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Abstract Mass cytometry is a cutting-edge high-dimensional technology for profiling marker 
expression at the single-cell level, advancing clinical research in immune monitoring. Nevertheless, 
the vast data generated by cytometry by time-of-flight (CyTOF) poses a significant analytical chal-
lenge. To address this, we describe ImmCellTyper (https://github.com/JingAnyaSun/ImmCellTyper), 
a novel toolkit for CyTOF data analysis. This framework incorporates BinaryClust, an in-house 
developed semi-supervised clustering tool that automatically identifies main cell types. BinaryClust 
outperforms existing clustering tools in accuracy and speed, as shown in benchmarks with two data-
sets of approximately 4 million cells, matching the precision of manual gating by human experts. 
Furthermore, ImmCellTyper offers various visualisation and analytical tools, spanning from quality 
control to differential analysis, tailored to users’ specific needs for a comprehensive CyTOF data 
analysis solution. The workflow includes five key steps: (1) batch effect evaluation and correction, 
(2) data quality control and pre-processing, (3) main cell lineage characterisation and quantification, 
(4) in-depth investigation of specific cell types; and (5) differential analysis of cell abundance and 
functional marker expression across study groups. Overall, ImmCellTyper combines expert biological 
knowledge in a semi-supervised approach to accurately deconvolute well-defined main cell lineages, 
while maintaining the potential of unsupervised methods to discover novel cell subsets, thus facili-
tating high-dimensional immune profiling.

eLife assessment
ImmCellTyper presents a useful toolkit for CyTOF data analysis, integrating BinaryClust for semi-
supervised clustering and cell type annotation. The evidence supporting the findings is convincing, 
with appropriate and validated methodology. This tool will be helpful to researchers in immunology 
and cytometry, offering a robust solution for cell type identification and differential analysis.

Introduction
Mass cytometry or cytometry by time-of-flight (CyTOF) is a powerful high-throughput single-cell tech-
nology which employs stable elemental isotopes, as the same manner of fluorophores, to detect 
cellular proteins of interest. This approach successfully tackles the panel multiplex challenges faced 
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by traditional flow cytometry due to spectral overlap and permits simultaneous measurement of over 
40 parameters on millions of cells. To date, CyTOF has been widely applied in basic and translational 
medical research, such as deep immunophenotyping and characterisation of novel refined cell subsets, 
immune monitoring of cell-adoptive therapy, and dissecting cell subpopulations from heterogeneous 
tumour samples (Spitzer and Nolan, 2016). Nonetheless, the advantages of CyTOF come with the 
problem of handling high-dimensional dataset. Traditional gating strategy for flow cytometry, while 
still serving as the ‘gold standard’ for cell population identification in cytometry data, may not be an 
optimal option for CyTOF data due to its high-dimensional settings. The high-parametric resolution in 
CyTOF, aimed at revealing previously undiscovered cell subpopulations, leads to a significant increase 
in the complexity of gating schemas and hierarchical depth, which makes manual gating extremely 
labour intensive and time-consuming (Kimball et al., 2018). Therefore, effective computational tool-
kits and pipelines are entailed for CyTOF data mining and analysis.

Efforts have been directed towards developing means of clustering algorithms to deconvolute 
a pool of live cell mixture into distinct cell populations, which facilitates CyTOF data analysis. For 
instance, unsupervised methods, which include flowSOM (Van Gassen et  al., 2015), Phenograph 
(Levine et  al., 2015), X-shift (Samusik et  al., 2016), spade (Qiu et  al., 2011), DensVM (Becher 
et al., 2014), etc., often combine with dimension reduction techniques like t-distributed stochastic 
neighbour embedding (t-SNE) (Maaten and Hinton, 2008), Uniform Manifold Approximation and 
Projection (UMAP) (McInnes and Healy, 2018), principal component analysis (PCA), etc., and require 
manual annotation of each cluster based on the marker expression patterns indicated by heatmaps. 
This approach works well to analyse populations in a data-driven manner, with all files concatenated 
and analysed all at once. Compared to manual gating, it has advantages in terms of convenience, 
efficiency, and relative unbiasedness from biological preconception, facilitating the detection of 
novel cell phenotypes for deep phenotyping. However, the unsupervised approaches are not always 
ideal and suitable for cytometry data. Mathematical clustering does not necessarily have biological 
meaning, leading to occasional inaccuracies. And several benchmarking studies suggested that the 
accuracy for these unsupervised tools may not be optimal (Liu et al., 2019). Additionally, the technical 
uncertainty of results produced by different clustering approaches remains a conundrum. Even for the 
same unsupervised method, the discrepancy among different runs without setting a seed, reduces the 
reproducibility and may cause confusion, particularly for biologists with limited computational knowl-
edge. Moreover, manual validation is also essential, as biological annotation is the inevitable step to 
provide biological relevant labels for the clusters. However, this process can be time-consuming and 
subjective, hindering the automation of pipelines. This problem is particularly pronounced for a large 
marker panel and samples with high heterogeneity, resulting in a higher number of clusters that need 
to be annotated.

 

Advances in artificial intelligence have accelerated the development of alternative clustering 
methods in a supervised manner for cell type inference. These methods consider the ‘ground truth’ 
or prior knowledge about the marker expression of each given cell types to automatically label each 
cell. Currently, a couple of semi-automatic methods have been developed, such as linear discrimi-
nant analysis (LDA) (Abdelaal et al., 2019), DGCyTOF (Cheng et al., 2022), CyAnno (Kaushik et al., 
2021), DeepCyTOF (Li et al., 2017), Automated Cell-type Discovery and Classification (ACDC) (Lee 
et al., 2017), Semi-supervised Category Identification and Assignment (SCINA) (Zhang et al., 2019), 
etc. ACDC (Lee et al., 2017) and SCINA (Zhang et al., 2019) use a matrix of pre-defined markers 
for each cell type to annotate the clusters showing the same signature. These methods assume that 
markers are either expressed or not expressed (binary), which limits their ability to distinguish cell 
subtypes with similar phenotypes, particularly non-canonical cell types that cannot be easily separated 
linearly. Alternatively, DeepCyTOF and LDA use a marker expression matrix extracted from manually 
gated cell types as a training dataset to build a machine-learning model for cell type prediction. 
This approach has higher precision and accuracy compared with aforementioned methods (Liu et al., 
2019). Nonetheless, it can be labour intensive for preparation of the training set manually. Also, these 
methods are limited in their ability to predict novel cell subsets beyond the pre-gated set of cell types 
and lack a systematic and comprehensive way to assign the cells which were not identifiable under any 
of the gated cell types. New solutions have emerged with algorithms such as DGCyTOF (Cheng et al., 

https://doi.org/10.7554/eLife.95494
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2022) and CyAnno (Kaushik et al., 2021), the former adopts a deep learning classification combined 
with hierarchical stable-clustering methods and an iteration calibration system to identify known cell 
types and assign novel subsets; while CyAnno is based on a machine-learning framework which allows 
the integrative modelling of both ‘gated’ and ‘ungated’ cells. Both methods have demonstrated high 
accuracy in their test datasets, but unfortunately are not widely used by the research community, 
possibly due to the issue for the hassle of training data preparation, the lack of user-friendliness and 
implementation challenges for bench researchers.

