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Abstract

We consider a resistive multi-fluid framework from the 3+1 space-time foliation point-of-view,

paying particular attention to issues relating to the use of multi-parameter equations of state

and the associated inversion from evolved to primitive variables. We highlight relevant numerical

issues that arise for general systems with relative flows. As an application of the new formulation,

we consider a three-component system relevant for hot neutron stars. In this case we let the

baryons (neutrons and protons) move together, but allow heat and electrons to exhibit relative flow.

This reduces the problem to three momentum equations; overall energy-momentum conservation,

a generalised Ohm’s law and a heat equation. Our results provide a hierarchy of increasingly

complex models and prepare the ground for new state-of-the-art simulations of relevant scenarios

in relativistic astrophysics.
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I. CONTEXT

A range of astrophysical phenomena involve violent nonlinear matter dynamics. The

modelling of such systems requires fully nonlinear multi-dimensional simulations taking into

account the live spacetime of general relativity. In recent years there has been consid-

erable progress in developing the required computational tools, especially for archetypal

gravitational-wave sources like supernova core collapse [1] and neutron star mergers [2]. The

technology is now reaching the point where it is relevant to consider more sophisticated

matter models. In the case of supernova modelling, it is well known that the neutrinos play

an important role in triggering the explosion itself [3] and the role of magnetic fields may

also be significant [4]. For neutron star mergers, finite temperature effects are central as

shock heating ramps up the temperature of the merged object to levels beyond that expected

even during core collapse (see, e.g., [5] or [6]). Dynamical magnetic fields are likely to have

decisive impact on the post-merger dynamics and may leave an observational signature, e.g.

in short gamma-ray bursts (e.g., [7]).

To suggest that consistent modelling of the required physics is challenging would be an

understatement. Hence, it is natural that progress has been made by adding individual

ingredients one by one. This has led to a vast literature with a number of important recent

contributions, see for example, [8–20]. However, this strategy can be problematic as there

may be an interplay between the different physics aspects. With this in mind, it makes sense

to consider the formulation of a new generation of models which include the key physics from

the outset. This should allow us to identify (and quantify the relevance of) issues that may

be overlooked in current simulations. It should also enable progress towards (even) more

sophisticated simulations, once the computational technology makes such work feasible.

The problems we want to investigate have the common feature that they involve the

flow of a number of identifiable “currents” beyond that of the bulk matter flow associated

with a perfect fluid. In the first instance, we have the charge current associated with

electromagnetism, at finite temperature heat will flow and for mature neutron stars there

may also be a relative flow associated with the presence of superfluid components. As

full kinetic theory simulations of these kinds of systems pose enormous challenges, it is
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natural to take as a starting point the well-developed framework for relativistic multi-fluid

dynamics [21, 22]. We have already considered the fundamental aspects of the problem [23]

and the connection with the involved microphysics and the features that arise in models

of increasing complexity [24]. In the latter case we introduced a fibration of spacetime

associated with a specific set of fluid observers. This approach is natural if one is mainly

interested in the local fluid dynamics (e.g. wave propagation) and it also leads to the 1+3

formulation often used in cosmology (where “clocks” associated with the fluid observers

define the notion of cosmic time), see [25] for a relevant discussion. This approach is,

however, not natural for nonlinear simulations with a live spacetime. Instead, most such

work makes use of a 3+1 spacetime foliation (see [26] for a relevant discussion), where

progression towards the “future” is associated with a set of Eulerian observers. Hence, it

is relevant to complement the discussion in [24] by extending the multifluid model from

fibration to foliation.

The aim of this paper is to develop the 3+1 version of the general framework discussed

in [24]. The main aspects remain the same – in particular, we introduce a set of fluid

observers to make contact with thermodynamics and the microphysics associated with the

equation of state – but the foliation approach leads to new issues that need to be resolved

(e.g. the inversion from evolved to primitive variables). In order to keep the discussion

tractable, we focus on a three-component system relevant for hot neutron stars. We assume

neutrons remain non-superfluid and locked to the protons, but let heat and electrons ex-

hibit relative flow. In effect, this reduces the problem to three momentum equations; overall

energy-momentum conservation, a generalised Ohm’s law and a heat equation. Our formu-

lation of these equations should allow us to build models with causal heat flow [27, 28] and

non-ideal magnetohydrodynamics features associated with resistive scattering [29].

The models we consider in this paper do not account for neutrinos, the emission of which

will have significant impact on the evolution of a hot system, or the elastic neutron star crust

which will be relevant for mature (cold) systems. Both these aspects can be accounted for

in the general formalism. In fact, a formulation for simulating elastic models was recently

presented in [30] and this model extends directly to our framework. When it comes to

the neutrinos, the hot models we develop here may in principle contain trapped neutrinos

(forming part of the entropy component) but we do not account for radiative fluxes or,

indeed, dissipation associated with the neutrino emission [31]. Standard approaches for
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including relativistic radiation transport, such as [32] or [33] could be employed to extend

the model, but we leave this for future work. Such additions are, of course, essential if we

want to model, for example, neutron star mergers.

Before we proceed it is also worth making a comment on notation. We distinguish between

three sets of indices. We use a, b, c, ... for spacetime indices and i, j, k, ... for spatial indices

on each spatial slice. These indices satisfy the Einstein summation convention, as usual. We

also use indices x, y, ... to label the different fluid components. The summation convention

does not apply to these indices.

II. 3+1 BASICS

Following the standard approach to formulate the equations of motion in a way suitable

for numerical simulations (see, e.g. [34]), we foliate spacetime into a family of spacelike

hypersurfaces Σt which arise as level surfaces of a scalar time t. Given the normal to this

surface

Na = −α∇at , (1)

we have

Na = (−α, 0, 0, 0) , (2)

and the normalisation NaN
a = −1 leads to α2 = −1/gtt. The sign in (1) ensures that time

flows into the future. The function α is known as the lapse. The dual to ∇at leads to a time

vector

ta = αNa + βa , (3)

where the so-called shift vector βa is spatial, which means that Naβ
a = 0. It follows that

Na = α−1(1,−βi) , (4)

and the spacetime can be written in the standard ADM form:

ds2 = −α2dt2 + γij
(
dxi + βidt

) (
dxj + βjdt

)
, (5)

where the (induced) metric on the spacelike hypersurface is

γab = gab +NaNb . (6)
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We note that γab represents the projection orthogonal to Na and that γab and its inverse can

be used to raise and lower indices of purely spatial tensors. For example, we have βi = γijβ
j.

In essence, the lapse α determines the rate at which proper time advances from one time

slice to the next, along the normal Na, and the shift vector βi determines how the coordinates

shift from one spatial slice to the next. The two functions encode the coordinate freedom of

general relativity. In the following, we make use of a family of Eulerian observers associated

with Na.

Reading off the metric from the line element, we have

gab =

 −α2 + βiβ
i βi

βi γij

 , (7)

with inverse

gab =

 −1/α2 βi/α2

βi/α2 γij − βiβj/α2

 . (8)

Given the spacetime foliation, we can decompose any tensor quantity into time and space

components. For example, let us assume that we have a fluid associated with a four velocity

ua. Then we can introduce the decomposition [49]

ua = W (Na + v̂a) , (9)

where Nav̂
a = 0 and the Lorentz factor is given by

W = −Nau
a = αut = (1− v̂iv̂i)−1/2 , (10)

(the last equality follows from uaua = −1). From this, it is easy to see that

v̂t = 0 , v̂i =
ui

W
−N i =

1

α

(
ui

ut
+ βi

)
, (11)

and it follows that

v̂t = gtav̂
a = βiv̂

i , v̂i = γiav̂
a =

γij
α

(
uj

ut
+ βj

)
. (12)

Finally, we need to consider derivatives. First of all, we need a derivative associated with

the hypersurface. Thus we introduce the (totally) projected derivative

Da = γba∇b , (13)
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where all free indices should be projected into the surface. This derivative is compatible

with the spatial metric in the sense that

Daγbc = γdaγ
e
bγ

f
c∇dγef = 0 , (14)

which means that it acts as a covariant derivative in the surface orthogonal to Na. Hence,

it is straightforward to construct a tensor algebra for the three-dimensional spatial slices. In

particular, we can introduce a three-dimensional Riemann tensor. This projected Riemann

tensor obviously does not contain all the information from its four-dimensional counterpart.

