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Abstract

We develop an action principle to construct the field equations for a multi-fluid system con-

taining charge-neutral fluids, plasmas, and dissipation (via resistive interactions), by combining

the standard, Maxwell action and minimal coupling of the electromagnetic field with a recently

developed action for relativistic dissipative fluids. We use a pull-back formalism from spacetime

to abstract matter spaces to build unconstrained variations for both the charge-neutral fluids and

currents making up the plasmas. Using basic linear algebra techniques, we show that a general

“relabeling” invariance exists for the abstract matter spaces. With the field equations in place, a

phenomenological model for the resistivity is developed, using as constraints charge conservation

and the Second Law of Thermodynamics. A minimal model for a system of electrons, protons,

and heat is developed using the Onsager procedure for incorporating dissipation.

PACS numbers: 04.40.Nr, 04.40.-b, 03.50.-z
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I. INTRODUCTION

Relativistic fluid dynamics is a well developed area of research, with exciting applications

ranging from astrophysics to high-energy collider physics (see Andersson and Comer [1]).

These applications become more complex and involved as our computational technology

advances. In astrophysics, the state-of-the-art is represented by neutron-star simulations

(or work on supernova core collapse) including multi-dimensional neutrino transport [2, 3]

and compact mergers of magnetised binary stars including resistive effects [4, 5]. Meanwhile,

the high-energy physics problem has inspired the first simulations of second-order, causal,

dissipative models, building on the classic formulation of Israel and Stewart [6, 7]. In

parallel, there have been formal developments of the theory (including many relevant efforts

in the string-theory inspired area of holography, see for example, [8]).

When it comes to classical (general-) relativistic fluid dynamics, the most interesting

developments involve the consideration of multi-fluid systems, e.g. issues arising when com-

ponents become superfluid, when heat flows and when the electromagnetic charge current is

treated as a dynamical variable [1, 9–11]. These advances allow us to consider a wide range

of relevant phenomena, but the general theory is incomplete in two important respects. First

of all, we need to be able to consider dissipation (for which a plethora of mechanisms may

operate in a multifluid system). Secondly, we need to couple the dissipative fluid dynamics

to electromagnetism. The former poses a formal challenge because, while it is well-known

that non-dissipative fluid dynamics can be derived from an action principle [1, 12–15], the

inclusion of dissipation in these systems tends to be phenomenological. The second is key

if we want to move towards a greater level of realism in our astrophysics modeling.

Given the first of these two issues, the recently proposed strategy for extending the

variational approach to dissipative systems [16] is promising. In principle, it provides us with

an avenue for connecting dissipative channels with the underlying matter description and

equation of state models accounting for transport phenomena. This paper aims to address

the second issue by extending the variational derivation to account for electromagnetism.

In particular, we provide a variational derivation for charged multifluid systems, accounting

for particle reactions and resistive scattering. Having obtained the formal results we discuss

issues relating to electromagnetic gauge-invariance and develop a phenomenological model

inspired by (and consistent with) the formal results. These developments provide a robust
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foundation for applications, as discussed in two companion papers [17, 18].

In Sec. II, we discuss the fundamental variables of the system and review the pull-back

formalism. We also show how to build in general re-labeling invariance for the matter spaces.

The total action, its variation, and resulting field equations are given in Sec. III. In Sec. IV,

we use a decomposition of the system variables and fluid field equations with respect to a

local “observer’s” frame-of-reference to illuminate various features of the resistivity and to

exploit them so as to produce a phenomenological model. A minimal model for a system of

electrons, protons, and heat is provided in Sec. V. Concluding thoughts and some discussion

of immediate applications of the formalism are presented in Sec. VI. Finally, in an appendix,

we show how minimal coupling can be considered as a special type of entrainment between

the electromagnetic four-potential and the charged fluid fluxes. The conventions of Misner,

Thorne, and Wheeler [19] are used throughout.