To address the common drawbacks of current semi-supervised and unsupervised clustering algo-
rithms and preserve their strengths in discovering both canonical and non-canonical cell subsets, 
respectively, we propose a strategy implemented in ImmCellTyper for cell classification named 
BinaryClust. By considering biologists’ prior biological knowledge and interpretation for canonical 
cell clusters in a semi-supervised manner, BinaryClust first automatically characterises the main cell 
lineages in a fast and accurate way. Subsequently, it extracts specific cell types of interest for further 
clustering using unsupervised algorithms to identify cell subsets including previously unreported 
non-conventional population. In addition, this R-implemented pipeline takes advantage of SingleCell-
Experiment class for data management, providing an easy-to-use and organised systematic workflow 
of CyTOF data handling. The whole pipeline includes quality control and batch effect correction, which 
helps to effectively pool datasets from different batches, and ensures the robustness for downstream 
analysis. Meanwhile, modules like dimension reduction, semi-supervised and unsupervised clustering 
(flowSOM and Phenograph), interactive data visualisation, and statistical testing for complex study 
design were also incorporated in this pipeline. Compared with existing integrated computational 
workflow, such as CATALYST (Nowicka et al., 2017), CapX (Marsh-Wakefield et al., 2019), Cytofkit 
(Chen et al., 2016), and ImmunoCluster (Opzoomer et al., 2021), which was developed and main-
tained by our team, this recently developed toolkit advanced further on coherence, functionality and 
user-friendliness. Overall, this approach has the potential to facilitate and smooth the investigation of 
CyTOF-based research.

Figure 1. Schematic diagram of BinaryClust framework. Semi-supervised classification is first performed on selected markers in the user-defined marker 
expression matrix to classify and annotate major cell types. Population-of-interest can be further extracted and explored using unsupervised clustering 
methods followed by differential analysis. Created with BioRender.com.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Manual hierarchical gating strategy for main cell linages from human peripheral blood mononuclear cell (PBMC) samples 
(myeloproliferative neoplasm [MPN] dataset, n = 9).

Figure supplement 2. Clean-up procedure of cytometry by time-of-flight (CyTOF) data using Cytobank.

https://doi.org/10.7554/eLife.95494
https://www.biorender.com/
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Results
BinaryClust is comparable with manual gating in quantifying the 
abundances of main cell lineages
The core concept for BinaryClust is depicted in Figure 1, where a simple user-designed cell type 
marker expression matrix is required and serves as a reference to characterise the main cell lineages, 
with positive markers indicated in ‘+’, negative markers in ‘-’, and irrelevant markers in ‘A’. K-means (k 
= 2) will be applied to divide the positive and negative cell population of each marker, then align it to 
the reference table to infer main cell types. This is followed by the extraction of population-of-interest 
for downstream clustering using unsupervised methods for subpopulation discovery.

To assess the performance of the automated cell type classification and prediction, we generated 
a test CyTOF dataset using peripheral blood mononuclear cell (PBMC) samples from seven patients 
with myeloproliferative neoplasm (MPN) and two healthy donors, employing a 37-marker deep 
immunophenotyping panel (Appendix 1—table 1). Manual gating was performed by two indepen-
dent experts which identified seven main cell lineages. These results act as the reference for evaluating 
the computer-aided methods. The hierarchical sequential gating strategy was explicitly illustrated in 
Figure 1—figure supplement 1. We evaluated the agreement between manual gating results and 
BinaryClust results regarding cell frequencies of each population. The mean value was calculated from 
manual gating results of two experts to compare with BinaryClust-generated results using Pearson 
correlation analysis. As shown in Figure 2A, the two methods exhibit a strong correlation with coef-
ficient (R2) equals to 1, 1, 0.99, 0.96, 0.96, 0.99, 0.99 for CD4 T cells, CD8 T cells, dendritic cells, NK 
cells, monocytes, and gamma delta T cells, respectively (all p < 0.0001). And most of the data points 
remain close to the line of equality (red line, R2 = 1), indicating a high degree of agreement. Mean-
while, the Bland–Altman plots in Figure 2B also suggest no consistent bias of manual gating versus 
BinaryClust across all the identified cell types. The good performance of BinaryClust was further vali-
dated in the influenza dataset published by our group (Alimam et al., 2021), which contains FCS files 
from 11 individuals with six main immune cell types detected (Figure 2—figure supplement 1A, B).

BinaryClust achieves high accuracy and speed compared with flowSOM 
and LDA
To further evaluate BinaryClust’s performance, we compared it with the well-performing unsuper-
vised algorithm flowSOM and supervised classifier LDA. FlowSOM was run on the same MPN dataset 
with k value set as 20, followed by manual annotation and cluster merging to identify the same cell 
populations as in manual gating and BinaryClust. The cell frequencies derived from BinaryClust, 
flowSOM, and manual gating (expert1 and expert2) were compared using interaction plot (Figure 3). 
We observed that BinaryClust remains consistent with manual gating (all p > 0.05), whereas flowSOM 
identified significantly less gamma delta T cells and dendritic cells (p < 0.001 and p = 0.006, respec-
tively) compared with the other three measurements. We also increased the initial k value to 40 to 
improve accuracy by over clustering then merging clusters (Van Gassen et al., 2015). We found that 
the average frequency for gamma delta T cells and dendritic cells increased to 1.5% and 4.65%, 
respectively, but still remained significantly different (p < 0.05) from the other two methods. It is also 
interesting to see that although the same gating strategy was applied, different experts obtained 
results with slight variation despite no statistical significance. The same findings were confirmed using 
boxplot as shown in Figure 3—figure supplement 1.

