

Figures and figure supplements

The deep-rooted origin of disulfide-rich spider venom toxins

Naeem Yusuf Shaikh and Kartik Sunagar.

Ecology | Evolutionary Biology

Figure 1. Schematic representation of Araneae phylogeny and their venom superfamilies. Panel A here shows a cladogram of Araneae with lineages under investigation indicated in red. In panel B, representative signal peptide alignments of toxin superfamilies are shown with sequence conservation of >90% highlighted in blue.

Figure 2—figure supplement 1. Phylogeny of Mygalomorphae spider toxin superfamilies. Phylogenetic relationships of Mygalomorphae spider toxin superfamilies, assessed using Bayesian (BI; panel A) and maximum likelihood (ML; panel B) inferences, are shown in this figure. Node supports were estimated using Bayesian posterior probability (BPP) for the BI tree and bootstrapping replication (BS) for the ML tree. Branches with BPP

Figure 2—figure supplement 1 continued on next page

Figure 2—figure supplement 1 continued

lower than 0.95 in BI tree and BS lower than 90 in the ML tree are shown in grey. Cysteine-rich non-toxin outgroup sequences are coloured red.

	10	20	30	40	50	60	70	80	90
SF72	MKTLVLV	AVLGLASLY-		LLSYAS	EVQQLSVAEE	E	FGAL	IDAFGGLLI	ETEER
SF84	MKTIIVFI	LSLLVLATKFO	GDANEGVNQEC	MK E V I Q N E F	REDFLNEMAPI	M	SLLQ	QLEAIEST	LEKEADRNSRQKR
SF87	MKPIN	SILLFCALA-		VVIMG-					
SF88	MMKLY	SLVIIATLA-		AAAFA-					
SF74	MKASMFI	LALAGLDLLF -		VVCYAS	ESEEKEFSNE	L	LSSV	LAVDDNSK	GEER
SF73	MKSIVF	ALFG <mark>L</mark> ALLA-		VVCSAS	EDAHKELLKE	V	VRAM	VVDKTDAV	QAEER
SF85	<mark>MNMKIL</mark> \	/ L V A V <mark>L</mark> C L		- – – – <mark>V</mark> V S T H A	ERHSKTDMED	S	PMIQ	E R K – – – – –	
SF90	MDTVRVA	AFLLVLVLAV -		S L GQ A D	KDENRMEMQEI	K T E Q G K S Y L D	FAENLLLQKL	EELEAKLL	EEDSEESRNSRQKR
SF91	MKL(CAVIIASLLV-		C V A V A S	SSDNQKEFAQ	E	KEMTI	REETQSLG	EHEKDDEVTGSEER
SF76	MLIKQFSRRSKNMKVC	QILLAFAALF -		V L A V G S	YASESKKLDLI	R	DALF:	SAMFSADY	QLNPQER
SF89	MKLSII	A T S <mark>L</mark> V A – -		- – – – <mark>V</mark> V A F P S	KDSKAIENDK"	Τ	EQRM	EIVVQETAI	{ A
SF92	<mark>MKMTLI</mark>	AILTCAAVLV-		L H T T A A	EELEAESQLM	Е – – – – – – – – –	VGMP	DTELEAVD	E E R
SF79	MKTAIF1	ΓVV L Α <mark>L</mark> ΑVFΑ -		- – – – <mark>V</mark> L S F GW	EANEKALSEE	F	TEL	HEKEAASE	Г Е А R Е – – – – – – – – – –
SF94	MK S /	ATLLALSFLL -		<u> </u> A S C F L	ICEAEHSRYE	E	HGIL	EENMGDVVI	NLEQR
SF97	MH	<pre>VVLIVCLVW-</pre>		- – – – <mark>V</mark> MAMME	L V S C				
SF95	MK I /	4 T F <mark>L</mark> G <mark>L</mark> S F L L -		- – – – I A S Y F L	ICEAQHPGFQ	E	LLIL	EENMRDPEI	N S K E R
SF99	MGTARFLF	8 A V L L L S V L L -		- – – – MV T F P A	LLSAEHH				
SF103	MAL \	VFLAALCAVAS	5	- – – – I I T L P S	E S				
SF104	MEAI	L V L L MMS C V W -		L G V R G -					
SF100	MKLLVF#	AVFLFVVSSF-		ATTTVT	PTSGGTVTTP	Т	TETT	TEGTTTTP	
SF77	MKVSVL	ITLAVLGVMF -		L L T S A E	ERGSDQMDSP	A	WLKS1	MERIFQSE	ERE
SF81	MKT S A L F	FVIFGLVLLF -		C N S F A A	ELKTTGR				
SF83	MKTSVL	/ T		<mark>V</mark> L C S A S	QDEEQDMYDE	L	LSAV	FEVNDELQ	<u>SEAR</u>
SF101	MKFAVA14	AFTLLVCVFA-							
SF86	MNATIFA	ALLLLLNL		AMYNAA	EQSSETDMDD	Γ	LLIP	E N Y R K – – – –	
SF82	MKNTSII	LFILGLALLL		VLAFEA	QVGESDG				
SF96	MRFF	HTLLFLSFLL.		LVSCAL	ICTAQHPGLEI	K	SGMFI	HENVGKGQI	HIEEKR
SF102	MKAFI	FVILGLALLC-		AY S F A L	EEQDQLSLRNI	D	LLTVI	MFAENSEL	FPETEER
SF78	MRKSTFF	FVIAAVALFS-		VVCCAS	ESKEQDLHDA	L	LSAF	FATDPEPQ	E R
SF93	MRSLTLA	AAILACSLLL-		VFHTAA	ELLEAQEDHL	M	IPSD	IDSALETLI	DDER
SF75	MKTSVVI	VIAGLALLS -		VVCYAS	ELKEQSSINE	V	LSTI	FHFEQPEE	(
SF80	MKAQM	NVLLGLAALS-		ILCYGL	EADESALHEE		ISQL	LAVLDEVPI	CSQER
SF98	<u>M</u>	(VAILVCLLC-		A V A V M E	FASG				

