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A new fossil batoid (ray) Asflapristis cristadentis gen. et sp. nov. is described from 

six exceptionally well-preserved, three-dimensional skeletal remains from the 

Turonian (Late Cretaceous) of Morocco. Mechanical and acid preparation and CT 

scanning of these specimens reveal details of much of the proximal skeleton, 

especially the skull, synarcual and pectoral skeleton, with only the more distal parts 

of the skeleton missing. These fossils represent a relatively large animal (62 cm 

preserved length, estimated total length to approximately 2 meters) possessing a 

robust rostrum that lacks enlarged rostral denticles. It has a narrow and small 

chondrocranium with jaws that are relatively large compared to the rest of the skull 

and robust with highly ornamented teeth that lack cusps. The branchial skeleton 

shows a large second hypobranchial without anterior process which was probably 

fused to the basibranchial as in other sclerorhynchoids. The synarcual is large and 

lacks centra through its entire length, and with no direct connection to the pectoral 

girdle was observed. Pectoral fins probably possessed enlarged proximal elements 

(propterygium, mesopterygium and metapterygium), the reduced articulation facet 

between the coracoid with the pectoral elements was reduced. A phylogenetic 

analysis using both parsimony and bayesian methods was performed incorporating 

this new taxon. Both analyses recovered a phylogenetic topology that places the 

sclerorhynchoids in a close relation to rajoids and clearly separated from the 

morphologically similar Pristidae within the Rhinopristiformes. In respect to the extant 

taxa, the phylogenies generated are similar to that obtained in molecular analysis of 
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modern batoids. The palaeoecological implication of this discovery suggests that the 

Asfla assemblage was not from a ‘normal’ open carbonate shelf but rather a 

restricted environment favouring a low diversity chondrichthyan fauna. 

 

Key words: Phylogenetic analysis, Asflapristis cristadentis, Sclerorhynchoidei, 

batoids, Morocco, Turonian.  

 

Introduction 

 

The Batoidea (rays and their relatives) form the sister group to sharks within the 

Elasmobranchii and comprise more than half of living species of chondrichthyans. 

Whilst modern batoids are very diverse, including skates, sawfish, stingrays, electric 

rays and guitarfish, there are also a number of extinct clades, especially from the 

Jurassic and Cretaceous (Cappetta 2012; Maisey 2002). The most 

palaeontologically diverse of these extinct batoid clades is the sclerorhynchoids, a 

group of superficially sawfish-like forms that were present through much of the 

Cretaceous, becoming extinct at the end of the period. Currently the are over 60 

sclerorhynchid nominal species, with most known only from isolated oral teeth or 

their characteristic enlarged rostral denticles (Cappetta 2012). 

 

Sclerorhynchid remains are present in both marine and non-marine deposits, they 

appear to have been largely restricted to shallow-marine, nearshore, temperate-

tropical areas within the Tethyan Realm (Underwood 2006), with sclerorhynchid 

fossils commonly dominating Cretaceous Tethyan chondrichthyan assemblages (e.g. 

Welton & Farish 1993). Articulated skeletal remains of all batoids are rare, with 

sclerorhynchoids being especially poorly represented. Almost all articulated 

sclerorhynchid material described to date is from the Late Cretaceous (Cenomanian 

or Santonian) of Lebanon (e.g. Cappetta 1980). From these sites, articulated and in 

many respects beautifully preserved, remains of the small sclerorhynchoids 

Sclerorhynchus, Libanopristis and Micropristis are known. Despite preservation of 

fine skeletal detail, and even traces of soft tissues, these fossils are dorsoventrally 

flattened and as a result the complex three-dimensional detail of structures such as 

the neurocranium, branchial elements, synarcual and pectoral girdle are poorly 



known. Other non-dermal (teeth and denticle) sclerorhynchid material is restricted to 

partial to near complete rostra, typically of large species (e.g. Werner 1989), 

although there are additional records of an articulated cranium of Onchopristis 

(Dutheil & Brito 2009 not yet described).  

 

Despite the lack of uncrushed skeletal remains of sclerorhynchoids, it has been 

recognised that they form a well-defined and monophyletic clade (Cappetta 1980, 

1987; Kriwet 2004; Wueringer et al. 2009). However, there has been great 

uncertainty as to the phylogenetic position, and evolutionary significance, of this 

clade, with characters of critical parts of the anatomy being obscured by crushing in 

all known specimens. Currently sclerorhynchoids are typically placed as part of the 

order Rajiformes and comprising the suborder Sclerorhynchoidei (Cappetta 1987, 

2006). Their striking (but superficial) similarity with modern sawfishes (Pristidae) and 

sawsharks (Pristiophoridae) has complicated phylogenetic placement of the group. 

Rostrum-associated structures have sometimes been regarded as homologous 

within these disparate groups, greatly influencing their apparent phylogenetic 

position, even though there are considerable differences in detail (e.g. Welten et al. 

2015). As a result, sclerorhynchoids have been considered to reside in different 

positions in batoid phylogeny (e.g. Kriwet 2004; Claeson et al. 2013; Underwood & 

Claeson 2017) (see phylogenetic implications),   

 

Kriwet (2004) is the direct antecedent for the present study, representing the most 

extensive review of the phylogenetics of the sclerorhynchoids to date. This analysis 

proposed several characters that distinguish the sclerorhynchoids form other batoids 

(e.g. buccopharyngeal and ophthalmic nerves not embedded in the rostral cartilage 

and lack of connection between the rostral cartilages and rostral denticles). In 

addition, Kriwet (2004) also included several characters from previous morphological 

studies (Nishida 1990; Brito & Seret 1996; De Carvalho 1996; Lovejoy 1996; 

McEachran et al. 1996; Shirai 1996) that supported the Hypnosqualea hypothesis 

(Shirai 1992), within which batoids were considered to be derived squalean sharks, 

which has been extensively refuted by Dunn & Morrissey 1995; Schwartz & Maddock 

2002; Douady et al. 2003; Winchell et al. 2004; Aschliman et al. 2012b; Last et al. 

2016). This study also included several errors in matters of character definitions and 

coding (Aschliman et al. 2012a).  



 

 

With the recovery of the first three dimensionally preserved skeletal fossils of 

sclerorhynchoids from the Cretaceous of Morocco, previously unknown 

morphological details were studied and reviewed allowing the clarification the 

phylogenetic relations for the group.  

 

Geological setting  

 

 

 



Figure 1. A, Map of the region; B, Locality map; C, Stratigraphic column of the 

Turonian in Asfla. 

The area North of the town of Goulmima, southeast Morocco, is well known for 

fossils of ammonites (e.g. Cavin et al. 2010, Kennedy et al. 2008) and vertebrates 

(e.g. Ettachfini & Andreu 2004). Fossils are commercially collected, with the trade 

being centred on the village of Asfla. Fossils come from the Akrabou Formation, a 

unit of platform carbonates that ranges from late Cenomanian to Turonian 

(Cretaceous) in age, representing the early part of the late Cretaceous. These 

carbonates overlie the famously fossiliferous ‘mid’ Cretaceous Kem Kem fluvial 

facies and are overlain by further non-marine late Cretaceous rocks. The Akrabou 

Formation, therefore presents a strongly transgressive succession and relatively high 

sealevel, followed by a regressive episode. More southern outcrops of the Akrabou 

Formation form a near horizontal foreland area to the South of the High Atlas 

tectonic belt, with successions North of Goulmima being subject to folding and 

reverse faulting along the southern margin of the High Atlas (Lezin et al. 2012) 

(Fig.1). Whilst much of the Akrabou Formation comprises very shallow water facies 

containing monospecific shell beds, microbial laminites and tepee structures, the 

ammonites and vertebrates are largely known from a deeper water interval 

comprising marls and impure micrites with ovoid calcareous concretions. These 

concretions contain a diverse ammonite fauna (Kennedy et al. 2008) indicative of the 

