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Abstract

The MergeInsertion Algorithm, also known as Ford-Johnson Algorithm, is a sorting
algorithm that was discovered by Ford and Johnson in 1959. It was later described
by Knuth as MergeInsertion. The algorithm can be divided into three steps: First pairs
of elements are compared. then the larger half is sorted using MergeInsertion, and last
the remaining elements are inserted. The most interesting property of this algorithm is
the number of comparisons it requires, which is close to the information-theoretic lower
bound. While the worst-case behavior is well understood, only little is known about the
average-case. This thesis takes a closer look at the average case behavior. An upper
bound of n log n − 1.4005n + o(n) is established. For small n the exact values are calculated.
Furthermore the impact of different approaches to binary insertion on the number of
comparisons is explored. To conclude we perform some experiments to evaluate different
approaches on improving MergeInsertion.
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1 Introduction

Sorting a set of elements is an important operation frequently performed by many computer
programs. Consequently there exist a variety of algorithms for sorting, each of which comes
with its own advantages and disadvantages.

This thesis studies a specific sorting algorithm known as MergeInsertion. It was discovered
by Ford and Johnson in 1959[JJ59]. Before D. E. Knuth coined the term MergeInsertion in
his study of the algorithm in his book ‘‘The Art of Computer Programming, Volume 3:
(2Nd Ed.) Sorting and Searching’’[Knu98] it was known only as Ford-Johnson Algorithm,
named after its creators.

The one outstanding property of MergeInsertion is that the number of comparisons it
requires is close to the information-theoretic lower bound. This sets it apart from many
other sorting algorithms.

MergeInsertion can be described in three steps: First pairs of elements are compared.
In the second step the larger half is sorted recursively. And as a last step the elements
belonging to the smaller half are inserted into the already sorted larger half using binary
insertion.

The goal of this thesis is to study the number of comparison required in the average case.
Currently the best upper bound on the average case is n log n−1.3999n + o(n) [EW13]. We
aim to improve upon that by analyzing the insertion step of MergeInsertion in greater
detail. In general MergeInsertion achieves its good performance by inserting elements in a
specific order that in the worst case causes each element to be inserted into a sorted list of
2k − 1 elements. When looking at the average case elements are often inserted into less
than 2k − 1 elements which is slightly cheaper. By calculating those small savings we seek
to achieve our goal of a better upper bound on the average case.

Speaking of binary insertion, when an element is inserted less than 2k − 1 there are some
positions, it can be inserted into with only k − 1 instead of k comparisons. Binary Insertion
determines the position where the element will be inserted by comparing it to the middle
element of the list. In the case of MergeInsertion not all positions are not equally likely so
this approach might not be optimal. We investigate other approaches to binary insertion
to see if it is possible to use the non-uniform distribution to our advantage.

While it is nice to have an approximation of the number of comparisons required by
MergeInsertion, it is also nice to calculate the exact numbers. We present a computer
program for efficiently calculating those for small values of n.

Last we perform experiments to evaluate different ideas for improving MergeInsertion. This
includes our own ideas as well as those proposed by others.
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1 Introduction

1.1 Related Work

One of the deficiencies of MergeInsertion is the oscillating number of comparisons it requires.
There are points at which it reaches its optimum, but in between are lots of points were it
requires more comparisons. Glenn K. Manacher showed in [Man79] that MergeInsertion
can be beaten for some n by splitting the sequence in two parts that are both optimal(or
close to optimal) for MergeInsertion, sorting both of these with MergeInsertion and then
merging the two sorted lists. This was improved upon by [BT85] using a more efficient
merging algorithm. While this work was done for the worst-case, as part of our experiments
we briefly look at how it can improve the average-case.

Regarding the average case we find that in his studies D. Knuth[Knu98] calculated the
number of comparisons required in the average case for small n. An upper bound of
n log n − 1.3999n + o(n) has been discovered by [EW13].

Most recently Iwama and Teruyama showed that MergeInsertion can be improved by
combining it with their 1-2-Insertion algorithm resulting in an upper bound of n log n −
1.4106n + O(log n)[IT17].
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2 Average Case Analysis

In this chapter we take a look at how MergeInsertion works, step by step making our
way towards a better approximation. First we revisit the three phases of the algorithm.
Accompanying the explanations is an example where n = 21,

1. Pairwise comparison. Pairs of elements are compared, such that there are now
a1 to a⌊

n
2

⌋ and b1 to b⌈
n
2

⌉ with ∀1≤i≤
⌊
n
2

⌋ ai > bi. The result of this step is shown in
Figure 2.1. We call such a set of relations between individual elements a configuration.
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Figure 2.1: Step 1: Pairwise comparison.

2. Recursion. The
⌊
n
2

⌋
larger elements, i.e. a1 to a⌊

n
2

⌋ are sorted recursively. Then the
elements are renamed such that ai < ai+1 and ai > bi still holds. This configuration
can be seen in Figure 2.2.
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Figure 2.2: Step 2: Recursively sort ai.

3. Insertion. The
⌈
n
2

⌉
small elements, i.e. the bi are inserted into the main chain using

binary insertion. The term ‘‘main chain’’ is due to Knuth and describes the set of
elements containing x1, x2, ..., x2tk−2 and atk−1+1, atk−1+2, ..., atk as well as the bi that
have already been inserted into it. It is called main chain because the total order of
all elements in the main chain is known.
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2 Average Case Analysis

An important part of the MergeInsertion algorithm is the order in which the bi are
inserted into the main chain. The elements are inserted in batches starting with b3, b2.
The k-th batch contains the elements btk , btk−1, ..., btk−1+1, which are inserted in that

order. Elements bj where j >
⌈
n
2

⌉
are left out1. tk is defined as tk =

2k+1+(−1)k

3 .

After inserting all elements of the k-th batch the elements a1 to atk and b1 to btk of
which we now know the total order are renamed to x1 to x2tk such that xi < xi+1.

As a result of the insertion order an element bi which is part of the k-th batch can
be inserted using at most k comparisons.
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(b) After first batch is inserted
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(c) After second batch is inserted

Figure 2.3: Step 3: Insertion. The different batches are outlined with boxes. The batches
are processed from left to right but elements within each batch are inserted
from right to left.

Since the first step always requires
⌊
n
2

⌋
comparisons and the recursion step does not do

any comparisons by itself but only depends on the other steps we shall put our focus on
the insertion step to find out more about the average case.

2.1 Lots of Numbers

In this section we have a look at different probabilities when inserting one batch of elements,
i.e. the elements btk to btk−1+1. For each element bi we want to be able to answer the
following questions: What is the probability of bi being inserted between xj and xj+1. And
what is the probability of bi being inserted into a specific number of elements.

1When sorting only 17 instead of 21 elements as in the example, the last batch would be incomplete.
Out of the elements b11, b10, ..., b6 only b9, b8, b7 and b6 actually exists. In that case the non-existent
elements are skipped and the remaining elements, b9, b8, b7 and b6, are inserted in that order.
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2.1 Lots of Numbers

When analyzing what happens when inserting one batch of elements we make the following
assumptions: All elements of previous batches, i.e. b1 to btk−1 have already been inserted
and together with the corresponding ai they constitute the main chain and have been
renamed to x1 to x2tk−1 . Batches that are inserted after the batch we are looking at are
ignored, since those do not affect the probabilities we want obtain.
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a5x1 x2 x3 x4 x5 x6
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(c) Batch k = 4

Figure 2.4: Batches of the elements btk to btk−1+1 for k ∈ {2, 3, 4}

First we define a probability space for the process of inserting one batch of elements. Ωk

is the set of all possible outcomes when sorting the partially ordered elements shown in
Figure 2.4 by inserting btk to btk−1+1. Each ω ∈ Ωk is a function that maps an element ei
to its final position, i.e. ω(ei) ∈ {1, 2, ..., 2tk}. To simplify things we define xtk−1+j := aj for
all j ∈ {tk−1, tk−1 + 1, ..., tk}.

While the algorithm mandates a specific order for inserting the elements btk−1+1 to btk
during the insertion step, using a different order does not change the outcome, i.e. the
elements are still sorted correctly. For this reason we can assume a different insertion in
order to simplify calculating the size of the probability space as well as the likelihood of
relations between individual elements.

So far things are still simple as we have P(ω) = 1
|Ωk |

. Now we only need to calculate the
size of Ωk to know the probability P(ω). First we have a look at k = 2. The corresponding
configuration is shown in Figure 2.4a. It can be seen that when inserting b2 first there
are 3 positions it can go, then when inserting b3 there are 5 positions it can go. The
result is |Ω2 | = 3 · 5 = 15. For k = 3 and k = 4 we calculate |Ω3 | = 7 · 9 = 63 and
|Ω4 | = 11 · 13 · 15 · 17 · 19 · 21 = 14549535 respectively.