The missing information is encoded in the extrinsic curvature, Kab. This is a symmetric

spatial tensor, such that NaKab = 0, which measures (roughly speaking) how the Σt surfaces

curve relative to the spacetime. In practice, we measure how the normal Na changes as it is

parallel transported along the hypersurface. That is, we define

Kac = −DaNc = −γbaγdc∇bNd = −∇aNc −Na(N
b∇bNc) , (15)

where the second term is an analogue of the fluid four-acceleration. We also have

K = Ka
a = gabKab = γabKab = −∇aN

a . (16)

Alternatively, we can use the properties of the Lie derivative to show that

Kij = −1

2
LNγij . (17)

Making use of the properties of the Lie derivative, e.g.

LαN = Lt − Lβ (18)

and the fact that Na is normal to the hypersurface, we have

∂tγij = −2αKij + Lβγij . (19)

From the trace of this expression we get

αK = −∂t ln γ1/2 +Diβ
i , (20)

where γ = gabγab and γij∂tγij = ∂t ln γ.
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III. PERFECT FLUIDS

The (standard) results in the previous section provide the tools we need to make progress

in deriving the 3+1 version of relativistic fluid dynamics and/or the Einstein field equations

(the interested reader can find useful reviews of the spacetime problem in [34, 35]). Our

main interest here is the equations of fluid dynamics. We want to develop a version of the

multi-fluid models outlined in [24] suitable for numerical evolutions. As this systems builds

on – and extends – the simple perfect fluid model, it is natural to start by reviewing the

standard approach (see [36] for more details).

A. Baryon number conservation

Let us start with the simple case of baryon number conservation. That is, we assume

the flux nua is conserved, where n is the baryon number density according to an observer

moving along with the fluid. Thus we have

∇a(nu
a) = ∇a[Wn(Na + v̂a)] = 0 . (21)

First we note that the particle number density measured by the Eulerian observer is

n̂ = −Nanu
a = nW , (22)

so we have

Na∇an̂+∇i(n̂v̂
i) = −n̂∇aN

a = n̂K , (23)

(since v̂i is spatial). Making use of the Lie derivative and (18) we have

Na∇an̂ = LN n̂ =
1

α
(∂t − Lβ)n̂ = −∇i(n̂v̂

i) + n̂K , (24)

or

∂tn̂+ (αv̂i − βi)∇in̂+ αn̂∇iv̂
i = αn̂K . (25)

Finally, since v̂i and βi are already spatial, we have

∂tn̂+ (αv̂i − βi)Din̂+ αn̂Div̂
i = αn̂K = −n̂∂t ln γ1/2 + n̂Diβ

i , (26)

or

∂t
(
γ1/2n̂

)
+Di

[
γ1/2n̂(αv̂i − βi)

]
= 0 , (27)
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where we have used the fact that

(−g)1/2 = αγ1/2 , (28)

so

∇a(−g)1/2 = ∇a(αγ
1/2) = 0 . (29)

For future reference, it is also worth noting that

Diγ
1/2 = ∂iγ

1/2 − Γjjiγ
1/2 = 0 , (30)

where the Christoffel symbol is the one associated with the covariant derivative in the

hypersurface.

The final result, (27), simply represents the advection of the baryons along the flow, as

seen by an Eulerian observer.

B. The energy/momentum equations

Moving on, the fluid equations of motion follow from ∇aT
ab
M = 0 where the standard case

of a perfect fluid (ignoring electromagnetism for the moment) is described by the stress-

energy tensor

T abM = (p+ ε)uaub + pgab . (31)

Here p and ε are the pressure and the energy density, respectively. As discussed in [24] these

quantities are related by the equation of state, which encodes the relevant microphysics. In

order to make contact with the underlying physics, a numerical simulation must allow the

extraction of these quantities.

A numerical simulation is naturally carried out using quantities measured by the Eulerian

observer. That is, we decompose the stress-energy tensor into normal and spatial parts as

T abM = ρNaN b + 2N (aSb) + Sab , (32)

with

ρ = NaNbT
ab = εW 2 − p

(
1−W 2

)
, (33)

Si = −γicNdT
cd = (p+ ε)W 2v̂i , (34)
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and

Sij = γicγ
j
dT

cd = pγij + (p+ ε)W 2v̂iv̂j . (35)

A projection of the equations of motion along Na then leads to the energy equation. From

Na∇aρ+ ρ∇aN
a +∇aS

a −NbN
a∇aS

b −Nb∇aS
ab = 0 , (36)

we get

Na∇aρ+∇aS
a = ρK − SbNa∇aNb − Sab∇aNb , (37)

where we have used

Na∇aNb = Db lnα (38)

We also have
1

α
(∂t − Lβ) ρ+∇aS

a = ρK − SbDb lnα + SabKab . (39)

Finally, we arrive at

∂t
(
γ1/2ρ

)
+Di

[
γ1/2

(
αSi − ρβi

)]
= γ1/2

(
αSijKij − SiDiα

)
. (40)

Note that, it is common to evolve τ = ρ−m0n̂ (where m0 is the mean baryon rest mass

density) rather than ρ. This is done to avoid numerical issues arising from the fact that

(40) matches (to leading order in velocity) the evolution equation for the conserved proper

rest-mass density [m0 times (27)]. This change has no impact on the formal discussion in

the rest of this paper, but it is important to keep it in mind, nevertheless.

Note also that, one may opt to evolve the entropy instead of the energy [24]. A basic

Newtonian calculation (see, e.g., [37]) shows that the energy equation leads directly to an

advection equation for the entropy. However, the energy equation is typically preferred in

numerical work as its balance law form is compatible with standard conservative schemes

and ensures suitable behaviour when shocks appear. The equivalence between the two

formulations breaks down for more complex systems (with additional components), leading

to questions as to which description is more natural. We will touch on this issue when we

discuss the inversion from evolved to primitive variables for multifluid systems in Section

VF.

Turning to the momentum equation, which is obtained by a projection orthogonal to Na,

we have

ρNa∇aN
c + γcbN

a∇aS
b + Sc∇aN

a + Sa∇aN
c + γcb∇aS

ab = 0 , (41)
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which leads to

(∂t − Lβ)Si − Sj (∂t − Lβ) γij − αKSi + ρDiα + αγijDkS
kj = 0 , (42)

where we have used

Na∇aS
c = LNSc + Sa∇aN

c = LNSc − SaKc
a . (43)

This leads to the final result

∂t(γ
1/2Si) +Dj

[
γ1/2

(
αSji − Siβj

)]
= γ1/2

(
SjDiβ

j − ρDiα
)
. (44)

C. Conservative to primitive

We now have the set of evolution equations we need for the fluid part of the single-

component problem. However, one important issue remains to be resolved. We need to

consider the inversion from the variables obtained from the evolution to the primitive fluid

variables associated with the equation of state. We need to understand this issue because

it highlights the link to the underlying microphysics and we will need to generalise this

strategy later when we consider more complex settings.

