Svoboda | Graniru | BBC Russia | Golosameriki | Facebook

To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Coriolis frequency

From Wikipedia, the free encyclopedia

The Coriolis frequency ƒ, also called the Coriolis parameter or Coriolis coefficient,[1] is equal to twice the rotation rate Ω of the Earth multiplied by the sine of the latitude .

The rotation rate of the Earth (Ω = 7.2921 × 10−5 rad/s) can be calculated as 2π / T radians per second, where T is the rotation period of the Earth which is one sidereal day (23 h 56 min 4.1 s).[2] In the midlatitudes, the typical value for is about 10−4 rad/s. Inertial oscillations on the surface of the Earth have this frequency. These oscillations are the result of the Coriolis effect.

YouTube Encyclopedic

  • 1/2
    Views:
    478
    576
  • Mod-01 Lec-11Foundation of Scientific Computing-11
  • Mod-01 Lec-10 Foundation of Scientific Computing-10

Transcription

Explanation

Consider a body (for example a fixed volume of atmosphere) moving along at a given latitude at velocity in the Earth's rotating reference frame. In the local reference frame of the body, the vertical direction is parallel to the radial vector pointing from the center of the Earth to the location of the body and the horizontal direction is perpendicular to this vertical direction and in the meridional direction. The Coriolis force (proportional to ), however, is perpendicular to the plane containing both the earth's angular velocity vector (where ) and the body's own velocity in the rotating reference frame . Thus, the Coriolis force is always at an angle with the local vertical direction. The local horizontal direction of the Coriolis force is thus . This force acts to move the body along longitudes or in the meridional directions.

Equilibrium

Suppose the body is moving with a velocity such that the centripetal and Coriolis (due to ) forces on it are balanced. This gives

where is the radius of curvature of the path of object (defined by ). Replacing , where is the magnitude of the spin rate of the Earth, to obtain

Thus the Coriolis parameter, , is the angular velocity or frequency required to maintain a body at a fixed circle of latitude or zonal region. If the Coriolis parameter is large, the effect of the Earth's rotation on the body is significant since it will need a larger angular frequency to stay in equilibrium with the Coriolis forces. Alternatively, if the Coriolis parameter is small, the effect of the Earth's rotation is small since only a small fraction of the centripetal force on the body is canceled by the Coriolis force. Thus the magnitude of strongly affects the relevant dynamics contributing to the body's motion. These considerations are captured in the nondimensionalized Rossby number.

Rossby parameter

In stability calculations, the rate of change of along the meridional direction becomes significant. This is called the Rossby parameter and is usually denoted

where is the in the local direction of increasing meridian. This parameter becomes important, for example, in calculations involving Rossby waves.

See also

References

  1. ^ Vallis, Geoffrey K. (2006). Atmospheric and oceanic fluid dynamics : fundamentals and large-scale circulation (Reprint. ed.). Cambridge: Cambridge University Press. ISBN 978-0-521-84969-2.
  2. ^ Goldstein, Herbert; Charles P. Poole; John L. Safko (1980). Classical Mechanics (2nd ed.). Addison Wesley. p. 178. ISBN 0-201-02918-9.
This page was last edited on 9 October 2023, at 07:59
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.