Subsequently, LDA was also tested on the same dataset. Since this method requires a training 
dataset from manual gating to build a model, we exported the cell events and cluster assignment 
from Cytobank, then equally partitioned all cells into training and test dataset. Due to the difference 
in method implementation, we did not include LDA for cell abundance quantification comparison 
with other methods, since only half of the cells were used for prediction. To ensure an equitable 
comparison and further evaluate the accuracy, F-measure, and Adjusted Rand Index (ARI) were calcu-
lated using manual gating cluster IDs as reference. As indicated in Table 1, for the MPN dataset, 
BinaryClust achieved high F-measure and ARI in all seven cell types with an average of 0.94 and 0.91, 
respectively. The performance remains excellent in influenza dataset as well (average F-measure = 
0.98, Figure 2—figure supplement 1C). LDA has equivalent prediction accuracy as BinaryClust with 
an average F-measure of 0.93 and ARI of 0.90. Both supervised methods outperformed flowSOM 

https://doi.org/10.7554/eLife.95494
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(average F-measure = 0.75, average ARI = 0.66), which is in line with previous benchmarking study 
on evaluating supervised and unsupervised clustering algorithms (Liu et al., 2019). Notably, for cell 
types that constitute a substantial proportion in the pool like CD4 T cells, CD8 T cells, NK cells, mono-
cytes, and B cells, flowSOM can identify them with high precision and sensitivity, while this is not the 

Figure 2. Agreement evaluation comparing manual gating and BinaryClust in myeloproliferative neoplasm (MPN) cohort (n = 9). Manual gating of 
B cells, CD4 T cells, CD8 T cells, dendritic cells, NK cells, monocytes, and gamma delta T cells were performed by two independent experts using 
Cytobank, and mean values of the population percentages were calculated to compare with BinaryClust results. Each dot represents one patient 
sample. (A) Scatter plot showing the correlation between the two methods, with the red line indicating perfect agreement (correlation coefficient = 1). 
(B) Bland–Altman plots of the two measurement methods among all the cell populations, with the black line suggesting the mean observed difference 
and red dotted lines indicating limits of agreement (1.96× standard deviations).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Agreement evaluation between ImmCellTyper and manual gating in influenza dataset (n = 11).

https://doi.org/10.7554/eLife.95494
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case for dendritic cells and gamma delta T cells which account for less than 3% of the whole popula-
tion (F-measure = 0.51 and 0.15, respectively). Even so, the overall F-measure and ARI for flowSOM 
considering cell proportion reached 0.81 and 0.80.

It has been demonstrated that flowSOM and LDA are among the fastest clustering algorithms 
without compromising their performance. Here, we compared the speed among the three approaches 
in MPN, Influenza, and COVID-19 datasets (Chevrier et al., 2021) which contain 2,231,053, 210,933, 
and 3,862,628 cells, respectively. Since LDA requires training data to be executed, we did not run it 
on COVID-19 dataset due to the absence of manual gating results. As shown in Figure 4, BinaryClust 
exhibited the highest speed in both MPN and Influenza dataset but fell behind flowSOM slightly in 
COVID-19 dataset.

ImmCellTyper pipeline supports interactive data visualisation and 
comparison among study groups
BinaryClust is an important component of ImmCellTyper, a comprehensive integrated pipeline 
designed for systematic CyTOF data mining. Hence, we utilised the visualisation functions to further 
prove the reliability and robustness of BinaryClust.

BinaryClust inherently considers CyTOF makers as binary distributed which is in most of the case, 
but not always. Therefore, it is crucial to check the marker behaviour before running the pipeline. As 
shown in Figure 5A, all markers selected for the classification matrix (Figure 5B) displayed a binary 
distribution implying the suitability for this pipeline. After clustering (Figure  5C), median marker 
expression heatmap (Figure 5D) can check the reliability of the results before proceeding for down-
stream analysis. In MPN dataset, we projected the cluster assignment resulted from BinaryClust and 
manual gating to UMAP (Figure 5E), along with the expression of the phenotypic markers (Figure 5F 
and Figure 5—figure supplement 1A). High similarity was observed between BinaryClust and manual 
gating, whereas slight difference was found on flowSOM results coloured UMAP on islands of CD8 
T cells and CD4 T cells (Figure 5—figure supplement 1B). FlowSOM appeared to classify cells that 
were close on spatial distance into the same cluster, in contrast to prior knowledge-based methods: 
BinaryClust and manual gating.

Figure 3. Comparison of manual gating (manual1 and manual2), BinaryClust, and flowSOM clustering results in myeloproliferative neoplasm (MPN) 
cohort (n = 9). Interaction plots showing the individual measurement (percentage) of each study participant with indicated colours by different methods 
across main cell lineages (B cells, CD8 T cells, gamma delta T cells, NK cells, dendritic cells, monocytes, and CD4 T cells); analysis of variance (ANOVA) 
was used for statistical testing, and significance was marked by asterisk. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Boxplots of the indicated cell percentages generated by different methods.

https://doi.org/10.7554/eLife.95494
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Application of ImmCellTyper pipeline to the COVID-19 dataset 
demonstrates its versatile 
functionalities for comprehensive 
data analysis
To showcase the analytical and visualisation 
functions of ImmCellTyper pipeline, we used 
the dataset published by Chevrier et al., 2021, 
which described the immune signature of mild 
and severe COVID-19 patients in comparison with 
healthy individuals. There are a total of 82 FCS 
files with a 40-plex marker panel focussing on 
innate immunity in this dataset. An initial marker 
expression check was carried out based on the 
user-defined matrix (Figure  6B) and displayed 
in Figure  6A. BinaryClust was then performed 
and identified 12-cell populations as expected. 
We used t-SNE in this dataset for dimension 
reduction, coloured by cell types and faceted by 
disease conditions, which exhibited substantial 

Table 1. Precision, recall, F-measure, and ARI of indicated clustering methods.

Gated 
population Counts

Cluster cell 
counts

True 
positive Precision Recall F-measure

Average F-
measure ARI

Average 
ARI

BinaryClust2 CD4 T cells 1,270,041 1,232,832 1,226,712 1.00 0.97 0.98 0.93 0.95 0.91