Let us, for simplicity, consider the case of a cold barotropic fluid, such that the equation

of state provides the energy as a function of the baryon number density ε = ε(n). This then

leads to the chemical potential

µ =
dε

dn
, (45)

and the pressure p follows from the thermodynamic relation:

p = nµ− ε . (46)

Basically, in order to connect with the thermodynamics, we need the evolved number density.

We also need to “decide” which observer “measures” equation of state quantities. In the

single-fluid case the second question is relatively easy to answer; we need to express the

equation of state in the co-moving fluid frame (associated with ua). In the multi-fluid case,

the answer is not as straightforward.

In the barotropic case, the evolution system (27) and (44) provides (assuming that γ1/2

is known from the evolution of the Einstein equations)

n̂ = nW = n(1− v̂2)−1/2 , where v̂2 = γij v̂
iv̂j , (47)
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and

Si = (p+ ε)W 2v̂i . (48)

We need to invert these two relations to get the primitive variables n and v̂i. This can be

formulated as a one-dimensional root-finding problem. For example, we could guess n = n̄.

This then allows us to work out ε from the equation of state and p from (46). With these

variables in hand we can solve

S2

(p+ ε)2
= W 4v̂2 , with S2 = γijS

iSj , (49)

for v̂2. This allows us to work out the Lorentz factor W and then v̂i follows from (48).

Finally, we get n = n̂/W from (47). The result can be compared to our initial guess n̄.

Iterating the procedure [50] gives a solution consistent with the conserved quantities, and

hence all primitive quantities.

This procedure is straightforward but it is easy to see that the inversion may be much

more involved for more complex problems. In fact, the problem is tricky already at the level

of standard ideal magnetohydrodynamics. As this is an important issue for the extended

models we aim to develop it is worth explaining the problem in detail.

In general, the electromagnetic dynamics is fully specified in terms of the vector potential

Aa, but as in [24] it may be more intuitive to work with the electric and magnetic fields. In

the 3+1 decomposition, where the observer is associated with Na, we then have the Faraday

tensor

Fab = 2N[aEb] + εabcdN
cBd , (50)

where εabcd is built from the totally antisymmetric symbol and the determinant of the space-

time metric, as usual. That is, the electric and magnetic fields measured in the Eulerian

frame are

Ea = −N bFba , (51)

and

Ba = −N b

(
1

2
εabcdF

cd

)
. (52)

The fields are both orthogonal to Na, so each has three components, as expected.

In order to account for the electromagnetic contribution to the stress-energy tensor (see

Appendix) we need

TEM
ab =

1

µ0

[
gcdFacFbd −

1

4
gab(FcdF

cd)

]
. (53)
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In terms of the fields (measured by the Eulerian observer) we have

TEM
ab =

1

µ0

[
E2NaNb + EaEb + γabB

2 −BaBb + 2N(aεb)dhe
dBh − 1

2
gab
(
B2 − E2

)]
, (54)

where we have introduced

εabc = εdabcN
d . (55)

This means that the total stress-energy tensor takes the form (32), with

ρ = εW 2 − p
(
1−W 2

)
+

1

2µ0

(
E2 +B2

)
, (56)

Si = (p+ ε)W 2v̂i +
1

µ0

εijkEjBk , (57)

and

Sij = pγij + (p+ ε)W 2v̂iv̂j+
1

µ0

[
EiEj −BiBj +

1

2

(
E2 +B2

)
γij
]
. (58)

From these expressions we learn that, when electromagnetism is added, we either have

no conceptual change to the inversion strategy or things get considerably more complicated.

The conserved fluid variables remain the number density n̂, the momenta Si (now defined in

(57) but still evolved by (44)) and the energy ρ (now defined in (56) and evolved by (40)). In

addition, we have the electric and magnetic fields, which are evolved by the usual Maxwell

equations (see Appendix).

Now, if we retain both electric and magnetic fields in the evolution then a direct algebraic

calculation takes us from the magnetised energy in (56) and the momentum in (57) to their

fluid counterparts. Hence, we can still use the one-dimensional root finding strategy from

the pure fluid problem,

However, in ideal magnetohydrodynamics, the electric field is not evolved, but computed

from a constraint. This reduces the number of evolution equations and ensures that, for

example, the “E = −v × B” constraint holds identically. The constraint relating electric

and magnetic fields requires the velocity, which is one of the primitive variables we need to

compute. This complicates the inversion process (see [38], section 5.8 for a discussion of the

various options used in the literature).

IV. ADDING DEGREES OF FREEDOM

Building on the discussion in [24], let us now consider the multifluid aspects of the

problem. We will divide the discussion into two parts. In this first section, we consider
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general aspects without committing ourselves to a specific model (or choice of fluid frame).

In the next section, we make the analysis problem specific by focussing on the equations

that are required to model the dynamics of hot magnetised neutron stars.

A. Non-conserved fluxes

In a general multifluid problem [21], we have a number of distinct fluxes nax = nxu
a
x, where

the x labels each fluid. These fluxes are not necessarily conserved, so we have

∇an
a
x = Γx , (59)

where Γx is the relevant reaction rate. In the 3+1 formulation, we need

nax = nxWx(N
a + v̂ax) = n̂x(N

a + v̂ax) , (60)

where n̂x = nxWx is the number density measured by the Eulerian observer, v̂ax is the

corresponding fluid velocity and

Wx = (1− v̂2x)−1/2 , (61)

is the Lorentz factor.

We now have

∇a (n̂xN
a + n̂xv̂

a
x) = Γx , (62)

which leads to [following the steps that led to (27)]

∂t
(
γ1/2n̂x

)
+Di

[
γ1/2n̂x(αv̂

i
x − βi)

]
= αγ1/2Γx . (63)

This is (again) an advection equation, but it also allows the model to account for possible

nuclear reactions. In the following, we will work with the number densities n̂x, but it is worth

noting that it would be straightforward to replace these with particle fractions xx = n̂x/n̂

(once we have a definition of the “total” number density – see e.g. section VA) should one

want to do so.

B. Individual momentum equations

In the multifluid model, the equations that represent total energy and momentum con-

servation are replaced (or complemented, see [24] for a discussion) by a set of individual
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momentum equations. If we allow for particle reactions and friction due to particle scatter-

ing, these take the form [23]

2nbx∇[bµ̃
x
a] + µ̃x

aΓx = Rx
a , (64)

where the canonical momentum is

µ̃x
a = µx

a + exAa , (65)

with ex the charge per particle of the x-fluid and Aa the electromagnetic vector potential.

The gauge issues associated with the explicit presence of the vector potential have been

discussed in [23]. The equation of motion (64) has the hydrodynamical forces (including the

Lorentz force) and the “rocket” term associated with particle creation on the left hand side

balancing the resistivity on the right hand side.

The fluid contribution to the momentum follows from a variation of the Lagrangian of the

system, Λ, as outlined in [21]. This quantity encodes the equation of state and is generally

taken to be of the form Λ = Λ(n2
x). We then have

µx
a =

∂Λ

∂nax
(66)

(where all fluxes with y 6= x are held fixed).

We can also write (64) as

2nbx∇[bµ
x
a] + µx

aΓx = jbxFab +Rx
a − exΓxAa , (67)

where

jax = exn
a
x . (68)

The right-hand side of (64), Rx
a, represents resitive scattering of the various constituents

off of one another. It account for the anticipated electrical resistivity, but also includes

scattering that may prevent the relative flow of the different charge-neutral components.

