interpolated solution for any initial and �nal conditions experienced during the descent.

A paradigm shift was experienced with the development of convex optimization [8], a class

of methods which allow to obtain in real time optimal solutions for all those problems satisfying

some speci�c criteria (that is, for all those problems which are subject to convex constraints). The

method found further aerospace applications (e.g., the atmospheric entry guidance problem [9]), and

in general to non-convex problems as well [10]. In the �eld of Entry, Descent, and Landing (EDL)

applications a breakthrough was represented by the development of the lossless convexi�cation for

the Mars powered descent [11�14]. The method was successfully demonstrated in 2013 with the

Masten Space Systems's Xombie �ight [15] and in the last successful �ights of SpaceX's Falcon 9

[1]. The algorithm optimizes the consumption of propellant mass, and allows for the inclusion of

further constraints, such as the avoidance of non-physical sub-surface trajectories and glideslope

limits during the descent.

An alternative approach has arisen with the development of pseudospectral optimal control, a

class of methods particularly e�cient for a wide range of non-convex problems, including the powered

descent guidance problem [16�19]. They use non-uniform grids, leading to smoother results, and

a small number of nodes required to compute a valid solution [20�22]. The resulting discretized

nonlinear programming (NLP) problem can be therefore solved with one of the well-known o�-

the-shelf NLP packages, such as SNOPT [23] or IPOPT [24]. However these methods cannot in

general solve the underlying nonlinear programming (NLP) problem in polynomial time, making

harder their direct use in real-time. Moreover, these algorithms compute only local optima, and for

4

complex problems they might require a good initial guess.

In this work we present a novel method based on the hybridization of pseudospectral methods

and convex optimization, leading to the proposed pseudospectral convex optimization, potentially

able to provide a more accurate class of methods for real-time optimal control. A �rst step in that

sense can be already found in [25]. However, in that case Chebyshev polynomials were only used for

interpolating the controls. This implies that neither the properties associated with the use of non-

uniform distributions of nodes, nor the dedicated di�erential and integral operators were exploited.

In the present work the properties of pseudospectral methods are deeply combined with the pre-

existing convex framework. The idea is improve the accuracy of the current methods without

having an excessive worsening of the real-time capability of the convex framework by adopting

pseudospectral operators. In fact, their linearity, together with the higher accuracy they provide

with respect to standard operators (such as �nite di�erences for di�erentiation, or the trapezoidal

rule for integration) allow to de�ne a new method, which is still real-time capable, and at the same

time more accurate than standard convex approaches.

The paper is organized as follows. Sections 2 and 3 provide a brief overview on Pseudospectral

methods and Convex optimization, respectively. More speci�cally, the latter refers to a special

form of convex optimization, that is, the Second-Order Conic Programming (SOCP). In Sec. 4 a

simple one-dimensional example, motivating the work, is presented, while the problem we focus on,

that is, the Mars powered descent problem is presented in Sec. 5. The new pseudospectral convex

optimization framework is presented in Sec. 6, while numerical simulations showing the bene�ts of

the proposed techniques are the subject of Sec. 7. Finally, Sec. 8 presents some conclusions about

this work.

II. Overview on Pseudospectral methods

A. Optimal Control Problem

There are several approaches for the generation of reference trajectories. Some methods exploit

the structure of the speci�c problem we deal with. Often, they require simpli�cations to make the

problem mathematically tractable, and therefore generate solutions valid under given hypotheses. A

5

di�erent approach, which is gaining popularity, and bene�ts from the development of the computa-

tional capabilities of modern CPUs, is the representation of the trajectory generation problem as an

optimal-control problem. This means that we are looking for solutions minimizing (or maximizing)

a given criterion, and satisfying at the same time several constraints, which can be di�erential (i.e.,

the equations of motion of a spacecraft) and / or algebraic (e.g., the maximum heat-�ux that a

vehicle can tolerate during the atmospheric entry). The standard form for representing optimal-

control problems is the so-called Bolza problem. Given a state vector x(t) ∈ Rns , a control vector

u(t) ∈ Rnc , the scalar functions Φ(t,x,u) and Ψ(t,x,u), and the vector g(t,x,u) ∈ Rng we can

formulate the problem as follows:

min J = Φ [tf ,x (tf) ,u (tf)] +

∫ tf

t0

Ψ [x(t),u(t)] dt (1)

subject to the di�erential equations

ẋ = f (t,x,u) (2)

and to the path constraints

gL ≤ g (t,x,u) ≤ gU (3)

The �rst term in the cost function of Eq. (1) takes the name ofMayer term, and represents punctual

constraints (e.g., the minimization of a distance according to a given metric), while the argument

of the integral is called the Lagrange term and is used to maximize or minimize variables over the

entire mission (e.g., the heat load obtained by integrating the heat-�ux over time). The inequalities

in Eq. (3) are meant as component-wise. Note that although not speci�cally expressed, we always

refer to autonomous systems of di�erential equations. Therefore the time dependency in Eq. (2)

is never explicit. Moreover, since we deal with physical systems, the problem has usually bounded

6

states and controls, that is, x(t) and u(t) are compact in Rns and Rnc , respectively:

xL ≤ x(t) ≤ xU (4)

uL ≤ u(t) ≤ uU (5)

Equations (1)-(5) represent a generic continuous optimal control problem. In the next section we will

see how this type of Optimal-Control Problem (OCP) can be transcribed by using Pseudospectral

methods.

B. Pseudospectral Methods

Numerical methods for solving OCPs are divided into two major classes, namely, indirect meth-

ods and direct methods. Indirect methods are based on the Pontryagin Maximum Principle, which

leads to a multiple-point boundary-value problem. Direct methods, instead, consist in the proper

discretization of the OCP (or transcription), having as a result a �nite-dimensional NLP problem.

Pseudospectral methods represent a particular area of interest in the frame of the wider class of

direct methods. Examples of tools implementing pseudospectral methods include DIDO [26] and

SPARTAN [16, 17, 22, 27, 28]. For pseudospectral methods the following properties are valid:

• "Spectral" (i.e., quasi-exponential) convergence of the NLP solution to the OCP solution when

the number of nodes employed is increased (and the problem is smooth)

• Runge phenomenon is avoided

• Straightforward implementation

• Sparse structure of the associated NLP problem

• Mapping between the discrete costates of the associated NLP and the continuous costates

of the Optimal Control Problem in virtue of the Pseudospectral Covector Mapping Theorem

[29].

The transcription process does not only involve the choice of the discrete nodes, but also deter-

mines the discrete di�erential and integral operators needed to solve the associated OCP. Therefore,

7

transcription is a more general process than discretization. The minimum fundamental steps of a

transcription are the following:

• domain discretization

• discrete to continuous conversion of states and / or controls

• characterization of di�erential and integral operators

Among the families of pseudospectral methods two were considered for this work: the �ipped

Radau Pseudospectral method (or fRPm) and the Lobatto Pseudospectral method (LPm). It is

worth saying that these are not the only possible choices, as other sets of nodes, like Chebyshev

[30] or Gauss [21] exist. The reason behind this choice is that the fRPm allows for a natural and

straightforward de�nition of the initial conditions of the problem, and shows a smoother convergence

of the costates with respect to other methods [21], while LPm is for some problems more accurate

and faster in converging than other PS methods. Therefore, it is useful to have a look at these two

methods, and at their transcription. This will be the purpose of the next subsection.

C. Flipped Radau Pseudospectral method and Lobatto Pseudospectral method

Flipped Radau Pseudospectral method is an asymmetric pseudospectral method, whose nodes

are the roots of the �ipped Legendre-Radau polynomial, de�ned as the combination of the Legendre

polynomial of order n and n− 1 with coe�cient equal to 1 and -1 respectively.