CD8 T cells 601,995 601,639 582,402 0.97 0.97 0.97 0.95

NK cells 389,261 380,999 376,561 0.99 0.97 0.98 0.97

Monocytes 576,624 625,735 568,924 0.91 0.99 0.95 0.92

B cells 397,279 380,170 374,501 0.99 0.94 0.96 0.95

Dendritic cells 135,894 86,012 84,130 0.98 0.62 0.76 0.74

TCRgd T cells 87,194 73,599 73,562 1.00 0.84 0.91 0.91

flowSOM CD4 T cells 1,270,041 1,268,929 1,226,712 0.97 0.97 0.97 0.70 0.90 0.66

(k = 20) CD8 T cells 601,995 692,374 571,344 0.83 0.95 0.88 0.81

NK cells 389,261 393,646 365,403 0.93 0.94 0.93 0.91

Monocytes 576,624 792,447 568,284 0.72 0.99 0.83 0.73

B cells 397,279 405,886 390,077 0.96 0.98 0.97 0.96

Dendritic cells 135,894 20,832 18,254 0.88 0.13 0.23 0.22

TCRgd T cells 87,194 19,720 4967 0.25 0.06 0.09 0.08

LDA CD4 T cells 634,733 665,481 632,700 0.95 1.00 0.97 0.93 0.93 0.90

CD8 T cells 301,138 327,469 299,309 0.91 0.99 0.95 0.92

NK cells 194,470 202,110 187,259 0.93 0.96 0.94 0.92

Monocytes 288,338 301,387 282,836 0.94 0.98 0.96 0.94

B cells 198,582 211,090 195,908 0.93 0.99 0.96 0.94

Dendritic cells 68,152 90,456 61,785 0.68 0.91 0.78 0.75

TCRgd T cells 43,405 43,064 39,976 0.93 0.92 0.92 0.92

ARI, Adjusted Rand Index; LDA, linear discriminant analysis.

Figure 4. Comparison of BinaryClust, flowSOM, and 
linear discriminant analysis (LDA) on speed. Bar chart 
showing runtime (in seconds) of the three methods in 
three different datasets.

https://doi.org/10.7554/eLife.95494
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immune alteration among healthy control, mild and severe COVID-19 patients (Figure 6C). From the 
heatmap in Figure 6D, we can have an overview of the marker expression of each population, which 
remains consistent with our initial definition indicated in the expression matrix.

The abundances of the identified cell types were quantified for each individual study participant 
in the format of stacked histogram (Figure 7A) and summarised in boxplot (Figure 7B). Compared 
with healthy volunteers, there are significant immune alterations in COVID-19 patients in B cells, baso-
phils, cDCs, monocytes, NK cells, CD8 T cells, neutrophils, and pDCs (all p < 0.05), which depicts a 
similar trend to the original paper, despite slight discrepancies caused by different statistical methods 
used. Kruskal–Wallis test was conducted for this dataset followed by multiple testing correction 
(Benjamini–Hochberg [BH] procedure) and Dunn’s test for post hoc analysis, while Chevirer et al. 

Figure 5. Cell type characterisation and visualisation using ImmCellTyper pipeline in myeloproliferative neoplasm (MPN) dataset (n = 9). (A) Intensity 
distribution of selected phenotypic markers used for BinaryClust classification, coloured by sample_id. (B) Pre-defined expression classification 
matrix for the MPN dataset, ‘+’ indicates positive, ‘-’ indicates negative, and ‘A’ suggests ‘any’. (C) Proportion of the main cell lineages of all cells in 
the concatenated FCS files after classification. (D) Median marker expression heatmap of BinaryClust classification results. (E) UMAP plot of random 
downsample of 2000 cells per patient coloured by main cell types based on BinaryClust classification (left) and manual gating results (right). (F) UMAP 
plots coloured by normalised expression of indicated markers (CD3, CD4, CD8a, CD20, CD19, CD14, and CD56) across 2000 cells per sample.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Comparison of different clustering methods in MPN cohort.

https://doi.org/10.7554/eLife.95494
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used Mann–Whitney–Wilcoxon test corrected by Holm method. We then selected nine markers (IL-6, 
PD-L1, VISTA, IDO, TIM-3, TMEM173, Granzyme B, PPARg, and Ki-67) as the state markers which can 
reflect the functional or proliferative status of the immune cell types. Notably, as shown in Figure 7C, 
Granzyme B was observed to be significantly highly expressed in COVID-19 patients versus healthy 
control across all identified immune cell types (all p < 0.05), TMEM173 was substantially up-regulated 
in COVID-19 patients particularly in monocytes, neutrophils, and CD4 T cells; and PD-L1 expression 
remained low for all cells, indicating the immune system of COVID-19 patients was highly activated 
without exhaustion regardless of disease severity, which was not explored previously. Since monocytes 
and neutrophils were of particular interest in the original paper, and the panel also included specific 
markers for in-depth interrogation, we then extracted the two population and carried out Phenograph 
(k = 60) to investigate the subclusters. As shown in Figure 7D–E, Phenograph returned 16 and 14 
subclusters, respectively, for monocytes and neutrophils, with heatmap provided in Figure 7—figure 
supplement 1A, B.

Reanalysis of the COVID-19 dataset demonstrated the concordance of ImmCellTyper pipeline 
with original reports with additional findings, as well as its versatile interactive data visualisation 
functionalities.

Discussion
In this study, we present an analytical pipeline named ImmCellTyper for systematic exploration of 
CyTOF data. This pipeline addresses a comprehensive range of analytical needs encompassing data 
quality check, batch effects examination/correction, cell type identification, and downstream differen-
tial analysis accompanied by high-quality, publishable data visualisations. Furthermore, ImmCellTyper 

Figure 6. Applying ImmCellTyper pipeline on COVID-19 patient dataset (n = 82) published by Chevrier et al., 2021. (A) Marker intensity distribution 
of selected phenotypic markers used for BinaryClust classification, coloured by disease severity (n = 22 healthy individuals, 28 mild COVID-19 patients, 
and 38 severe COVID-19 patients). (B) Pre-defined marker expression classification matrix used for BinaryClust. (C) t-Distributed stochastic neighbour 
embedding (t-SNE) plots, with 1000 cells per sample, were coloured by the main cell types generated by BinaryClust and faceted by different study 
groups. (D) The corresponding median marker expression heatmap of BinaryClust results for the COVID-19 dataset.

https://doi.org/10.7554/eLife.95494
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Figure 7. Quantification and statistical analysis comparing the study conditions in COVID-19 dataset (n = 82). (A) Stacked histogram of main cell type 
composition per individual generated by BinaryClust, and grouped by study conditions (healthy, mild, and severe). (B) Boxplots representing cell 
abundance frequencies among the study conditions, faceted by different main cell types. (C) State marker expression intensities with comparison of the 
study groups across the main cell types. (D) Clusters of monocytes and neutrophils were extracted from the whole cells for downstream interrogation. 
t-Distributed stochastic neighbour embedding (t-SNE) plots with random downsample of 1000 monocyte cells and (E) neutrophils per sample were 
coloured by study conditions and Phenograph clustering results (k = 60), respectively. Statistical significance was marked by asterisk. *p < 0.05, **p < 
0.01, ***p < 0.001, ****p < 0.0001.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Expression heatmaps of monocytes and neotrophils in COVID-19 dataset.

https://doi.org/10.7554/eLife.95494
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includes an in-house developed, knowledge-based, semi-supervised classifier BinaryClust with high 
accuracy and speed, and also integrates the well-performing and state-of-the-art unsupervised algo-
rithms (Phenograph and flowSOM). By adopting the strategy of first obtaining the main cell types and 
then select specific cell types for in-depth interrogation with higher clustering resolution, ImmCellTyper 
combines the advantages of both supervised and unsupervised clustering algorithms for discovery of 
both major populations and refined subpopulations. Designed for ease of use, this pipeline features 
a clear and user-friendly workflow, and is compatible to the widely used pipeline CATALYST, aiming to 
provide a one-stop solution for CyTOF users.