When looking at an arbitrary k, the first element of the batch btk−1+1 is inserted into 2tk−1
elements (x1 to x2tk−1) thus there are 2tk−1 + 1 positions it can go. The second element
btk−1+2 is then inserted into 2tk−1+2 elements (x1 to x2tk−1 , atk−1+1 and btk−1+1) i.e. 2tk−1+3
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2 Average Case Analysis

i 1 2 3 4 5 6

P(Xi = 0) 1
11

1
11 ·

12
13

1
11 ·

12
13 ·

14
15

1
11 ·

12
13 ·

14
15 ·

16
17

1
11 ·

12
13 ·

14
15 · · ·

18
19

1
11 ·

12
13 ·

14
15 · · ·

20
21

P(Xi = 1) 1
11

1
11 ·

12
13

1
11 ·

12
13 ·

14
15

1
11 ·

12
13 ·

14
15 ·

16
17

1
11 ·

12
13 ·

14
15 · · ·

18
19

1
11 ·

12
13 ·

14
15 · · ·

20
21

P(Xi = 2) 1
11

1
11 ·

12
13

1
11 ·

12
13 ·

14
15

1
11 ·

12
13 ·

14
15 ·

16
17

1
11 ·

12
13 ·

14
15 · · ·

18
19

1
11 ·

12
13 ·

14
15 · · ·

20
21

P(Xi = 3) 1
11

1
11 ·

12
13

1
11 ·

12
13 ·

14
15

1
11 ·

12
13 ·

14
15 ·

16
17

1
11 ·

12
13 ·

14
15 · · ·

18
19

1
11 ·

12
13 ·

14
15 · · ·

20
21

P(Xi = 4) 1
11

1
11 ·

12
13

1
11 ·

12
13 ·

14
15

1
11 ·

12
13 ·

14
15 ·

16
17

1
11 ·

12
13 ·

14
15 · · ·

18
19

1
11 ·

12
13 ·

14
15 · · ·

20
21

P(Xi = 5) 1
11

1
11 ·

12
13

1
11 ·

12
13 ·

14
15

1
11 ·

12
13 ·

14
15 ·

16
17

1
11 ·

12
13 ·

14
15 · · ·

18
19

1
11 ·

12
13 ·

14
15 · · ·

20
21

P(Xi = 6) 1
11

1
11 ·

12
13

1
11 ·

12
13 ·

14
15

1
11 ·

12
13 ·

14
15 ·

16
17

1
11 ·

12
13 ·

14
15 · · ·

18
19

1
11 ·

12
13 ·

14
15 · · ·

20
21

P(Xi = 7) 1
11

1
11 ·

12
13

1
11 ·

12
13 ·

14
15

1
11 ·

12
13 ·

14
15 ·

16
17

1
11 ·

12
13 ·

14
15 · · ·

18
19

1
11 ·

12
13 ·

14
15 · · ·

20
21

P(Xi = 8) 1
11

1
11 ·

12
13

1
11 ·

12
13 ·

14
15

1
11 ·

12
13 ·

14
15 ·

16
17

1
11 ·

12
13 ·

14
15 · · ·

18
19

1
11 ·

12
13 ·

14
15 · · ·

20
21

P(Xi = 9) 1
11

1
11 ·

12
13

1
11 ·

12
13 ·

14
15

1
11 ·

12
13 ·

14
15 ·

16
17

1
11 ·

12
13 ·

14
15 · · ·

18
19

1
11 ·

12
13 ·

14
15 · · ·

20
21

P(Xi = 10) 1
11

1
11 ·

12
13

1
11 ·

12
13 ·

14
15

1
11 ·

12
13 ·

14
15 ·

16
17

1
11 ·

12
13 ·

14
15 · · ·

18
19

1
11 ·

12
13 ·

14
15 · · ·

20
21

P(Xi = 11) 0 1
13

1
13 ·

14
15

1
13 ·

14
15 ·

16
17

1
13 ·

14
15 ·

16
17 ·

18
19

1
13 ·

14
15 ·

16
17 · · ·

20
21

P(Xi = 12) 0 0 1
15

1
15 ·

16
17

1
15 ·

16
17 ·

18
19

1
15 ·

16
17 ·

18
19 ·

20
21

P(Xi = 13) 0 0 0 1
17

1
17 ·

18
19

1
17 ·

18
19 ·

20
21

P(Xi = 14) 0 0 0 0 1
19

1
19 ·

20
21

P(Xi = 15) 0 0 0 0 0 1
21

Table 2.1: Values of P(Xi = j) for k = 4.

positions. This continues up to btk which is inserted into 2tk − 2 elements, thus there are
2tk − 1 position where it can go. This leads to the following formula:

|Ωk | = (2tk−1 + 1) · (2tk−1 + 3) · · · (2tk − 1)

=

tk−tk−1∏
i=1

(2tk−1 + 2i − 1)

=

(
2tk−1∏

i=2tk−1+1

i

) (
tk−1∏

i=tk−1+1

(2i)

) −1
=

(
2tk−1∏
i=1

i

) (
2tk−1∏
i=1

i

) −1 (
tk−1∏
i=1

2i

) −1 (
tk−1∏
i=1

2i

)
= 2tk−1−tk+1 ·

(2tk − 1)!
(2tk−1)!

·
(tk−1)!
(tk − 1)!

(2.1)

Next we have a look at where an element will end up after it has been inserted. Not all
positions are equally likely.

For this purpose we define the random variable

Xi := ω→


0 if ω(btk−1+i) < ω(x1)
j if ω(xj) < ω(btk−1+i) < ω(xj+1) where j ∈ {1, 2, ..., 2k − 2}
2k − 1 if ω(x2k−1) < ω(btk−1+i).

(2.2)
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2.1 Lots of Numbers

Now we want to have a look at the probabilities P(Xi = j). For k = 4 these are given in
Table 2.1. The values for P(Xi = j) follow a simple pattern.

For an arbitrary k we can calculate them with the following recursive scheme. We start with
P(X1 = j). This corresponds to the insertion of btk−1+1 into x1, ..., x2tk−1 . The probability
of all those is uniformly distributed, so P(X1 = j) = 1

2tk−1+1 for 0 ≤ j ≤ 2tk−1.

For i > 1 we can express P(Xi = j) in terms of P(Xi−1 = j). Observe that when inserting
btk−1+i there are 2tk−1 + 2i − 2 elements known to be smaller than atk−1+i. These are
x1, ..., x2tk−1 and atk−1+1, ..., atk−1+i−1 as well as the corresponding b’s. The number of
elements known to be smaller than atk−1+i−1 is one less: just 2tk−1 + 2i − 3. As a result the
probability that btk−1+i is inserted between atk−1+i−1 and atk−1+i is P(Xi = 2tk−1 + i − 1) =

1
2tk−1+2i−1 . The probability that is ends up in one of the other positions consequently is

P(0 ≤ Xi < 2tk−1 + i − 1) = 2tk−1+2i−2
2tk−1+2i−1 . If we know that btk−1+i is inserted into one of those

other positions, then it is inserted into exactly the same elements as btk−1+i−1, thus we can
write P(Xi = j) = 2tk−1+2i−2

2tk−1+2i−1P(Xi−1 = j). This leads to Equation (2.3).

P(Xi = j) = ω→



(
i−1∏
l=1

2tk−1 + 2l

)
·

(
i∏

l=1

2tk−1 + 2l − 1

) −1
if 0 ≤ j ≤ 2tk−1

©«
i−1∏

l=j−2tk−1+1

2tk−1 + 2lª®¬ · ©«
i∏

l=j−2tk−1+1

2tk−1 + 2l − 1ª®¬
−1

if 2tk−1 < j < 2tk−1 + i

0 otherwise.

(2.3)

While these products are intuitive they look quite ugly, so we simplify the above formula
starting with the first case.

(
i−1∏
l=1

2tk−1 + 2l

)
·

(
i∏

l=1

2tk−1 + 2l − 1

) −1
=

(
tk−1+i−1∏
l=tk−1+1

2l

)
·

(
2tk−1+2i−1∏
l=2tk−1+1

l

) −1
·

(
tk−1+i−1∏
l=tk−1+1

2l

)

=

(
tk−1+i−1∏

l=1

2l

)
·

(
tk−1∏
l=1

2l

) −1
·

(
2tk−1+2i−1∏

l=1

l

) −1
·

(
2tk−1∏
l=1

l

)
·

(
tk−1+i−1∏

l=1

2l

)
·

(
tk−1∏
l=1

2l

) −1
= 22i−2

(
(tk−1 + i − 1)!

(tk−1)!

) 2 (2tk−1)!
(2tk−1 + 2i − 1)!