As discussed in [23], a general model takes the form

Rx
a = µ̃xΓxu

x
a +

∑
y 6=x

⊥bxa R
xy
b , (69)

with µ̃x = −uaxµ̃x
a. Here we have used

⊥bxa= δba + ubxu
x
a (70)
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and the Rxy
b are (as yet) unspecified.

However, this model is a little bit too general for our purposes. In order to be more

specific, we make use of the phenomenological model from [23]. This involves introducing

relative flows with respect to a chosen fluid observer (with four velocity ua), such that

uax = γx(u
a + vax) with γx = (1− v2x)−1/2 and v2x = gabv

a
xv

b
x , (71)

(where the fluid frame Lorentz factor γx is not to be confused with γ = γii for the space-

time). The resistivity is then given by

Rx
a = Γxµ̃xu

x
a +

∑
y 6=x

Rxy(δba + vbxua)w
yx
b , (72)

where wyx
b = vyb − vxb is the velocity difference, for all material particles, and Rxy are a

set of scalar friction coefficients. The construction is then closed by the constraint on the

resistivity [23] that enters the entropy equation (x = s)∑
x

Rx
a = 0 −→ Rs

a = −
∑
x6=s

Rx
a , (73)

which means that (recalling that the temperature T is the entropy chemical potential, T =

µs)
1

γs
TΓs = −(ua + vas )Rs

a = (ua + vas )
∑
x6=s

Rx
a = −

∑
x 6=s

∑
y 6=x

Rxywaxsw
yx
b ≥ 0 . (74)

Hence, the Rxy coefficients are required to be positive by the second law of thermodynamics

(they are also symmetric in x and y).

C. The 3+1 form of the momentum equations

Let us now return to (64). In order to work out the spatial component of this equation,

we need the explicit form of the conjugate momentum. Hence, we make the decomposition

µx
a = µ̂xNa + Sx

a , (75)

which introduces the chemical potential according to the Eulerian observer, µ̂x, and where

the flux Sx
a may account for entrainment (as we will explain later).

In general, we need (for each fluid component)

γac
(
2nbx∇[bµ

x
a] + µx

aΓx

)
= Fx

c , (76)
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where

Fx
c = γac

[
jbxFab +Rx

a − exAaΓx

]
. (77)

Leaving the right-hand side of (76) aside for the moment, we have

γac
(
2nbx∇[bµ

x
a] + µx

aΓx

)
= γac

[
∇b(n

b
xµ

x
a)− nbx∇aµ

x
b

]
= γacN

b∇b(n̂xS
x
a) +

n̂x

α
Dc(αµ̂x) +Db(nxv̂

b
xS

x
c )− n̂xKS

x
c − n̂xS

b
xKbc − nxv̂

b
xDcS

x
b , (78)

Making use of this result, we arrive at a final equation of form

(∂t − Lβ) (n̂xS
x
c ) + n̂xDc(αµ̂x) + αDb

(
n̂xv̂

b
xS

x
c

)
− αn̂xv̂

b
xDcS

x
b

= αFx
c − αn̂xS

b
xKbc + αSx

c n̂xK , (79)

or

∂t(γ
1/2n̂xS

x
i ) +Dj

[
γ1/2n̂x

(
αv̂jx − βj

)
Sx
i

]
+ n̂xDi

(
αγ1/2µ̂x

)
− n̂xv̂

j
xDi

(
αγ1/2Sx

j

)
= γ1/2

[
αFx

i − αn̂xS
j
xKij + n̂xS

x
jDiβ

j
]
. (80)

Let us now consider the right-hand side. We need

Fx
c = γac

[
jbxFab + Γx(µ̃xu

x
a − exAa) +

∑
y 6=x

Rxy(δba + vbxua)w
yx
b

]
, (81)

where

γac j
b
xFab = exn̂x

(
Ec + εcbdv̂

b
xB

b
)
, (82)

and

γac (µ̃xu
x
a − exAa)= µ̂xv̂

x
c − ex[γac +W 2

x v̂
x
c (N

a + v̂ax)]Aa . (83)

In order to work out the final term, we need to consider the microphysics. This is naturally

done in the (suitably defined) “fluid” frame associated with ua [24]. From (9) and (71) it

follows that

vax = −
(
W − Wx

γx

)
Na −Wv̂a +

Wx

γx
v̂ax , (84)

such that

Wx = γx(W −Nav
a
x) , (85)

and

γx = WWx(1− v̂ax v̂a) . (86)
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This last result is important because all quantities on the right-hand side are evaluated in

the Eulerian frame, and can be (at least in principle) extracted from the evolution.

After a bit of algebra, we find that

γac (δba + vbxua)w
yx
b =

Wy

γy
v̂yc −

Wx

γx
v̂xc +Wv̂c

[
1

γ2x
− Wy

γy

Wx

γx
(1− v̂bxv̂

y
b )

]
, (87)

where, given (86), all quantities on the right-hand side can be expressed in terms of Eulerian

quantities.

D. The total momentum equation

As discussed in [24] the single-fluid equations discussed in Section III will, in general,

take a different form in the multi-fluid case.

In particular, in the multifluid case the matter contribution to the stress-energy tensor

follows from a variation of Λ with respect to the spacetime metric gab. This leads to

T abM = Ψgab +
∑
x

naxµ
b
x , (88)

where

Ψ = Λ−
∑
x

naxµ
x
a . (89)

In terms of the Eulerian observer we have

T abM = Ψgab +
∑
x

n̂x(N
a + v̂ax)(µ̂xN

b + Sbx) . (90)

In the general case, which accounts for entrainment between different flowing compo-

nents [21], we have

µax = Bxnax +
∑
y 6=x

Axynay , (91)

where we have defined

Bx = −2
∂Λ

∂n2
x

with n2
x = gabn

a
xn

b
x , (92)

and

Axy = Ayx = − ∂Λ

∂n2
xy

with n2
xy = gabn

a
xn

b
y , x 6= y , (93)

such that

µax = Bxn̂x(N
a + v̂ax) +

∑
y 6=x

Axyn̂y(Na + v̂ay) . (94)
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Thus we see that

µ̂x = Bxn̂x +
∑
y 6=x

Axyn̂y , (95)

and

Sax = Bxn̂xv̂
a
x +

∑
y 6=x

Axyn̂yv̂
a
y = µ̂xv̂

a
x +

∑
y 6=x

Axyn̂y(v̂ay − v̂ax) . (96)

When we add the contributions to the stress-energy tensor, we see that

T abM = Ψgab +
∑
x

n̂xµ̂x(N
a + v̂ax)(N b + v̂bx) +

∑
x

∑
y 6=x

n̂xn̂yAxy(Na + v̂ax)ŵbyx . (97)

Comparing to (32) we find that we now need

ρ = NaNbT
ab
M =

∑
x

n̂xµ̂x −Ψ , (98)

Sa = −γacNdT
cd
M =

∑
x

n̂x

(
µ̂x −

∑
x

∑
y 6=x

n̂xn̂yAxy

)
v̂ax =

∑
x

n̂2
xBxv̂ax , (99)

and

Sab = γac γ
b
dT

cd
M = Ψγab +

∑
x

n̂xv̂
a
x

(
µ̂xv̂

b
x +

∑
y 6=x

n̂yAxyŵbyx

)

= Ψγab +
∑
x

n̂2
xBxv̂ax v̂

b
x +

∑
x

∑
y 6=x

n̂xn̂yAxyv̂ax v̂
b
y . (100)

In principle, the multi-fluid model is now (at least formally) complete and we can turn

our attention to specific models and the associated input physics. However, the complexity

of the problem means that it is sensible to consider a specific setting and it is also wise

to introduce simplifications. Hence, we will focus on developing a model relevant for hot

magnetised neutron stars, where the electrons flow relative to the baryons (neutron and

protons) and where the dynamics of the thermal component is retained.