II. SYSTEM KINEMATICS: THE FIELDS AND VARIABLES

We will assume that our system has a number Nc of independent fluid constituents (such

as electrons, protons, neutrons, and entropy). Each constituent has as its fundamental field

a particle number density current nax, where x is a label that ranges over the various Nc

constituents (e for electrons, p for protons, etc.). The density nx associated with a given

flux is given by n2
x = −gabnaxnbx. Among the Nc constituents there will be a number Nq

which are charged, such that Nq ≤ Nc. Each of these will have a charge ex which combines

with its associated flux current nax to give a charged flux current jax = exn
a
x. Associated

with each flux is a (canonically conjugate) fluid momentum µx
a [cf. Eq. (58)]. While not

dynamically independent (being a function of, in principle, all of the fluxes), its identification

is an important step towards extracting various physical properties of the system — such as

vorticity [cf. Eq. (59)]. The remaining field variables are the four-vector potential Aa and

the spacetime metric gab. With Aa we couple the charged fluids to the electromagnetic field

(and vice versa); the metric couples all fields to the spacetime curvature (and vice versa).

At the end we have a complete system for describing a system of charged, self-gravitating,

relativistic fluids.
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A. Fluid Particle Worldlines and Fluid Matter Space

The (charged and uncharged) “fluid particles” associated with a given flux will have

worldlines that follow from the unit four-velocity field uax = nax/nx. In general, the number

of independent four-velocities, or equivalently, the number of (charged and uncharged) fluids,

Nf will be equal to or less than Nc. This is determined from the outset by the details of the

system that is to be described. When Nf = Nc, each constituent can move independently

of the others, but when Nf < Nc, some of the constituents are flowing together; for example,

as the limit of dynamical locking due to the resistive form of interaction developed later.

In Fig. 1 we have a representation of some fluid-element worldlines, for a system of two

fluids. With respect to the local coordinate system {x0, xi}, the points on the left-most,

x-fluid worldline are given by xax (τ), where τ is the proper time. The functions xax (τ) can

be constructed from dxax/dτ = uax once the fluid field equations are satisfied and uax is known.

Likewise, for the right-most, y-fluid worldline, the functions xay (λ), where λ is the proper

time, come from integrating dxay/dλ = uay, once the uay are known.

With respect to system evolution, one often has in mind an initial-value approach to

finding solutions. In our local coordinate system, we have an initial, spacelike slice at

x0 = 0, and so our determination of xax (τ) and xay (λ) for the two worldlines will be based

on the specification of their respective initial locations, namely, xax (τ0) and xay (λ0). This

brings up an important point: Assuming a given initial slice, and the fact that proper time

allows for some re-parametrization invariance, we see that xix (τ0) for each worldline is all

that is needed to set up the distribution of the worldlines on the initial slice. In fact, it is

plausible that once this labeling is in place, each fluid element will carry along with itself

(via Lie-dragging) its original label as it moves along its worldline.

This leads us to introduce for each fluid an abstract, three-dimensional “matter” space,

the coordinates of which can be used as dynamical variables for the fluids [12, 13]. The

role of the equations of motion is to guarantee that the initial set-up will lead to families

of worldlines as fibrations of spacetime. On the left in Fig. 1 we have placed the x-fluid

matter space having coordinates XA
x , A = {1,2,3}, and on the right is the y-fluid matter

space with coordinates XA
y . As we see in the figure, a “point” in either matter space is

identified with a worldline of a fluid element in spacetime. The XA
x are in general a set of

three scalars on spacetime. They only vary from worldline to worldline, meaning for all τ
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FIG. 1: A representation of the pull-back description for fluids based on matching worldlines in

spacetime to points in matter space. We have placed on the worldlines small squares filled with

dots. This is to emphasize the fact that the worldlines are for fluid elements, and not individual

particles, and thus “points” on the worldlines are best thought of as small (with respect to the

whole system) boxes containing a (thermodynamically describable) large number of particles.

of each worldline (and λ for the other fluid worldlines)

XA
x [xax (τ)] = XA

x

[
0, xix (τ0)

]
, (1)

yet, for two different worldlines at, say, {0, xix (τ0)} and {0, xix (τ0) + δxi}, we have

XA
x

[
0, xix (τ0)

]
6= XA

x

[
0, xix (τ0) + δxi

]
. (2)

Next we will show how the XA
x can be used as the fundamental fields for modeling fluid

dynamics.