Figure 2—figure supplement 2. Signal peptide and propeptide alignment of novel mygalomorph superfamilies. This figure shows the alignment of signal peptide and propeptide sequences from novel mygalomorph spider toxin superfamilies identified in this study. The signal peptide region is highlighted in green, while the propeptide region is represented in purple colour. Conserved sites are shaded in blue.

eLife Research article

Ecology | Evolutionary Biology

Figure 2—figure supplement 3. Homology models of novel Mygalomorphae toxin superfamilies. This figure depicts the 3D homology models of disulfide-rich peptide Mygalomorphae toxin superfamilies. Here, helices are shown in green, β-strands in blue and disulfide bonds in orange. Cysteine arrangements in scaffolds are also provided above the model. Toxin SFs that lack structural data are indicated with a '?' symbol.

Figure 2—figure supplement 4. Principal component analyses for Mygalomorphae toxin superfamilies. A scatter plot of scaled principal components, sPC1 and sPC2, for the signal peptide sequences of novel mygalomorph toxin superfamilies identified in this study is shown here. Signal peptide sequences belonging to a superfamily are represented as a single dot.

Figure 3. The Bayesian phylogeny of araneomorph spider venom toxin superfamilies. This figure represents the Bayesian phylogeny of Araneomorphae spider toxin superfamilies, where branches with high (BPP >0.95) and low (BPP <0.95) node supports are shown in thick black and thin grey lines, respectively. Coloured spheres, alongside tree tips, represent the spider genera, while the coloured outer circle indicates the spider family (Agelenidae [red], Ctenidae [green], multiple araneomorph families [purple]: Ctenidae, Gnaphosidae, Homalonychidae, Lycosidae, Oxyopidae, Pisauridae, Psechridae, Salticidae, Thomisidae, Xenoctenidae) in which the respective toxin superfamily has been identified.

Figure 3—figure supplement 1. Phylogeny of Araneomorphae spider toxin superfamilies. Phylogenetic relationships of Araneomorphae spider toxin superfamilies, assessed using Bayesian (BI; panel A) and maximum likelihood (ML; panel B) inferences, are shown in this figure. Node supports were estimated using Bayesian posterior probability (BPP) for the BI tree and bootstrapping replication (BS) for the ML tree. Branches with BPP

Figure 3—figure supplement 1 continued on next page

Figure 3—figure supplement 1 continued

lower than 0.95 in BI tree and BS lower than 90 in the ML tree are shown in grey. Cysteine-rich non-toxin outgroup sequences are coloured red.