Mammites nodosoides biozone of the Early Turonian (Cavin & Dutheil 1999) and 

mark a point of maximum transgression and relative water depth (Ettachfini & 

Andreu 2004). The deeper water facies are laterally discontinuous, and pass into 

shallower water limestones to the east, such as in the Ziz Gorge South of Errachidia 

(e.g. Ettachfini & Andreu 2004). Whilst the deeper water marls are up to 15 metres 

thick (close to the village of Asfla), fossiliferous concretions are largely limited to near 

the top of the unit. Where fossils are actively mined, there are typically two distinct 

units of concretions. A lower concretion bed, up to one metre thick, is generally poor 

in macrofossils although some ammonites are present. A second concretion bed, 

about two metres higher in the succession, is somewhat discontinuous (being absent 

at this level at Asfla itself) and often highly fossiliferous. It is this level that is 

commonly mined as a series of adits in the cliff face to extract fossils for sale; where 

these concretions are absent, there is no systematic mining for fossils. The 



concretion-bearing levels are typically finely laminated and trace fossils are limited to 

rare, fine Planolites and other tubular burrows. Benthic fossils are rare other than 

oval, thin shelled bivalves and very small gastropods. At least some of the bivalves 

appear to be members of the Lucinidae. Small cirripede plates and comatulid 

crinoids are common in some commercially obtained concretions, but their 

provenance is uncertain. Whilst the laminated marls are pale brown or grey in colour, 

they have been exposed to extensive modern weathering and it is likely that they 

were originally rather organic-rich and dark in colour, as in unweathered examples of 

similar facies elsewhere. 

 

Within the concretion beds, fossils are largely restricted to within the concretions 

themselves, with the only macrofossils in the surrounding rocks being small 

molluscs. Concretions are typically ovoid and 0.2-0.3 metres long, but when they 

enclose a vertebrate fossil, typically take on the general shape of the enclosed fossil. 

Batoid and teleost skeletons collected from the Asfla area are three-dimensional, 

with skeletal elements occupying several planes within the concretion (Cavin et al. 

2010; Underwood & Ward 2009; Claeson et al. 2013), although there may be some 

crushing of larger elements (Claeson et al. 2013). The most abundant larger fossils 

within the nodules are relatively large ammonites (Kennedy & Juignet 1981; 

Kennedy et al. 2008). Fish fossils are also abundant, with most comprising partial to 

near complete skeletons. A large proportion of the fish are Goulmimichthys 

arambourgi (Cavin 1995), with Ichthyodectes bardacki, Osmeroides rheris and 

Araripichthys corytophorus (Cavin et al. 2010) also being frequent; Enchodus sp. 

(Cavin & Dutheil 1999) and indeterminate pycnodonts are also present. 

Chondrichthyans are far less common and restricted in diversity, with only batoids 

known from skeletal remains (Cavin, 1995; Claeson et al., 2013; Underwood et al., 

2015). Sclerorhynchoids are known from multiple partial to near complete skeletons 

(e.g. Underwood et al., 2015; fig. 3).  

 

Sampling for microvertebrates suggest a small number of additional chondrichthyan 

species are present (see below). The marine reptiles include abundant remains of 

the mosasaur Tethysaurus nopcsai Bardet et al. 2003a, several plesiosaurs 

including Thililua longicollis Bardet et al. 2003b and Manemergus anguirostris Buchy 

et al. 2005, and undescribed chelonians (Cavin et al. 2010). The overall fossil 



composition of the Akrabou Formation, whilst restricted in diversity, contains many of 

the faunal elements present in other shallow seas of the southern and western 

Tethys, and shows strong affinities with the South Atlantic and even the Western 

Interior Seaway in North America (Maisey & Moody 2001; Cavin 2001).   

 

The Akrabou Formation typically forms high and steep escarpments, with the 

concretion beds often within the upper part of these cliffs. The upper nodule bed is 

the focus of intense commercial collecting activity, with horizontal adits being driven 

into the escarpments wherever abundant fossils are present. The most productive 

fossil sites are along the large escarpment South and East of Asfla; exposures 

elsewhere either lack the upper concretion bed or are less fossiliferous and are not 

commercially exploited. As a result, few fossils are seen in situ in the field, although 

ammonites and a skull of Goulmimichthys were recorded by the authors, and 

weathered fossils, including fragments of fish and reptiles, are not uncommon in the 

natural screes on the lower parts of the escarpments. The softer marls, especially 

those of the level of the Upper Nodule Bed, are suitable for bulk sampling. As with 

many Moroccan palaeontological investigations, the presence of commercial 

collecting has proven critical to this study. 

 

Taphonomy  

Whilst fossils of dermal elements of chondrichthyan are often very common in the 

fossil record, skeletal remains are far less so. Teeth are produced continuously 

through life and are often conspicuous. In sclerorhynchoids, teeth are small and 

rarely seen in the field, whereas the rostral denticles are typically large and 

conspicuous. In both teeth and denticles, the enameloid and dentine composition 

gives them a high preservation potential. In contrast, the cartilaginous skeleton is 

less commonly fossilised. Whilst many skeletal elements may be mineralised with 

apatite tesserae, these form a mineralised outer layer of the skeletal elements and 

readily disarticulate during decay. As a result, preserved endoskeletal elements of 

chondrichthyans are largely limited to the most intensely mineralised structures such 

as vertebral centra, jaw cartilages and rostra. More complete skeletal remains of 

chondrichthyans are restricted to a small number of konservat lagerstätten (e.g. 

Solnhofen, Nusplingen (Kriwet & Klug 2004), Monte Bolca (Marramà et al. 2018), 

Green River Formation (De Carvalho et al. 2004)). Cretaceous sites with well-



preserved batoids are rare and, other than isolated occurrences, largely limited to 

sites in Lebanon (e.g. Cappetta 1980) and the Santana Formation of Brazil (e.g. 

Martill 1988). Of these sites, the outwardly spectacularly preserved fossils of 

Lebanon are highly compressed, whilst the uncrushed batoid fossils of Brazil are 

restricted to two species (Iansan beurleni (Brito & Seret 1996) and Stahlraja 

sertanensis Brito et al. 2013).  

 

At Asfla, vertebrate remains are preserved largely uncrushed within large and 

irregular carbonate concretions. The bony fish are typically preserved with the 

concretions centred around their trunk, with concretions around smaller fish being 

ovoid, those around larger skeletons roughly replicating the outline of the enclosed 

remains. The edges of the concretions rarely reach the extremities of the skeleton, 

with the caudal area, and often front of the skull, commonly missing. As isolated fish 

scales, teeth and vertebrae are common in the surrounding matrix marl, it is likely 

that the loss of these extremities occurs during collection rather than as taphonomic 

loss of bone outside the concretions. Specimens of Asflapristis cristadentis are far 

less complete than is typical of bony fish. Some specimens like NHMUK PV P 75431 

were clearly disarticulated prior to burial whereas others like NHMUK PV P 75433, 

although incompletely preserved, show a skeleton that extends beyond the edges of 

the concretions and were complete and articulated at the time of burial. In the cases 

of these articulated specimens, it is likely that parts of the skeleton outside the 

concretions were lost at the time of collection, with the collectors not recognising the 

crushed cartilaginous skeleton outside the concretions. The high degree of 

articulation of even relatively fragile skeletons of batoids suggests that scavenging 

on the seafloor was absent or minimal, indicative of a hostile seafloor and/or very 

rapid burial. Whilst the concretion-bearing units of rock are thin, this does not rule out 

rapid burial by episodic sedimentation, even if the net sedimentation rate was low. 

Evidence for rapid burial comes from the fact that some of the elements of the 

skeletons are articulated even though they do not exist on the same bedding plane 

of the rock. This is clearly seen in the articulated dentitions of specimens like 

NHMUK PV P 75432 (Fig. 2 A-B) where parts of articulated dentition are present in 

their life position relative to jaw cartilages. This can only have been preserved if 

burial had occurred prior to decay of dermal tissue supporting the teeth. A similar 

situation exists with the three-dimensional nature of branchial and jaw elements in 



some batoid specimens, where connective tissue must have retained the geometry 

of the skeleton until burial.  