Rn(τ) = L̃n(τ)− L̃n−1(τ) τ ∈ [−1, 1] (6)

An example of roots associated with the Legendre-Radau polynomial of order 10 is depicted in Fig.

1(a), together with the corresponding polynomial.

Remark 1 Note that the Rn(−1) is not a root of the underlying polynomial, therefore it is not a collocation point,

although it is required for the evaluation of the polynomial. This is due to the fact that over the left-open, right-closed

interval (−1,+1] only these polynomials are orthogonal.

Lobatto Pseudospectral method is instead based on a symmetric set of nodes, associated with

8

the roots of the Legendre-Lobatto polynomial, de�ned as

Ln(τ) = (1− τ2)
˙̃
Ln−1 τ ∈ [−1, 1] (7)

where ˙̃
Ln−1 is the derivative of the Legendre polynomial of order n− 1. The roots of the Legendre-

Lobatto polynomial and the corresponding polynomial of order 10 are represented in Fig. 1(b).

These discrete representations of the domain are useful to reconstruct continuous representations

of the functions x(t) as:

x(t) ∼=
n∑
i=0

XiP (t), P (t) =
n∏
k=0
k 6=i

t−tk
ti−tk (8)

in case of fRPm, and

x(t) ∼=
n−1∑
i=0

XiP (t), P (t) =
n−1∏
k=0
k 6=i

t−tk
ti−tk (9)

which holds in case the LPm is adopted. From the inspection of Eqs. (8) and (9) one can see a �rst

di�erence between the methods. Indeed, given n collocation nodes, fRPm de�nes n+1 discretization

nodes, while LPm has n discretization nodes, that is, all the discrete nodes are collocation nodes too.

This di�erence will a�ect the di�erential operators we are going to introduce in the next section, as

we will see, and has consequences on the proposed pseudospectral convex method too. This will be

further explained in Sec. VI.

An example of the approximation obtained via Eqs. (8) and (9) is depicted in Figs. 1(c)

and 1(d), where the function 1/(1 + 25τ2) is reconstructed by using 25 fRPm and 25 LPm nodes,

respectively. In both cases the original function is approximated very well with the two sets of

discrete nodes.

Remark 2 Note that the approximation becomes more accurate when the number of nodes is increased. This is

the opposite behavior observed when uniform distributions of nodes, which su�er from the aforementioned Runge

Phenomenon, are employed.

Once the domain has been discretized, and the discrete-to-continuous conversion of states has

been de�ned, the corresponding di�erential operator needs to be de�ned. This is required for the

9

=

-1 -0.5 0 0.5 1
-2

-1

0

1

2
roots of R

n
(=)

Legendre-Radau Polynomial

(a) f-Radau discrete domain.

-1 -0.5 0 0.5 1
=

-4

-2

0

2

4
roots of L

n
(=)

Legendre-Lobatto Polynomial

(b) Lobatto discrete domain.

-1 -0.5 0 0.5 1
=

0

0.2

0.4

0.6

0.8

1

F
(=

)

truth
interpolated solution
sample points

(c) f-Radau continuous approximation of a function.

-1 -0.5 0 0.5 1
=

0

0.2

0.4

0.6

0.8

1

F
(=

)

truth
interpolated solution
sample points

(d) Lobatto continuous approximation of a function.

Fig. 1 Transcription steps: domain discretization with fRPm (a), and LPm (b) and continuous
reconstruction of functions with fRPm (c) and LPm (d).

proper representation of the left-hand side of Eq. (2). The di�erential operator will be in the form

Ẋi
∼= D ·Xi, i = 1, ...n (10)

and the dynamics de�ned in Eq. (2) will be replaced by

D ·X =
tf − t0

2
f(t,X,U) (11)

where t0 and tf are the initial and �nal time, and the term tf−t0
2 is a scale factor related to the

transformation between the physical time domain t, and the pseudospectral time domain τ ∈ [−1, 1],

given by the following a�ne transformations,

t =
tf − t0

2
τ +

tf + t0
2

(12)

τ =
2

tf − t0
t− tf + t0

tf − t0
(13)

10

-1 -0.5 0 0.5 1
=

-20

-10

0

10

F
(=

)
True function
Radau sampled points

-1 -0.5 0 0.5 1
=

-200

-100

0

100

dF
(=

)/
d=

True derivative
Pseudospectral estimation

(a) Radau di�erential operator example.

-1 -0.5 0 0.5 1
=

-20

-10

0

10

F
(=

)

True function
Lobatto sampled points

-1 -0.5 0 0.5 1
=

-200

-100

0

100

dF
(=

)/
d=

True derivative
Pseudospectral estimation

(b) Lobatto di�erential operator example.

-1 -0.5 0 0.5 1
=

0

1

2

3

F
(=

)

True function
Radau sampled points

-1 -0.5 0 0.5 1
=

0

1

2

3

4

s[
 F

(=
)

d=
]

3.3333

0

(c) Radau integral operator example.

-1 -0.5 0 0.5 1
=

0

1

2

3

F
(=

)

True function
Lobatto sampled points

-1 -0.5 0 0.5 1
=

0

1

2

3

4

s[
 F

(=
)

d=
]

3.3333

0

(d) Lobatto integral operator example.

Fig. 2 Transcription steps: de�nition of di�erential operators with fRPm (a) and LPm (b),
and integral operators with fRPm (c) and LPm (d).

which hold for both fRPm and LPm. The di�erence between the methods is in the matrix D. In

the case of the fRPm it has dimensions [n× (n+ 1)]. Again, this is due to the fact that the states

are de�ned for n+1 discrete points, while the controls U and the derivatives of the states f(t,X,U)

are de�ned in the n collocation points. This means that the initial state X0 is an input and not

an output of the optimization in the fRPm, and it is thus assumed to be known. In the LPm

instead the matrix D has dimensions equal to [n × n]. The initial state can be determined by the

optimization process. However, since it is generally known, further constraints need to be imposed

11

to make sure that the solution found by the optimizer satis�es the condition x(t0) = x0. If we look

at fRPm (speci�cally at Eq. (8)), and we take the derivative w.r.t. time, we get

ẋ(t) ∼=
d

dt

n∑
i=0

XiP (t) =

n∑
i=0

Xi
d

dt
Pi(t) (14)

as the nodal points are time-independent. When we consider the LPm instead (Eq. (9)) we have

ẋ(t) ∼=
d

dt

n−1∑
i=0

XiP (t) =

n−1∑
i=0

Xi
d

dt
Pi(t) (15)

These two sets of derivatives can be e�ciently computed with the Barycentric Lagrange Interpolation

[31]. An example of the di�erential operator for the two methods is depicted in Figs. 2(a) and 2(b),

where D is used to approximate the derivative of the continuous test function F (τ) = Ae−τ sin(ωτ),

(A = 5, ω = 10) sampled in 25 collocation nodes. It can be seen that the polynomial approximations

�t the derivatives very well.

In addition to the di�erential operator, we need an integral operator, used to discretize the

Lagrange term de�ned in Eq. (1). In that case the Gauss quadrature formula is used [32]. For the

fRPm the approach consists of replacing the continuous integral with the discrete sum given by:

∫ tf

t0

Ψ [t,x(t),u(t)] dt =
tf − t0

2

n∑
i=1

wiΨ [Xi,Ui] (16)

while for the LPm it becomes

∫ tf

t0

Ψ [t,x(t),u(t)] dt =
tf − t0

2

n−1∑
i=0

wiΨ [Xi,Ui] (17)

Since both methods have the same number of n collocation nodes, both sums use n nodes to represent

the integral operators. It can be shown that Eqs. (16) and (17) yield exact results for polynomials

of order at most equal to 2n− 2 and 2n− 3 for fRPm and LPm, respectively [21]. Once again, the

presence of the term tf−t0
2 is a consequence of the mapping between pseudospectral and physical

12

time domains described in Eq. (12) and (13). For the fRPm the weights wi can be computed as

w = flip(w̃) (18)

w̃j =

2

n2
, j = 1

(1− τj)
n2L̃n(τj)2

, j = [2, ...n]

(19)

where the operator �ip simply multiplies the input by a factor equal to −1, and sorts the results in

increasing order. For the LPm the formula is

wj =

2

(n− 1)n
, j = 0

2

(n− 1)nLn−1(τj)2
, j = [1, . . . , n− 1]

(20)

To give a practical example the integral of the test function F (τ) = 2τ + 2 − τ2 has been com-

puted. Results are then compared with the analytical integral, and with the trapezoidal rule (Figs.