V. APPLICATION: HOT MAGNETISED STARS

Let us consider the specific problem of hot neutron stars (above the critical temperature

for superfluidity). We then have the equations for baryon number conservation and total

momentum conservation from before. Once we account for heat- and charge currents, we

have a three-component problem. We need a system of equations for the baryon number

18



density n̂ and the (Eulerian) fluid velocity v̂i, the electron number density n̂e and the charge

current Ĵ i, and the entropy density ŝ and the heat flux Qi. That is, we are dealing with

a problem with three distinct fluxes. The purpose of this section is to define the relevant

quantities, derive the equations that govern them and devise a strategy that allows the

inversion from evolved variables to the primitive variables used to describe the microphysics.

A. Baryon number conservation

It is natural to begin by revisiting the issue of baryon number conservation. In the general

multi-fluid case, where neutrons and protons are not locked together, we still need to impose

Γn + Γp = 0 . (101)

This means that we can add the individual continuity equations to get

∂t
[
γ1/2(n̂n + n̂p)

]
+Di

[
αγ1/2

(
n̂nv̂

i
n + n̂pv̂

i
p

)
− γ1/2(n̂n + n̂p)βi

]
= 0 . (102)

The baryon number measured by the Eulerian observer is

n̂ = n̂n + n̂p , (103)

and we see that we retain the standard single-fluid result provided that we introduce

n̂v̂i = n̂nv̂
i
n + n̂pv̂

i
p . (104)

This is tantamount to working in a fluid frame analogous to the Eckart frame familiar from

considerations of relativistic heat flux (see [24, 27] for discussion). If we work in a different

frame, which we are perfectly free to do, then the baryon conservation law will necessarily

be different.

Given the central role that the baryon number density plays in the problem, we will

assume that v̂i is defined by (104) in the following. This means that baryon number conser-

vation is ensured by

∂t
[
γ1/2n̂

]
+Di

[
γ1/2n̂

(
αv̂i − βi

)]
= 0 , (105)

as usual.
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Note that, we arrive at the same conclusion by assuming that the neutrons and protons

are locked (e.g. assuming effective interparticle scattering, leading to a short relative mean-

free path) such that

v̂i = v̂in = v̂ip . (106)

This assumption would have been sufficient for the present discussion, but it is useful to

know that the result holds more generally.

B. Momentum conservation

Next, we need the equations for the energy and the total momentum. The energy ρ is

given by (98) and evolved by (40). If we assume that the neutrons and protons are locked

and ignore entrainment (the main mechanism for which is anyway due to a relative drift

between neutrons and protons) then the total fluid contribution to the (Eulerian) momentum

flux is

Si =
∑
x

n̂xµ̂xv̂
i
x = (n̂nµ̂n + n̂pµ̂p)v̂i + n̂eµ̂ev̂

i
e + ŝT̂ v̂is

= (ρ+ Ψ)v̂i + n̂eµ̂e(v̂
i
e − v̂i) + ŝT̂ (v̂is − v̂i) , (107)

where n̂s = ŝ and µ̂s = T̂ is the temperature measured by an Eulerian observer. The relevant

evolution equation is (still) (44).

Later we will find it more convenient to replace the electron velocity with the charge

current and the entropy velocity with the heat flux. We first of all need the charge current

ja = e(nap − nae) = e(n̂p − n̂e)N
a + e(n̂pv̂

a − n̂ev̂
a
e ) = σ̂Na + Ĵa , (108)

with NaĴ
a = 0. From this we see that

σ̂ = e(n̂p − n̂e) , (109)

and

Ĵa = e(n̂pv̂
a − n̂ev̂

a
e ) −→ v̂ae =

1

n̂e

(
n̂pv̂

a − Ĵa

e

)
. (110)

Next, introduce the heat flux (relative to the fluid frame) as

Qi = ŝT̂ (v̂is − v̂i) . (111)
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In terms of these new variables, we have

Si = (ρ+ Ψ)v̂i +
µ̂e

e

(
σ̂v̂i − Ĵ i

)
+Qi . (112)

Similarly, we get

Sij = Ψγij +
∑
x

n̂xµ̂xv̂
i
xv̂
j
x

= Ψγij +

[
ρ+ Ψ +

(
n̂2
p − n̂2

e

) µ̂e

ne

]
v̂iv̂j

− 2
n̂pµ̂e

en̂2
e

v̂(iĴ j) + 2v̂(iQj) +
µ̂e

e2n̂e

Ĵ iĴ j +
1

ŝT̂
QiQj . (113)

C. A linear drift model

As discussed in [24] it is natural to assume that the drift velocities in the fluid frame

are small, such that vax � 1 and γx ≈ 1. This should be a realistic assumption for many

physical situations. In essence, this assumption allows us to linearise the problem in the

relative fluxes which simplifies the problem considerably and makes the connection with the

microphysics encoded in the equation of state more straightforward.

If the relative drift of each fluid is small in the frame associated with v̂i, then the difference

between v̂i and v̂ix must be small, as well. Retaining only linear terms we have

vix = W [δij +W 2v̂j(N
i + v̂i)](v̂jx − v̂j) , (114)

which means that

wiyx = W [δij +W 2v̂j(N
i + v̂i)]ŵjyx , (115)

and the resistivity (72) simplifies dramatically. We now have

γac (δba + vbxua)w
yx
b ≈ W [δbc + v̂cv̂

bW 2]ŵyx
b . (116)

We also need

Wx ≈ W [1 +W 2v̂c(v̂
c
x − v̂c)] . (117)

In addition to linearising in the drift velocities, it makes sense to assume that the system

is charge neutral in the fluid frame. We then have ne = np and it follows that

σ̂ ≈ eneW
3(v̂jŵ

j
pe) . (118)
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We also have

Ĵ i ≈ eneW (δij +W 2v̂iv̂j)ŵ
j
pe , (119)

which leads to

v̂ie ≈ v̂i − 1

eneW
(δij − v̂j v̂i)Ĵ j , (120)

and we see that We ≈ W . It also follows that

σ̂ ≈ v̂jĴ
j , (121)

which makes intuitive sense.

Similarly, for the entropy component we have

v̂is ≈ v̂i +
1

sTW 2
Qi . (122)

In order to close the system, we need a multiparameter equation of state. In the fluid

frame, we (quite generally, as long as we ignore entrainment) have an equation of state of

form ε = ε(nx), such that, in the case of small drift velocities;

ε = uaubT
ab
M = −Ψ +

∑
x

nxµx . (123)

From this we see that the local pressure is p = Ψ and we have

p+ ε =
∑
x

nxµx . (124)

Moreover, the individual chemical potentials follow from

µx =

(
∂ε

∂nx

)
ny

, y 6= x . (125)

That is, at this level of approximation, we retain the familiar thermodynamical relations.

In the case we are considering we need an equation of state of the form ε = ε(n, ne, s).

Putting everything together, we have

p+ ρ ≈ (p+ ε)W 2 − 2W 2v̂iQ
i . (126)

We also have

Si ≈ (ρ+ p)v̂i +
µeW

e

(
σ̂v̂i − Ĵ i

)
+Qi , (127)

and

Sij ≈ pγij +

[
ρ+ p+

1

e
µeWσ̂

]
v̂iv̂j − 2µeW

e
v̂(iĴ j) + 2v̂(iQj) . (128)

22



D. Ohm’s law

In the multifluid model, Ohm’s law follows from the electron momentum equation [24].