 

The rich biota of the Asfla concretion beds is composed almost entirely of free-

swimming taxa, especially ammonites and vertebrates. By contrast, benthos is very 

limited and largely occurs sporadically, possibly restricted to certain bedding 

surfaces, whilst infaunal ichnofossils (burrows) are largely absent. A likely 

explanation of this is that the seafloor was generally hostile to life (e.g. Wignall 

1994). The few benthic bivalves appear to be largely limited to lucinids, which 

possess with their sulphide-oxidising endosymbionts and thus may have found the 

conditions favourable when other benthos did not. Whilst there is clear no evidence 

of scavenging of vertebrate remains (such as bite marks), there are suggestions of 

scavenging by large organisms on at least one of the specimens. In specimen 

NHMUK PV P 75428 (Fig. 2 C-D), a large piece of sheet-like cartilage with ragged 

edges is present. The affinity of this is unclear, but it appears to be a partially 

detached piece of the braincase. This displacement cannot easily be explained by 

burial processes, and therefore it may represent the damage to the skull caused by 

feeding by a large (e.g. reptilian) scavenger. 

 

No soft tissue preservation has been recognised in specimens of Asflapristis 

cristadentis, although phosphatised muscle tissue was noted in another batoid taxon 

(Claeson et al. 2013) and may be present but inconspicuous. This, albeit rare, 

preservation of soft tissue points towards an environment with poor conditions for 

organisms responsible for decomposing (Lezin et al. 2012) associated with 

microbially-mediated precipitation of apatite being more rapid than complete decay 

of soft tissues (Martill 1988).  

 

Whilst fossils within the concretions are typically preserved in three dimensions, 

there is evidence of some degree of compaction prior to carbonate precipitation to 

form the concretions. There is some degree of crushing of the neurocranium and 

pectoral girdle of some specimens and shortening of obliquely orientated elements 

has previously been noted (Claeson et al. 2013). The overall taphonomic 

environment is thus similar to that of the Santana Formation of Brazil (see Martill 

1988), despite the lack of similarity of depositional environment, with fully marine 



environments of Asfla contrasting with the rather more restricted 

palaeoenvironments of the Santana Formation which lacks fully marine invertebrates 

(Martill 1988).  

 

Figure 2. Examples of preservation of specimens of Asflapristis cristadentis gen. et 

sp. nov. found in Asfla. A, B, paratype NHMUK PV P75432; C, D, ventral view of 

paratype NHMUK PV Pe 75428 a–e. Abbreviations: Antc, antorbital cartilage; C, 

undetermined cartilages. 

Material and methods 

 

The specimens described here were obtained by the authors (D.W. and C.U.) from 

Morocco-based commercial sources, either from fossil collectors in Asfla itself or 

from larger scale local wholesalers based in Erfoud, Rissani and Rich. Specimens of 

Asflapristis were obtained either totally unprepared, or with only minimal, and 



typically rather crude, preparation. In all cases some cartilage with tesserae was 

showing on the surface of the concretion, sometimes associated with teeth. 

Additional sclerorhynchid remains associated with a different tooth morphology 

(referred to here as Ptychotrygon sp.) are also present. To prevent incorrect 

attribution of specimens to Asflapristis, only specimens associated with the 

characteristic teeth were included in this study. Of the skeletally preserved batoid 

material obtained by the authors, Tingitanius tenuimandibularis Claeson et al. 2013 

was represented by a single specimen, Asflapristis cristadentis description is based 

on six specimens and an additional sclerorhynchid, provisionally referred to 

Ptychotrygon sp. (currently under study), by rather more abundant specimens 

including a near complete skeleton (see Underwood et al. 2015; fig. 3). This general 

pattern of frequency is somewhat different to assemblages of isolated teeth obtained 

by sieving marls from levels equivalent to the upper nodule bed; teeth of 

Ptychotrygon are by far the dominant elasmobranch fossils, followed by extremely 

small teeth resembling those of Rhinobatos; Asflapristis teeth are relatively rare as 

are teeth of a small anacoracid shark and Cretomanta. Isolated Tingitanius teeth 

have not been recorded in these samples. It is possible that the larger size of 

skeletal elements of Asflapristis favoured both its preservation and collection. 

 

The concretions enclosing the batoid remains are very hard, whilst cartilage 

elements are often fragile, and tesserae are commonly slightly disarticulated. The 

somewhat shattered tesserae ruled out acid preparation of the specimens, and 

mechanical preparation was only carried out where necessary to potentially expose 

characters not seen elsewhere. Mechanical preparation was performed in the 

Natural History Museum of the United Kingdom (NHMUK) and involved physical 

removal of the matrix using air pen, chisel and hammer to expose important 

characters for the description of the specimen. The preservation of specimen 

NHMUK PV P 75429 a-d, indicated that any preparation would risk severe damage 

to the material, and it was left unprepared but studied as rendered CT scan images.  

 

The specimen (NHMUK PV P 75429 a-d) was scanned at the High-Resolution 

Computed Tomography Laboratory at The University of Texas at Austin (UTCT) 

using an NSI scanner.  GE Titan source, small spot, 370 kV, 1.1 mA, 1 brass filter, 

Perkin Elmer detector, 2 pF gain, 1 fps (999.911 ms integration time), no binning, no 



flip, source to object 853.276 mm, source to detector 1421.23 mm, continuous CT 

scan, 3 frames averaged, 0 skip frames, 3099 projections, 7 gain calibrations, 15 

mm calibration phantom, data range [-2, 15] (rescaled from NSI default). Voxel size 

= 0.1316 mm, beam-hardening correction = 0.5. Post-reconstruction ring correction 

applied by Jessie Maisano using parameters oversample = 3, bin-width = 21, sectors 

= 60. Total slices = 1904. Slice data were further analysed using VGStudio MAX 2.0 

in the University of Texas Digital Methods Laboratory and using AVIZO in the 

Department of Biomedical Sciences at Ohio University. 

 

For the study of microvertebrates, approximately 125 kilogrammes of surrounding 

marl matrix have been sieved. Very small teeth necessitated the use of sieves down 

to 0.375mm mesh. Residues were treated in 7.5% formic acid buffered with calcium 

formate (spent acid) at a pH of 3.2 or above to remove carbonate fragments and 

yielded abundant teeth, largely of batoids.  

 

For the phylogenetic analysis a matrix of 37 taxa and 95 characters based on 

Aschliman and collaborators (2012a) analysis and characters from (Brito & Seret 

1996; McEachran & Dunn 1998; McEachran & Aschliman 2004; Brito & Dutheil 

2004; Kriwet 2004; Claeson et al. 2013; Johanson et al. 2013; Brito et al. 2013; 

Claeson 2014; Underwood & Claeson 2017) was used. Aschliman’s observations 

were reviewed using extant material from different collections (see Material 

examined). In cases were extant material was not available, published images (e.g. 

Nishida 1990; Alfonso & Gallo 2001; Domínguez & González- Isaís 2007; Claeson 

2010; Da Silva & De Carvalho 2015) and electronic material (https://sharksrays.org, 

to access this image bank contact Gavin Naylor) were used. In cases were no image 

was accessible, the coding of Aschliman or of other literature was retained (for 

discussion over character changes see supplementary material). The matrix was 

assembled in Mesquite 3.31 (Maddison & Maddison 2017) (supplementary material) 

using reductive coding (Brazeau 2011) seeking to recover as much information as 

possible from the characters and analysed on TNT 1.1 (Goloboff et al. 2013), PAUP 

(Swofford 2001), Mr. Bayes (Ronquist & Huelsenbeck 2003) and CIPRES (Miller et 

al. 2010).  

 

https://sharksrays.org/


For the parsimony analysis in TNT, a similar search protocol to Mannion et al. (2013) 

was used using the menu interface; a first search using the new technology search 

option within the analyse menu with the following parameters was implemented; 

search algorithm Ratchet with 10 init. addition sequence, 1000 random starting 

points, 1000 iterations collapsing trees after the search and a second search using 

the traditional search option  within the analyse menu using the most parsimonious 

trees (MPT’s) found in the first search (trees in RAM) was performed using the tree 

bisection and reconnection algorithm (TBR) and the following parameters: 1000 

random seed, 10000 replications and 10 trees saved per replication collapsing trees 

after the search. 