2(c),2(d)) applied using the same nodes. Numerically, we get exactly the analytical result, that

is 3.3333 for both the pseudospectral methods, while the application of the trapezoidal rule gives

3.3298 and 3.3296, respectively, con�rming the validity of the quadrature formula applied to the

f-RPm and LPm points. Note that when n uniformly distributed nodes are used the trapezoidal

rule gives better results (3.3310), but still inferior to the pseudospectral ones.

Once that the di�erential and integral operators have been described, we are ready to summarize

the general NLP transcriptions, which approximates the original OCP as follows.

Flipped Radau Pseudospectral method

Minimize (or maximize) the cost function J , for n nodes, and i = 1, . . . , n,

J = Φ [Xf] +
tf − t0

2

n∑
i=1

wiΨ [Xi,Ui] (21)

13

subject to the nonlinear algebraic constraints

F = D ·X− tf − t0
2

f(t,X,U) = 0 (22)

and to the path constraints

gL ≤ G (Xi,Ui) ≤ gU (23)

The discrete states and the controls are bounded, as in the continuous formulation.

xL ≤ Xi ≤ xU (24)

uL ≤ Ui ≤ uU (25)

Lobatto Pseudospectral method

Minimize (or maximize) the cost function J , for n nodes, i = 0, . . . , n− 1,

J = Φ [Xf] +
tf − t0

2

n−1∑
i=0

wiΨ [Xi,Ui] (26)

subject to Eqs. (22)-(25).

These equations provide the tools, which will be combined with convex optimization, brie�y

summarized in the next section.

III. Overview on Convex Optimization

Over the last thirty years several researchers focused on the development of convex optimization

theory [8, 33, 34]. They demonstrated that for a large class of problems the key-property is not

the linearity of the system, but the convexity. In this case, the problem can be solved in real-time,

and if the problem is feasible, the computed solution is the global optimum. In general a convex

optimization problem is de�ned as follows:

min J = f0(x) (27)

14

subject to

fi(x) ≤ ai, i = 1, . . . ,m (28)

where x ∈ Rn represents the vector of variables to be determined. The functions fi, i = 0, . . . ,m

are convex functions, which means that they satisfy the following relationship.

fi(αx+ βy) ≤ αfi(x) + βfi(y), i = 0, . . . ,m, α+ β = 1, α ≥ 0, β ≥ 0 (29)

The previous expression suggests one of the properties of convex problems, that is, they generalize

the notion of linearity of a function, leading to the notion of convexity, which has the equality as

special case instead of the inequality in Eq. (29). Further details and exhaustive explanations can

be found in [33] and [8].

The following properties characterize convex optimization:

• A large number of problems can be reformulated in convex form

• There are e�cient methods to solve convex problems (e.g., primal-dual interior point methods

[35]), such that it can be considered more and more a mature technology

• This class of methods does not require an initial guess (a problem which a�ects many problems

when NLP solvers are employed)

• If a solution for the problem exists, it is the global optimum.

While the category of convex optimization is still quite large, and includes several sub�elds (e.g.,

Semide�nite programming, Quadratically constrained quadratic programming, and so on), we will

instead focus on a speci�c form of convex optimization, that is, the so-called Second-order Conic

Programming (or SOCP). This speci�c subclass of methods will be brie�y described in the next

section, whereas more extensive and rigorous descriptions can be found in [33, 34, 36].

15

A. Second-Order Conic Programming

An interesting subcategory of convex optimization is represented by Second-Order Conic Pro-

gramming. This de�nition encloses all the problems which can be formulated as follows:

min cT0 x (30)

subject to

A0x = b0

‖Aix+ bi‖2 ≤ cTi x+ di, i = 1, . . . , p

(31)

with x ∈ Rn×1 representing the variables to determine, c0 ∈ Rn×1 is the vector de�ning the cost

function, whereas A0 ∈ Rm×n and b0 ∈ Rm×1 describe the linear system of m equations that the

solution has to satisfy. The terms Ai ∈ Rmi×n, bi ∈ Rmi×1, ci ∈ Rn×1 and di ∈ R describe a conic

constraint of order mi + 1. These constraints imply that, given the a�ne transformations

t = cTi x+ di

y = Aix+ bi, i = 1, . . . , p

(32)

the solution will always be contained within the volume of each of the p mi-dimensional cones. An

example for mi = 2 is depicted in Fig. 3.

y
2

t

y
1

Fig. 3 Example of 3-D cone. The volume of the cone satis�es the condition ‖y‖2 ≤ t

16

Among the others, linear programming problems, or quadratically constrained problems can

be reformulated as conic programming problems. Moreover, they can e�ciently be solved by using

primal-dual interior point methods [37], and several solvers, such as SeDuMi [38] and ECOS [39], are

available. These aspects make the SOCP technology appealing for several applications, including

the one used as example in this work. Further SOCP applications are described in [36].

IV. A motivational example

To motivate the present work we will introduce a very simple optimization problem, which can

be formulated as a SOCP problem. We are interested in minimizing the norm of the �nal state of

a �rst-order linear system.

min J = ‖x(tf)‖2 (33)

The system behavior is described by the following di�erential equation

ẋ = ax+ bu, x, u, a, b ∈ R (34)

subject to

‖u(t)‖2 ≤ umax, t ∈ [t0, tf] (35)

The �nal time is tf = 5 s. We can discretize the time, the state and the control in n+1 nodes, such

that

tk = kdt, k = 0, . . . , n,

dt = (tf − t0)/n

(36)

If we integrate Eq. (34) by using a trapezoidal scheme we get

xk+1 = xk +
1

2
dt [axk+1 + buk+1 + axk + buk] , k = 0, . . . , n− 1 (37)

17

it is clear that we can formulate the problem as SOCP problem. Let us de�ne the discrete state

vector as

X =

[
x0 u0 . . . xn un s

]T
(38)

where the elements xi and ui, i = 0, . . . , n are the discrete states and controls, respectively, and s

is a slack variable. If we impose that

‖xn‖2 ≤ s (39)

and

‖ui‖2 ≤ umax, i = 0, . . . , n (40)

which clearly are conic constraints, the cost function becomes

c =
[
O1×2(n+1) 1

]T
(41)

Finally, the discrete dynamics will provide the matrix A and the vector b such that

AX = b (42)

with

A =

1 0 0 0 0

−(1 + dt
2 a) −dt2 b (1− dt

2 a) −dt2 b 0

0 0 −(1 + dt
2 a) −dt2 b (1− dt

2 a) −dt2 b . . . 0

...
...

...
...

...
...

...
...

0 0 −(1 + dt
2 a) −dt2 b (1− dt

2 a) −dt2 b

(43)

18

and

b =

[
x0 0 . . . 0

]T
(44)

Results obtained by using this discretization scheme in 100 nodes are represented in Fig. 4(a), where

the state and the control are depicted.

0 1 2 3 4 5
Time (s)

0

1

2

x(
t)

0 1 2 3 4 5
Time (s)

-3

-2

-1

0

u(
t)

(a) SOCP solution.