For validating the robustness of the automated cell characterisation function of ImmCellTyper: 
BinaryClust, we involved two independent datasets (MPN and Influenza datasets) and compared with 
existing clustering tools flowSOM and LDA. Previous benchmarking studies indicated that flowSOM 
was one of the best-performing unsupervised tools in precision, speed, and stability, with F-mea-
sure ranges from 0.58 to 0.90 in various datasets (Liu et al., 2019), and was widely used in high-
impact research publications (Liu et al., 2019; Liu et al., 2020). However, the results of flowSOM 
vary upon the k values set by the users which causes some uncertainty and impairs reproducibility of 
the results. In contrast, semi-supervised clustering methods like ACDC, DeepCyTOF (Li et al., 2017), 
and LDA outperformed the unsupervised methods in the same benchmarking study. The F-measure 
obtained by ACDC and LDA ranged from 0.78 to 0.99, which was significantly higher than unsuper-
vised approaches including Accense, PhenoGraph, Xshift, k-means, flowMeans (Aghaeepour et al., 
2011), FlowSOM, and DEPECHE (Theorell et al., 2019) (F-measure: 0.28–0.93) (Liu et al., 2020). In 
this study, we chose LDA because it has proven to be superior to ACDC and DeepCyTOF in terms of 
precision and speed (Liu et al., 2019; Abdelaal et al., 2019). The excellent performance of LDA was 
demonstrated in MPN dataset of this study with F-measure reached 0.93 for around 4 million cells. 
BinaryClust was comparable in accuracy (F-measure = 0.94) but much faster in speed. Both semi-
supervised approaches outperformed flowSOM as expected. Although semi-supervised methods 
seem to perform better, the mainstream for CyTOF data analysis still relies on unsupervised methods. 
The reason for this might be that most of the semi-supervised methods rely on manual gating as 
reference and requires either the manually gated expression matrix or user-defined binary matrix as 
training data. This process takes extra time and efforts especially for defining subpopulations, and may 
introduce end-user bias. Additionally, the common restriction for all the supervised methods is that 
they have limited capability to reveal novel subsets as those are not pre-defined in the training pool, 
which poses a critical challenge for the pursuit of novel discoveries. Considering all these strength 
and limitations, as a semi-supervised method, BinaryClust possesses the advantages of incorporating 
prior biological knowledge, being reproducible across runs and accurate on cell type identification. 
Meanwhile, the input requirement is a simple matrix of cell population definition based on marker 
positivity, avoiding the hassle to manually gate example FCS files. With a deep understanding that 
certain CyTOF markers are expressed on a continuum rather than binary manner, this automated 
supervised approach will only be used for classification of main cell lineages. The test datasets in 
this study contained data from human PBMC samples which represented a heterogeneous pool of 
immune cells, covering the major types of various immune populations, and demonstrated excellent 
performance of BinaryClust on classifying CD4 T cells, CD8 T cells, gamma delta T cells, NK cells, 
monocytes, dendritic cells, and B cells. We also recommend checking marker expression distribution 
before running the pipeline to ensure accurate results. After the above step, this pipeline supports cell 
population extraction for further dissection into subclusters using unsupervised approaches, which 
excel in detecting rare and refined subpopulations. Phenograph is a particularly effective tool for this 
purpose. By applying this strategy, our previous work with BinaryClust facilitated the evaluation of 
the impact of systematic anti-cancer agents on lymphocyte population in non-small cell lung cancer 
patients, as well as the characteristics of autologous T cell products after manufacturing (O’Brien 
Gore et al., 2023).

Another purpose behind the development of the ImmCellTyper framework is to cater to general 
analysis needs, spanning from pre-processing to downstream differential analysis. There are existing 
well-established pipelines like CATALYST (Nowicka et al., 2017), diffcyt (Weber et al., 2019), Cytofkit 
(Chen et al., 2016), ImmunoCluster (Opzoomer et al., 2021), etc., each of them has its own strength 
and limitations. One of the challenges existed in CyTOF data pre-processing is effectively integrating 
multiple batches, given the technical differences arising from experiments and instrumental acquisition, 

https://doi.org/10.7554/eLife.95494
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which could result in the separation of clustering across batches and potentially confounding the 
signal of interest. In ImmCellTyper pipeline, we provide the functionality for batch effects examination 
and incorporated two well-performing batch correction algorithms CytoNorm (Van Gassen et al., 
2020) and CytofRUV (Trussart et al., 2020) into our framework prior to downstream analysis, which 
ensures the quality of the data and, to the best of our knowledge, makes it the first integrated pipe-
line with this module. For the downstream analysis, tools like diffcyt and CATALYST group markers 
into phenotypic and state makers, enabling the detection of differentially abundant cell clusters and 
differential expression of functional markers within each cell population (Weber et al., 2019). This 
well-recognised strategy has been extensively applied in various studies. But one limitation is that 
it directly classifies cells into high-resolution clusters, and cannot automatically merge subclusters 
into one major population with similar phenotypes (Weber et al., 2019). Our pipeline addresses this 
problem via a precise and convenient solution: using the semi-supervised classifier (BinaryClust) of 
ImmCellTyper. The two pipelines (CATALYST and ImmCellTyper) are well compatible, allowing users to 
leverage their functions together and providing a broader range of analytical options. On the other 
hand, Cytofkit has the advantages of the graphical user interface for non-specialists, integration of 
a variety of clustering (DensVM [Becher et al., 2014], ClusterX, FlowSOM, Phenograph), dimension 
reduction (PCA, ISOMAP, t-SNE) methods, and inference of the relatedness among cell populations, 
but it does not support complex study design, group comparison, and statistical testing (Chen et al., 
2016). Several methods have been developed to fit with the high-dimensional features of CyTOF data 
for differential analysis including diffcyt, CellCnn (Arvaniti and Claassen, 2017), cydar (Lun et al., 
2017), citrus (Bruggner et al., 2014), cyEMD (Arend et al., 2022), etc. Nonetheless, none of them 
is applicable to compare more than two study groups at once which involves multiple testing. There-
fore, to accommodate study designs involving multiple groups, ImmCellTyper does statistics via first 
applying Kruskal–Wallis test, followed by BH procedure for multiple testing correction and post hoc 
analysis via Dunn’s test or pairwise Wilcoxon test. In cases where the comparison involves only two 
groups, Mann–Whitney test will be applied in terms of cell frequency, as the distribution of CyTOF 
data generally does not fit for normal distribution.