B. Pull-back Formalism

Consider the three-form nx
abc which is dual to nax:

nx
abc = εdabcn

d
x , nax =

1

3!
εbcdanx

bcd , (3)
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where our convention for transforming between the two is

εbcdaεebcd = 3!δae . (4)

Likewise, we introduce

µabcx = εdabcµx
d , µx

a =
1

3!
εbcdaµ

bcd
x , (5)

which is the three-form dual to µx
a.

We use the XA
x to “pullback” nx

abc into the matter space where it is identified with nx
ABC :

nx
abc = xJ ABC

abc nx
ABC , (6)

such that the Einstein convention applies to repeated matter space indices, and

xJ ABC
abc =

∂X
[A
x

∂xa
∂XB

x

∂xb
∂X

C]
x

∂xc
. (7)

We also use the XA
x to “push-forward” a matter space quantity, µABCx , to the spacetime

three-form µabcx :

µABCx = xJ ABC
abc µabcx . (8)

Note that this construction leads to XA
x which are conserved along their own worldlines

(i.e. they are Lie-dragged by their uax):

dXA
x

dτx
= uax∇aX

A
x =

1

nx

(
− 1

3!
εabcd

∂XA
x

∂x[a
∂XB

x

∂xb
∂XC

x

∂xc
∂XD

x

∂xd]

)
nx
BCD ≡ 0 , (9)

since the term in parentheses vanishes identically.

Because of the antisymmetry in its indices, nx
ABC allows a natural definition for a volume-

form εxABC — up to a normalization convention to be established in the next subsection —

on the x-matter space:

nx
ABC = N xεxABC , (10)

where N x will be defined momentarily. Similarly, the antisymmetry of the indices of µABCx

leads to an “inverse” volume form; namely,

µABCx =Mxε
ABC
x , (11)

whereMx will also be defined momentarily. The quantity εABCx is inverse in the sense that

we impose

εxDEF ε
ABC
x = 3!δ

[A
D δ

B
Eδ

C]
F , (12)
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which implies

εxABCε
ABC
x = 3! . (13)

Now, we can write

N x =
1

3!
εABCx nx

ABC , Mx =
1

3!
εxABCµ

ABC
x . (14)

Letting

nx = −naxuxa , µx = −uaxµx
a , (15)

we have

µxnx =MxN x . (16)

C. Matter Space Metrics

To complete the establishment of εxABC as a volume measure on its associated matter

space, we need to establish normalizations for it and εABCx . Because of their antisymmetry,

εxABC and εABCx each have only one independent component: εx123 and ε123x , respectively.

Establishing a normalization for εxABC and εABCx means setting values for εx123 and ε123x . We

will use a standard, linear algebra approach (see, Strang [20]) which, among other things,

leads to re-labeling invariance for the matter spaces.

Note that the particle number densities can now take the form

n2
x = (

√
gxN x)2 , (17)

where

gx =
1

3!
εxABCε

x
DEFg

AD
x gBEx gCFx , gABx =

∂XA
x

∂xa
∂XB

x

∂xb
gab , (18)

and

n2
xy = gxyN xN y , (19)

where

gxy =
1

3!
εxABCε

y
DEFg

AD
xy g

BE
xy g

CF
xy , gABxy =

∂XA
x

∂xa
∂XB

y

∂xb
gab . (20)

We will use the determinants of gABx and its inverse to form normalizations for εxABC and

εABCx .

The standard, matrix definition [20] for the determinant of gABx is

∆x =
1

3! (εx123)
2 ε

x
ABCε

x
DEFg

AD
x gBEx gCFx . (21)
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The “matrix” inverse gxAB of gABx is the solution to

gACx gxCB = gCAx gxCB = gxBCg
CA
x = gxBCg

AC
x = δAB , (22)

and its determinant is

∆x =
1

3! (ε123x )2
εABCx εDEFx gxADg

x
BEg

x
CF . (23)

Our last step is to impose

εABCx εDEFx gxADg
x
BEg

x
CF = εxABCε

x
DEFg

AD
x gBEx gCFx = 3! (24)

(which means gx = 1) and thus find

εx123 =
1

ε123x

=
√

∆x =
1√
∆x

. (25)

We will assume that the explicit form for gxAB must be a combination of gABx and εxABC .