0 1 2 3 4 5
Time (s)

0

0.5

1

1.5

2

x(
t)

Optimal Solution
Propagated Solution

(b) ode45 validation.

Fig. 4 One-dimensional problem solved with SOCP discretization - standard approach (a),
and validation via Matlab's ode45 (b).

We can see that the state is correctly driven to 0, as expected. The solution satis�es all the

imposed constraints. The linear system representing the dynamics is satis�ed with residuals in the

order of 10−14. However, a validation of the solution via Matlab's ode45 shows a much larger error

when the obtained controls are used to propagate the initial state (in this case equal to 2). The two

solutions are compared in Fig. 4(b). Note that even if this is a simple application, and a relatively

large number of nodes was employed, the di�erence becomes nontrivial. For the case analyzed here

the maximum di�erence between the two solutions in terms of �nal states is equal to 0.22. We can

solve the same problem with the proposed pseudospectral convex approach (the implementation is

omitted here for brevity, and fully described in Sec. VI). Results obtained by using the same number

of nodes are depicted in Fig. 5(a), where the state and the control are represented, and Fig. 5(b),

where the comparison between optimal and propagated solutions can be seen.

In this case the di�erence between the solutions is reduced to 0.0022, that means 1% of the error

obtained with the standard approach. Note that no di�erence in CPU times were observed between

these examples (about 130 ms when standard transcription was employed versus 115 ms when the

19

0 1 2 3 4 5
Time (s)

0

1

2

x(
t)

0 1 2 3 4 5
Time (s)

-3

-2

-1

0

u(
t)

(a) Pseudospectral Convex solution.

0 1 2 3 4 5
Time (s)

0

0.5

1

1.5

2

x(
t)

Optimal Solution
Propagated Solution

(b) ode45 validation.

Fig. 5 One-dimensional problem solved with SOCP discretization - pseudospectral convex
approach (a), and validation via Matlab's ode45 (b).

pseudospectral convex approach was used). This signi�cant di�erence of accuracy motivates to

apply the proposed technique to more demanding scenarios.

V. Mars Powered Descent

In 2012 NASA's rover Curiosity successfully landed on the martian surface [40]. One of the

most challenging parts of the famous 7 minutes of terror [41] was the descent phase, where the

retrorockets were used to counteract Martian gravity and ensure the proper conditions for a soft

touchdown. This mission is a perfect example of how convex optimization could be applied to face

complex and challenging scenarios. An elegant formulation of the Mars descent problem can be

found in [11]. Speci�cally, the optimal-control problem can be stated as follows. We are interested

in maximizing the �nal mass of the lander

max J = m(tf) (45)

subject to the following set of equations:

ṙ = v

v̇ =
Tc

m
+ g

ṁ = −α ‖Tc‖

(46)

20

X

Y

Z

r

Fig. 6 Surface-�xed reference frame.

r ∈ R3 is the position vector, and v ∈ R3 represents the velocity vector, both expressed in a surface-

�xed reference frame, depicted in Fig. 6. The Martian gravity vector is de�ned as g = [0 0 −3.7114]

m/s2. Note that assuming a constant, vertical gravity vector is a valid assumption given the altitude

of the lander at this stage of the mission. Moreover, the velocities are much smaller than the ones

experienced during the entry and initial descent phase, and therefore the aerodynamic accelerations

can be neglected in this context. Tc ∈ R3 is the net thrust vector in Newton, and is the control of

the system. m is the mass of the lander, initially equal to 1905 kg. The time of �ight is assigned

and equal to 81 s. The coe�cient α in the last of Eq. (46) includes parameters of the thrusters'

system, and is computed as

α =
1

Ispge cosφ
(47)

where Isp = 225 s is the speci�c impulse of the thrusters, and ge = 9.807 m/s2 is the Earth's

gravitational constant. The lander is equipped with n = 6 thrusters, having a cant angle φ = 27

degrees and able to provide a thrust Ti along each of the axes. The relationship between Ti and Tc,i

is

Tc,i = TmaxnTi cosφ, i = x, y, z (48)

21

with Tmax equal to 3.1 kN. Note that Ti obeys the following constraint:

Tl ≤ Ti ≤ Tu, i = 1, . . . , 3 (49)

with Tl = 0.3 and Tu = 0.8. Initial and �nal positions and velocities are:

r(t0) =

2000

0

1500

 m, r(tf) =

0

0

0

 m

v(t0) =

100

0

−75

 m/s, v(tf) =

0

0

0

 m/s

(50)

A further condition to be imposed is the so-called glideslope constraint:

tan−1

 rz(t)√
r2x(t) + r2y(t)

 ≥ θ̃alt = 4 deg (51)

This constraint ensures that during its descent the lander moves within a cone having a semi-angle

equal to 90− θ̃alt degrees, and therefore does not reduce the altitude below a given threshold while

reaching the target position. Acikmese and Ploen [11] showed that this non-convex optimal problem

can be transformed into an equivalent convex one. Let us de�ne the following variables:

u =
Tc

m

σ =
Γ

m

z = log(m)

(52)

The scalar variables Γ and σ are introduced to overcome the nonconvexity of the original control

set. With these de�nitions, the problem becomes:

22

min J =

tf∫
t0

σ(t)dt (53)

subject to:

ṙ = v

v̇ = u + g

ż = −ασ

(54)

The lossless convexi�cation ensures the following inequality remains tight:

‖u(t)‖ ≤ σ(t) (55)

The change of variables of Eq. (52) implies that the following constraint acting on z has to be

satis�ed:

ρle
−z(t) ≤ σ(t) ≤ ρue−z(t) (56)

and these limits are approximated with the following second-order Taylor expansion and �rst-order

Taylor expansion for the lower and the upper boundaries:

ρle
−zl
[
1− (z − zl) +

1

2
(z − zl)2

]
≤ σ(t) ≤ ρue−zu [1− (z − zu)] (57)

The centers of expansion zl and zu can be computed according to

zl,i = log(m0 − αρlti), i = 0, . . . , n

zu,i = log(m0 − αρuti), i = 0, . . . , n

(58)

and the terms ρl and ρu are equal to the minimum and the maximum values of Tc. Moreover, Eq.

(51) needs to be satis�ed too. This constraint, together with Eq. (54) de�ne the entire convex

23

problem to be solved, characterized by having ns = 7 states, and nc = 4 controls. Full technical

details on the lossless convexi�cation can be found in [11], while further enhancements are covered

in [42], [43]. In the next section we will apply the pseudospectral convex optimization algorithm to

the original formulation of the problem.

VI. Pseudospectral Convex Optimization

In this section we present the pseudospectral convex framework for generating real-time capable

optimal solutions for the Mars descent phase. We use the �ipped Radau method and the Lobatto

method, and we emphasize the di�erences with respect to the standard transcription methods.

A. Flipped Radau Pseudospectral Convex method

The �rst step is the determination of the discrete timesteps, and the state vector representing the

solution. For n collocation nodes we can compute the corresponding n roots of the Radau-Legendre

polynomials as de�ned in Eq. (6). The roots correspond to the discrete set of pseudospectral

times τi, i = 0, . . . , n, which can be converted into physical time by using the �rst of the a�ne

transformations de�ned by Eq. (12), leading to

ti =
tf − t0

2
τi +

tf + t0
2

, i = 0, . . . , n (59)

The discrete time vector is non-uniform, in di�erence to the standard transcription. For the states

and the controls we propose to use the following vector:

X =

[
r1 v1 z1 u1 σ1 . . . rn vn zn un σn

]T
(60)

Note that the initial conditions (r0, v0, and z0) and the initial controls (u0 and σ0) are excluded

from the de�nition ofX, consistently with the fact that the initial node of the fRPm is not collocated.