One limitation of this computational pipeline is that its semi-supervised cluster identification 
may not be well suited for the direct identification of specific subpopulations which are defined by 
continuum markers. This is due to the method’s reliance on the presumption that makers are binary 
distributed. In addition, for users with general interest in charactering subclusters of each main cell 
lineage, it can be laborious to first perform BinaryClust then extract every population for unsuper-
vised clustering. In such scenarios, BinaryClust can be used in parallel with other clustering methods 
or pipelines like CATALYST. This allows users to quickly obtain additional information about main cell 
types with the accuracy comparable to manual gating.

In summary, we introduce a novel open-source R-implemented strategy and a versatile toolbox for 
CyTOF data analysis. The future direction is to automate the data clean-up, compensation, and bead 
normalisation steps. Additionally, we also aim to implement the whole pipeline into Python, a more 
accessible programming language for bioinformatics novices and biologists who wish to perform 
high-dimensional data analysis independently.

Materials and methods

 Continued on next page

Key resources table 

Reagent type (species) or 
resource Designation Source or reference Identifiers

Additional 
information

Antibody Maxpar Direct Immune Profiling Assay Standard Biotools Cat# 201325

Antibody

anti-CD95
(RRID:AB_314546,
mouse, monoclonal) Biolegend Cat# 305607 1:200, 1.5 μl

Antibody
anti-TIGIT
(mouse, monoclonal) Standard Biotools

Cat# 201406 (Maxpar Direct T cell 
expansion panel 2) 1:300, 1 μl

Antibody
anti-PD1
(mouse, monoclonal) Standard Biotools

Cat# 201406 (Maxpar Direct T cell 
expansion panel 2) 1:200, 1.5 μl

https://doi.org/10.7554/eLife.95494
https://identifiers.org/RRID/RRID:AB_314546
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Reagent type (species) or 
resource Designation Source or reference Identifiers

Additional 
information

Antibody
anti-ICOS
(hamster, monoclonal) Standard Biotools

Cat# 201406 (Maxpar Direct T cell 
expansion panel 2) 1:200, 1.5 μl

Antibody
anti-TIM3
(mouse, monoclonal) Standard Biotools

Cat# 201406 (Maxpar Direct T cell 
expansion panel 2) 1:300, 1 μl

Antibody
anti-OX40
(mouse monoclonal) Standard Biotools

Cat# 201406 (Maxpar Direct T cell 
expansion panel 2) 1:300, 1 μl

Antibody
anti-CXCR4
(mouse, monoclonal) Standard Biotools

Cat# 201406 (Maxpar Direct T cell 
expansion panel 2) 1:300, 1 μl

Genetic reagent; 
Recombinant DNA 
reagent

Pierce 16% Formaldehyde (methanol-
free) Thermo Fisher Cat# 28906

Genetic reagent; 
Recombinant DNA 
reagent Trypan blue solution (0.4%) Gibco Cat# 15250-061

Genetic reagent; 
Recombinant DNA 
reagent Human TruStain FcX Biolegend Cat# 422302

Genetic reagent; 
Recombinant DNA 
reagent EQ Four Element Calibration beads Standard Biotools Cat# 201078

 Continued

BinaryClust
Most of the CyTOF markers exhibit log-normal or bi-modal distribution with zero inflation after arcsinh 
transformation. Thus, we employ binary classification using k-means to group cells into negative and 
positive populations (k = 2) for each marker indicated in the user-defined classification matrix. Here, 
k-means is an unsupervised clustering algorithm to cluster the data based on the Euclidean distance 
among points, which is calculated by the formula below:

	﻿‍ d(p, q) =
√

(p1 − q1)2 + (p2 − q2)2 + · · · + (pn − qn)2.‍�

Then assign each data point into a cluster centroid which is denoted by ci, and dist() is the Euclidean 
distance:

	﻿‍
arg min

ci∈C
(ci, x)2

‍�

By aligning the k-means results with the user-designed classification matrix, cell populations can be 
subsequently classified and annotated.

R package ImmCellTyper
This computational pipeline is implemented in the R package ImmCellTyper and publicly available on 
Github (https://github.com/JingAnyaSun/ImmCellTyper, Sun et al., 2023). Instructions for package 
installation and function usage can be found in the README file on the Github page. It is recom-
mended to first examine the unwanted non-biological variation across batches and perform additional 
batch normalisation if necessary. Afterwards, import the data into the second part of the pipeline for 
downstream analysis. Users are required to prepare all the FCS files, sample metadata containing the 
details and grouping information of each sample, panel metadata with the information of the antibody 
panel with metal tags used in the experiments, and cell type classification matrix with phenotypic 
marker expression in a binary manner of each cell lineage. All files need to be in the right format to 
use the pipeline.

https://doi.org/10.7554/eLife.95494
https://github.com/JingAnyaSun/ImmCellTyper
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ImmCellTyper workflow overview
ImmCellTyper pipeline is composed of seven steps corresponding to two separate sub-pipelines, 
as described in Figure 8 and Github vignettes (https://github.com/JingAnyaSun/ImmCellTyper/tree/​
main/vignettes; Sun et al., 2023):

1.	 Sub-pipeline1 (corresponds to Figure 8, workflow step 2): Batch effects evaluation and correc-
tion. Batch effects occur when samples were collected and measured at different sites or time 
points, especially for large-scale studies. It is crucial to remove the unwanted variation which 
might interfere the true biological differences. After bead normalisation and data clean-up 
(Figure 8, workflow step 1), which can be performed using third-party platforms, such as CyTOF 
v7.0 system control software and Cytobank, users can systematically examine batch effects on 
two levels including marker behaviours and clustering results based on the method introduced 
by Trussart et al., 2020. If needed, CytoNorm and CytofRUV, which are well-performing correc-
tion algorithms, can be used to align the existing batch effects.