Because gABx is symmetric, and taking into account Eq. (12), the only combination is

gxAB = axε
x
ACEε

x
BDFg

CD
x gEFx . (26)

To complete the solution, we note that

gABx gxAB = δAA =⇒ ax =
1

2
. (27)

It is straightforward to verify that

gACx

(
1

2
εxCDF ε

x
BEGg

DE
x gFGx

)
= 0 , A 6= B . (28)

In a similar manner, we can find the inverse for gABxy . This is a bit trickier, as we are

mixing coordinates of two different matter spaces. We will consider it to have a “left”- and

a “right”-inverse:

gxyBCg
CA
yx = gxyBCg

AC
xy = δAB ,

gACxy g
yx
CB = gCAyx g

yx
CB = δAB . (29)

As before, we use εABCx and εxABC to calculate the determinants

∆xy =
1

3!εx123ε
y
123

εxABCε
y
DEFg

AD
xy g

BE
xy g

CF
xy = ∆yx ,

∆xy =
1

3!ε123x ε123y

εABCx εDEFy gxyADg
xy
BEg

xy
CF = ∆yx . (30)
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The solution for the left-inverse is

gxyAB = alxyε
y
ACEε

x
BDFg

CD
yx g

EF
yx , (31)

where

gxyABg
BA
yx = δAA =⇒ alxy =

1

2

∆yx√
∆y∆x

. (32)

For the right-inverse it is

gyxAB = aryxε
y
ACEε

x
BDFg

CD
yx g

EF
yx , (33)

where

gABxy g
yx
BA = δAA =⇒ arxy =

1

2

∆xy√
∆x∆y

. (34)

Finally, we see that

gxyAB = gyxBA . (35)

D. Matter Space Covariance

Because of the way we set up the worldline labeling — they are assigned, arbitrarily, on

some timelike slice (cf. Fig. 1) — we can assert that there should be a relabeling invariance

in the pull-back formalism. To that end, suppose we choose a new labeling scheme; e.g. we

use three scalars Y A
x to mark individual fluid worldlines. However, this process must be

constrained in the sense that it only changes the label of a given worldline, and does not

map to a different worldline. Clearly this process is a mapping FA
x from the XA

x to the Y A
x ;

i.e.

Y A
x = FA

x

{
XB

x

}
. (36)

Thus, the re-labeling of a worldline can be done, say, at {0, xix (τ0)}, where

Y A
x

[
0, xix (τ0)

]
= FA

{
XB

x

[
0, xix (τ0)

]}
. (37)

Finally, the constancy of the Y A
x along the worldline is preserved by the mapping since

dY A
x

dτ
=
∂FA

x

∂XB
x

dXB
x

dτ
= 0 . (38)

In principle, the nx
ABC can have a functional dependence, say, of the XA

x for each of the

Nc constituents as well as all the gABx and gABxy . The mapping FA
x for the worldline at

{0, xix (τ0)} must be such that

nx
abc

{
Y A
x

[
0, xix (τ0)

]
, ...
}

= nx
abc

{
XA

x

[
0, xix (τ0)

]
, ...
}
, (39)
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where the new matter space metric components are

ḡABx ≡ ∂Y A
x

∂xa
∂Y B

x

∂xb
gab

=
∂FA

x

∂XC
x

∂FB
x

∂XD
x

∂XC
x

∂xa
∂XD

x

∂xb
gab

=
∂FA

x

∂XC
x

∂FB
x

∂XD
x

gCDx (40)

and

ḡABxy ≡
∂Y A

x

∂xa
∂Y B

y

∂xb
gab =

∂FA
x

∂XC
x

∂FB
y

∂XD
y

gCDxy . (41)

By rewriting Eq. (39), we find

0 = n̄x
ABC

∂Y A
x

∂xa
∂Y B

x

∂xb
∂Y C

x

∂xc
− nx

ABC

∂XA
x

∂xa
∂XB

x

∂xb
∂Y C

x

∂xcx

=

(
∂FD

x

∂XA
x

∂FE
x

∂XB
x

∂F F
x

∂XC
x

n̄x
DEF − nx

ABC

)
∂XA

x

∂xa
∂XB

x

∂xbx

∂XC
x

∂xc

=⇒ nx
ABC =

∂FD
x

∂XA
x

∂FE
x

∂XB
x

∂F F
x

∂XC
x

n̄x
DEF , (42)

where

n̄x
ABC = n̄x

ABC

(
FA
x ,

∂FA
x

∂XC
x

∂FB
x

∂XD
x

gCDx , ...