	10	20	30
SF34	I I	I I I I	
SF35		MOLSIYLVLL-	LISLVFS
SF36		MKFI.I.CTTTI.T	VAVGSLITEA
SF37		MKYLLIATIV-	VFLFVOALA
SF38		MKTALLETC	LTAVAYS
SF39		MKILLVFVCA-	
SF40		MKLPILFVVL-	LITLVRS
SF41		MKVALVFLTVL	GLVYCSA
SF42		MKYAAVFVSVI	ALMHILAVEG
SF43		MKVSTFCALVT	FAVFYCTY <mark>A</mark>
SF44		MKLLLLTVLL-	-FMVVFDNCSG
SF45		MKCAVTFVWLL	ATVHA
SF46	M	MKYALIFAFLF	AAVYSFA
SF47		MRVL <mark>L</mark> FIVLVL	VLIATYVAA
SF48		MRNVTYIAAL-	LLFACLIRG
SF49		MRCLLLCLAL-	LVCLDTVWS
SF50		MIFQ <mark>L</mark> VVIAAC	AALVAPG
SF51	M	M <mark>KFAIIFLIC-</mark>	VSLSL <mark>A</mark>
SF52		MIYQ <mark>L</mark> LLIALC	GAIFA
SF53		M <mark>QASHVALFL</mark> V	LLIVYSAC <mark>A</mark>
SF54		MLPSRVACFLV	LLIAYSAY <mark>A</mark>
SF55		M <mark>sakiyailfa</mark>	VALIAFLG <mark>A</mark> HA
SF56		MWPKLHLLVFA	AVLFAFLGVSA
SF57		MWFKMNILLFS	FALPALLS <mark>A</mark>
SF58		MWLK <mark>L</mark> HLFVFA	VAITAFLVACTEG
SF59		<mark>M</mark> WLKMQLFV <mark>L</mark> A	IALIALLEVHA
SF60		MWLKIQVFV <mark>L</mark> A	LT <mark>L</mark> ITIGIQA
SF61		MWVKMQMIVFA	VT <mark>L</mark> IALLGIHA
SF62		M <mark>SLKIQVIVIV</mark>	VALIALIGVHA
SF63	MFEEFSKIRKIWGM	MWSVLLIALFA	VEEFVPGAA
SF64		MKLLGIFLVAS	FAFVLSVA
SF65		MKMKLLEIIL-	LVSFPFVLG
SF66		MKVAVIILS	ILVLAAA
SF67		MRLALLIVS-	VLVLAVAS
SF68		MKVAIVFLSLL	VLSFA
SF69		MKVAIFFILS-	LLILAV
SF70		MKSAVFLVIS-	LLLLAVAS
SF/1		MNSKILFSLLV	VL'TLAVLVSA
SF105		MNSTLFGLFL-	LFALATCVLS-
SF106		MEVSVILLFS-	LVVFAVAS
SF10/	M	MKSILVFAFLI	AAVYAFA
3F108		MATLLVFISVL	YLVHSFSLEVEDE
SF110		MRAIISLLLIS	
3111		MRTIISLLLS	AMVEAVIEA

Figure 3—figure supplement 2. Signal peptide alignment of araneomorph superfamilies. This figure shows the alignment of signal peptide sequences from novel araneomorph toxin superfamilies identified in this study. The signal peptide region is highlighted in green, while the conserved amino acid positions are shaded in blue. It should be noted that the propeptide region boundary could not be identified for all Araneomorphae toxin superfamilies.

eLife Research article

Ecology | Evolutionary Biology

Figure 3—figure supplement 3. Homology models of novel Araneomorphae toxin superfamilies. 3D homology models of disulfide-rich peptide Araneomorphae toxin superfamilies are depicted in this figure. Here, helices are shown in green, β-strands in blue and disulfide bonds in orange. Cysteine arrangements in scaffolds are also provided above the model. Toxin SFs that lack structural data are indicated with a '?' symbol.

Figure 3—figure supplement 4. Principal component analyses for Araneomorphae toxin superfamily. Scaled principal components, sPC1 and sPC2, for signal peptide sequences of novel araneomorph toxin superfamilies identified in this study are shown here in the form of a scatter plot. Signal peptide sequences belonging to a superfamily are represented as a single dot.

Figure 4. The Bayesian phylogeny and cysteine framework representation of spider venom DRPs. This figure depicts the Bayesian phylogeny and alignment of representative sequences of Araneae DRP toxin superfamilies, where branches with high (BPP >0.95) and low (BPP <0.95) node supports are shown in thick black and thin grey lines, respectively. The coloured outer circle in panel A indicates the infraorder of spiders (Mygalomorphae and Araneomorphae shown in dark and light brown, respectively) in which the respective DRP superfamily was identified. In panel B, cysteine framework conserved across toxin SFs is highlighted in blue.