(2.4)

For the second case we have
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2 Average Case Analysis

©«
i−1∏

l=j−2tk−1+1

2tk−1 + 2lª®¬ · ©«
i∏

l=j−2tk−1+1

(2tk−1 + 2l − 1ª®¬
−1

=
©«

tk−1+i−1∏
l=j−tk−1+1

2lª®¬ · ©«
2tk−1+2i−1∏

l=2j−2tk−1+1

lª®¬
−1

·
©«

tk−1+i−1∏
l=j−tk−1+1

2lª®¬
=

(
tk−1+i−1∏

l=1

2l

)
·

(
j−tk−1∏
l=1

2l

) −1
·

(
2tk−1+2i−1∏

l=1

l

) −1
·

(
2j−2tk−1∏

l=1

l

)
·

(
tk−1+i−1∏

l=1

2l

)
·

(
j−tk−1∏
l=1

2l

) −1
= 24tk−1−2j+2i−2

(
(tk−1 + i − 1)!
( j − tk−1)!

) 2 (2 j − 2tk−1)!
(2tk−1 + 2i − 1)!

(2.5)

By substitution of (2.4) and (2.5) in (2.3) we obtain (2.6) which already looks a lot nicer.

P(Xi = j) = ω→


22i−2

(
(tk−1+i−1)!

(tk−1)!

) 2 (2tk−1)!
(2tk−1+2i−1)!

if 0 ≤ j ≤ 2tk−1

24tk−1−2j+2i−2
(
(tk−1+i−1)!
(j−tk−1)!

) 2 (2j−2tk−1)!
(2tk−1+2i−1)!

if 2tk−1 < j < 2tk−1 + i

0 otherwise

(2.6)

Next we want to look at the probability that an bi is inserted into a particular number of
elements. For that purpose we define the random variable

Yi : ω→
��{v | ω(w) < ω(atk−1+i) ∧ v < {btk−1+1, btk−1+2, ..., btk−1+i}

} �� (2.7)

Theorem 1
The probability P(Yi = j), that btk−1+i is inserted into j elements is given by

P(Yi = j) =


(2tk−i−j−1)!

22
k− j−1(j−2tk−1−i+1)!(2k−j−1)!

2tk−tk−1−i
(i+j)!
(2tk−1)!

(tk−1)!
(tk−1+i−1)

if 1 ≤ i ≤ tk − tk−1
and 2tk−1 + i − 1 ≤ j ≤ 2k − 1

0 otherwise

(2.8)

To proof 2.8 we introduce another random variable

Ỹi,q : ω→
��{v | ω(w) < ω(atk−1+i) ∧ v ∈ {btk−1+i+1, ..., btk−1+i+q}

} �� (2.9)

Informally speaking Ỹi,q is the number of elements in {btk−1+i+1, ..., btk−1+i+q} that are
inserted before atk−1+i.

14



2.1 Lots of Numbers

The probability P(Ỹi,q = j) is described by the following equation2 which we will proof
below.

P(Ỹi,q = j) =
(2q − j)!

2q−j j!(q − j)!
2q

(2tk−1 + 2i + j − 1)!
(2tk−1 + 2i + 2q − 1)!

(tk−1 + i + q − 1)!
(tk−1 + i − 1)!

(2.10)

From the definition of Ỹi,q we can see that 0 ≤ Ỹi,q ≤ q thus P(Ỹi,0 = 0) = 1. This also holds
for Equation (2.10).

P(Ỹi,0 = 0) =
0!

20 · 0! · 0!
20

(2tk−1 + 2i − 1)!
(2tk−1 + 2i − 1)!

(tk−1 + i − 1)!
(tk−1 + i − 1)!

= 1 (2.11)

Now if Ỹi,q = j there are two possibilities:

1. Ỹi,q−1 = j − 1 and Xi+q < 2tk−1 + i. Informally speaking that means out of
{btk−1+i+1, ..., btk−1+i+q−1} there have been j − 1 elements inserted before atk−1+i and
btk−1+i+q is inserted before atk−1+i.

2. Ỹi,q−1 = j and Xi+q ≥ 2tk−1 + i. Informally speaking that means out of
{btk−1+i+1, ..., btk−1+i+q−1} there have been j elements inserted before atk−1+i and
btk−1+i+q is inserted after atk−1+i.

We use that knowledge to proof Equation (2.10). Note that the first case requires j > 0
and the second case requires j < q so we look at j = 0 and j = q separately.

Using Bayes’ theorem we obtain the following identities:

P(Xi+q ≥ 2tk−1 + i ∧ Ỹi,q−1 = 0) = P
(
Xi+q ≥ 2tk−1 + i | Ỹi,q−1 = 0

)
· P(Ỹi,q−1 = 0)

P(Xi+q < 2tk−1 + i ∧ Ỹi,q−1 = q − 1) = P
(
Xi+q < 2tk−1 + i | Ỹi,q−1 = q − 1

)
· P(Ỹi,q−1 = q − 1)

(2.12)

x1 x2 x2tk−1 atk−1+1 atk−1+2 atk−1+i−1 atk−1+i atk−1+i+q−1 atk−1+i+q atk−1 atk

btk−1+1 btk−1+2 btk−1+i−1 btk−1+i btk−1+i+q−1 btk−1+i+q btk−1 btk

Figure 2.5: Configuration where one batch of tk − tk−1 elements remains to be inserted.
The elements btk−1+i and btk−1+i+d are drawn.

The probability P
(
Xi+q < 2tk−1 + i | Yi,q−1 = d

)
can be obtained by looking at Figure 2.5

and counting elements. When btk−1+i+q is inserted, the elements on the main chain
which are smaller than atk−1+i are x1 to x2tk−1 , atk−1+1 to atk−1+i−1 and d elements out of

2The first part of Equation (2.10):
(2q−j)!

2q− j j!(q−j)!
, when substituting q = n and j = n − k yields

a(n, k) = (n+k)!

2k (n−k)!k!
which is the number sequence A001498 from The On-Line Encyclopedia of Integer

Sequences[OEIS].
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2 Average Case Analysis

{btk−1+i+1, ..., btk−1+i+q−1} which is a total of 2tk−1 + 2i − 1 + d elements. Combined with
the fact that the main chain consists of 2tk−1 + 2i + 2q − 2 elements smaller than atk−1+i+q

we obtain the following formula

P
(
Xi+q < 2tk−1 + i | Yi,q−1 = d

)
=

2tk−1 + 2i + d
2tk−1 + 2i + 2q − 1

(2.13)

From that we can calculate

P(Xi+q ≥ 2tk−1 + i |Yi,q−1 = d)

= 1 − P(Xi+q < 2tk−1 + i |Yi,q−1 = d)

= 1 −
2tk−1 + 2i + d

2tk−1 + 2i + 2q − 1

=
2tk−1 + 2i + 2q − 1 − 2tk−1 − 2i − d

2tk−1 + 2i + 2q − 1

=
2q − d − 1

2tk−1 + 2i + 2q − 1

(2.14)

Now we have all the necessary ingredients to proof Equation (2.10) using induction.

1. Proof of Equation (2.10) where j = 0 using Ỹi,q = 0⇔ Xi+q ≥ 2tk−1 + i ∧ Ỹi,q−1 = 0

P(Xi+q ≥ 2tk−1 + i ∧ Ỹi,q−1 = 0)

= P
(
Xi+q ≥ 2tk−1 + i | Ỹi,q−1 = 0

)
· P(Ỹi,q−1 = 0)

(2.8),(2.14)
=

2q − 1
2tk−1 + 2i + 2q − 1

·
(2q − 2)!

2q−10!(q − 1)!
2q−1

(2tk−1 + 2i − 1)!
(2tk−1 + 2i + 2q − 3)!

(tk−1 + i + q − 2)!
(tk−1 + i − 1)!

= (2q − 1)(2tk−1 + 2i + 2q − 2) ·
(2q − 2)!

2q−10!(q − 1)!
2q−1

(2tk−1 + 2i − 1)!
(2tk−1 + 2i + 2q − 1)!

(tk−1 + i + q − 2)!
(tk−1 + i − 1)!

= (2q − 1)2(tk−1 + i + q − 1) ·
(2q − 2)!

2q0!(q − 1)!
2q

(2tk−1 + 2i − 1)!
(2tk−1 + 2i + 2q − 1)!

(tk−1 + i + q − 2)!
(tk−1 + i − 1)!

= (2q − 1)2 ·
(2q − 2)!

2q0!(q − 1)!
2q

(2tk−1 + 2i − 1)!
(2tk−1 + 2i + 2q − 1)!

(tk−1 + i + q − 1)!
(tk−1 + i − 1)!

= (2q − 1)2 ·
q

(2q)(2q − 1)
·

(2q − 0)!
2q0!(q − 0)!

2q
(2tk−1 + 2i − 1)!