Cost function

The vector c representing the cost function will be a vector having dimensions n(ns + nc) × 1. Of

24

these, only n elements, corresponding to the σi values, are di�erent from zero. Therefore we have

ci =

tf − t0

2
wj , i = j(ns + nc), k = 1, . . . , n

0 otherwise

(61)

where wj are the Radau quadrature weight de�ned in Eqs. (18),(19), and t0 and tf are the initial

and �nal times, assumed known. Note that the weights were simply assumed equal to dt = (tf −

t0)/(n+ 1) in the standard transcription.

Dynamics

If we de�ne the continuous state vector as

xc = [r v z]
T (62)

and the control as

uc = [u σ]
T (63)

the dynamics of Eq. (54) has the following state-space representation:

Ac =

O3×3 I3 0

O3×3 O3×3 O3×1

O1×3 O1×3 0

 , Bc =

O3×3 0

O3×3 0

O1×3 −α

 (64)

where On1×n2
and In3

are the zero matrix of dimensions n1 and n2 and the identity matrix of

dimensions n3, respectively. In the standard transcription the matrices Ac and Bc were converted

in their discrete counterparts Ad and Bd. These matrices were then used in the discrete scheme for

building the linear system de�ned in Eq. (31). Instead, with pseudospectral convex framework we

can skip this transformation, and directly use Ac and Bc. The reason is the di�erent construction of

the linear system of equations. In the standard transcription the system is constructed by exploiting

25

the equation

x(k + 1) = Adx(k) + Bdu(k) + Bdg (65)

In our case we build the residuals of the di�erential equations as

ẋ(t) = Acxc(t) + Bcuc(t) + Bcg (66)

since ẋ ∼= Dx, and keeping in mind Eq. (22) we can write

(D− ktAc)xc(t)− ktBcuc(t) = ktBcg (67)

which, evaluated in the n nodes leads to the following de�nitions

A0,dyn =

D1,1Ins − ktAc −ktBc D1,nIns Ons×nc

...
...

...
...

...
...

...
...

...
...

...
...

Dn,1Ins Ons×nc Dn,nIns − ktAc −ktBc

(68)

b0,dyn =

−D1,0x0 + ktBcg

...

...

−Dn,0x0 + ktBcg

(69)

The term kt is de�ned as (tf − t0)/2. Note that the knowledge of the initial conditions is exploited

to construct the vector b0,dyn through the �rst column of the matrix D, representing the discrete,

non-collocated point corresponding to x0.

Final Conditions

Arbitrary �nal conditions can be met by imposing further terms in the system of linear equations.

26

Supposing that all the six components on position and velocity are constrained to some values rf ,

vf , we can impose them by de�ning a further matrix A0,fc, and a further vector b0,fc as

A0,fc =

[
O(ns−1)×ns O(ns−1)×nc I(ns−1) O(ns−1)×nc+1

]
(70)

b0,fc =

[
rf vf

]T
(71)

Remark 3 Note that the number of rows of A0,fc and elements of b0,fc are in this case equal to ns − 1 because the

�nal mass is not constrained.

Remark 4 The number of rows of A0,fc and elements of b0,fc, can be further reduced in case only some of the

components of rf and vf are constrained. In that case it is su�cient to delete the rows and elements corresponding

to the non-constrained �nal values.

The linear system representing the dynamics and the �nal conditions is therefore given by the

following condition

A0X = b0 (72)

where

A0 =

[
A0,dyn A0,fc

]T
, b0 =

[
b0,dyn b0,fc

]T
(73)

Constraints

As �rst step we need to include the condition described by Eq. (55). This is done by including the

following conic constraint:

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

1 0 0 0

0 1 0 0

0 0 1 0

ux

uy

uz

σ

i

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
2

≤
[

0 0 0 1

]

ux

uy

uz

σ

i

, i = 1, . . . , n (74)

27

The glideslope constraint will be represented by the following conic inequality:

∥∥∥∥∥∥∥∥∥∥∥∥

 1 0 0

0 1 0

rx

ry

rz

i

∥∥∥∥∥∥∥∥∥∥∥∥
2

≤
[

0 0 1
tan θalt

]

rx

ry

rz

i

, i = 1, . . . , n (75)

The discrete version of the left-hand side of Eq. (57) can be modeled as a conic constraint too. Let

us de�ne the following matrices and vectors:

Aρ =

[
ρle
−zl
√
2
2 0

]
i

, bρ = −
[
ρle
−zl + zl 1

]
i

, cρ =
[
ρle
−zl
(
1 + zl + 1

2z
2
l

)]
i

(76)

and

Ac =

bρ
2

Aρ

 , bc =

cρ
2 + 1

2

0

 , cc = − bρ2 , dc = 1
2 −

cρ
2 (77)

With these de�nitions, it is possible to impose the �rst part of Eq. (57) as

‖Acz̃ + bc‖2 ≤ c
T
c z̃ + dc, i = 1, . . . , n (78)

where

z̃ =

 z

σ

i

(79)

Finally, the right-hand side of Eq. (57) is a linear constraint, and using the de�nition of Eq. (79),

is discretized as

[
ρue
−zu 1

]
z̃ ≤ ρue−zu (1 + zu) z̃, i = 1, . . . , n (80)

28

The entire problem is therefore expressed as

min J = c0X (81)

subject to the linear system of Eq. (72), together with the constraints of Eqs. (74)-(80), and

represents the transcription of the Mars powered descent problem according to the �ipped Radau

Pseudospectral Convex method (or fRPCm). The initial state is known, and the initial control is

extrapolated from the control history once that the problem is solved. The computation of the

initial control completes the solution with all the missing information.

B. Lobatto Pseudospectral Convex method

Let us de�ne now the Lobatto Pseudospectral Convex method (or LPCm). For n nodes, the

following vector is used:

X =

[
r0 v0 z0 u0 σ0 . . . rn−1 vn−1 zn−1 un−1 σn−1

]T
(82)

In this case all the discrete nodes are collocated. This implies that we have to include the initial

conditions in the optimization process, and that we have to constrain them to be equal to the

assigned initial conditions of our problem.

Cost function

The cost function is formally identical to the one of Eq. (61), with the only di�erence that the

weights are computed according to the de�nition given in Eq. (20).

Dynamics

The matrix A0,dyn and the vector b0,dyn have the same dimensions of the previous case, but they

are slightly di�erent. Now the di�erentiation matrix D is squared of dimensions n× n. Since there

29

are no discrete, non-collocated nodes, the known vector b0,dyn does not contain the initial states:

A0,dyn =

D1,0Ins − ktAc −ktBc D1,n−1Ins Ons×nc

...
...

...
...

...
...

...
...

...
...

...
...

Dn,0Ins Ons×nc Dn,n−1Ins − ktAc −ktBc

(83)

b0,dyn =

ktBcg

...

...

ktBcg

(84)

Final Conditions

As for the fRPCm we impose the �nal conditions in the system of linear equations. The matrix

A0,fc and the vector b0,fc remain unchanged with respect to Eqs. (70) and (71).

Initial Conditions

Since the initial states are now variables, we have to impose that they are equal to the known initial

conditions. In a similar fashion to what was done in Eqs. (70) and (71) these constraints are ensured

by de�ning a matrix A0,ic and a vector b0,ic as

A0,ic =

[
Ins×ns Ons×nc Ons×ns Ons×nc

]
(85)

b0,ic =

[
r0 v0 z0

]T
(86)

Remark 5 The number of rows in this case is equal to ns, as all of the initial conditions are assigned.