Figure 4—figure supplement 1 continued on next page

Figure 4—figure supplement 1 continued

panel B) inferences are shown in this figure. Node supports were estimated using Bayesian posterior probability (BPP) for the BI tree and bootstrapping replication (BS) for the ML tree. Branches with BPP lower than 0.95 in BI tree and BS lower than 90 in the ML tree are shown in grey. Cysteine-rich non-toxin outgroup sequences are coloured red.

	10 20 30 40	50 60 70	80	90	100 110	120 130 140 150 16	170 180	190 200 210 220 230 240
SF1: AhPuch	QETNEE	CIAKWKS	AGRKLD		CEGLE-	WKRSWGHEVCVPITOKVFCLEK	-WKSCFERKYDCCEELE	MERRRNKHPVCAPKQ
SF2: Anat		GDN	CDAGS	C	CLEFSQRM	KKLGQLHDMCSHANRGTDE	GNSVF	FALANLGYSAV
SF4: Erlik	AEQ	SKKLGE	CDYHCE	c	GATVACDTVYVGNEPYSR	SKGINVVV	IGFSAFQ	CKG
SF5: Chi-You	0	CRRL		c	YRNR	cv	TY	CRGRGK
SF6: 'Oro	GTPSADQVRYNYTELPNGEY	PPH	CTSPDQ	C	RPYDTTVAFHG	GRIWPKDKREK	VDRCYI	GNNEKTLCTSVNGK
SF8: Ixtab		WGLF	CKDEKSP	d	CSPYV-	EKTTGYGWW	-YGSPF	CVRKGSG
SF9: Shiva	SAV	GIPSGQ	CPYSKY	c	CSGS	TYKTNENDNS	VQR	CD
SF10: Kisin SF11: Thanatos	GVLD NKDVNDEEVKKLAIFASTKFNEKSN	SLVFEK	CKILEAKSOL	V	AGMLYDITFEASPTV	KKNDKNYVP	-IYOCPLLF	CAPSVGGIVGGLUGKAL
SF12: Sekhmet	QQPCGEGQV	CKENF	CCTAIMNDEP	C	SQPSLNGRFEIT-	CPCEPGLECKISTMF	QIPL	CHNRSEITGLDHIPPGVSRRRNYLTGSYGYPTTTAPQ
SF13: Ares		AKKRAP	GGKNED	C	CPWK-		NNQAS	COSTFMGLFKSCS
SF15: Pluto	KFLK	VIGAEI	GSELRTEYHK	c	SELKPERLKATMKA	CC-DETMPAGSDEDARWALVCADDGIL	TKVCD	VKAKLPMAEVTTAEMEQFSKYKECAKKLNEEKCK
SF16: Zahhak	RR	<mark>с</mark> кр <u>о</u> рос	NKDLH	c	CKPLK-	CRR	SNNGRKY	<mark>0</mark> KP
SF17: Nergal		NAYGT7	NSVHD	EPENVTO	CHGLD-	REAWPSWWEAWPSWW	YEKPY	CTTPKKG
SF19: Yama	QRCTKDSDCGDDDRC	GLFSF	CLMKPGERDY	C	GKARKT	CPCKSGFQCSDT	-YGSGT	CLNSSSISTSTTPNP
SF20: Ereshkigal		CMALI	CDSHFK	c	CKNLV	QDPTLTWF	YGSKY	CYRKKS
SF21: Anubis SF22: Loke	VVITSST	NOS	SPGF	CSRVVRTL	CSRTQETLVRIQLGQ	NKASFHLLKSPSRRF	I FN	ILOGYNCTSNGGCOLLBRVG
SF23: Qumaits		VRQGGGGGG	CSVMNVFAES	c	CGMTK	CKCDYGF	AGNCK	YASTKG
SF24: Ankou		SGSP	CYKGSKM	c	CRGLE-	TEPALYGIW	YKSYF	CKRPKKG
SF26: Set	SRWNSGYGIPHKPVKLPNGKM	SLPGDINPL	CFKDSKF	A	CKPVNEKENSSG	GRTWSAMAGGFV	-NERYI	VEQVSGRNVTAPVRGRLEC
SF34: Neelkantha	RAMK	CIKEGKS	LDNEDG	c	CPLST	CECWEQRIPRKSTNW	VKRCQ	OVRPEQFQ