(2tk−1 + 2i + 2q − 1)!
(tk−1 + i + q − 1)!
(tk−1 + i − 1)!

=
(2q − 0)!

2q0!(q − 0)!
2q

(2tk−1 + 2i − 1)!
(2tk−1 + 2i + 2q − 1)!

(tk−1 + i + q − 1)!
(tk−1 + i − 1)!

= P(Ỹi,q = 0)

(2.15)
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2.1 Lots of Numbers

2. Proof of Equation (2.10) where j = q using Ỹi,q = q⇔ Xi+q < 2tk−1+ i∧Ỹi,q−1 = q−1

P(Xi+q < 2tk−1 + i ∧ Ỹi,q−1 = q − 1)

= P
(
Xi+q < 2tk−1 + i | Ỹi,q−1 = q − 1

)
· P(Ỹi,q−1 = q − 1)

(2.8),(2.13)
=

2tk−1 + 2i + q − 1
2tk−1 + 2i + 2q − 1

·
(q − 1)!

20 (q − 1)!0!
2q−1

(2tk−1 + 2i + q − 2)!
(2tk−1 + 2i + 2q − 3)!

(tk−1 + i + q − 2)!
(tk−1 + i − 1)!

= (2tk−1 + 2i + q − 1) ·
(q − 1)!

20 (q − 1)!0!
2q

(2tk−1 + 2i + q − 2)!
(2tk−1 + 2i + 2q − 1)!

(tk−1 + i + q − 1)!
(tk−1 + i − 1)!

=
(q − 1)!

20 (q − 1)!0!
2q

(2tk−1 + 2i + q − 1)!
(2tk−1 + 2i + 2q − 1)!

(tk−1 + i + q − 1)!
(tk−1 + i − 1)!

=
(q)!

20 (q)!0!
2q

(2tk−1 + 2i + q − 1)!
(2tk−1 + 2i + 2q − 1)!

(tk−1 + i + q − 1)!
(tk−1 + i − 1)!

= P(Ỹi,q = q)
(2.16)

3. Proof of Equation (2.10) where 0 < j < q using

Ỹi,q = j ⇔
(
Xi+q < 2tk−1 + i ∧ Ỹi,q−1 = j − 1

)
∨

(
Xi+q ≥ 2tk−1 + i ∧ Ỹi,q−1 = j

)
P(Xi+q < 2tk−1 + i ∧ Ỹi,q−1 = j − 1)

+ P(Xi+q ≥ 2tk−1 + i ∧ Ỹi,q−1 = j)

= P
(
Xi+q < 2tk−1 + i | Ỹi,q−1 = j − 1

)
· P(Ỹi,q−1 = j − 1)

+ P
(
Xi+q ≥ 2tk−1 + i | Ỹi,q−1 = j

)
· P(Ỹi,q−1 = j)

(2.8),(2.13),(2.14)
=

2tk−1 + 2i + j − 1
2tk−1 + 2i + 2q − 1

·
(2q − j − 1)!

2q−j ( j − 1)! (q − j)!
2q−1

(2tk−1 + 2i + j − 2)!
(2tk−1 + 2i + 2q − 3)!

(tk−1 + i + q − 2)!
(tk−1 + i − 1)!

+
2q − j − 1

2tk−1 + 2i + 2q − 1
·

(2q − j − 2)!
2q−j ( j − 1)! (q − j)!

2q−1
(2tk−1 + 2i + j − 1)!
(2tk−1 + 2i + 2q − 3)!

(tk−1 + i + q − 2)!
(tk−1 + i − 1)!

= (2tk−1 + 2i + j − 1) ·
(2q − j − 1)!

2q−j ( j − 1)! (q − j)!
2q

(2tk−1 + 2i + j − 2)!
(2tk−1 + 2i + 2q − 1)!

(tk−1 + i + q − 1)!
(tk−1 + i − 1)!

+ (2q − j − 1) ·
(2q − j − 2)!

2q−j ( j − 1)! (q − j)!
2q

(2tk−1 + 2i + j − 1)!
(2tk−1 + 2i + 2q − 1)!

(tk−1 + i + q − 1)!
(tk−1 + i − 1)!

=

(
(2q − j − 1)!

2q−j ( j − 1)! (q − j)!
+

(2q − j − 1)!
2q−j ( j − 1)! (q − j)!

)
2q

(2tk−1 + 2i + j − 1)!
(2tk−1 + 2i + 2q − 1)!

(tk−1 + i + q − 1)!
(tk−1 + i − 1)!

=

(
j

2q − j
+

2(q − j)
2q − j

)
(2q − j)!

2q−j j! (q − j)!
2q

(2tk−1 + 2i + j − 1)!
(2tk−1 + 2i + 2q − 1)!

(tk−1 + i + q − 1)!
(tk−1 + i − 1)!

=
(2q − j)!

2q−j j! (q − j)!
2q

(2tk−1 + 2i + j − 1)!
(2tk−1 + 2i + 2q − 1)!

(tk−1 + i + q − 1)!
(tk−1 + i − 1)!

= P(Ỹi,q = j)
(2.17)

From Equation (2.10) we can derive Equation (2.8) using the relation

Yi = Ỹi,tk−tk−1−i + 2tk−1 + i − 1 (2.18)
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2 Average Case Analysis

which leads to

P(Yi = j) = P(Ỹi,tk−tk−1−i + 2tk−1 + i − 1 = j)

= P(Ỹi,tk−tk−1−i = j − 2tk−1 − i + 1)

=
(2tk − 2tk−1 − 2i − j + 2tk−1 + i − 1)!

2tk−tk−1−i−j+2tk−1+i−1 ( j − 2tk−1 − i + 1)! (tk − tk−1 − i − j + 2tk−1 + 1 − 1)!

· 2tk−tk−1−i
(2tk−1 + 2i + j − 2tk−1 − i + 1 − 1)!

(2tk−1 + 2i + 2tk − 2tk−1 − 2i − 1)!
(tk−1 + i + tk − tk−1 − i − 1)!

(tk−1 + i − 1)!

=
(2tk − i − j − 1)!

22
k−j−1 (−2tk−1 − 1 + j + 1)! (2k − j − 1)!

· 2tk−tk−1−i
(i + j)!
(2tk − 1)!

(tk − 1)!
(tk−1 + i − 1)!

(2.19)
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Figure 2.6: Probability distribution of Yi where k = 7.

Figure 2.6 shows the probability distribution for Y1, Y21 and Y42 where k = 7. As Y42
corresponds to the insertion of the first element of the batch (i.e. btk ) it is always inserted
into 2k − 1 elements, which in our case is 127. Thus the probability P(Y42 = j) is 1 at
j = 127 and 0 for all other values of j. On the other hand there is Y1 which corresponds
to the insertion of btk−1+1, i.e. the last element of the batch. Its probability distribution
reaches its maximum at j = 121, which is 6 elements less than the worst case. Then there
is the probability distribution of Y21 which was chosen simply because it is between the
two border cases. There is nothing spectacular to it, though its maximum is a bit further
to the right than one might expect.

In addition to those three probability distributions Figure 2.7 shows the mean of all Yi for
k = 7. Looking at the values from above, for i = 42 the mean (non-surprisingly) is 127, for
i = 1 it is close to 120 and in the case of i = 21 it is between 125 and 126. In between we
have what appears to be a roughly exponential curve.
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2.2 Binary Insertion
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Figure 2.7: Mean of Yi for different i where k = 7.

If you are wondering why k = 7 was chosen and if the graphs would look any different for
other values of k then here is the answer: In the case of k = 7 there are 42 elements to be
inserted. That is enough data points for the curves to look smooth, yet sufficiently few
so one can still see the individual points. Using larger (or smaller) values of k results in
similar curves. The difference comes down to scaling.

2.2 Binary Insertion

The Binary Insertion step is an important part of MergeInsertion. In the worst case each
element is inserted into 2k −1 elements, thus always requiring k comparisons. In contrast to
that, in the average case many elements are inserted into slightly less than 2k − 1 elements.
As a result inserting an element requires either k or k − 1 comparisons, i.e. potentially less
than the worst case. However inserting into less than 2k − 1 elements leads to ambiguous
decision trees for the binary insertion.

Figure 2.8 shows different strategies for inserting an element into 5 elements. First there
are the center-left and center-right strategies. center-left compares the element to be
inserted with the middle element, rounding down in case of odd number. center-right

is similar as it also compares the element to be inserted with the middle element. The
difference is that in case of an odd number we are rounding up, i.e. choosing the element
to the right of the middle. Now those two options are what one would naturally use when
implementing binary insertion. They have the property that the corresponding decision
trees have their leaves distributed across at most two layers. That makes them optimal in
case of a uniform distribution.