 

For the parsimony analysis in PAUP an herustic search with 1000 replicates of 

random stepwise addition (branch swapping: TBR) holding one tree at each step 

was used. 

Institutional abbreviations 

Institutional abbreviations. AMNH: American Museum of Natural History. BHN: 

Muséum d’Histoire Naturelle de Boulogne-Sur-Mer. BRC: Birkbeck Reference 

Collection. BSP: Bayerishe Staatssammling fur Paläontologie und Geologie, Munich, 

Germany. CNPE-IBUNAM: National Collection of Fishes, Biology Institute, 

Universidad Nacional Autónoma de México (UNAM). JM-SOS: Jura Museum 

Eichtätt, Germany. MNHN: Muséum national d’Histoire naturelle, Paris. NHMUK: 

Natural History Museum United Kingdom, London. UERJ: Universidade do Estado 

do Rio de Janeiro.  

 

Material examined 

 

Fossil material. Asflapristis cristadentis (NHMUK PV P 73925, 75428 a-e, 75429 a-

d, 75431, 75432, 75433), Asterodermus platypterus (NHMUK PV P 12067, 10934, 

JM-SOS 3647), Belemnobatis morinicus (BHN 2P1 Specimen figured in Cavin et al. 

1995, Figs. 2-6); Britobatos primarmatus (MNHN 1946.18.94, NHMUK PV P 4015, 

4016, 49517); Kimmerobatis etchesi (K874, paratype, K1894. Only the dorsal 

surface of exposed. Specimen figured in Underwood & Claeson 2017, Figs. 1-3); 



Libanopristis hiram (NHMUK PV P 108705, 108706, 13858, 63610, 75075); 

Sclerorhynchus atavus (NHMUK PV P4017, 4776, 49546, 49518, 49533, 49547); 

Spathobatis bugesicus (NHMUK PV P 6010, 2099 (2), BSP AS I 505, BSP 1952 I 

82: Only the dorsal surface of exposed, specimen figured in Kriwet & Klug 2004, Fig. 

18c). In addition, data is also included from a yet undescribed species of 

Ptychotrygon sp. (NHMUK PV P73630 Specimen figured in Underwood et al. 2015 

Fig 3A).  

 

Extant material. Amblyraja radiata (BRC-Amblyraja, skeleton); Aptychotrema 

vincentiana (CT-Scan available in https://sharksrays.org); Glaucostegus typus 

(NHMUK 1967.2.11.3, CT-Scan); Hydrolagus affinis (BRC-Hydrolagus, skeleton); 

Chimaera cubana (CT-Scan available in https://sharksrays.org); Gymnura altavela 

(CT-Scan available in https://sharksrays.org), Heptranchias perlo (CT-Scan available 

in https://sharksrays.org); Hexanchus nakamurai (CT-Scan available in 

https://sharksrays.org); Hypnos monopterygius (CT-Scan available in 

https://sharksrays.org); Irolita waitil (CT-Scan available in https://sharksrays.org); 

Mobula munkiana (CT-Scan available in https://sharksrays.org); Narcine brasiliensis 

(CNPE-IBUNAM 9280, skeleton); Narcine entemedor (CNPE-IBUNAM 5807, CT-

Scan); Narcine tasmaniensis (NHMUK 1961, CT-Scan); Pristis (NHUMK 

2047483647, CT-Scan); Platyrhina (BRC-Platyrhina, CT-Scan) Platyrhinoidis 

triseriata (MNHN 4329); Raja clavata (BRC-Raja, CT-Scan); Raja eglanteria (CT-

Scan available in https://sharksrays.org); Rajella fyllale (BRC-Rajella, skeleton); 

Rhina ancylostoma (NHMUK 1884, 1925, CT-Scan); Rhinobatos glaucostigma 

(CNPE- IBUNAM 17810, CT-Scan); Rhinobatos horkelli (UERJ 1397, skeleton); 

Rhinobatos lentiginosus (CNPE- IBUNAM 17827, CT-Scan); Rhinobatos 

leucorhynchus (CNPE-IBUNAM 1039, X-ray); Rhinobatos percellens (UERJ 1240, 

skeleton); Rhinobatos productus (CNPE- IBUNAM 17829, CT-Scan y 17821, X-ray); 

Rhinoptera bonansus (BRC-Rhinoptera, skeleton; CT-Scan available in 

https://sharksrays.org); Rhynchobatus djiddensis (MNHN 7850, X-ray); 

Rhynchobatus lübberti (MNHN 50-22-04.80); Rhynchobatus sp. (BCR-

Rhynchobatus, skeleton); Tetronarce nobiliana (CNPE- IBUNAM 9869, CT-Scan); 

Torpedo (NHMUK 72261); Trygonorrhina fasciata (MNHN 1372; BRC-Trygonorrhina, 

CT-Scan); Urobatis jamaicensis (AMNH 30385); Urolophus aurantiacus (CT-Scan 

available in https://sharksrays.org); Urotrygon chilensis (CT-Scan available in 

https://sharksrays.org/
https://sharksrays.org/
https://sharksrays.org/
https://sharksrays.org/
https://sharksrays.org/
https://sharksrays.org/
https://sharksrays.org/
https://sharksrays.org/
https://sharksrays.org/
https://sharksrays.org/
https://sharksrays.org/


https://sharksrays.org) Zanobatus sp. (MNHN 1989.12.91 X-ray, CT-Scan available 

in https://sharksrays.org); Zapteryx brevirostris (UERJ-PMB 35, skeleton, UERJ 

1234, skeleton y 1237, skeleton); Zapteryx exasperata (CNPE-IBUNAM 17822, 

17823 (1), 17824 (1), 17826 (1), 17825 (1) CT- Scan and skeleton, 20528 (2)); 

Zapteryx xyster (CNPE-BUNAM 16661(1), CT-Scan, and skeleton 19790 (4)). 

 Systematic palaeontology 

 

Class Chondrichthyes Huxley, 1880 

Superorder Batomorphii Cappetta, 1980 

Order Rajiformes Berg 1937 

Suborder Sclerorhynchoidei Cappetta, 1980  

Family Ptychotrygonidae Kriwet et al. 2009 

Genus Asflapristis gen. nov. 

 

Type species. Asflapristis cristadentis gen. et sp. nov.  

Diagnosis Sclerorhynchid batoid with estimated total length in excess of two meters. 

Rostrum of uncertain length but robust and apparently lacking enlarged rostral 

denticles and ‘wood-like’ cartilage. Neurocranium (posterior to nasal capsules) of 

similar length and width with flattened roof with an anterior fontanelle. 

Palatoquadrate and Meckel’s cartilages are wide and stout and with a thin outer 

layer of ‘wood-like’ perichondrium. Second hypobranchial without an anterior 

process. Synarcual long with well-developed medial crest and dorsally directed 

lateral stays but does not directly connect to the pectoral girdle. Synarcual lip large 

and fits within the chondrocranium. Vertebral centra fail to reach the middle of the 

synarcual. Lateral facet of scapulocoracoid thick and compact and articulate to the 

pectoral elements. Propterygium, mesopterygium and metapterygium expand distally 

and paddle-shaped. Dentition relatively homodont, teeth oval in occlusal view and 

lacking a medial cusp or well-developed uvulae, and with large pulp cavity. Occlusal 

ornament with a strong transverse ridge with fine and irregular branching ridges, 

mostly linguo-labial and around margins. A fine ridge along labial edge of occlusal 

https://sharksrays.org/
https://sharksrays.org/


face is present in many teeth. Root low with widely spaced root lobes with rounded 

basal face.  

Derivation of Name.  After the town of Asfla, where the specimens were found.  