)
. (43)

It has been asserted that Galilean invariance does not allow for XA
x (via Nx) dependence

in nx
ABC . But, we see that general mappings exist which preserve the covariance of the

description, even those of a “translation” in matter space. This is important for what

follows later, since the resistivity enters precisely because we allow for the full set of nx
ABC

to depend, in principle, on all of the XA
x .

III. THE ACTION PRINCIPLE, FIELD EQUATIONS, AND GAUGE INVARI-

ANCE

In this section we will set up an action principle to derive the resistive-fluid, Maxwell, and

Einstein set of field equations. The pull-back formalism will be used to set up variations

of the fluid fluxes nax required to get the fluid equations with resistivity. The Maxwell

equations are obtained by varying Aa, which appears in two pieces of the total action: one

built from the antisymmetric, Faraday tensor Fab, defined as

Fab = ∇aAb −∇bAa , (44)
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and which satisfies a “Bianchi” identity

0 = ∇aFbc +∇cFab +∇bFca , (45)

and the other constructed from a coupling term based on the scalar jaxAa. Finally, the stress-

energy tensor Tab is obtained in the usual way by varying the total action with respect to the

metric gab. The Einstein field equations are obtained from the standard Hilbert action [21].

As these equations take the usual form, and our main focus is on the fluid dynamics, we

will not discuss the gravitational degrees of freedom here. However, we do provide the full

stress-tensor and so the Einstein equations follow immediately. Of course, it is important to

note that the formalism does account for coupling of the fluid to the dynamical spacetime.

The resistive fluid action SM (ignore boundary terms throughout) has as its Lagrangian an

energy functional Λ (also refereed to as the Master function). To motivate what it is we

will need to review some basic thermodynamics. Much of this discussion is in Andersson

and Comer [1], so we will try to limit the presentation here to the highlights.

Recall that thermodynamics allows one to describe a system with a large number of

particles in terms of a small number of state variables. For a one-fluid system at non-

zero temperature, each fluid element will have as its state variables the total number of

particles N , the total entropy S, and the total volume V . With an equation of state,

E = E(N,S, V ), the remaining thermodynamic variables of chemical potential µ, pressure

p, and the temperature T are calculable as functions of the state variables. This is seen

from the combined First and Second Laws of Thermodynamics:

dE = µdN − pdV + TdS , (46)

which implies

µ(N,S, V ) =
∂E

∂N
, p(N,S, V ) =

∂E

∂V
, T (N,S, V ) =

∂E

∂S
. (47)

We assume that the total energy and the state variables are extensive in the sense that

if (N,S, V ) are doubled, say, then E is also doubled. We also assume that the derived

variables (µ, p, T ) are intensive in that their values remain the same in the doubling process.

These assumptions result in the Gibbs-Duhem (or Euler) relation [22]; namely,

E + pV = µN + TS . (48)
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Now we introduce the densities nn = N/V , ns = S/V , and Λ = −E/V , then Eqs. (46) and

(48) lead to

dΛ = − µn

2nn

dn2
n −

µs

2ns

dn2
s , (49)

µn(n2
n, n

2
s ) = −2nn

∂Λ

∂n2
n

≡ Bnnn , (50)

µs(n2
n, n

2
s ) = −2ns

∂Λ

∂n2
s

≡ Bsns , (51)

Ψ(n2
n, n

2
s ) = Λ + Bnn2

n + Bsn2
s , (52)

where we have put in place the notational conventions established earlier. It is essential to

note that the fundamental thermodynamic state variables are now (n2
n, n

2
s ), the equation of

state is the, a priori, known function Λ(n2
n, n

2
s ), and the remaining thermodynamic quantities

of particle number chemical potential µn, temperature µs, and the pressure Ψ are calculable

from Λ.