The left and right strategies also fulfill this property. The left strategy compares the
element to be inserted with the left-most element such that the corresponding decision tree
has its leaves distributed across at most two layers. As a result inserting an element at the
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2 Average Case Analysis

1 2 3 4 5

(a) center-left

1 2 3 4 5

(b) center-right

1 2 3 4 5

(c) left

1 2 3 4 5

(d) right

Figure 2.8: Different strategies for binary insertion.

Algorithm 2.1 Binary Insertion

1: procedure Insert(a,x1, ..., xn)
2: if n = 0 then
3: return a
4: end if
5: k ← blog nc

6: c←



⌊
n+1
2

⌋
strategy center-left⌈

n+1
2

⌉
strategy center-right

max{n − 2k + 1, 2k−1} strategy left

min{2k, n − 2k−1 + 1} strategy right

7: if a < xc then
8: y1, ..., yc ←Insert(a,x1, ..., xc−1)
9: return y1, ..., yc, xc, ..., xn

10: else
11: yc, ..., yn ←Insert(a,xc+1, ..., xn)
12: return x1, ..., xc, yc, ..., yn
13: end if
14: end procedure

left using this strategy can be cheaper than inserting it further to the right. The right

strategy is similar to left, the difference is that here the right-most element is chosen such
that the corresponding decision tree has its leaves distributed across at most two layers.
Algorithm 2.1 shows a pseudo code implementation of binary insertion including all four
strategies presented here.
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2.2 Binary Insertion

Since all of the presented strategies for binary insertion cause the leaves of the decision
tree to be spread across at most two layers they are all optimal if each position is equally
likely. Unfortunately that is not the case with MergeInsertion. The positions on the left
have a slightly higher probability. See Figure 2.9 for an example. Therefore the way we do
the binary insertion affects the number of comparisons the algorithm requires.
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Figure 2.9: Probabilities of different positions when inserting btk where k = 6.
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Figure 2.10: Experimental results on the effect of different strategies for binary insertion
on the number of comparisons.

Figure 2.10 shows experimental results comparing the different strategies for binary insertion
presented in Figure 2.8 regarding their effect on the average-case of MergeInsertion. As we
can see the left strategy performs the best, closely followed by center-left and center-right.
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2 Average Case Analysis

right performs the worst. The left strategy performing best is no surprise if we look at
Figure 2.9: The probability that an element is inserted into one of the left positions is
higher that it being inserted to the right. Thus insertions to the left being cheaper increases
the performance of the algorithm.

2.3 A First Approximation

The goal of this section is to combine the probability given by Equation (2.8) that an element
btk−1+i is inserted into j elements with an approximation for the number of comparisons
required for binary insertion.

The number of comparisons required for binary insertion when inserting into m−1 elements

was determined to be TInsAvg(m) = dlog me + 1 − 2dlog me

m by [EW13]. While only being
correct in case of a uniform distribution, this formula acts as an upper bound in our case,
where the probability is monotonically decreasing with the index.

Combining that with Equation (2.8) we obtain the following upper bound for the cost of
inserting btk−1+i:

TIns(i, k) =
∑
j

P(Yi = j) · TInsAvg( j + 1) (2.20)

Unfortunately we have not been able to simplify this equation or use it for any further
analysis, mostly because Equation (2.8) is a very complicated formula. However a computer
can evaluate that equation just fine, so that is what we are going to do.

According to [Knu98] the number of comparisons required by MergeInsertion is

F(n) =
⌊ n
2

⌋
+ F

( ⌊ n
2

⌋ )
+ G

(⌈n
2

⌉)
(2.21)

where
⌊
n
2

⌋
is the number of pairwise comparisons, F

( ⌊
n
2

⌋ )
is the number of comparisons

required in the recursion step and G
(⌈

n
2

⌉)
corresponds to the work done in the insertion

step.

We can express G(m) in terms of TIns(i, k) as follows:

G(m) =

m−tkm−1∑
i=1

TIns(i, km) +
∑

1≤k<km

(
tk−tk−1∑
i=1

TIns(i, k)

)
(2.22)

Where tk−1 ≤ m < tk .

In Figure 2.11 we can see the resulting approximation in comparison with experimental
data on the number of comparisons required by MergeInsertion. The difference is rather
small.

However the computational effort required to calculate the approximation grows quickly.
The results presented here correspond to what can be calculated on a home computer
within reasonable amount of time.
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Figure 2.11: Comparing our approximation with experimental data on the number of
comparisons required by MergeInsertion.
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Figure 2.12: Configuration where one batch is to be inserted.

2.4 Improving Upon the Upper Bound

In this section we improve upon the upper bound by analyzing the insertion of one batch
of elements. The exact probability that btk−1+i is inserted into j elements is given by
Equation (2.8). We are especially interested in the case of btk−1+u where u = b tk−tk−12 c,
because if we know P(Yu < m) then we can use that for all q < u the probability of btk−1+q

being inserted into less than m elements is at least P(Yu < m), i.e. P(Yq < m) ≥ P(Yu < m).
This is because when btk−1+i is inserted into m elements, then no matter which position it
is inserted into, the next element, btk−1+i−1, is inserted into at most m elements.

However Equation (2.8) is hard to work with, so we approximate it with a binomial
distribution. For a given k let d = tk−tk−1 be the number of elements that are inserted as part
of the batch. This configuration is illustrated in Figure 2.12. Remember u = tk−tk−1

2 = d
2 .

To calculate into how many elements btk−1+u = btk−1+ d
2
is inserted, we ask how many

elements out of btk−1+
⌊
3
4 d

⌋ to btk (marked as section B in Figure 2.12) are inserted between

atk−1+ d
2 +1 and atk−1+

⌊
3
4 d

⌋
−1 (marked as section A).
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2 Average Case Analysis

The rationale is that for each element from section B that is inserted into section A, btk−1+u

is inserted into one less element. As a lower bound for the probability that an element
from section B is inserted into one of the positions in section A we use the probability that
btk is inserted between atk−1 and atk which is 1

2tk−1
.

That is because if we assume that all bi with i < tk are inserted before inserting btk , then
btk is inserted into 2tk − 2 elements, so the probability for each position is 1

2tk−1
. Since none

of the bi with i < tk can be inserted between atk−1 and atk because they are all smaller
than atk−1, the probability that btk is inserted between atk−1 and atk does not change when
we insert it first as the algorithm demands.

To calculate the probability that an element btk−q with q > 0 is inserted into the rightmost
position we assume that all bi with i < tk − q are inserted before inserting btk−q. Then
btk−q is inserted into at most 2tk − q − 2 elements, i.e. the elements x1 to x2tk−1 , atk−1+1 to
atk−q−1, btk−1+1 to btk−q−1 and at most q elements out of btk−q+1 to btk .

Hence the probability for each position is greater than 1
2tk−q−1

which is greater than 1
2tk−1

.
Since none of the bi with i < tk−q can be inserted to the right of atk−q−1, the probability that
btk − q is inserted into any of the positions between atk−q−1 and atk−q remains unchanged
when inserting the elements in the correct order.

The probability that an element is inserted at a specific position is monotonically decreasing
with the index. This is because if an element bi is inserted to the left of an element ai−h
then bi−h is inserted into one more element than it would be if bi had been inserted to the
right of ai−h. As a result any position further to the left is more likely than the right-most
position, so we can use that as a lower bound.

There are
⌊
d
4

⌋
− 1 elements in section A, i.e. there are at least

⌊
d
4

⌋
positions where an

element can be inserted. Hence the probability that an element from section B is inserted

into section A is at least
⌊
d
4

⌋
2tk−1

and consequently the probability that it is not inserted

before btk−1+u is at least
⌊
d
4

⌋
2tk−1

. That is because all positions part of section A are after
atk−1+u.

Section B contains
⌈
d
2

⌉
elements. Using that and substituting u = d

2 we obtain the binomial

distribution with the parameters nB =
⌈
1
2

⌉
and pB =

⌊
d
4

⌋
2tk−1

. As a result we have

p( j) =
(⌈1

2

⌉
q

)
(
b u2 c

2tk − 1
)q(

2tk − 1 − b u2 c
2tk − 1

)
⌈
1
2

⌉
−q (2.23)

with q = 2k − 1 − j, that by construction fulfills the property given in Equation (2.24) for
all j0.

j0∑
j=0

p( j) ≤
j0∑
j=0

P(Yu = j) = P(Yu ≤ j0) (2.24)

Figure 2.13 compares our approximation p( j) with real distribution P(Yu = j). We observe
that the maximum of our approximation is further to the right than the one of the real
distribution.
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Figure 2.13: Difference between the real distribution and our approximation for k = 8
and u = 43.