2.	 Sub-pipeline2 (corresponds to Figure 8, workflow steps 3–7): Semi-supervised classification, 
differential analysis, and in-depth investigation. When data are cleaned and normalised, they 
can be imported into the second part of the pipeline, constructed into a SingleCellExperi-
ment object, and undergo semi-supervised classification to identify the major cell types and 
test the differential frequencies or state marker expression among study groups. After that, 
if the users have certain interests of specific cell types and pre-design the panel for that, or 
in another circumstance, the initial statistics draw the user’s attention into a certain cell type, 
institutively, further clustering using unsupervised tools like flowSOM or Phenograph should be 
conducted with an increased cluster resolution and deeper investigation for cell subsets, after 
extracting the cell population of interest. ImmCellTyper pipeline has the same data storage and 
infrastructure as CATALYST, therefore all the functions in CATALYST can be seamlessly used in 
ImmCellTyper, tailored to user’s analytical needs. We do not elaborate on the basic functions 
of CATALYST, which can be found in the tutorial vignettes of the package (https://github.com/​
HelenaLC/CATALYST; CATALYST-project, 2024).

Batch correction algorithms
The batch effect correction algorithms embedded in the function of ‘batchNorm’ comprises 
CytoNorm, as described by Van Gassen et al., 2020 and CytofRUV by Trussart et al., 2020. Both 
algorithms rely on anchors (reference samples/technical replicates) across batches to perform normal-
isation. CytoNorm uses flowSOM clustering to first identify clusters prior to a population-specific 

Figure 8. Overall schematic outline of the ImmCellTyper workflow with description for each step.

https://doi.org/10.7554/eLife.95494
https://github.com/JingAnyaSun/ImmCellTyper/tree/main/vignettes
https://github.com/JingAnyaSun/ImmCellTyper/tree/main/vignettes
https://github.com/HelenaLC/CATALYST
https://github.com/HelenaLC/CATALYST
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transformation on the reference samples by computing the quantile values and aligning them with 
splines, whereas CytofRUV applies remove unwanted variation III (RUV-III) to CyTOF data by esti-
mating and eliminating the non-biological variation of the pseudo-replicates.

Agreement evaluation
To assess the agreement among manual gating, BinaryClust classification and flowSOM clustering, we 
used correlation, interaction plot, and Bland–Altman analysis. Correlation evaluates the relationship 
between two variables which does not mean concordance, but if two methods agree, surely, they 
should be highly correlated. We compared the results of cell population frequency generated by 
experts and BinaryClust using Pearson correlation, calculated the correlation coefficient and p value, 
with the line of equality indicating perfect agreement (red solid line, R2 = 1) in the plots to help gauge 
the degree of agreement between the two methods; Bland–Altman plot refers to a dot plot of the 
difference between two variables (y-axis) against the mean of them (x-axis), as described by J. Martian 
Bland and Douglas G. Altman in 1986, which represents a graphical magnitude of bias (average of 
difference) with 95% confidence interval. The math formula for the limit of agreement is as below:

	﻿‍ Limits of agreement = mean difference observed ± 1.96 × standard deviation‍�

We also used Interaction plot to display the interaction effects of the three methods including 
manual gating, BinaryClust classification, and flowSOM clustering on the measurement of cell frequen-
cies to evaluate the agreement.

F-measure
F-measure is a method to assess the accuracy of the clustering method compared to gold standard, 
which is manual gating results in this study. It stands for the harmonic mean of the precision and recall 
values, which can be calculated using below formula:

	﻿‍
F−measure = 2x Precision × Recall

Precision + Recall ‍�

Here, precision represents the positive predictive value: the proportion of true positive instances 
divided by the instances classified as positive by the clustering algorithm; recall evaluates the sensi-
tivity, which is the number of true positive events correctly identified by the algorithm among all 
events that belong to the cluster. F-measure ranges from 0 to 1, where 1 suggests perfect perfor-
mance and 0 indicates poor precision and recall.

Adjusted Rand Index
Adjusted Rand Index is a widely used method to measure the similarity between two clustering results. 
We used it to assess the agreement between test clustering algorithm and the gold standard labels 
which is derived from manual gating. ARI is defined as the following formula based on a contingency 
matrix (where nij, ai, bj are values from the contingency table):

 

	﻿‍

ARI =

Σij


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Differential analysis
In order to perform the differential analysis of cell abundances and state marker expression among 
study groups, we consider the number of study groups into two conditions in function ‘StatTest’: (1) n 
= 2, Mann–Whitney–Wilcoxon analysis will be applied as cell frequency/marker expression does not fit 
normal distribution; (2) n = 3, Kruskal–Wallis test will be first performed followed by multiple testing 
correction using BH procedure and post hoc analysis (Dunn’s test or pairwise Wilcoxon test).

https://doi.org/10.7554/eLife.95494
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Sample collection and preparation for CyTOF
PBMC samples from MPN patients were requested and obtained from biobank at Guy’s Hospital, 
under a protocol approved by the KCL Biobank Access Committee (REC18/EE/0025). Healthy volun-
teers were recruited at Guy’s hospital with informed consent and ethical approval by King’s College 
Research Ethics Committee (HR-17/18-5960 MOD-20/21-5960) in accordance with the Declaration of 
Helsinki. All identifiable information of study participants were securely stored in a trusted research 
environment managed by members of the team.

Venous blood samples from healthy volunteers were collected in BD vacutainer Ethylenedi-
aminetetraacetic Acid (EDTA) tubes, and PBMCs were isolated and purified using Ficoll-Hypaque 
density gradient centrifugation. In brief, blood was carefully layered onto Ficoll and spined at 460 × 
g for 20 min at room temperature (RT) without brake; upon observing a clear separation of blood 
components, PBMCs were then carefully isolated and washed three times with RPMI 1640 medium to 
remove other contaminants. Subsequently, the purified PBMCs were cryopreserved in liquid nitrogen 
at a density of 1 × 107 cells per vial.

CyTOF antibody staining
Cryopreserved cells were quickly thawed at 37°C in water bath, suspended in pre-warmed RPMI 1640 
medium, washed three times, and underwent Fc-blocking using human TruStain FcX (Biolegend) for 
10 min at RT. Given that the antibody panel employs indirect detection of CD95 using anti-CD95-APC 
and anti-APC-106Cd, cells were initially stained with anti-CD95-APC for 30  min in a dark place, 
followed by two washes with 2-ml cell staining buffer (CSB). After the removal of supernatant, cells 
were resuspended in 300 µl CSB and transferred into the dip tube containing lyophilised antibody mix 
of Maxpar direct immune profiling assay (Standard BioTools). Additional antibodies used to study T 
cell activation, migration, and exhaustion status (anti-TIM3, anti-PD-1, anti-ICOS, anti-TIGIT, and anti-
OX40) were also added. Cells were incubated with the antibody mix for 30 min at RT in compliance 
with the manufacturer’s instructions, washed twice and fixed using a freshly prepared 1.6% parafor-
maldehyde (PFA, Thermo Fisher Scientific) solution for 10 min at RT. In the end, cells were washed with 
CSB twice to remove residual PFA and stained with 125 nM Cell-ID intercalator-Iridium in 1 ml Maxpar 
Fix and Perm Buffer (Standard BioTools) overnight at 4°C. The stained cells were frozen down using 
freezing media (fetal bovine serum containing 10% Dimethyl sulfoxide (DMSO)) and stored at −80°C 
freezer before data acquisition.