The linear system representing the dynamics, the �nal and the initial conditions is therefore

30

given by the following condition

A0X = b0 (87)

with

A0 =

[
A0,ic A0,dyn A0,fc

]T
, b0 =

[
b0,ic b0,dyn b0,fc

]T
(88)

Constraints

The constraints are assigned exactly in the same way as for the fRPCm. Therefore, Eqs. (74)

through (80) hold for the LPCm too, for i = 0, . . . , n−1. The initial states are trivially satis�ed, and

the initial control are directly computed by the optimizer. The transcription is therefore complete

and no further actions are required.

VII. Numerical Performances

A series of simulations to assess the performance of the proposed methods was performed. The

solution associated with 50 nodes is depicted in Figs. 7-9. We can see from Fig. 7, (showing

position, velocity, acceleration and controls) that the solution is fully consistent with the results of

[11]. The glideslope constraint is also fully satis�ed (Fig. 8). The �nal mass consumption is equal

to 399.5 kg. Figure 9 shows the control history: the original non-convex control constraints are

satis�ed too.

To perform a more systematic analysis of the results the problem has been solved for each of

the three transcription methods (i.e., fRPCm, LPCm and standard transcription) with two di�erent

SOCP solvers (ECOS [39], and SDPT3 [44]) by varying the number of nodes between 40 and 120.

The comparison has been performed in terms of

• Cost function

• Mean and maximum error between optimal and propagated solutions (ode45)

• CPU time

31

0 20 40 60 80
Time (s)

0

2000

4000

P
os

iti
on

 (
m

) X
Y
Z

0 20 40 60 80
Time (s)

-100

0

100

V
el

oc
ity

 (
m

/s
)

0 20 40 60 80
Time (s)

-5

0

5

10

A
cc

el
er

at
io

n
(m

/s
2)

0 20 40 60 80
Time (s)

-10

0

10

20

N
et

 fo
rc

e
(k

N
)

0 20 40 60 80
Time (s)

0.4

0.6

0.8

T
hr

ot
tle

 le
ve

l

0 20 40 60 80
Time (s)

0

20

40

60

3
 (

de
g)

Fig. 7 Solution obtained with �ipped Radau pseudospectral convex method - states and con-
trols.

For a better characterization of the CPU times each run has been repeated 10 times. All the

cases have been run on a laptop having a i7-368 processor with clock frequency of 2.6 GHz. Results

are depicted from Fig. 10(a) through 15(b). In terms of fuel usage (Figs. 10(a) and 10(b)) we

can observe that for both ECOS and SDPT3 the pseudospectral convex framework generates better

cost indices, even with smaller number of nodes, where the di�erence can be up to 0.9 kg. Similar

di�erences can be observed for the mean errors on position (Figs. 11(a) and 11(b)) and velocity

(Figs. 12(a) and 12(b)), where the proposed methods leads to much better results.

More speci�cally, in terms of positions (Figs. 11(a) and 11(b)) the mean error ranges from

48 m (for n = 40) to 15 m (n = 120). When pseudospectral convex optimization is used these

32

0 500 1000 1500 2000 2500 3000
x (m)

-1000

-500

0

500

1000

1500

2000

2500

z
(m

)

Fig. 8 Solution obtained with �ipped Radau pseudospectral convex method - trajectory.

-1 -0.5 0 0.5 1
x

-1

-0.5

0

0.5

1

z

T(t
0
)

T(t
f
)

T
x

T
z

control space
control history

Fig. 9 Solution obtained with �ipped Radau pseudospectral convex method - control space.

errors are 3.4 and 0.36 m, respectively. Note also that the error is not only smaller if compared

with the standard methods, but also decreases more rapidly, for both fRPCm and LPCm. Similar

conclusions can be drawn for the velocity errors (Figs. 12(a) and 12(b)), which are reduced up to 25

times (3.05 m/s for the standard methods against 0.10 m/s when pseudospectral convex methods

33

are employed) for n = 40. The ratio increases up to 83 times (1 m/s versus 0.012 m/s) when n

becomes equal to 120. The di�erences become even larger when the maximum values are taken. For

the positions indeed (Fig. 13(a) and 13(b) the error is reduced to 3.8% of the value obtained with

standard methods when n = 40 nodes are taken, and to 1% when n is equal to 120. This percentage

is more or less constant, and equal to 5% when the maximum velocity errors are considered, with

reference to Figs. 14(a) and 14(b).

From Fig. 15(a) we can observe that with ECOS the proposed methods are slower than the

standard technique, even if quite e�cient for small number of nodes. Moreover, the CPU time for

the standard method is less sensitive to the increase in the size of the problem until n = 120, with

an observed CPU time between 25 and 139 ms. For the two pseudospectral methods the CPU times

are between 217 (best case, obtained with LPm) and 5358 ms (worst case, associated with the use

of the fRPm). This is mainly due to the largest number of interactions between the several discrete

states (note that the di�erentiation matrix D creates dependencies among all of them, while the

numerical scheme used in the standard methods implies that only two consecutive discrete states

are linearly dependent with respect to each other.

A di�erent scenario is observed when SDPT3 is adopted (Fig. 15(b)). In this case the time

di�erences signi�cantly decrease, and the CPU times are generally larger than in the previous

campaign. When standard transcription is used the CPU times range from 763 to 2156 ms, against

a range of [1998, 13570] ms obtained when the fRPCm is employed. It is interesting to observe that

these results are much smoother and consistent with the number of nodes w.r.t. the ones obtained

by using the LPCm. In fact, this method shows much larger oscillations between 40 and 50 nodes,

as well as between 82 and 90, and above 110 nodes. A deeper analysis of these results revealed

that, although the solution is always valid and corresponds to the expected one, for those cases the

SDPT3 solver has convergence troubles. The same issue a�ects the standard transcription in the

ranges [60 80] and [100 120], while this issue never a�ects the Radau-based method, suggesting that

this one is preferable as more numerically stable, and accurate as the Lobatto one.

All these results are also summarized in Tables 1 and 2, which provide a quick overview of the

performance of the proposed methods. Speci�cally, as previously mentioned, SDPT3 computes the

34

solution in a generally larger amount of time. This is mainly due to the fact the while ECOS is

specialized for SOCP, SDPT3 is conceived for solving semide�nite programming (SDP) problems,

which is a larger branch of convex optimization, and therefore it is slightly less optimized in handling

SOCP problems. In general what we can observe is that for a small number of nodes the di�erence

of time between standard and proposed methods is reduced (it takes between 1.2 and 13 times

more), but the accuracy in position is between 15 and 20 times better, and in terms of velocity the

error is reduced by a factor varying between 15 and 20 times. This improvement at a reduced CPU

cost makes the proposed algorithms a valid alternative for this range of nodes. Remark 6 Note that,

despite the use of CVX, the CPU times depicted in Fig. 15(b) are the ones obtained by SDPT3 only, i.e., without

taking the parsing time into account.

For what regards the di�erences between the two proposed methods, even if both perform well,

the use of the fRPCm is recommended for three reasons: �rst, it is more accurate than LPCm in

integrating the cost function in virtue of the higher order accuracy of its quadrature formula. Second,

for the �ipped Radau points a direct connection between the discrete Lagrange multipliers and the

continuous costates of the continuous OCP holds in virtue of the Covector Mapping Theorem, while

this is not true for the Lobatto-based framework [21, 29]. Finally, the fRPCm does not show any

numerical issue, which might a�ect the Lobatto method. All these reasons make the fRPCm more

promising for future applications.

35

40 50 60 70 80 90 100 110 120
Nodes

399.4

399.6

399.8

400

400.2

400.4

400.6

C
on

su
m

ed
 F

ue
l M

as
s

(k
g)

Radau
Lobatto
Standard

(a) Fuel usage (ECOS).

40 50 60 70 80 90 100 110 120
Nodes

399.4

399.6

399.8

400

400.2

400.4

400.6

C
on

su
m

ed
 F

ue
l M

as
s

(k
g)

Radau
Lobatto
Standard

(b) Fuel usage (SDPT3).