SF35: Mritunjaya SF36: Osiris	ARK	IKWS	MDNKGG		Participation PWS-	CYOREIKGVKE	-VRKCQ	CREVIN-
SF37: Cöätlicue	DKRA	GIRRGGGGGGGG	DGKPND	c	PNSS	CRCNLW	-GTNCR	CERAGLEQQNGK
SF38: Vanth	\$	GIAGGEI	CKTDCE	c	GKWSY	CKCQIWGLFGCSCVI	GDSTV	OVRKKEQCSNPEVMNTPPGGCSSSRRGNNRG
SF-39: Achiys SF40: Enma	DWE EENEDFPVEAEDGFPFTVERVI.BOT	SGORSS	DNDCT		CENHH-	HTTLAQAPSWVKIP	KALLRCS	CORNDREGRVNTCPRYGRGGRGKRGGRSRRG
SF41: Batara Kala	Parkers + PUPARS 1 PPARS	CLPKDS7	GGDDCD	c	CEGLH-	CHCPLRKVLPA	-ILRCS	QSKDDHVNTCPKYNKKG
SF42: Perses	RAT	KERGDS	DEDCD	C	GCFYK	YCPLFKRILGCSCV	YGDKYM	CEKKKECKKN
SF44: Ninurta	Q	TERNHF	DLNKGDGTK		GRGKJ.FKDV	KCYYPHVGGVKG	ANKELCT	COPGHYKTIEKVFDKTKVLVNKAKGLVGL
SF45: Anansi	AEKKT	VAIGGE	DPYKTQCQ	c	GDFTY	GCYWEINF	LGQCK	CKYGNVVNCFDKKTCENRSAWTNKPFNPKDCHPSG
SF46: Kartikeya		SLPEGAF	CDGDKSD-CQ	C	YGKWHK	CSCPWFWPLR	KGKCY	CAMGYKHTCITKLSCPNKREWGLNWRSEESERSPC
SF48: Orcus	EEENEGIFEGHHIOKRS	YLTGE	TKDVD	c	TLOCL	7	-TNDCR	GKRPRPNELRKYFTKRTCGT
SF49: Mangala	APGKPNGPRNRRLANGSFTIQGVTKPL	CNMFGCI	CTPPPNQR	c	CRGYR-	YD	NRHNK	CRKISGGK
SF50: Oneiros GN ¹ SF51: Omicha	VPEIDVKEMAAVQDRLANYEMLEKMMQSIFTPEEFQRQEQR	LLEGA	CNFDSIPK	C	GALR	VIWDSQVPAAYNG	GPARWVSB	GRKYNLGIAMEAVGDAFGK
SF52: Nephthys	EEIPAESAEIIPEAARDP	RRAEEISTNNLLERIGMAPKERWNI	CIPWHYH	CPSSY-SK	C0DF	CNNDRGCTKAPERHPDC	GYDYW	0N
SF53: Baldur	HETGLPKEVVEDIESNRERK	GMTGDI	CEYRYER	c	CDGYK-	CRYTGRTGR	-LFI	CL
SF54: Morrigan SF55: Deimos	HETGLPKEVEEDIESNREKK	GTTGDGD	CEYAYER		CDGYR-	RYTGRTGR	-LFI	CL
SF56: Enyo	AN	AQA	CDHRP	c	CVVNGWHRV	RCSLI	GSNCE	VTSIREDLYN
SF57: Tuoni	GK	ADAWES	CDNRP	c	CVVNGWKRG	KCSLN	-MRNCD	CVRSISEDIYN
SF58: Supay SF59: Neith	RG	AKAYK ADAYK	DSRP		CDGYNGYART	KCNGF	GTNCK	ах
SF60: Hela	À	VPVYKI	CWYPDKP	c	CENRP	CKCNIV	MTDCK	¢кк
SF61: Persephone	A	VPYNK	RAPQRP	C	PDLK-	CKCDWG	MVHCI	KTTIFGK
SF63: Artemis	OSOK	IFPGE	DGNKSNCO	c	YDTRV	ECFWGITA	FGGCT	CKPGTTASCFDKKDCENRSSWSTIPFOEKECRTEPGFLRHLOROYPRNFOPIPRRNFEK
SF64: Bellona	RSG	CLELGK	CDGYKDN-CQ	c	CRDNAFCSCYNVFGYKFG-	CKCAVGNSVTG	-YSVCLTKLECPNRRSWTTWKKE	CEKPCLTKRCRNKG
SF65: Serget	ERS	GINVGD	DGKKDD-CQ		CRDNAFCSCSVIFGYKTN-	CRCEVGTTATS	YGICMAKHR	GRQTTCTKPCLSKRCKKNHG
SF67: Dedun	GK	GAATFNFNFNFN	CKEHCD	c	GEKVEYISDT-RR-	CICRETHILMS-W	YKLIT	
SF68: Seker		GDINAJ	CKEDCD	c	GYTTA	CVCYW	SKSCK	CREARIVIYTAPKKKLTC