Using x = e in (80) we get

∂t(γ
1/2n̂eS

e
i ) +Dj

[
αγ1/2n̂e

(
v̂je −

βj

α

)
Se
i

]
+ n̂eDi

(
αγ1/2µ̂e

)
− n̂ev̂

j
eDi

(
αγ1/2Se

j

)
= γ1/2

[
αF e

i − αn̂eS
j
eKij + n̂eS

e
jDiβ

j
]
, (129)

where F e
i follows from (81).

As we are ignoring entrainment we have

Se
i = µ̂ev̂

i
e ≈ µe

(
Wv̂i − Ĵ i

ene

)
. (130)

Making use of this in (129) (and linearising in the relative fluxes) we arrive at the final

momentum equation for the charge current.

In the following we will ignore particle reactions. That is, we take Γe = 0 (noting

that this would not be a useful assumption for, for example, neutron star mergers), which

has the benefit of removing electromagnetic gauge issues from the problem (as the explicit

dependence on the vector potential is gone).

With these assumptions we have

F e
i ≈ −en̂e

(
Ei + εijkv̂

j
eB

k
)

+W (δji + v̂iv̂
jW 2)

∑
y 6=e

Reyŵye
j

≈ (eneW − σ̂)Ei + εijk(eneWv̂j − Ĵ j)Bk

+
1

ene

(Reb +Res)Ĵi +
1

sTW
Res(δji + v̂iv̂

jW 2)Qj . (131)

In order to evolve the equation for the charge current, we need the electron number

density (or some proxy for it). At the level of approximation we are working, it follows from

(63) that

∂t(γ
1/2n̂e) +Di

{
γ1/2

[
n̂e(αv̂

i − βi)− α

e
(Ĵ i − σ̂v̂i)

]}
= 0 . (132)

E. Heat equation

In order to account for the flow of heat we need the entropy component. In this case, it

is useful to introduce s = ns, s
a = suas and T = µs (as before) such that

nas = sa = ŝ(Na + v̂as ) . (133)
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The entropy equation

∇as
a = Γs ≥ 0 , (134)

then leads to

∂t
(
γ1/2ŝ

)
+Di

[
γ1/2ŝ

(
αv̂is − βi

)]
= αγ1/2Γs , (135)

or, in terms of the heat flux,

∂t
(
γ1/2ŝ

)
+Di

{
αγ1/2

[
Qi

T̂
+ ŝ

(
v̂i − βi

α

)]}
= αγ1/2Γs , (136)

where T̂ = −Naµs
a.

Let us now consider the momentum equation (80) for the thermal component. We need

µs
a = T̂Na + Ss

a . (137)

From (80) we then have

∂t(γ
1/2ŝSs

i ) +Dj

[
αγ1/2ŝ

(
v̂js −

βj

α

)
Ss
i

]
+ ŝDi

(
αγ1/2T̂

)
− ŝv̂jsDi

(
αγ1/2Ss

j

)
= γ1/2

[
αF s

i − αŝSjsKij + ŝSs
jDiβ

j
]
, (138)

or

∂t(γ
1/2ŝSs

i ) +Dj

{
αγ1/2

[
Qj

T̂
+ ŝ

(
v̂j − βj

α

)]
Ss
i

}
+ ŝDi

(
αγ1/2T̂

)
−
(
Qj

T̂
+ ŝv̂j

)
Di

(
αγ1/2Ss

j

)
= γ1/2

[
αF s

i − αŝSjsKij + ŝSs
jDiβ

j
]
, (139)

where (as long as we ignore entropy entrainment)

Sis = T̂ v̂is ≈ TW

(
1 +

1

sT
v̂jQ

j

)
vi +

1

sW
Qi . (140)

Inserting this in (139) (and linearising in the relative fluxes) we arrive at the final momentum

equation for the thermal component.

We also have

F s
i = γjiR

s
j = −γji

∑
x 6=s

Rx
j , (141)

which means that

F s
i = γjiR

s
j ≈ −

1

ene

ResĴi −
1

sTW
(Rbs +Res)(δji + v̂iv̂

jW 2)Qj . (142)
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Finally, we need an explicit expression for Γs. We know from (74) that the result will be

quadratic in the (fluid frame) drift velocities. Explicitly we have (retaining quadratic terms

in the fluxes since they are leading order).

TΓs = Rbew2
be +Rbsw2

bs +Resw2
es

≈ 1

s2T 2W 2
(Rbs +Res)

[
Q2 + (v̂jQ

j)2W 2
]

+
2

enesTW
ResĴ lQl +

1

e2n2
e

(Res +Reb)(Ĵ2 − σ̂2) . (143)

F. Inferring the primitive variables

As discussed in Section IIIC, the framework is not complete unless we provide a prescrip-

tion for working out the primitive variables from the evolved ones. In the general case, we

expect to need to evolve both electric and magnetic fields (or any equivalent set of variables

giving the complete Faraday tensor). Thus, unless we make specific simplifications to the

model, and as long as we can ignore gauge issues, we should always be able to calculate

all electromagnetic quantities that appear in the evolved variables. This means that when

considering the inversion process from conserved to primitive variables, we only need explore

the hydrodynamic problem.

In the general case, we have six evolved quantities: We have three scalars:

n̂ = nW , (144)

ŝ = sW

(
1 +

1

sT
v̂jQ

j

)
, (145)

n̂e = neW , (146)

where we could opt to use the energy ρ instead of ŝ, and three fluxes:

Si =
[
(p+ ε)W 2 +

µe

e
Wσ̂ − 2W 2(v̂jQ

j)
]
v̂i − µeW

e
Ĵ i +Qi , (147)

Sie = µe

(
Wv̂i − 1

ene

Ĵ i
)
, (148)

Sis = TW

(
1 +

1

sT
v̂jQ

j

)
v̂i +

1

sW
Qi . (149)

The general problem we have formulated takes us several steps beyond the current state of

the art for numerical simulations. Hence, it is useful to strip the model down to a hierarchy

of levels. As a first step, let us consider the simple case of a hot single fluid (locking the
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electrons to the baryons, so there is no charge current). This is a useful model problem

because it illustrates the fact that we may adopt different strategies. If we assume that the

entropy is also locked to the material component, so that Qi = 0, then we are dealing with

a single flow, but we still require a two-parameter equation of state. The usual approach to

this problem considers the energy ε as the second thermodynamic variable. In this “energy

representation” the equation of state is, effectively, taken to be of form p = p(n, ε). The

evolution provides values for n̂, ρ and Si. In order to invert this system to the primitive

variables we can initiate a root search from a guess p = p̄. By combining the definitions for

ρ and Si we see that

p+ ρ =

(
S2

v̂2

)1/2

. (150)

Given this, we can obtain v̂2 and hence the Lorentz factor W from the evolved variables and

our initial guess p̄. The definition of ρ then provides us with the corresponding value for

ε and the evolved n̂ gives n. Now we can work out p(n, ε) from the equation of state and

compare to our guessed value. Iteration of the procedure leads to the solution we need.

The energy approach is straightforward to implement but the multifluid formulation

suggests that we may want to consider an alternative strategy [51]. Thus, let us consider

the problem in the “entropy representation”, which involves evolving ŝ rather than ρ.

We now take the equation of state to be ε = ε(n, s). The evolution problem is then given

by (27) and (44), as before, together with (136), which provides ŝ = sW . The inversion to

the primitive variables remains a one-dimensional root-finding exercise. As in the cold fluid

case, we start by guessing n = n̄. The ratio of the evolved variables ŝ and n̂ then gives the

specific entropy so the entropy density corresponding to our guess is

s = n̄(ŝ/n̂) . (151)

Thus we have the two parameters we need to work out vi and W from the the evolved

momentum Si, exactly as before. Finally, we arrive at n̂ = n̄W which we compare to the

evolved value and iterate until the solution is found.