Fig. 10 Performance comparison - Cost function obtained with di�erent solvers.

40 50 60 70 80 90 100 110 120
Nodes

10-1

100

101

102

M
ea

n
er

ro
r

on
 p

os
iti

on
 (

m
)

Radau
Lobatto
Standard

(a) Mean error on position (ECOS).

40 50 60 70 80 90 100 110 120
Nodes

10-1

100

101

102

M
ea

n
er

ro
r

on
 p

os
iti

on
 (

m
)

Radau
Lobatto
Standard

(b) Mean error on position (SDPT3).

Fig. 11 Performance comparison - Error on position obtained with di�erent solvers.

36

40 50 60 70 80 90 100 110 120
Nodes

10-2

10-1

100

101

M
ea

n
er

ro
r

on
 v

el
oc

ity
 (

m
/s

)

Radau
Lobatto
Standard

(a) Mean error on velocity (ECOS).

40 50 60 70 80 90 100 110 120
Nodes

10-2

10-1

100

101

M
ea

n
er

ro
r

on
 v

el
oc

ity
 (

m
/s

)

Radau
Lobatto
Standard

(b) Mean error on velocity (SDPT3).

Fig. 12 Performance comparison - Error on velocity obtained with di�erent solvers.

40 50 60 70 80 90 100 110 120
Nodes

100

101

102

103

M
ax

 e
rr

or
 o

n
po

si
tio

n
(m

)

Radau
Lobatto
Standard

(a) Max error on position (ECOS).

40 50 60 70 80 90 100 110 120
Nodes

10-1

100

101

102

103

M
ax

 e
rr

or
 o

n
po

si
tio

n
(m

)

Radau
Lobatto
Standard

(b) Max error on position (SDPT3).

Fig. 13 Performance comparison - Error on position obtained with di�erent solvers.

37

40 50 60 70 80 90 100 110 120
Nodes

10-1

100

101

102

M
ax

 e
rr

or
 o

n
ve

lo
ci

ty
 (

m
/s

)

Radau
Lobatto
Standard

(a) Max error on velocity (ECOS).

40 50 60 70 80 90 100 110 120
Nodes

10-1

100

101

102

M
ax

 e
rr

or
 o

n
ve

lo
ci

ty
 (

m
/s

)

Radau
Lobatto
Standard

(b) Max error on velocity (SDPT3).

Fig. 14 Performance comparison - Error on velocity obtained with di�erent solvers.

40 60 80 100 120
Nodes

101

102

103

104

C
P

U
 T

im
e

(m
s)

Radau
Lobatto
Standard

(a) CPU time (ECOS).

40 60 80 100 120
Nodes

102

103

104

105

C
P

U
 T

im
e

(m
s)

Radau
Lobatto
Standard

(b) CPU time (SDPT3).

Fig. 15 Performance comparison - CPU times obtained with di�erent solvers.

38

Table 1 Performance obtained with ECOS

Nodes Method mean CPU time (ms) mean pos error (m) mean vel error (m/s)

40
fRPCm 271 3.22 0.105
LPCm 217 3.42 0.112
SCm 25 47.91 3.051

60
fRPCm 805 1.51 0.048
LPCm 1174 1.43 0.047
SCm 88 30.95 2.014

80
fRPCm 5358 0.81 0.026
LPCm 1381 0.82 0.027
SCm 62 22.81 1.501

100
fRPCm 2808 0.56 0.018
LPCm 2678 0.53 0.017
SCm 139 18.05 1.196

120
fRPCm 4498 0.37 0.012
LPCm 4337 0.36 0.012
SCm 102 14.92 0.994

Table 2 Performance obtained with SDPT3

Nodes Method mean CPU time (ms) mean pos error (m) mean vel error (m/s)

40
fRPCm 1998 3.19 0.104
LPCm 928 3.42 0.112
SCm 763 47.91 3.051

60
fRPCm 2194 1.32 0.046
LPCm 1652 1.43 0.047
SCm 2156 30.95 2.014

80
fRPCm 5803 0.81 0.026
LPCm 4696 0.82 0.027
SCm 1391 22.81 1.501

100
fRPCm 10830 0.57 0.018
LPCm 8360 0.53 0.017
SCm 1070 18.05 1.196

120
fRPCm 13570 0.26 0.011
LPCm 12420 0.36 0.012
SCm 1453 14.92 0.994

39

VIII. Conclusions

In this paper, pseudospectral methods and convex optimization are combined to provide a more

accurate real-time oriented framework for optimal control. Two pseudospectral methods are em-

ployed for this hybridization, leading to the �ipped Radau pseudospectral convex method and to the

Lobatto pseudospectral convex method. The proposed approaches are applied to the Mars powered

descent scenario and compared with standard convex methods. The comparison is performed in

terms of fuel usage, as well as position and velocity errors, and CPU time. Two di�erent solvers

(that is, ECOS and SDPT3) to assess the results in a more general context are used.

Both the proposed approaches lead to results that can be up to 100 times more accurate than

the ones obtained with standard methods. The di�erence in the accuracy of the results is also

signi�cant for the cases where a small number of nodes (40â��50) was considered. This range of

nodes is characterized by having CPU times on the order of about 220â��800 ms. This subset of

nodes therefore represents the region where the application of pseudospectral convex optimization

provides a large improvement of accuracy at the price of a reasonably increased computational time.

Acknowledgments

The author thanks the DLR Technology Marketing department, the Jostarndt AG Patent At-

torneys and the German Patent OF�ce (DPMA) for the strong support in �ling the applicatin for

the patent 102017219076.0.

References

[1] Blackmore, L., �Autonomous Precision Landing of Space Rockets,� The Bridge, Vol. 4, 2016.

[2] Bennett, F., �Lunar descent and ascent trajectories,� Aerospace Sciences Meetings, American Institute

of Aeronautics and Astronautics, Jan. 1970.

[3] Connor, M. A., �Gravity turn trajectories through the atmosphere.� Journal of Spacecraft and Rockets,

Vol. 3, No. 8, Aug. 1966, pp. 1308�1311.

[4] Jungmann, J., �Gravity turn trajectories through planetary atmospheres,� Meeting Paper Archive,

American Institute of Aeronautics and Astronautics, Aug. 1967.

[5] McInnes, C. R., �Gravity-Turn Descent from Low Circular Orbit Conditions,� Journal of Guidance,

Control, and Dynamics, Vol. 26, No. 1, Jan. 2003, pp. 183�185.

40

[6] Sostaric, R. and Rea, J., �Powered Descent Guidance Methods For The Moon and Mars,� Guidance,

Navigation, and Control and Co-located Conferences, American Institute of Aeronautics and Astronau-

tics, Aug. 2005.

[7] Ingoldby, R. N., �Guidance and Control System Design of the Viking Planetary Lander,� Journal of

Guidance, Control, and Dynamics, Vol. 1, No. 3, May 1978, pp. 189�196.

[8] Boyd, S. and Vandenberghe, L., Convex Optimization, 2004.

[9] Liu, X. and Lu, P., �Solving nonconvex optimal control problems by convex optimization,� Journal of

Guidance, Control, and Dynamics, Vol. 37, No. 3, 2014, pp. 750�765.

[10] Liu, X., Shen, Z., and Lu, P., �Entry trajectory optimization by second-order cone programming,�

Journal of Guidance, Control, and Dynamics, Vol. 39, No. 2, 2015, pp. 227�241.

[11] Acikmese, B. and Ploen, S. R., �Convex programming approach to powered descent guidance for mars

landing,� Journal of Guidance, Control, and Dynamics, Vol. 30, No. 5, 2007, pp. 1353�1366.