SF09: Alta	RT	GN1GD	CETACD		GPRSD	GCTWADPA		KEGTLVTANIKLARCK
SF71: Izanami	NQNERQ	GLVGPN	CNPF	c	DGLFFGR	ATSRSGGRCDPNACRCTGNQECI	NNRCQRRRSTTPAPETTTS	QTEPSTEGTSPATDPTTGDTSPATDTSTNDTSPATDPSTNAQ
SF72: Kali	GVDKEG	RKMFGI	CWGDGD	C	CLHLG	KTRKLPPM	TDKPY	CAWDWT FGRK
SF74: Bhairavi	E	CLGFGK	CNPSSDQ	c	CKSSNLV	n 03	RKHRW	CKYEIGK
SF75: Durga	G	CLQFMWF	CNPDNDK	c	CRPNLK	CN	-TYHKW	CEFVTGK
SF70: Varahi	G	RNLFC	KKTSE	c	CEHLA	n	DRHR#	GWDFTVGK
SF78: Rudra	D	RKFLG	TQTSD	c	CKHLA	сн	NKHKW	GAWDWTICK
SF79: Skadi SF80: Mictiantécut ^{III}		RYFWGF	HDHMP		DWLV	RYKWP	-IAYNI	OVWNRTFPEK
SF81: Lovitar	G	GGLMDG	CDGKSTF	c	CSGFN-	S	-PTWKW	CVYARPGRR
SF82: Ninti	Е	GGFWW	CGSGKPA	C	CPKYV-	0 5	PKWGL	CN FPMP
SF84: Apophis		NGENU	ADSDD		CSTFH-	r.eETFGYGWW		ovkpskg
SF85: Marjing	K	YLPPGK	YEATQK-IP	c	CGV	s	HNN	0 ?
SF86: Agen	GR	IEEGK	РККАР	G	GRLE-	K	-GPSPKQKK	07RP
SF88: Chandi	ATSEEISAAVSEIISOHOEDLERYAKIVERGEEPKKYIR	SKOSKO	SKSEE	c	GPQDTKNYAHG	ADIKYICKDKVSDNSILDA	VNECINAVGNSISRYY	112535C
SF89: Kalki		CSKQIGD	KRNCE	c	GKTVVCGTIYVGGKEVNQ	MDKTSDNAILNGLGKGMNFIE	-NTFSF	<mark>0</mark> V
SF90: Sharaba		I GEGV	DENDPR	G	GSGLV-	LKPTLHGIW	-YKSYY	
SF92: Virabhadra	LFECSVS	CEIEKEGNKI	CKKKK	c	KGGWK-	K	-FNM	GARA
SF93: Hachiman	IFECVMACDIEKDGE	YVNNDK	KPKKEQK	g	TGGWR-	e x	LKL	CLKV
SF94: Parvati SF95: Gurzil		AKPGE	MGIK		GDGQ	GCNRG	TGRCF	CYGD
SF96: Fenrir	s	LERMQ7	CEVEAGLP	c	CSGAP-	CPY	-IGDCI	g1Q
SF97: Maahes	Е	WSQAI	CSDGH	C	CAGSSFSKN	RPYGGDGEQCEPRNKYEVY	-STGCP	CEENLMCSVINRCQSA
SF99: Ganesh	QTA	STQEE -DGRVD1	PDGS	LRFFEMM	YFGPSFAKR	KFIGGEMAQCEPPNRFNEY	-STGCPKB	Deglicsainkcuáa
SF100: Dhumavati	000	GDTQ	CAEGE	C	VVYMFFTRR	QKLATERQLCWRRNENASTYLW	-ICPCETGLI	CHMNRCRSDRNRV
SF101: Xargi	QEEEEPVT	GGKQQQQQ	CKPNS	C	VQNSHGKGKDSPR	HPLGKLNNPCEVEPNENGIYSQ	HCPCGEGLS	7 KVGEPNKLRCQEESGKSDKSKESQGSDESEESEESKESSG
SF102: Tartarus SF105: Ammit	EIYCPKTRHPTCNLSYKINYC	AOS	DSERK	CVEA	GEDMV	RBGTDTPOGEKFVD	<i>LW</i>	OEGOVWKNGWLGK
SF106: Isfet	ASLEENRKEEFPEQQRA	AAPKAJ	TKDDD	cs	CGDWDK	CRCNWPG	KPGCY	CHRGMIATRLKKMAIC
SF107: Sabazios	VEEDTDLLSVVAEDEIIPEEARK	SLPEGAE	DGDGSD	Q	CYGKWHK	GCPFFWKMR	-GLKCH	TWGMKHTCITKLPCPNKGEWGLDWRSEESGRSPC
SF110: Panjurli	GG	CLPHNR	NALSGPR		CSGLR-		ELSIWDSP	CT
SF108: Guliga	G	VGENQ	ADWAGPH	c	GSGYY-	7CRY	FPKCI	CVNDN