 

Asflapristis cristadentis 

 

Material. Holotype: NHMUK PV P 75433, presents most of the dorsal surface 

neurocranium, the whole synarcual and pectoral girdle, although distal pectoral 

elements are missing. Paratypes: NHMUK PV P 73925, on dorsal view presents 

most of the post nasal capsules neurocranium and both hyomandibular cartilages. 

On the ventral surface both antimeres of the Meckel cartilage, the right antimere 

palatoquadrate and anterior part of the right second hypobranchial are exposed. 

NHMUK PV P 75428 a-e, specimen composed of five fragments, on ventral view 

shows a small tooth patch close to the mouth region, fragments of the anterior 

section of the second hypobranchial and antorbital cartilages. NHMUK PV P 75429 

a-d, specimen composed of four fragments on its dorsal surface shows most of the 

middle portion of the neurocranium along with fragments of the rostrum. Most of the 

anterior portion of the synarcual is preserved and parts of the medial crest and 

lateral stays exposed. On the ventral surface a patch of teeth is exposed. NHMUK 

PV P 75431, complete synarcual. It was assigned after preparation work revealed a 

characteristic tooth. NHMUK PV P 75435, articulated teeth set without associated 

identifiable skull material.  

 

Diagnosis. As for genus. 

 

Derivation of Name. From the possession of several ridges in the teeth.  

 

Description. Measurements and body proportions are difficult to establish since no 

complete specimen has been found. Six specimens of skeletal material can 

unambiguously be referred to Asflapristis based on teeth morphology. Between them 

they provide data on the neurocranium and proximal part of the rostrum, jaws and 

dentition, synarcual, brachial skeleton, pectoral girdle, proximal part of the pectoral 



fins, and the trunk vertebral column. The pelvic girdle and fins, claspers, dorsal fins, 

caudal skeleton, distal parts of the pectoral fins and tip of rostrum are unknown. 

In the holotype, most of the skeletal elements were preserved in a horizontal plane 

within the nodule, parts of neurocranium and rostrum were broken during the 

extraction of the specimen.  Some of the gill arches are disarticulated but show little 

damage suggesting that these elements where separated before lithification. 

Chondroskeleton. The exposed skeletal elements are composed of a layer of 

tesserae, prismatic cartilage. Tesserae are visible around all skeletal elements. The 

mouth of the specimen NHMUK PV P 75433 also shows a small layer or wood-like 

perichondrium similar to that observed in the rostrum of Onchopristis and 

Schizorhiza (Kirkland & Aguillon-Martínez 2002). The wood-like perichondrium is 

absent in other regions of the skeleton including the rostrum. Its presence in the jaw 

may be an adaptation of this species to durophagy.   

Chondrocranium. This is a rectangular, box shaped structure that seems to lack the 

characteristic bottle shape of other batoids. It widens slightly towards the nasal 

capsules, but these structures are themselves missing. Posterior to the nasal 

capsules the chondrocranium becomes somewhat narrower. Posterior to the 

postorbital process it slightly widens and progressively narrows until it reaches its 

posterior face (Figs. 3 A-B). The antorbital cartilages are scythe shaped (curved 

posteriorly towards the distal end) with a wide base and become narrower towards 

the tip (Fig. 4 C-D). The supraorbital crests are present and elevated from the rest of 

the chondrocranium. At the posterior region of the neurocranium there is a deep 

concave indentation where the synarcual lip (odontoid process) fits. At the sides the 

of the indentation are the occipital condyles which are large and present a broad 

articular surface for the lateral anterior facets of the synarcual. The lateral and basal 

faces of the chondrocranium were not clearly visible on any specimen. 



 

 

Figure 3. Asflapristis cristadentis gen. et sp. nov. holotype NHMUK PV P75433. A, 

B, dorsal view of the anterior skeleton; C, D, ventral view of the specimen. 

Abbreviations: Brch, branchial elements; C, undetermined cartilages; Cb5, fifth 

ceratobranchial; Hyo, hyomandibula; Le, lateral extensions; Lst, lateral stays; Meck, 



Meckel’s cartilages; Mesop, mesopterygium; Metap, metapterygium; Neu, 

neurocranium; Pcf, precerebral fenestra; Pq, palatoquadrate; Prop, propterygium; 

Scpc, scapulocoracoid; Syn, synarcual; SynL, synarcual lip; SynM, synarcual medial 

crest; T, teeth; Vc, vertebra centra.

 

Figure 4. Asflapristis cristadentis gen. et sp. nov. paratype NHMUK PV P 75428 a–

e. A, B, ventral view of part of the anterior skeleton; C, D, ventral view of another 

section of the specimen. Abbreviations: Amm, ammonite; Antc, antorbital cartilage; 

C, undetermined cartilages. Hypo II, second hypobranchial; Pq, palatoquadrate; Ros, 

rostrum; Syn, synarcual; T, teeth. 

Rostrum. Despite the lack of a complete rostrum, some specimens preserve 

fragments of rostrum, showing a basal part with an oval shaped precerebral fenestra 

(Figs. 3 A-B). The fragmentary remains observed suggest the presence a of stout 

and hypertrophied rostrum probably over twice as long as the neurocranium (Fig. 5 



A-B). It lacks the ‘wood-like’ cartilage seen in other sclerorhynchoids, and there are 

no obvious longitudinal grooves. There is no evidence of enlarged rostral dermal 

denticles and no cavities or canals was found internally. 

 
 

Figure 5. Asflapristis cristadentis gen. et sp. nov. paratype NHMUK PV P75429a–d. 

A, B, dorsal view of the neurocranium and part of the synarcual and of rostral 

cartilage; C, ventral view of neurocranium. Abbreviations: Jws, jaws; Lst, lateral 

stays; Neu, neurocranium; Ros, rostrum; Syn, synarcual; SynM, synarcual medial 

crest; T, teeth. 

Visceral Skeleton. The mouth cavity is broad; twice the width of the postorbital 

region. The Meckel’s and palatoquadrate cartilages are straight and broad, and their 

antimeres are not fused (Fig. 6 C-D). The palatoquadrate width is approximately 

22% of the length of the cartilage, while the Meckel’s cartilages width is 



approximately 32% of its length. The Meckel’s cartilages are twice as deep as the 

palatoquadrate and have a lateral tab-like process that articulates with the notched 

distal end of the palatoquadrate (Fig. 7 A). The Meckel’s cartilages lack the ventral 

lateral flange for muscle articulation observed in guitarfishes, rajoids and 

myliobatiods. The hyomandibular cartilages are triangular and present a strong 

medial crest for the articulation of muscles. They become slender towards their distal 

tip which articulates between the palatoquadrate and Meckel’s cartilages (Fig. 6 A-

B). The basihyal is fragmented in two parts, but still reveals a broad, crescent shape, 

similar to that found in Ptychotrygon sp. (NHMUK PV P73630). The basihyal and first 

hypobranchial are not in articulation, whether this disarticulation was present in life or 

occurred during fossilisation is unknown (Fig. 7 C). The first hypobranchial is 

separated from the pseudohyoid and is a roughly arrow shape with an acute 

proximal edge followed by two process, one dorsal and another ventral. The mid 

region of the first hypobranchial is narrow and rectangular with an expanded distal 

edge (Fig. 7 C). The pseudohyal is triangular with its proximal edge wider than its 

distal edge. Only the anterior part of the second hypobranchial is preserved (Figs. 6 

C-D); its distal edge is convex and wide no evidence of articulation with an anterior 

process. 

 



 

Figure 6. Asflapristis cristadentis gen. et sp. nov. paratype NHMUK PV P73925. A, 

B, dorsal view of chondrocranium; C, D, ventral view of chondrocranium. 

Abbreviations: Hyo, hyomandibula; Hypo II, second hypobranchial. Meck, Meckel’s 

cartilage; Neu, neurocranium; Pq, palatoquadrate. 