The introduction of additional fluxes, like Ĵ i andQi, adds steps to the inversion procedure,

but it remains (at least in principle) a nonlinear root-finding problem that is qualitatively

similar to the single fluid case. As the dimension of the root-finding procedure increases, it

becomes more sensitive to the initial guess, more computationally expensive (usually as the
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square of the dimension), and less robust. In order to outline the procedure, it is useful to

consider three problems of increasing complexity.

Let us first assume that the entropy remains locked to the baryons, as in the hot model

discussed earlier. There is no heat flux, but the introduction of the charge current as a

dynamical quantity means that we need to evolve n̂e and Ĵ i. Nevertheless, the inversion

to the primitive variables remains a one-dimensional root search. We can initiate this as

before; given a guessed value n = n̄ we get the entropy density from (151) and we also have

ne = n̄(n̂e/n̂) . (152)

This provides all information required to use the equation of state to evaluate ε, p and

the electron chemical potential µe. Given this information we can solve the (linear in drift

velocities) system

S2 ≈ (p+ ε)

[
(p+ ε)W 4v̂2 − 2µe

e
σ̂W

]
, (153)

S2
e ≈ µ2

e

(
W 2v̂2 − 2W

ene

σ̂

)
, (154)

to obtain W and σ̂. This leads to an updated value for the number density n = n̂/W which

replaces our guessed value. Iteration of the procedure leads to a solution which can be used

to invert Si and Sie to get v̂i and Ĵ i.

When we introduce the heat flux, the problem becomes one level more complicated. The

evolution now provides

ŝ = sW

(
1 +

1

sT
v̂jQ

j

)
, (155)

and

Sis = T
ŝ

s
v̂i +

1

sW
Qi . (156)

That is, we need both T and v̂jQ
j in order to invert the relation for s. The upshot of this is

that we need a two-dimensional root search. If we guess both n = n̄ and s = s̄, then we can

work out the corresponding value for the temperature T from the thermodynamics. Once

we have this information, we can solve the system provided by ŝ together with

S2 ≈ (p+ ε)W 2
[
(p+ ε)W 2v̂2 + 2(1− 2W 2v̂2)v̂jQ

j
]
, (157)

and

S2
s ≈

ŝT

s

[(
ŝT

s

)
v̂2 +

2

sW
v̂jQ

j

]
, (158)
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to get W , v̂jQ
j and a new value for s. Once we have the Lorentz factor we also have a new

value for n and we can iterate. After finding a consistent solution, we invert the expressions

for the evolved fluxes to get v̂i and Qi.

The general case with three fluxes does not involve any additional complications. It

remains a two-dimensional root search, as in the case with heat flux. We need to solve a

system of four equations following from ŝ, S2, S2
e and S2

s to determine s, W , σ̂ and v̂jQ
j.

This gives new values for n and s for which we iterate. Once we have an iterated solution,

we solve the coupled system for the three fluxes to get v̂i, J i and Qi.

VI. GOING FURTHER: THE ENTRAINMENT

In the specific models considered in the previous section the entrainment effect was not

included. However, there are a number of cases where entrainment may be crucial, such as

causal heat propagation [28]. Models including entrainment will pose some novel problems

for numerical simulations.

A. Balance law form

The general multi-fluid formulation gives equations of motion that, on considering them

from a 3+1 foliation point-of-view, will appear in the quasilinear form

∂tU + A(i)∂iU = S . (159)

When the matrices A(i) can be written as Jacobians ∂F(i)/∂U then the quasilinear form can

be written as balance laws,

∂tU + ∂iF
(i)U = S . (160)

This makes a crucial difference when considering discontinuous solutions, particularly

shocks, which are expected to appear generically in nonlinear hydrodynamics, and whose

behaviour is important in astrophysical situations such as neutron star mergers or super-

novae. The speed VS of a discontinuity connecting state UL to state UR must satisfy

VS (UR −UL) =

∫ UR

UL

A dU . (161)

When the matrix A can be written as a Jacobian this gives the standard Rankine-Hugoniot

conditions. In the general non-conservative quasilinear case, however, the more general
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theory of [39] is required, where the shock speed directly depends on the path in state

space connecting UL,R, and there is no a priori reason for choosing one path over another.

Additional physical input will be needed to fix the shock speed.

Even after choosing a path, problems remain in performing a numerical simulation.

Whilst a number of path-conservative methods have been constructed to deal with the

resulting non-conservative equations (once a path has been chosen), there are cases (see [40]

and [41]) where the numerical scheme does not converge to the expected solution and dif-

ferent numerical methods do not agree.

It is important, therefore, to know when our general framework allows us to write the

foliation equations in balance law form. We first note that the single fluid momentum

equation

2nb∇[bµa] = 0 , (162)

can be re-written in the form

∇b

[
nbµa − δba (ncµc + Λ)

]
= 0 . (163)

Projecting this into the foliation clearly gives the balance law form expected for single fluid

hydrodynamics. With this in mind we consider when the general form for the momentum

equation for a single species, equation (64), can be written in the “balance law” form

∇b

[
nbxµ

x
a − δba (ncxµ

x
c + Ex) +Db

x a

]
= Sx

a , (164)

where the “source” Sx
a contains no derivatives of fluid variables. By considering Ex and Db

x a

to be functions of nax only, we can see that this matches equation (64) only if

Sx
a = Rx

b +

[
∂Dc

x b

∂nax
− δcb

(
µx
a +

∂Ex

∂nax

)]
∇cn

a
x +

∑
y 6=x

[
∂Dc

x a

∂nay
− δcb

∂Ex

∂nay

]
∇cn

a
y . (165)

For the source term to contain no derivatives of fluid variables requires that

∂µx
a

∂ndy
≡ 0 , (166)

which is precisely when there is no entrainment. We therefore expect that it will not be

possible to write all equations for models including entrainment in balance law form [52],

meaning the complexities of non-conservative equations of motion and path-conservative

numerical methods will be needed. Such developments may require a considerable effort.
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B. Inferring the primitive variables

In section VF the reconstruction of the primitive variables from the evolved variables

was more complex than the single fluid problem, but remained a relatively straightforward

root-finding problem.

When entrainment is included the couplings between different species introduced by the

equation of state become more complex. In particular, computing any entrained conjugate

momentum requires knowing the number density and velocities of all relevant species. In the

most general case where all species are entrained, it will be necessary to solve simultaneously

for all species number densities and velocities, which increases the dimensionality of the root-

finding problem substantially.

The steps required were essentially laid out in [42]. In summary, we would guess the

number densities of all species. Given the evolved variables in the individual momentum

equations, which are proportional to the conjugate momenta, we can use the definition of

the conjugate momenta to solve a linear system for the (spatial components) of the species

velocities. From this and the evolved variables from the individual continuity equations we

can get the number densities. This gives a root-finding problem whose size corresponds to

the number of species, which is likely to be costly and numerically sensitive to, for example,

the choice of initial guess. As an example, for a general three fluid model the two dimensional

root find using algebraic relations in section VF would be replaced by a three dimensional

root find involving a linear system solve at each stage, which will likely at least double the

computational cost.