[12] Acikmese, B., Carson, J. M., and Blackmore, L., �Lossless Convexi�cation of Nonconvex Control Bound

and Pointing Constraints of the Soft Landing Optimal Control Problem,� IEEE Transactions on Control

Systems Technology , Vol. 21, No. 6, nov 2013, pp. 2104�2113.

[13] Dueri, D., Acikmese, B., Scharf, D. P., and Harris, M. W., �Customized Real-Time Interior-Point Meth-

ods for Onboard Powered-Descent Guidance,� Journal of Guidance, Control, and Dynamics, Vol. 40,

No. 2, Feb. 2017, pp. 197�212.

[14] Scharf, D. P., Acikmese, B., Dueri, D., Benito, J., and Casoliva, J., �Implementation and Experimental

Demonstration of Onboard Powered-Descent Guidance,� Journal of Guidance, Control, and Dynamics,

Vol. 40, No. 2, Feb. 2017, pp. 213�229.

[15] Acikmese, B., Aung, M., Casoliva, J., Mohan, S., Johnson, A., Scharf, D., Masten, D., Scotkin, J.,

Wolf, A., and Regehr, M. W., �Flight testing of trajectories computed by G-FOLD: Fuel optimal large

divert guidance algorithm for planetary landing,� Advances in the Astronautical Sciences, Vol. 148,

2013, pp. 1867�1880.

[16] Huneker, L., Sagliano, M., and Arslantas, Y., �SPARTAN: An Improved Global Pseudospectral Algo-

rithm for High-Fidelity Entry-Descent-Landing Guidance Analysis,� 30th International Symposium on

Space Technology and Science, Kobe, Japan, 2015 , 2015.

[17] Sagliano, M., Theil, S., D'Onofrio, V., and Bergsma, M., �SPARTAN: A Novel Pseudospectral Algo-

rithm for Entry, Descent, and Landing Analysis,� 4th CEAS Eurognc conference, Warsaw , 2017.

[18] Sagliano, M., Theil, S., Bergsma, M., D'Onofrio, V., Whittle, L., and G., V., �On the Radau Pseu-

dospectral Method: theoretical and implementation advances,� CEAS SPACE Journal , Vol. 9, No. 3,

41

jun 2017, pp. 313�331.

[19] Sagliano, M., Development of a Novel Algorithm for High Performance Reentry Guidance, phdthesis,

2016.

[20] Ross, I. M., Sekhavat, P., Fleming, A., and Gong, Q., �Pseudospectral Feedback Control: Foundations,

Examples and Experimental Results,� AIAA Guidance, Navigation, and Control Conference, Keystone,

USA,, 2006.

[21] Garg, D., Advances in Global Pseudospectral Methods for Optimal Control , Ph.D. thesis, University of

Florida, Gainesville, 2011.

[22] Sagliano, M. and Theil, S., �Hybrid Jacobian Computation for Fast Optimal Trajectories Generation,�

AIAA Guidance, Navigation, and Control Conference, Boston, USA,, 2013.

[23] Gill, P. E., Murray, W., and Saunders, M. A., User's Guide for SNOPT Version 7: Software for

Large-Scale Nonlinear Programming , University of California, San Diego, USA, 2008.

[24] Wächter, A. and Biegler, L. T., �On the implementation of an interior-point �lter linesearch algorithm

for large-scale nonlinear programming,� Math. Program. 106(1) , Springer-Verlag, New York, 2006 ,

2006.

[25] Acikmese, A. B. and Ploen, S., �A Powered Descent Guidance Algorithm for Mars Pinpoint Landing,�

Guidance, Navigation, and Control and Co-located Conferences, American Institute of Aeronautics and

Astronautics, Aug. 2005.

[26] Elissar, �Description of DIDO Optimal Control software,� June 2015.

[27] Sagliano, M., �Performance analysis of linear and nonlinear techniques for automatic scaling of dis-

cretized control problems,� Operations Research Letters, Vol.42 Issue 3, May 2014, pp. 213-216 , 2014.

[28] D'Onofrio, V., Sagliano, M., and Arslantas, Y., �Exact Hybrid Jacobian Computation for Optimal Tra-

jectory Computation via Dual Number Theory,� AIAA Science and Technology Forum and Exposition,

2016.

[29] Gong, Q., Ross, I. M., Kang, W., and Fahroo, F., �Connections Between The Covector Mapping

Theorem and Convergence of Pseudospectral Methods for Optimal Control,� Comput Optim Appl,

2008 , 2008.

[30] Fahroo, F. and Ross, I. M., �Direct Trajectory Optimization by a Chebyshev Pseudospectral Method,�

Journal of Guidance, Control, and Dynamics, Vol. 25, No. 1, Jan. 2002, pp. 160�166.

[31] Martins, J. R. R., Sturdza, P., and Alonso, J. J., �The Complex-Step Derivative Approximation,� ACM

Transactions on Mathematical Software, Vol. 29, No. 3, September 2003, Pages 245�262 , 2003.

[32] Abramovitz, M. and Stegun, I. A., Handbook of Mathematical Functions, Dover Publications, 1695.

42

[33] Ben Tal, A. and Nemirovski, A., Modern Lectures on Convex Optimization, 2001.

[34] El Ghaoui, L., �Introduction to Convex Optimization,� .

[35] Mattingley, J. and S., B., �CVXGEN: a code generator for embedded convex optimization,� Optimiza-

tion and Engineering , , No. 13, 2012, pp. 1�27.

[36] Lobo, M. S., Vandenberghe, L., Boyd, S., and Lebret, H., �Applications of Second-Order Conic Pro-

gramming,� Linear Algebra and Its Applications, 1998, pp. 193�228.

[37] Domahidi, A., Methods and Tools for Embedded Optimization and Control , Ph.D. thesis, 2013.

[38] Storm, J., �Using SeDuMi 1.02, A Matlab Toolbox for Optimization over Symmetric Cones,� Optimiza-

tion Methods and Software, 1999.

[39] Domahidi, A., Chu, E., and Boyd, S., �ECOS: An SOCP Solver for Embedded Systems,� European

Control Conference, 2013.

[40] Martin, M. S., G.Mendeck, Brugarolas, P. B., Singh, G., and Serricchio, F., �In-Flight Experience of the

Mars Science Laboratory Guidance, Navigation, and Control System for Entry, Descent, and Landing,�

9th International ESA Conference on Guidance, Navigation, and Control Systems, 2014.

[41] JPL, �7 Minutes of Terror,� 2012.

[42] Blackmore, L., Acikmese, B., and Scharf, D. P., �Minimum-Landing-Error Powered-Descent Guidance

for Mars Landing Using Convex Optimization,� Journal of Guidance, Control, and Dynamics, Vol. 33,

No. 4, July 2010, pp. 1161�1171.

[43] Szmuk, M., Eren, U., and Acikmese, B., �Successive Convexi�cation for Mars 6-DoF Powered Descent

Landing Guidance,� AIAA SciTech Forum, American Institute of Aeronautics and Astronautics, Jan.

2017.

[44] Toh, K.-C., Todd, M. J., and Tütüncü, R. H., On the Implementation and Usage of SDPT3 � A Matlab

Software Package for Semide�nite-Quadratic-Linear Programming, Version 4.0 , Springer US, Boston,

MA, 2012, pp. 715�754.

43

	Nomenclature
	Introduction
	Overview on Pseudospectral methods
	Optimal Control Problem
	Pseudospectral Methods
	Flipped Radau Pseudospectral method and Lobatto Pseudospectral method

	Overview on Convex Optimization
	Second-Order Conic Programming

	A motivational example
	Mars Powered Descent
	Pseudospectral Convex Optimization
	Flipped Radau Pseudospectral Convex method
	Lobatto Pseudospectral Convex method

	Numerical Performances
	Conclusions
	Acknowledgments
	References