 

Figure 7. Asflapristis cristadentis gen. et sp. nov. CT scan of paratype NHMUK PV 

P75429b. A, frontal view; B, rear view of the jaw. Abbreviations: Bhyo, basihyoid; C, 

undetermined cartilage; Hyo, hyomandibula; I Hypo; first hypobranchial, Meck, 

Meckel’s cartilage; MeckP, Meckel’s tab-like process; Phyo, pseudohyoid; Pq, 

palatoquadrate; Ros, rostrum; T, teeth; Uv, undetermined vertebrate remains. 

 

 
Synarcual and vertebrae.  The synarcual extends posteriorly and extends well 

beyond the scapulocoracoid, it is about three times longer than its maximum width 

and twice the length of the preserved portion of the neurocranium in the holotype 

specimen. The synarcual lip is long and articulates with the posterior part of the 

neurocranium. The superior lateral facets of the synarcual are thick and project 

laterally mirroring the occipital condyles of the neurocranium suggesting a tight 

interaction between these elements despite being slightly dislocated (Fig. 8 F). The 

median crest of the synarcual is wide and well developed.  There is no evidence for 



either fusion or articulation between the synarcual and suprascapula, although 

whether the suprascapula was present or not remains unknown. The lateral stays of 

the synarcual are present and dorsally directed (Fig. 8 C-D and F). The first exposed 

vertebral centrum fails to reach the mid-point of the synarcual cartilage (Fig. 8 A-B). 

Post synarcual vertebrae are preserved and revealing a dense notochordal centre 

with appositional rings of areolar cartilage, which is consistent with seasonal growth 

of elasmobranchs (NHMUK PV P 75431). Neural arches and spines are poorly 

preserved and yield no useful characters.  

 

 

 

Figure 8. Asflapristis cristadentis gen. et sp. nov. A–E, paratype NHMUK PV 

P75431; A, B, ventral view of the synarcual; C, D, dorsal view of the synarcual; E, 

vertebra on distal end of synarcual. F, holotype NHMUK PV P75433 in dorsal view. 

Abbreviations: Cb5, fifth ceratobranchial; Le, lateral extensions; Lst; lateral stays; 



Mesop, mesopterygium; Metap, metapterygium; Nc, notochordal centre; Neu, 

neurocranium; Prop; propterygium; R, appositional rings; Scpc, scapulocoracoid; 

Syn, synarcual; SynL, synarcual lip; SynM, synarcual medial crest; Vc, vertebra 

centra. 

Appendicular skeleton. The scapulocoracoid is thick and short (the same length as 

the synarcual in holotype specimen). The scapular processes are broken and 

separated from the basal portion of the scapulocoracoid, regardless they are long, 

slender and probably dorsally directed (Fig. 8 F). No evidence of a union between 

the synarcual cartilage and the suprascapula was observed. The lateral facet of the 

scapulocoracoid is compact and robust with no enlargement between the proximal 

pectoral elements (procondyle, mesocondyle and metacondyle) and no direct 

articulation of the pectoral radials. There are three condyles for the articulation of the 

proximal pectoral elements. Between the procondyle and the mesocondyle is the 

anterior dorsal fenestra. The posterior dorsal fenestra is located between the 

mesocondyle and metacondyle. Although most of the distal part of pectoral proximal 

elements is missing their base is preserved and show the sturdy and paddle-like 

shape (Fig. 8 F) as those of other sclerorhynchoids.  

Teeth. Descriptive tooth terminology largely follows that of Cappetta (1987).  The 

dentition is relatively homodont, with some variation in tooth size and width-depth 

ratio across the jaw, but the greatest variation occurs within the details of the 

occlusal ornamentation, with differences appearing to show no systematic variation 

with jaw position. The teeth are generally robust and up to 5 mm wide (Fig. 9 C). 

Teeth are oval, or slightly expanded labially, in occlusal view and wider than deep 

(Fig. 9 A). The tooth crown overhangs the root on all sides and the tooth is (linguo-

labially) deeper than high. There is a very weakly developed lingual uvula but no 

lateral uvulae. The overall form of the tooth occlusal face is flat to weakly domed with 

no defined cusps; the margins of the occlusal face are rounded except where fine 

ridges are present at the edge of the occlusal face. The tooth occlusal face is highly 

ornamented with the ornament being variable in detail, even within adjacent teeth in 

the dentition. A narrow and sharp-edged transverse ridge bisects the occlusal crown 

face, with a shorter parallel ridge labial to this. Other ornament is highly variable and 

not all elements are present in all teeth. A somewhat irregular ridge may be present 



at the lingual edge of the occlusal face, and short longitudinal or irregularly 

orientated ridges may occur across the face but are often concentrated near the 

crown edge or along the lingual margin. These may bifurcate or break up into 

tubercles, and rarely join with the main transverse ridges (Fig. 9 B). The root is low 

with equal sized and well separated root lobes. The basal faces of the root lobes are 

convex and there is no sharp edge between the lateral and basal faces. Teeth have 

a very large and well-developed pulp cavity that may occupy over half of the crown 

height in section (Fig. 10). There is a relatively thin surrounding layer of orthodentine, 

but the enameloid is rather thick, especially where ornament is present (Fig. 10). The 

is no osteodentine present in the root with the exception of a thin band observed 

between the crown and root.   

The tooth morphology is highly distinctive and unlike that of other batoids, although 

the highly ornamented occlusal face bears some superficial resemblance to that of 

Rhina, Rhynchobatus, Pucabatis and even Ptychodus. In all cases, though, the 

overall tooth shapes and morphology of the root are rather different. Teeth of 

Ptychotrygon, Texatrygon, Micropristis and Libanopristis are considerably more 

gracile than those of Asflapristis cristadentis but show many similarities in detail. In 

each of these genera, a well-defined transverse ridge is present, with shorter ridges 

on the labial and/or lingual sides of it. In some species of Ptychotrygon, more 

complex occlusal ornamentation is also present (e.g. Cappetta & Case 1999) but not 

comparable with that of Asflapristis. Roots are similarly low and with rounded edges. 

Despite this, teeth of Ptychotrygon, Texatrygon, Micropristis and Libanopristis all 

possess a low and triangular main cusp, are diamond shaped to triangular in 

occlusal view, have a less complex ornamentation, possess a weak labial apron and 

more distinct uvula, and have root lobes with more flattened bases. Teeth most 

closely resemble those of Ptychotrygon gueveli Cappetta (2004) but can be 

differentiated by the presence of small crest between the transverse ridges and the 

lack of a medial cusp suggesting a close relation between these two genera. 



 

Figure 9. Asflapristis cristadentis gen. et sp. nov., tooth sets of different specimens 

and disarticulated tooth from the preparation of these specimens. A, tooth set of 

paratype NHMUK PV P75428a–e. B, C, occlusal view of tooth set of paratype 

NHMUK PV P75432. D, lingual view and E, labial view of separated tooth of NHMUK 

PV P75432. Abbreviation: R, root. 

 

 

 



 
Figure 10. Asflapristis cristadentis gen. et sp. nov., lateral section of a tooth found 

during the preparation of paratype NHMUK PV P75431. Abbreviations: En, 

enameloid; Eort, external orthodentine; Iort, internal orthodentine; Os, Osteodentine; 

Pc, pulp cavity; R, root. 

Denticles. No extensive areas of skin with articulated denticles were found 

associated in any of the specimens. Although the majority of denticles were collected 

as isolated specimens, after treating the matrix surrounding the specimens with acid, 

some denticles were found directly associated with the mouth region and could be 

observed in situ. These denticles were circular with a smooth dorsal surface were 

found (Fig. 11 A-D). In lateral view these denticles are tall and become narrower in 

the middle and expand towards the stem. The stem presents several fringes over the 

margins (Fig. 11 B-C). 

 

Four distinct morphologies of denticles were found: 1) Leaf shaped with a smooth 

dorsal surface (Fig. 11 E-G); these denticles have irregular terminations on their 

posterior edge and on lateral view are significantly shorter than the circular denticles 

(Fig. 11 G). 2) Arrow shaped (Fig. 11 H-J); these denticles possess ridges on the 

dorsal surface, of similar shape to those found on the dorsal surface of some sharks 

as well as ‘rhinobatid’ rays. 3) Thorn-like rostral denticles (Fig. 11 K-L); taller than the 

rest, crown is posteriorly director and are very similar to those found on the ventral 

surface of the rostrum of Sclerorhynchus atavus (Welten et al. 2015). 4) a single 

specimen of a large triangular denticle of unknown provenance was recovered (Fig. 