Figure 4—figure supplement 2. Mature peptide alignment of mygalomorph and araneomorph DRP superfamilies. An alignment of mature peptide sequences from mygalomorph and araneomorph spider toxin superfamilies is shown here. Conserved amino acid positions (sequence identity ≥90%) are shaded orange.

Figure 5. Molecular evolution of spider toxin superfamilies. This figure shows the distribution of ω values (Y-axis) for araneomorph and mygalomorph spider venom toxin superfamilies (X-axis). The horizontal dotted black line represents neutral evolution (ω =1), with ω values above and below it indicating positive (ω >1) and negative (ω <1) selection, respectively.

Figure 5—figure supplement 1. Deployment strategies dictate the evolution of spider venom. This figure highlights the distinct regimes of evolutionary selection pressures acting on defensive and offensive spider venom toxin superfamilies. Positively selected sites detected by PAML (M8) and FUBAR are highlighted in red, while sites under the effect of pervasive purifying selection (FUBAR) are shown in green. A colour code indicating strength of selection is also provided. Here, ω : ratio of non-synonymous to synonymous substitutions; (a): ω and positively selected sites (Bayes Empirical Bayes) detected by model 8 of PAML. (b): sites experiencing pervasive influence of positive selection identified by FUBAR (ω >1); and c: sites experiencing pervasive influence of negative selection identified by FUBAR (ω <1).

Figure 6. Distinct toxin scaffold recruitment strategies in spiders and snakes. This figure depicts distinct toxin scaffold recruitment strategies in (A) spiders and (B) advanced snakes. The Araneae phylogeny highlights the domination of disulfide-rich peptide toxins in spiders [Atracidae: Atrax sp.; Theraphosidae: Poecilotheria formosa; Theridiidae: Latrodectus mactans; Ctenidae: Phoneutria nigriventer: e.g., Palagi et al., 2013; Oldrati et al., 2017; Diniz et al., 2018], whereas venoms of advanced snakes are constituted by diverse phylogenetically unrelated toxin superfamilies (Viperidae: Daboia russelii, Elapidae: Naja naja, Colubridae: Spilotes sulphureus: e.g., Senji Laxme et al., 2021a; Senji Laxme et al., 2021b; Modahl et al., 2018). Doughnut charts, portraying the major molecular scaffolds in venom are also shown disulfide-rich peptides (yellow), snake venom metalloproteinases (SVMP, red), phospholipase A₂ (PLA₂, green), three-finger toxins (3 FTx, blue) and other minor components (black). Structures of the major scaffolds are also shown, with helices coloured in green, β-strands in blue and disulfide bonds in orange.

Figure 7. Hypotheses explaining the stark differences in recruitment and diversification of toxin SFs in Araneomorphae and Mygalomorphae. This figure depicts various hypotheses that explain distinct toxin SF recruitment and diversification in spiders. Scenario 1 depicts genus- or family-specific recruitment of spider toxin SFs in Mygalomorphae and Araneomorphae, respectively, while scenario 2 highlights the implications of differential rates of diversification.