By using the approximation P(Yu = j) ≈ p( j) we can calculate a lower bound for the
median of Ytk−tk−1
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(2.25)
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This tells us that with a probability ≥ 50%, btk−1+u is inserted into 2k − 1 − 2k−6

3 ± O(1)
or less elements. In conclusion all bi with i ≤ u = tk−tk−1

2 are inserted into less than

2k − 1 − 2k−6

3 ± O(1) elements with a probability ≥ 50%.

Using that result we can calculate a better upper bound for the average case performance
of the entire algorithm.

According to Knuth [Knu98] in its worst case MergeInsertion requires W(n) = n log n − (3 −
log 3)n + n(y + 1 − 2y) + O(log n) comparisons.

We calculate the number of comparisons required in the average case in a similar fashion
to [EW13]. F(n) shall be the number of comparisons required by the algorithm.

F(n) =
⌊ n
2

⌋
+ F

( ⌊ n
2

⌋ )
+ G

(⌈n
2

⌉)
(2.26)

G(m) corresponds to the work done in the third step of the algorithm and is given by

G(m) = (km − αm)(m − tkm−1) +
∑

1≤k<km

(k − βk) (tk − tk−1) (2.27)

where tkm−1 ≤ m < tkm and αm, β ∈ [0, 1]. Inserting an element bi with tki−1 < i ≤ tki
requires at most ki comparisons. However since we are looking at the average case we need
to consider that in some cases bi can be inserted using just ki − 1 comparisons. This is
reflected by αm and βk , the first of which has already been studied by [EW13].

To estimate the cost of an insertion we use the formula TInsAvg(m) = dlog me + 1 − 2dlog me

m

by [EW13]. Technically this formula is only correct if the probability of an element
being inserted is the same for each position. This is not the case with MergeInsertion.
Instead the probability is monotonically decreasing with the index. Binary insertion can
be implemented to take advantage of this property, as explained in Section 2.2, in which
case TInsAvg(m) acts as an upper bound on the cost of an insertion.

Using our result from above that on average 1
4 of the elements are inserted in less than

2k − 1− 2k−4

9 ±O(1) elements we can calculate βk as the difference of the cost of an insertion
in the worst-case (k) and in the average case.
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βk ≥ k −
(
3

4
TInsAvg

(
2k

)
+

1

4
TInsAvg

(
2k −

2k−6

3
± O(1)

) )
= k −

(
3

4

(
k + 1 −

2k

2k

)
+

1

4

(
k + 1 −

2k

2k − 2k−6

3 ± O(1)

) )
= −1 +

3

4
+

1

4
·

1

1 − 1

1− 2−6

3

± O(2−k)

= −
1

4
+

1

4
·

1

1 − 1
192

± O(2−k)

= −
1

4
+

1

4
·

1
191
192

± O(2−k)

= −
1

4
+

1

4
·
192

191
± O(2−k)

=
1

764
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(2.28)

Combining this with Equation (2.27) we can calculate the difference between the worst-case
and the average-case as

Gworst-case(m) − Gaverage-case(m)

= km(m − tkm−1) +
∑

1≤k<km

k (tk − tk−1) − (km − αm)(m − tkm−1) −
∑

1≤k<km

(k − βk) (tk − tk−1)

= αm(m − tkm−1) +
∑

1≤k<km

βk (tk − tk−1)

≥ αm(m − tkm−1) +
∑

1≤k<km

(
1

764
± O(2−k)) (tk − tk−1)

= αm(m − tkm−1) +
1

764
(tkm−1 − t1) ± O(log m)

= αm(m − tkm−1) +
1

764
tkm−1 ± O(log m)

= αm(m − tkm−1) +
1

764

2km + (−1)km−1

3
± O(log m)

= αm(m − tkm−1) +
1

764

2km

3
± O(log m)

(2.29)

By writing m as m = 2lm−log 3+x with x ∈ [0, 1) we get lm = blog 3mc . To approximate km
with lm we need to show that km ≥ lm. Recall that tkm−1 ≤ m < tkm . For all tkm−1 < m < tkm
we have

2km + (−1)km−1

3
< m <

2km+1 + (−1)km

3
(2.30)

Since m ∈ N and tk ∈ N adding/subtracting 1
3 does not alter the relation, so we obtain

2km

3
< m <

2km+1

3
(2.31)
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which resolves to
km < log 3n < km + 1 (2.32)

Thus km = blog 3mc = lm.

For m = tkm−1 we get

2km + (−1)km−1

3
= m

⇐⇒ 2km = 3m + (−1)km

⇐⇒ km = log
(
3m + (−1)km

) (2.33)

If km = log (3m + 1) that resolves to km = log (3m + 1) > log (3m) > blog 3mc = lm.

If instead km = log (3m − 1) using km ∈ N we have km =
⌊
log(3m − 1)

⌋
and for all m ≥ 1

this is equal to blog 3mc = lm.

Hence in all cases lm ≤ km holds. Therefore we can replace km with lm in Equation (2.29):

Gworst-case(m) − Gaverage-case(m) ≥ αm(m − tkm−1) +
1

764

2lm

3
± O(log m) (2.34)

From [EW13] we know that the αm(m − tkm−1) term can be approximated with(
m − 2lm−log 3

) (
2lm

m+2lm−log3 − 1
)
.

Gworst-case(m) − Gaverage-case(m) ≥
(
m − 2lm−log 3

) (
2lm

m + 2lm−log 3
− 1

)
+

1

764

2lm

3
± O(log m)

(2.35)

Now we calculate

S(n) = Fworst-case(m) − Faverage-case(m)

=
⌊ n
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⌋
+ Fworst-case

( ⌊ n
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⌋ )
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)
+
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764

2lm

3
± O(log m)

(2.36)

We split S(n) into Sα(n) + Sβ(n) with

Sα(n) ≥ Sα(
⌊
n
2

⌋
) +

(
m − 2lm−log 3

) (
2lm

m+2lm−log3 − 1
)

Sβ(n) ≥ Sβ(
⌊
n
2

⌋
) + 1

764
2lm

3 ± O(log m)
(2.37)

From [EW13] we know Sα(n) ≥
(
n − 2ln−log 3

) (
2ln

n+2ln−log3 − 1
)
+ O(1).
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For Sβ(n) we obtain

Sβ(n) ≥
ln−1∑
i=1

2i

764 · 3
± O(log 2i)

=
2ln

2292
± O(log2 n)

(2.38)

With n = 2k−log 3+x

S(n)
n

=
Sα(n) + Sβ(n)

n

=
2k−log 3+x − 2k−log 3

2k−log 3+x

(
2k
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− 1

)
+

2k

2292 · 2k−log 3+x
± O(

log2 n
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)

= (1 − 2−x)
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3

2x + 1
− 1

)
+

2log 3−x

2292
± O(

log2 n
n

)

(2.39)

By writing F(n) as F(n) = n log n − c(n) · n ± O(log2 n) we get

c(n) ≥ −
(F(n) − n log n)

n

= −
(W(n) − S(n) − n log n)

n

= (3 − log 3) − (y + 1 − 2y) + (1 − 2−x)

(
3

2x + 1
− 1

)
+

2log 3−x

2292

(2.40)

With y = 1 − x the result is

c(n) ≥ (3 − log 3) − (2 − x − 21−x) + (1 − 2−x)

(
3

2x + 1
− 1

)
+

2log 3−x

2292
≥ 1.4005 (2.41)

A visual representation of c(n) is provided in Figure 2.14. The worst case is near x = 0.6
where c(n) is just slightly larger than 1.4005.

Hence we have obtained a new upper bound for the average case of MergeInsertion which
is n log n − 1.4005n + O(log2 n).

2.5 Computing the Number of Comparisons

In this section we explore how we can calculate the number of comparisons the algorithm
requires in the average case using a computer. The most straight forward way of doing this
is to compute the external path length of the decision tree and dividing by the number of
leaves(n! when sorting n elements). Unfortunately doing so is very expensive (in terms of
computation time), so we would only be able to do it for a few small n.
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Figure 2.14: Plot of c(n).

Algorithm 2.2 Computation of F(n)
1: procedure ComputeF(n)
2: if n = 1 then
3: return 0
4: else
5: return

⌊
n
2

⌋
+ComputeF(

⌊
n
2

⌋
)+ComputeG(

⌈
n
2

⌉
)

6: end if
7: end procedure

Remember this formula for the number of comparisons:

F(n) =
⌊ n
2

⌋
+ F

( ⌊ n
2

⌋ )
+ G

(⌈n
2

⌉)
(2.42)

The three terms of the sum represent the three steps of the algorithm. In the first step⌊
n
2

⌋
pairs of elements are compared. Next the

⌊
n
2

⌋
larger elements are sorted recursively,

requiring F
( ⌊

n
2

⌋ )
comparisons. In the last step the

⌈
n
2

⌉
smaller elements are inserted using

G
(⌈

n
2

⌉)
comparisons.