On the day for CyTOF acquisition, cryopreserved samples were thawed, washed twice with 1 ml 
CSB, followed by additional two washes with 1 ml cell acquisition solution (Standard BioTools), and 
centrifuged at 800 × g for 5  min. Cells were then filtered through a 40-μm cell strainer to avoid 
blockage and cell count was determined by Countess automated cell counter (Invitrogen). EQ four-
element calibration beads (Standard BioTools) were added to a final concentration of 0.5 × 106 cells/
ml to adjust signal fluctuation of the instrument. CyTOF acquisition was performed on Helios mass 
cytometer system. For each batch of cell staining and run, technical replicates from the same healthy 
donor were included to evaluate and correct batch effects.

The full antibody panel including the metal tag, clone, and supplier is listed in Appendix 1—table 
1.

CyTOF data pre-processing
FCS files were first processed for bead normalisation using CyTOF v7.0 system control software (Stan-
dard BioTools) to correct signal drift during acquisition. Subsequently, the files were imported into 
Cytobank (Cytobank Inc) for data cleaning, with a detailed procedure illustrated in Figure 1—figure 
supplement 2. The aim is to remove non-events including debris, doublets, normalisation (EQ) beads, 
and other undesired events like dead cells. The CD45+ cell population was pre-gated using Cytobank 
for downstream analysis.

Manual gating
Manual gating for major cell populations was performed using Cytobank platform, and gatingML 
files were exported and converted into gatingSet object to extract labels of each cell via the R pack-
ages flowWorkspace, openCyto, and CytoML. These data were used as reference for benchmarking 
computer-aided algorithms.

https://doi.org/10.7554/eLife.95494
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Data availability
In this study, we tested ImmCellTyper pipeline on the MPN cohort with 7 MPN patients and 2 healthy 
volunteers, influenza cohort with 11 patients, and the COVID-19 cohort with 59 COVID-19 patients and 
23 healthy volunteers. The FCS files (after clean-up and gating of CD45 population) and metadata of 
the MPN cohort were deposited in Zenodo (https://doi.org/10.5281/zenodo.10076940); the influenza 
cohort was published by our lab (Alimam et al., 2021), and the data were stored in Zenodo (https://​
doi.org/10.5281/zenodo.7982165); the COVID-19 dataset was previously published by Chevrier et al. 
(Chevrier et al., 2021) and the FCS files can be retrieved from Mendeley Data (https://data.mendeley.​
com/datasets/vyy8ttw7n9/1).

The following dataset was generated:

Author(s) Year Dataset title Dataset URL Database and Identifier

Sun J 2023 CyTOF data for MPN 
dataset

https://​zenodo.​org/​
records/​10076940

Zenodo, 10.5281/
zenodo.10076940

The following previously published datasets were used:

Author(s) Year Dataset title Dataset URL Database and Identifier

Chevrier S, Zurbuchen 
Y, Cervia C

2020 A distinct innate 
immune signature marks 
progression from mild to 
severe COVID-19

https://​doi.​org/​10.​
17632/​vyy8ttw7n9.1

Mendeley Data, 10.17632/
vyy8ttw7n9.1

Alimam S 2021 CyTOF test data for 
BinaryClust2

https://​doi.​org/​10.​
5281/​zenodo.​7982165

Zenodo, 10.5281/
zenodo.7982165
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Appendix 1

Appendix 1—table 1 Continued on next page

Appendix 1—table 1. CyTOF antibody panel for MPN cohort.

Antibody Clone Metal tag Manufacturer

Anti-CD45 HI30 89Y Standard BioTools

Live/dead Indicator N/A 103Rh Standard BioTools

Anti-CD95 DX2 APC Biolegend

Anti-APC APC003 106Cd Standard BioTools

Anti-CD196 G034E3 141Pr Standard BioTools

Anti-OX40 ACT35 142Nd Standard BioTools

Anti-CD123 6H6 143Nd Standard BioTools

Anti-CD19 HIB19 144Nd Standard BioTools

Anti-CD4 RPA-T4 145Nd Standard BioTools

Anti-CD8a RPA-T8 146Nd Standard BioTools

Anti-CD11c Bu15 147Sm Standard BioTools

Anti-CD16 3G8 148Nd Standard BioTools

Anti-CD45RO UCHL1 149Sm Standard BioTools

Anti-CD45RA HI100 150Nd Standard BioTools

Anti-CD161 HP-3G10 151Eu Standard BioTools

Anti-CD194 L291H4 152Sm Standard BioTools

Anti-CD25 BC96 153Eu Standard BioTools

Anti-CD27 O323 154Sm Standard BioTools

Anti-CD57 HCD57 155Gd Standard BioTools

Anti-CD183 G025H7 156Gd Standard BioTools

Anti-CD185 J252D4 158Gd Standard BioTools

Anti-TIM-3 F38-2E2 159Tb Standard BioTools

Anti-CD28 CD28.2 160Gd Standard BioTools

Anti-CD38 HB-7 161Dy Standard BioTools

Anti-CD56 NCAM16.2 163Dy Standard BioTools

Anti-TCRgd B1 164Dy Standard BioTools

Anti-PD-1 EH12.2H7 165Ho Standard BioTools

Anti-CD294 BM16 166Er Standard BioTools

Anti-CD197 G043H7 167Er Standard BioTools

Anti-CD14 63D3 168Er Standard BioTools

Anti-ICOS C398.4A 169Tm Standard BioTools

Anti-CD3 UCHT1 170Er Standard BioTools

Anti-CD20 2H7 171Yb Standard BioTools

Anti-CD66b G10F5 172Yb Standard BioTools

Anti-HLA-DR LN3 173Yb Standard BioTools

Anti-IgD IA6-2 174Yb Standard BioTools

Anti-CXCR4 12G5 175Lu Standard BioTools

https://doi.org/10.7554/eLife.95494
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Antibody Clone Metal tag Manufacturer

Anti-CD127 A019D5 176Yb Standard BioTools

Anti-TIGIT MBSA43 209Bi Standard BioTools

Appendix 1—table 1 Continued

https://doi.org/10.7554/eLife.95494
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