11 N). The large concentrations of denticles found during the preparation of 

specimens (Fig. 11 M) may suggest that at least parts of Asflapristis (such as 

surrounding the jaws) were uniformly covered with denticles. However, the relatively 

small number of denticles recovered in acid residues (compared to in Tingitanius 

tenuimandibularis Claeson et al. 2013) may suggest incomplete denticle coverage of 

at least parts of the body.  

 

 

 

Figure 21. Asflapristis cristadentis gen. et sp. nov., dermal denticles from the 

preparation of NHMUK PV P75432 (A–G and M) and NHMUK PV P75428 (H–L and 

N). 



Phylogenetic analysis 

 

The TNT analysis resulted in 12 MPT’s (most parsimonious trees) of 183 steps and 

those trees were used to produce the strict consensus tree as well as for the group 

support analysis (Bootstrap and Bremmer (supplementary material). In PAUP a 

herustic search was performed with TBR as swapping algorithm and a 1000 random 

addition sequences, which resulted in 100 MPT’s and from these trees a strict 

consensus was obtained. The bayesian analysis was performed using the Mk model 

for five million generations which resulted in a 50 % majority rule consensus. The 

analyses on PAUP TNT resulted in the same strict consensus tree (Figs. 12 and 13) 

with values of Consistency Index = 0.59, Retention Index = 0.85, Rescaled 

Consistency Index = 0.50 and Homoplasy index = 0.40. 

 

 

Figure 12. Character mapped on strict consensus rule obtained in the parsimony 

analyses. Characters were mapped in WinClada (Nixon 2002). Number in 



parenthesis are the nodes. Synapomorphies black points character number is on top 

and state of character in on bottom.   

 

 

Figure 33. Phylogenetic trees obtained on the different analysis: Strict consensus 

from parsimony analysis compared to Posterior probability tree from Bayesian 

inference.   

Discussion 

 

Phylogenetic implications 

 

All of the analyses separated the Jurassic genera Asterodermus, Kimmerobatis, 

Spathobatis and Belemnobatis from Rhinopristiformes (Underwood & Claeson 2017) 

and placed them in a monophyletic clade forming a sister group to all post-Jurassic 

batoids (Node = 52, Bremer = 1, Bootstrap= 41, Posterior probability (Pp) = 52%) 

with one unambiguous synapomorphy (Char. 93, similar shape of propterygium and 



mesopterygium) (see supplementary information). The present placement differs 

from previous phylogenies (Claeson et al. 2013; Underwood & Claeson 2017), which 

place the Jurassic batoids within modern batoids in a close relation with 

Rhinopristiformes. Our results suggest that their similarity with Rhinopristiformes is 

superficial. All remaining batoids included in the present study are grouped in node 

42 (Fig.12), which is characterised by the presence of a calcified suprascapula 

(Char. 6), reduced Ceratohyal, (Char. 50) and a slightly expanded first pelvic radial, 

articulating with several segments in a parallel fashion (Char. 68).    

 

The placement of the other groups varied depending on the analysis. These different 

topologies reflect the variation in the methods of reconstruction (O’ Reilly et al. 

2016). The bayesian analysis found a polytomy that comprises all of the modern 

orders (sensu Last et al. 2016) (Fig. 13). Whilst the parsimony analysis the next 

node forming a sister relationship with the remaining taxa is the Rhinopristiformes 

(Fig. 13). However, the topology recovered by the Bootstrap analysis (supplementary 

material) resembles that found by the bayesian analysis and suggests that the 

placement of Rhinopristiformes as the sister group of other batoids is requires further 

consideration. In the present analyses this relation is supported, by the presence an 

anterior projection of the second hypobranchial (Char. 89 (0)). The coding of the 

character requires further work, as in Pristis the hypobranchials are fused in a medial 

plate (Nishida 1990, fig. 28g), in their ontogenetic development the medial plate is 

divided in two (Miyake & McEachran 1991, Fig. 5). The anterior process of the 

second hypobranchial could be involved in the development of the upper plate but 

this cannot be clearly demonstrated due to the lack of material of a range of 

ontogenetic stages available. As a result of this, the character was coded as (?) for 

Pristis. As for the remaining batoids, there seem to be different and non-homologous 

processes leading to the loss of this structure which could be coded as separate 

characters. In electric rays there seems to be several arranges of the hypobranchials 

(Miyake & McEachran 1991, Fig. 6) and for Myliobatiformes there seems to be a 

reduction and fusion of branchial elements (Nishida 1990, Figs. 27-28) and as well 

for this groups the character was code as a (?). 

 

The placement of Pristis with other Rhinopristiformes has only recently been 

recovered in molecular analysis. Although this grouping is present all the analyses  



(Node = 53, Bremer = 1, Bootstrap= 10, Pp = 51%) (Fig. 12), the present analysis 

did not find an exclusive synapomorphy for Rhinopristiformes, rather this clade is 

supported by a combination of characters (e.g. Scapulocoracoid is elongated 

between the mesocondyle and metacondyle with the direct articulation (Char. 59) 

with the direct articulation of pectoral radials to the scapulocoracoid (Char. 63) and 

the presence of lateral uvula in teeth (Char. 87) (Fig. 12). 

 

All analyses suggest place sclerorhynchoids as a sister group for living Rajiformes, 

based on similarities in the branchial skeleton (Node 40). Although being recovered 

in all parsimonious trees in the present analysis, the support values for the 

sclerorhynchid-rajoids relationship are relatively low (Bremer = 1, Bootstrap = 4, Pp 

= 69%), possibly caused by the presence of missing characters and the rather 

extensive morphological differences between these groups, such as the unique 

pectoral skeleton of sclerorhynchoids (Char. 92) and the absence in some 

sclerorhynchoids of a suprascapula (Char. 6). The present placement variates from 

previous phylogenies Kriwet (2004); places the sclerorhynchoids as an intermediate 

group between Pristidae and Pristiophoridae; Claeson et al. (2013), recovers them 

as an intermediate group between the Jurassic genus Spathobatis and Pristidae and 

Underwood & Claeson (2017) places them within Rhinopristiformes. In the present 

study, besides of changes in the coding of some characters (e.g. Char. 6), we 

included previously unknown data such as the second hypobranchial fused to the 

basibranchial (Char. 26, Fig. 12) which suggest a close relation, between this two 

groups. As more specimens of well-preserved sclerorhynchoids are discovered, and 

more characters made evident, the values of support for this group will change and 

the relation between these two groups will become clearer.  

 

All analyses place Asflapristis cristadentis and Ptychotrygon sp. within 

sclerorhynchoids (Node = 66, Bremer = 2, Bootstrap= 55, Pp = 87%) based on 

characters like their pectoral fin anatomy with the enlargement and paddle shape of 

propterygium, mesopterygium and metapterygium (Char. 92) and the reduced 

postorbital process (Char 38) (Fig. 12). Most of the posterior part of the branchial 

skeleton of Ptychotrygon sp. is preserved and is very similar to that of 

Sclerorhynchus atavus (NHMUK PV P 49546), characterized by the presence of a 

well-developed second hypobranchial fused, along with the third hypobranchial, to 



the basibranchial (Char. 26) and with no evidence of a direct articulation of any 

branchial element to the second hypobranchial as seen in Rajiformes. In addition, 

Asflapristis cristadentis (NHMUK PV P 73925) and Ptychotrygon sp. (NHMUK PV 

P73630) possess a very similar upper part of the second hypobranchial to that seen 

in other sclerorhynchoids (e.g. Sclerorhynchus atavus (NHMUK PV P 49546)) and 

this seems to be characteristic of the sclerorhynchoids. Asflapristis cristadentis also 

has a wide and stout basihyal, a large and well mineralized first hypobranchial that 

subsequently articulates with the pseudohyal similar to that of Ptychotrygon sp. This 

characters in addition with the presence of a transversal crest differentiating the 

labial crown face and very well-developed labial visor (Kriwet et al. 2009), place 

Asflapristis in the family Ptychotrygonidae.   