We can easily implement the calculation of F(n) as shown in Algorithm 2.2. Calculating
G(n) is not that straight forward. Since the insertion step of MergeInsertion works by
inserting elements in batches, we write G(n) as the sum of the cost of those batches:

G(n) =

( ∑
1<k≤kn

Cost(tk−1, tk)

)
+ Cost(tkn, n) where tkn ≤ n < tkn+1 (2.43)

Here Cost(s, e) is the cost of inserting one batch of elements starting from bs+1 up to be.
Such a configuration is shown in Figure 2.15.
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x1 x2s as+1 as+2 ae

bs+1 bs+2 be

Figure 2.15: Configuration where one batch of e − s elements, bs+1 to be, remains to be
inserted.

Algorithm 2.3 Computation of G(n)
1: procedure ComputeG(n)
2: k ← 2
3: c← 0
4: while tk < n do
5: c← c+Cost(tk−1, tk)
6: k ← k + 1
7: end while
8: c← c+Cost(tk−1, n)
9: return c

10: end procedure

As we can see from Equation (2.43) most often s is tk−1 and e is tk . The only exception is
the last batch. It also starts at s = tk−1 but it has less elements in total, thus e is set to
whatever number of elements we have. An implementation of Equation (2.43) can be seen
in Algorithm 2.3.

Now the idea for computing Cost(s, e) is to calculate the external path length of the decision
tree corresponding to the insertion of that batch of elements and then dividing by the
number of leaves. We already talked about computing the external path length of the
decision tree being very expensive. Doing it only for a part of the problem instead of the
entire algorithm makes it a little cheaper, but it is still very expensive.

To save some computation time we apply the following optimization: We collapse ‘‘identical’’
branches of the decision tree. E.g. whether be is inserted between x1 and x2 or between x2
and x3 does not influence the number of comparisons required to insert the subsequent
elements. So we can neglect that difference. However if be is inserted between ae−1 and ae
then the next element (and all thereafter) is inserted into one less element. So this is a
difference we need to acknowledge. Same if an element is inserted between any ai and ai+1.
By the time we insert bi the element inserted between ai and ai+1 is known to be larger
than bi and thus is no longer part of the main chain, resulting in bi being inserted into
one element less. In conclusion that means that our algorithm needs to keep track of the
elements inserted between any ai and ai+1 as well as those inserted at any position before
as+1 as two branches of the decision tree that differ in any of these cannot be collapsed.
Algorithm 2.4 shows how this is implemented.

For n ∈ {1, ..., 14} the computed values are shown in Table 2.2, for larger n Figure 2.16
shows the values we computed.
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Algorithm 2.4 Computation of Cost(s, e)
1: procedure Cost(s, e)
2: r ← e − s // next element to be inserted is br
3: q1 ← 2s // number of elements on the main chain that are < as+1

4: q2, ..., qr ← 0 // qi is the number of elements between as + i − 1 and as+i

5: (p, l)←CostInsert(r, q1, ..., qr)
6: return p

l

7: end procedure
8:

9: procedure CostInsert(r, q1, ..., qr)
10: if r = 0 then
11: return (0, 1) // We reached a leave
12: end if
13: elements← r − 1 +

∑
qi // number of elements br is inserted into

14: k ← dlog(elements + 1)e
15: cheap insertions← 2k − elements − 1
16: p← 0 // external path length
17: l ← 0 // number of leaves
18: index ← 0 // We iterate over all indices where br can be inserted
19: for all 0 < i ≤ r do
20: (pc, lc)←CostInsert(r − 1, q1, ..., qi−1, qi + 1, qi+1, ..., qr−1)
21: repeat qi + 1 times // qi + 1 positions between as+i−1 and as+i

22: if index < cheap insertions then
23: p← p + pc + (k − 1) · lc
24: else
25: p← p + pc + k · lc
26: end if
27: l ← l + lc
28: index ← index + 1
29: end
30: end for
31: return (p, l)
32: end procedure

n = 1 2 3 4 5 6 7 8 9 10

F(n) · n! = 0 2 16 112 832 6912 62784 623232 6743808 79292160

n = 11 12 13 14

F(n) · n! = 1013736960 13921182720 204489999360 3199119114240

Table 2.2: Computed values of F(n) · n!
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Figure 2.16: Computed values of F(n).
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3 Experiments

In this chapter the experiments performed are discussed. We begin by presenting our
implementation of MergeInsertion, which has been used as base for all experiments. Then
we evaluate whether increasing tk by some constant factor can reduce the number of com-
parisons. Last we evaluate some techniques proposed by others to improve MergeInsertion.
One is splitting the input in two pieces, sorting them separately and merging the afterwards.
The other is the combination with the 1-2-Insertion algorithm.

3.1 Implementing MergeInsertion

To perform experiments we first need to implement the algorithm. For the purpose of our
implementation we assume that each element is unique. This condition is easy to fulfill for
synthetic test data. You can see our implementation in Algorithm 3.1. We now go over
some of the key challenges when implementing MergeInsertion.

1. MergeInsertion requires elements to be inserted into arbitrary positions. When using
a simple array to store the elements this operation requires moving O(n) elements.
Since MergeInsertion inserts each element exactly once this results in a complexity of
O(n2). To avoid this we store the elements in a custom data structure inspired by the
Rope data structure[BAP95] used in text processing. Being based on a tree it offers
O(log n) performance for lookup, insertion and deletion operations, thus putting our
Algorithm in O(n log2 n).

2. In the second step of the algorithm we need to rename the bi after the recursive call.
Our chosen solution is to store which ai corresponds to which bi in a hash map(line
11) before the recursive call and use the information to reorder the bi afterwards(line
13). The disadvantage of this solution is that it requires each element to be unique
and the hash map might introduce additional comparisons.

An alternative would be to have the recursive call generate the permutation it applies
to the larger elements and then apply that to the smaller ones. That is a cleaner
solution as it does not require the elements to be unique and it avoids potentially
introducing additional comparisons. It is also potentially faster, though not by much.
However we stuck with using a hash map as that solution is easier to implement.

3. In the insertion step we need to know into how many elements a specific bi is inserted.
For btk this is 2k −1 elements. However for other elements that number can be smaller
depending on where the previous elements have been inserted. To account for that
we create the variable u in line 21. It holds the position of the ai corresponding to the
element bi that is inserted next. Thus bi is inserted into u− 1 elements (since bi < ai).
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Algorithm 3.1 MergeInsertion

1: procedure MergeInsertion(d : array of n elements)
2: Step 1: Pairwise comparison
3: for all 1 ≤ i ≤

⌊
n
2

⌋
do // Split into larger and smaller half

4: ai ← max
{
di, ai+⌊

n
2

⌋ }
5: bi ← min

{
di, ai+⌊

n
2

⌋ }
6: end for
7: if n mod 2 = 1 then
8: b⌈

n
2

⌉ ← dn
9: end if

10: Step 2: Recursion and Renaming
11: m←

{
(ai, bi) | 1 ≤ i ≤

⌊
n
2

⌋ }
// Store mapping

12: a←MergeInsertion(a)
13: for all 1 ≤ i ≤

⌊
n
2

⌋
do // Permute smaller half

14: bi ← e where (ai, e) ∈ m
15: end for
16: Step 3: Insertion
17: d ← b1, a1, ..., a⌊

n
2

⌋
18: k ← 2
19: while tk−1 <

⌈
n
2

⌉
do

20: m← min
{
tk,

⌈
n
2

⌉}
// first element of the batch

21: u← tk−1 + m // position of am in d
22: for i in m down to tk−1 + 1 do
23: d ←BinaryInsertion(bi, d1, ..., du−1), du, ..., d2m+tk−1−i

24: while du , ai−1 do // adjust u
25: u← u − 1
26: end while
27: end for
28: k ← k + 1
29: end while
30: return d
31: end procedure

After the insertion of bi, we decrease u in line 25 until it matches the position of
ai−1, which is what we want as bi−1 is the next element to be inserted. This step also
makes use of the requirement that each element is unique.

At this point we have to be aware that testing whether the element at position u is
ai−1 might introduce additional comparisons to the algorithm. This is acceptable
because we do not count these comparisons. Also these are not necessary. We could
keep track of the positions of the elements ai however we choose not to, in order to
keep the implementation simple.

Figure 3.1 shows experimental results on the number of comparisons required by MergeIn-
sertion and compares them to the upper bound from Section 2.4.
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214 215 216 217 218 219 220 221 222

−1.43

−1.42

−1.41

−1.4

n

Experimental result
Upper Bound

Figure 3.1: Comparing experimental results with the approximation from Section 2.4

Note that all experiments use the left strategy for binary insertion as it was determined
to be best in Section 2.2. All experiments have been averaged over 10 to 10000 runs,
depending on the size of the input.