VII. SUMMARY AND OUTLOOK

We have considered the general resistive multi-fluid framework discussed in [24] from a

3+1 space-time foliation point-of-view. With future numerical simulations in mind we paid

particular attention to issues relating to the use of multi-parameter equations of state and the

associated inversion from evolved to primitive variables. We highlighted numerical issues

that arise for systems with relative flows and the entrainment coupling. One important

technical issue that remains to be resolved arises from the fact that the general multi-fluid

problem cannot be cast in flux-conservative form, and we touched upon possible challenges
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this may lead to. As an example of the new formulation, we focussed on a three-component

system relevant for hot neutron stars. We assumed the baryons (neutrons and protons)

move together, but let heat and electrons exhibit relative flow. This reduces the problem

to three momentum equations; overall energy-momentum conservation, a generalised Ohm’s

law and a heat equation. Our results provide a hierarchy of increasingly complex models for

this system and prepare the ground for more detailed state-of-the-art simulations of relevant

relativistic scenarios.

An important question for understanding when to have confidence in numerical simula-

tions of these models is the hyperbolicity, and hence the well-posedness, of the equations of

motion. The hyperbolicity of the ideal MHD equations is guaranteed at the continuum but

complicated at the numerical level by the issue of degeneracies [48]: it is not clear how, or if,

these more complex models would resolve this. In addition, standard resistive extensions to

ideal MHD lead to stiff source terms that attempt to relax states near ideal MHD back to

this limit on very short timescales, compared to the magneto-acoustic timescales that would

otherwise dominate. As these fast relaxation timescales are physically reasonable, we would

expect the more complex models introduced here to retain the stiffness problem, which is

numerically challenging. We consider this problem in [43].

In addition, we need to improve the connection with equation of state models. The

multifluid model requires a number of “new” parameters, which are not readily inferred

from (most) current realistic equations of state. This does not, however, mean that they

can not be calculated. We simply need a closer dialogue between the relevant research

communities.

Another natural next step is to carry out numerical simulations to test the relevance

of the new features accounted for in our model. Work in this direction is in progress.

For example, we consider different aspects of resistive two-component plasmas in [43]. At

the moment, the numerical work is very much at the development stage. The aim is to

compare to state-of-the-art plasma simulations in special relativity, see [44–47] for progress

in this direction, and extend these models to general relativity, with a live spacetime. While

we make progress on the computational side, we also need to develop the formal theory

further. In particular, we need to include radiative aspects in order to be able to account for

neutrino emission if we want to accurately model hot systems. The models we developed in

this paper may contain trapped neutrinos (forming part of the entropy component) but we
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did not account for possible radiative fluxes. However, the strategy for adding these aspects

is, at least in principle, clear (see, e.g., [32] or [33]). Similarly, the general framework is

readily extended to include the elastic neutron star crust, which will be relevant for mature

(cold) systems [30]. Once the model is extended in these directions we will have a flexible

theoretical framework which will allow us to model the nonlinear dynamics of neutron stars

at all stages of evolution, from birth to maturity (and perhaps, as the magnetic field decays,

obscurity).
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Appendix: The electromagnetic field

For completeness, we provide the relevant evolution equations for the electromagnetic

degrees of freedom in this Appendix. There are different approaches to this part of problem.

The electromagnetic dynamics is fully specified in terms of the vector potential Aa, but

it may be more intuitive to work with the electric and magnetic fields, Ea and Ba. Our

formulation of the fluid part of the problem is non-committal in this respect, but it is worth

noting that we need to evaluate the vector potential whenever we want to account for particle

reactions. This inevitably involves electromagnetic gauge issues [23] which suggests that a

formulation like that discussed in [26] (which involves Ea and Aa) may be natural.

Postponing a deeper discussion of this issue for the future, let us assume that we work

with the electric and magnetic fields. In the 3+1 decomposition, where the observer is

associated with Na, we then have

Fab = 2N[aEb] + εabcdN
cBd , (167)

That is, the electric and magnetic fields measured in the Eulerian frame are

Ea = −N bFba , (168)

and

Ba = −N b

(
1

2
εabcdF

cd

)
. (169)
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The fields are both orthogonal to Na, so each has three components, as expected.

It is useful to relate the fields to those associated with the frame used in [24], where we

had (using lowercase letters represent the fields measured in the fluid frame associated with

ua)

Fab = 2u[aeb] + εabcdu
cbd , (170)

We need

ea = −ubFba = −W (N b + vb)Fba = W
[
Ea +Na(v̂

bEb)
]
−Wv̂bεbacdN

cBd

= W
[
Ea +Na(v̂

bEb) + εabcv̂
bBc
]
, (171)

and

ba = −ub
(

1

2
εabcdF

cd

)
= −W (N b + v̂b)

(
1

2
εabcdF

cd

)
= W

[
Ba +Na(v̂

bBb) + εabcv̂
bEc
]
. (172)

The electromagnetic contribution to the stress-energy tensor is

TEM
ab =

1

µ0

[
gcdFacFbd −

1

4
gab(FcdF

cd)

]
. (173)

In terms of the the fields (measured by the Eulerian observer) we have

TEM
ab =

1

µ0

[
E2NaNb + EaEb + γabB

2 −BaBb + 2N(aεb)dhe
dBh − 1

2
gab
(
B2 − E2

)]
, (174)

from which (56)–(58) follow.

Rather that working with the divergence of the total stress-energy tensor for the system

we can isolate the electromagnetic contribution. The right-hand side of the matter equations

then have additional terms which follow from the Lorentz force;

faL = −jaF ab = N b(ĴaEa) + (σ̂Eb + εbadĴaBd) , (175)

where the charge current

ja = σ̂Na + Ĵa , (176)

was discussed in the main text of the paper.

Finally, we need Maxwell’s equations. First of all,

∇aF
ba = µ0j

b , (177)

33



leads to

γab∇bEa = µ0σ̂ + εabc (∇aNb)Bc , (178)

or

γba∇bE
a − µ0σ̂ = −εabcKabBc = 0 , (179)

since Kab is symmetric. That is, we have

DiE
i = µ0σ̂ . (180)

We also get

γabN
c∇cE

b − εabc∇bBc + µ0Ĵa = Eb∇bNa − Ea∇bN
b + εabc(N

d∇dN
b)Bc , (181)

or

γabN
c∇cE

b − εabc∇bBc + µ0Ĵa = −EbKba + EaK + εabc(N
d∇dN

b)Bc , (182)

and we end up with

(∂t − Lβ)Ei − εijkDj(αBk) + αµ0J
i = αKEi . (183)

The second pair of Maxwell equations follow from

∇[aFbc] = 0 , (184)

which leads to

γab∇bBa = −εabcEa∇bNc , (185)

or

γba∇bB
a = εabcEaKbc = 0 , (186)

So we have

DiB
i = 0 . (187)

Finally,

γabN
c∇cB

b + εabc∇bEc = −εabc(Nd∇dN
b)Ec +Bb∇bNa −Ba∇bN

b , (188)

or

γabN
c∇cB

b + εabc∇bEc = −εabc(Nd∇dN
b)Ec −BbKba +BaK . (189)
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This leads to

(∂t − Lβ)Bi + εijkDj(αEk) = αKBi . (190)
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The Astrophysical Journal Supplement Series 188, 1–31 (2010).

[49] We are using the convention that all velocities measured by the Eulerian observer have hats,

while the velocities relative to the fluid frame do not.

[50] The numerical implementation of this strategy many not be straightforward. For example,

the result may be sensitive to the initial guess and the algorithm may not converge. This is

particularly true for the more complex situations we consider later. However, our aim here is

not to resolve the possible numerical issues. We are only outlining the logic of the approach.

[51] In principle, the two descriptions are related by the inversion s = s(n, ε), but this is unlikely

to be a simple relation.

[52] The equations for total energy and momentum conservation will obviously remain of the

required form as long as the system is closed.

37



38