 

As with other morphological analysis, the placement of Platyrhinidae (Node = 47, 

Bremer = 2, Bootstrap = 69, Pp = 97%) (Fig. 12) as a sister group to electric rays 

(Node = 44, Bremer = 7, Boostrap = 98, Pp = 100%) (Fig. 12) forming the order 

Torpediniformes (sensu Last et al. 2016) was not recovered in the present study, 

despite some taxa sharing characters like an irregular shape of the antorbital 

cartilages (Char. 9), laterally to relatively lateral projection of the lateral stays and the 

separation of the ventral antimeres of scapulocoracoid (Char. 53). The bayesian 

analysis recovered Platyrhinidae as part of a politomy that compromise all modern 

groups with the exclusion of sclerorhynchoids (Pp = 93), similar to that recovered by 

Aschliman et al. 2012b. While the Parsimony analysis recovered them as the sister 

group of Myliobatiformes (node = 50), similar to Aschliman et al. 2012a. The 

variation in these results was expected as the relations within Torpediniformes and  

Rhinopristiformes (sensu Last et al. 2016) are problematic for morphological based 

analysis mostly because of the presence of highly derived taxa like Pristis and 

electric rays complicates the identification of synapomorphies between these taxa 

and the more plesiomorphic ones in their respective orders.  

 

Myliobatiformes is recovered as a monophyletic group (Node = 57, Bremer = 4, 

Bootstrap = 78, Pp = 100%) and is composition changed little to that recovered by 

Aschliman et al. (2012a) and other molecular studies (Aschliman et al. 2012b). This 

group is easily differentiated as noted by the large number of synapomorphies found 

in the present study (Fig. 12) of special interest is the placement of Zanobatus 



(panrays) within this group as a sister group. The present study found similar 

relations for this genus as those recovered in Aschliman et al. (2012a) which places 

them as a suborder within Myliobatiformes. Naylor et al. (2012) revered the panrays 

within Rhinopristiformes but as noted by the authors this placement is model 

dependent and should be addressed carefully. The most current molecular 

phylogeny places them as part of Myliobatiformes (Last et al. 2016) however the 

authors do not discuss further on this change. We followed Eschmeyer (2018) model 

for classification at the ordinal level, which is based on Last et al. (2016). 

 

Palaeoecological implications 

 

The restricted overall diversity of the Asfla biota suggests that the environment was 

not that of a ‘normal’ open carbonate shelf, and as a result the autecology of the 

organisms themselves may have been somewhat specialised. Large vertebrates are 

highly mobile and so may have lived, or at least fed, away from the depositional site, 

but the large number of shed teeth of Ptychotrygon in the marl matrix would suggest 

that it at least spent a significant time in the area of deposition. Whilst 

sclerorhynchoids are often common and diverse in shallow marine environments of 

the Cretaceous of Tethys (Kriwet & Kussius 2001), the extreme dominance of the 

chondrichthyan fauna by two sclerorhynchid species is unusual; elsewhere they are 

typically associated with diverse ‘rhinobatid-grade’ batoids (e.g. Cappetta 1987) and 

often nectobenthic sharks. The rarity of other batoids in particular may be an 

indication of a hostile seafloor inhibiting nectobenthic taxa (e.g. Underwood & 

Cumbaa 2010), which would be consistent with the rarity of benthic shelly fossils. If 

the restriction of most batoids were due to a hostile seafloor, it would suggest that 

these sclerorhynchoids were more pelagic than other coeval batoids, living largely 

within the water column along with the co-occurring fish, reptiles and ammonites. 

Despite this, sclerorhynchoids appear to have had a very small caudal fin (Cappetta 

1980) with small and rather rigid pectoral fins containing long, stiff, radial elements. 

They would therefore be unlikely to have been either fast or powerful swimmers. 

Most modern batoids, other than planktivorous taxa, feed on relatively small benthic 

organisms, with many having robust teeth that show considerable wear from 

processing shelled food. Teeth of Asflapristis are likewise robust and some teeth 

within dentitions show considerable wear, indicating a food source that is strong and 



hard. The rostrum of Asflapristis appears to have been both long and robust but 

lacking enlarged rostral denticles. Whilst rostra of modern Pristidae and 

Pristiophoridae have a range of functions (Wueringer et al. 2009), they are highly 

supplied with sense organs and thus a rostrum without enlarged denticles is still 

highly functional as a sensory structure (Wueringer et al. 2011). Considering the 

unusual occurrence of Asflapristis, its poor swimming and durophageous diet, it may 

have fed on ammonites; slow moving, pelagic and armoured. It is also possible that 

the large sensory rostrum allowed hunting of ammonites, which may have relied a lot 

on sight as in many modern cephalopods, in poor visibility such as at night or in 

turbid water. 

 

Conclusion 

 

Well preserved partial skeletons of Asflapristis cristadentis form the Late Cretaceous 

of Morocco have provided the first recorded examples of sclerorhynchid batoids with 

the skeleton preserved in three dimensions, aiding in our understanding of this 

important but problematic group. This new genus and species present a suite of 

morphological characters that place it within sclerorhynchoids (e.g. enlarged 

proximal pectoral elements, lack of suprascapula) but also differentiate it from them 

and place it as a member of Ptychotrygonidae (e.g. hypertrophied rostrum with no 

evidence of enlarged dermal denticles a transversal crest differentiating the labial 

crown face and very well-developed labial visor). Furthermore, this genus present 

dental characters that separate from other Ptychotrygon species (e.g. reduced 

medial crest, with shorter crests on the labial and/or lingual sides and between the 

transverse ridges and a very large pulp cavity).  

 

With the discovery of Asflapristis cristadentis and Ptychotrygon sp. certain 

characters of visceral skeleton, synarcual and pectoral girdle are evident for the first 

time within sclerorhynchoids (e.g. posterior and anterior fenestra of the lateral facet 

of the scapulocoracoid, the dorsally directed lateral stays of the synarcual, the shape 

and interactions of the basihyal with second hypobranchial) and allow us to look for 

them in other specimens (e.g. Sclerorhynchus atavus (NHMUK PV P 49546)). As 

previously suggested for Ptychotrygon (Cappetta & Case1999), Asflapristis lacks 



enlarged rostral denticles, and the current remains suggests the presence of a large 

and flattened rostrum for the family as seen in other sclerorhynchoids which is 

further corroborated by Ptychotrygon sp.  

 

The phylogenetic analyses in the present study suggest a close phylogenetical 

relation between sclerorhynchoids and rajoids based on similarities on the branchial 

skeleton. These two groups are the only two known batoids that present no 

articulation surface between the basibranchial and the second hypobranchial, also 

none of the sclerorhynchoids included in the present analysis showed evidence of 

articulation between the second hypobranchial with any other branchial element. The 

fact that bayesian analysis further differentiates within Sclerorhynchoidei and 

separates them in two groups, suggests an internal topology for the groups within it 

worthy of further analyses. The placement of Asflapristis cristadentis in the 

Ptychotrygonidae, with characters different from those recorded in other skeletally-

preserved sclerorhynchoids supports the idea that a number of distinct families 

present within the Sclerorhynchoidei (Kriwet et al. 2009; Cappetta 2012).  

 

Our results separate sclerorhynchoids from Rhinopristiformes (Cappetta & 

Case1999) and suggest that the similarities with the Pristidae are superficial and 

convergent. These analyses also show an interesting evolutionary pattern which was 

previously recognised by Claeson 2010 in which in every batoid order there is a 

group with a “rhinopristifom” body plan (elongate body form, robust caudal region 

and enlarged and well-developed rostral cartilages) suggest that this overall body 

plan is a primitive character within the Batoidea (Fig. 11 grey labelled taxa).  
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