3.2 Increasing tk by a Constant Factor

214 214.2 214.4 214.6

-1.430

-1.425

-1.420

-1.415

n

Figure 3.2: Values of n for which different factors f are evaluated in Figure 3.3.

In this section we replace tk with
t̂k = b f · tkc (3.1)
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Figure 3.3: Effects of replacing tk with t̂k .

Originally the numbers tk have been chosen, such that each element bi with tk−1 < i < tk is
inserted into at most 2k − 1 elements. As we have seen in previous chapters many elements
are inserted into slightly less than 2k − 1 elements. The idea behind increasing tk by a
constant factor f is to allow more elements to be inserted into close to 2k − 1 elements.

Figure 3.3 shows how different factors f affect the number of comparisons required by
MergeInsertion. The different lines represent different input lengths. For instance 21845 is
an input for which MergeInsertion is optimal. An overview of the different input lengths
and how MergeInsertion performs for these can be seen in Figure 3.2. We assume the chosen
values to be representative for the entire algorithm. We observe that for all shown input
lengths, multiplying tk by a factor f between 1.02 and 1.05, leads to an improvement.
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f = 1.00
f = 1.02
f = 1.03
f = 1.04
f = 1.05 Figure 3.4: Comparison of different factors f for t̂k .
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Figure 3.4 compares different factors from 1.02 to 1.05. The factor 1.0 is also included as a
reference. We observe that all the other factors lead to a large improvement compared to
1.0. The difference between the factors in the chosen range is rather small. However 1.03
appears to be best out of the tested values.

Another observation we make from Figure 3.4 is that the plot periodically repeats itself
with each power of two. This means that the improvement that we achieve is a constant
per element.

From these experiments we conclude that replacing tk with t̂k with f ∈ [1.02, 1.05] reduces
the number of comparisons required per element by some constant. The differences between
the individual factors in the given range are rather small, though 1.03 appears to be close
to the optimum.

3.3 Merging

In this section we evaluate how splitting the input into two parts sorting them separately
and then merging the sorted parts does affect the average case of the algorithm. The
idea was presented first in [Man79]. It relies on the fact that there are specific points
uk =

⌊ (
4
3

)
2k

⌋
where MergeInsertion is optimal. The input is split into two parts with size

m1 and m2 as defined in (3.2). As a result we have m1 > m2 and m1 is of a size for with
MergeInsertion is optimal.

m1 = max {uk | uk ≤ n}

m2 = n − m1
(3.2)

For merging the two lists we use the Hwang-Lin Algorithm[HL72], for it is a simple general
purpose merging algorithm. It works by comparing the first element of the small list

with the 2r -th element of the large list, where r =
⌊
log m1

m2

⌋
. If it is larger then the 2r

first elements of the large list are removed and appended to the result, and the process is
repeated. If it is smaller then it is inserted into the 2r − 1 first elements of the large list
using binary insertion and then all elements up to the freshly inserted one are removed
from the large list and appended to the result. This is repeated until one of the lists is
exhausted.

To be precise, we actually use a variant of the Hwang-Lin Algorithm called Static Hwang-Lin

Algorithm presented in [Man79]. The difference is that r =
⌊
log m1

m2

⌋
is only calculated once

(hence ‘‘static’’) instead of every iteration. This leads to slightly improved performance in
cases where m1

m2
is close to a power of 2.

Both [Man79] and [BT85] present more advanced merging algorithms which would yield
better results than the ones we have obtained. However they are also more complicated
than the Hwang-Lin Algorithm so we did not implement them. Even without using those
advanced merging algorithms our experiments show that this technique does indeed improve
upon MergeInsertion.

39



3 Experiments

216.4 216.6 216.8 217 217.2 217.4 217.6

−1.43

−1.42

−1.41

−1.4

u16 u16 + u14 u16 + u15 u17
n

F(n)−n log n
n

T (n)−n log n
n

Figure 3.5: Experimental results

The results of our experiments are presented in Figure 3.5. F(n) denotes the number of
comparisons required by MergeInsertion in the average-case and T(n) is the number of
comparisons required when splitting the list into two parts sorting them separately and
merging them afterwards as explained above. As we can see T(n) beats F(n) for some
ranges of n.

However we also observe that the points where T(n) is best are not those where m2 is
optimal for MergeInsertion. Instead this happens where m2 is a bit smaller than what
would be optimal for MergeInsertion. From this we conclude that T(n) is defined mostly by
cost of merging m1 and m2 and that the cost of MergeInsertion for m2 plays only a minor
role.

3.4 Combination with 1-2-Insertion

1-2-Insertion is a sorting algorithm presented in [IT17]. It works by inserting either a single
element or two elements at once into an already sorted list.

On its own 1-2-Insertion is worse than MergeInsertion, however it can be combined with
MergeInsertion. The combined algorithm works by sorting m = max {uk | uk ≤ n} elements
with MergeInsertion. Then the remaining elements are inserted using 1-2-Insertion.

In Figure 3.6 we can see that at the point uk MergeInsertion and the Combined Algorithm
perform the same. However in the values following uk the Combined Algorithm surpasses
MergeInsertion until at one point close to the next optimum MergeInsertion is better once
again.
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3.4 Combination with 1-2-Insertion

In their paper Iwama and Teruyama calculated that for 0.638 ≤ n
2dlog ne ≤

2
3 MergeInsertion

is better than the Combined Algorithm. The fraction 2
3 corresponds to the point where

MergeInsertion is optimal. The constant 0.638 they derived from their theoretical analysis
using the upper bound for MergeInsertion presented in [EW13].

Comparing this to our experimental results we observe that the range where MergeIn-
sertion is better than the Combined Algorithm starts at n ≈ 217.242. This yields
217.242

218
= 217.242−18 = 2−0.758 ≈ 0.591. Hence the range where MergeInsertion is bet-

ter than the Combined Algorithm is 0.591 ≤ n
2dlog ne ≤

2
3 , which is slightly larger than the

theoretical analysis suggested.

216.4 216.6 216.8 217 217.2 217.4 217.6

−1.43

−1.42

−1.41

217.242

n

MergeInsertion
1-2-Insertion

Combined Algorithm

Figure 3.6: Experimental results comparing MergeInsertion, 1-2-Insertion and the Com-
bined Algorithm
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4 Conclusion and Outlook

This thesis has studied the average case behavior of MergeInsertion. An in depth analysis
of the insertion step led to a closed form equation of the probability P(Yi = j) that btk−1+i

is inserted into exactly j elements. This probability is described by Equation (2.8) and
allows us to compute a good approximation for the average-case of MergeInsertion.

However that formula is pretty complicated and thus unsuitable for further analysis. An
approximation based on a binomial distribution was presented, which led to an upper bound
of n log n − 1.4005n + o(n) for the average-case. This improves upon the best previously
known upper bound of n log n − 1.3999n + o(n).

Furthermore an algorithm for calculating the exact number of comparisons required in the
average case for small values of n has been presented. Using that algorithm we were able
to calculate the exact number of comparisons for all n ≤ 148.

Concluding our study of MergeInsertion, a series of experiments has been performed,
comparing our upper bound to the actual number of comparisons required by MergeInsertion
as well as evaluating different ideas for reducing the number of comparisons.

Our suggestion of increasing tk by a constant factor f appears to reduce the number of
comparisons required per element by some constant. Different values for f have been tested
and we found that f = 1.03 appears to be close to optimal.

Splitting the input into two parts, sorting them separately and merging the sorted parts
afterwards as proposed by [Man79] has been shown to lead to an improvement in the
average-case too. And this is even using the Hwang-Lin Algorithm for merging instead of
any of the more advanced algorithms presented in [Man79] and [BT85].

The combination of MergeInsertion with 1-2-Insertion has been implemented. This Combi-
nation beats MergeInsertion for infinitely many n. We have experimentally evaluated for
which n this happens and compared these results with the theoretical analysis presented in
[IT17].
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4 Conclusion and Outlook

Outlook

There still is a gap between the number of comparisons required by MergeInsertion and
the presented upper bound. Further analysis might be able to close that gap.

• In the insertion step the likelihood of an element being inserted into a specific position
is not the same for all positions. Since we do not know that probability distribution
we created an upper bound for the cost of inserting one element with binary insertion
using a uniform distribution. Knowledge of that probability distribution would
potentially allow for creating a better approximation for the average case.

• In Section 2.4 we used a binomial distribution to approximate the probability of
an element being inserted into a specific number of elements during the insertion
step. However the difference between our approximation and the actual probability
distribution is rather large. Finding an approximation which reduces that gap
while still being simple to analyze with respect to its mean would facilitate further
improvements to the upper bound.

The presented idea of improving MergeInsertion by increasing tk by a constant factor has
only been studied experimentally. It could be formally analyzed to determine the optimal
value for the factor f as well as to study how this suggestion affects the worst-case.
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