Finally, we introduce the fluid four-velocity ua (where uaua = −1) for our single fluid

system. The two fluid fluxes become nan = nnu
a and nas = nsu

a and we are to understand

that the densities are obtained from them as n2
x = −nx

an
a
x, where x = {n, s}. We can now

see that the combined First and Second Law of Thermodynamics takes the form

dΛ = µn
adn

a
n + µs

adn
a
s , (53)

and we have the emergence of the chemical potential covectors thermodynamically conjugate

to the fluxes:

µn
a = Bnnn

a , µs
a = Bsns

a . (54)

In the same spirit, the pressure Ψ is

Ψ = Λ− µn
an

a
n − µs

an
a
s . (55)

Therefore, we have shown that given a form for Λ(n2
n, n

2
s ), and acquiring the fluxes nax, say,

from solutions to the field equations, we can determine completely the remaining set of

thermodynamic variables: chemical potential, temperature, and pressure.

In the following section, we will consider a system with an arbitrary number of inde-

pendent fluid flows. Guided by analogies with superfluids, and ordinary heat conducting

fluids, we know that the energy functional must be expanded to allow for entrainment (see
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[1] for details). Mathematically, this means we include in Λ a dependence on all the scalars

formed from inner products of different fluid fluxes; i.e. terms of the form n2
xy = −nx

an
a
y,

where x 6= y.

A. The Matter, Electromagnetic, and Coupling Actions

The fluid action SM (ignore boundary terms throughout) has as its Lagrangian the func-

tional Λ, and we know from the previous section that it depends on the n2
x = −nx

an
a
x and

the n2
xy = −gabnaxnby. An arbitrary variation of SM with respect to the fluxes nax and the

metric gives

δSM = δ

(∫
M

d4x
√
−gΛ

)
=

∫
M

d4x
√
−g

[∑
x

µx
aδn

a
x +

1

2

(
Λgab +

∑
x

naxµ
b
x

)
δgab

]
, (56)

where g is the determinant of the metric and µx
a is the canonically conjugate momentum to

nax; that is, letting

Bx = −2
∂Λ

∂n2
x

, Axy = − ∂Λ

∂n2
xy

, (57)

then

µx
a = gab

(
Bxnbx +

∑
y 6=x

Axynby

)
. (58)

As mentioned earlier, the momentum is an essential piece of the formalism. For example,

the antisymmetric vorticity two-form ωx
ab is obtained as the exterior derivative of µx

a; that

is,

ωx
ab = 2∇[aµ

x
b] . (59)

Its role as vorticity is well established; e.g. when µx
a is the gradient of a scalar then ωx

ab

is zero (as is the case for superfluids). Notice also how the inclusion of n2
xy has led to

so-called “entrainment”, a tilting of the fluid momenta in the sense that µx
a is no longer

simply proportional to its own flux nax. Entrainment [23–26] between neutrons and protons

is generally thought to be important in superfluid neutron stars and entrainment between

matter and entropy can be shown to be important for causal heat conductivity [27].

The Maxwell Action is

SMax =
1

16π

∫
M

d4x
√
−gFabF ab , (60)
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and its variation with respect to Aa and the metric gab is

δSMax =
1

4π

∫
M

d4x
√
−g
(
∇aF

ab
)
δAb−

1

32π

∫
M

d4x
√
−g
(
FcdF

cdgab − 4F acF b
c

)
δgab . (61)

The minimal coupling of the Maxwell field to the charge current densities is obtained from

the Coulomb action

SC =

∫
M

d4x
√
−g
∑
x

jaxAa , (62)

whose variation with respect to nax, Aa, and gab gives

δSC =

∫
M

d4x
√
−g
∑
x

(
jaxδAa + exAaδn

a
x +

1

2
jaxAag

bcδgbc

)
. (63)

The variation of the total action S for the system is thus

δS = δSM + δSMax + δSC

=

∫
M

d4x
√
−g

{∑
x

(µx
a + exAa) δn

a
x +

1

4π

(
∇bF

ba + 4π
∑
x

jax

)
δAa

+
1

2

[
Λgab +

∑
x

(
naxµ

b
x + jcxAcg

ab
)
− 1

16π

(
FcdF

cdgab − 4F acF b
c

)]
δgab

}
. (64)

Note that the minimal coupling has given a modification of the conjugate momentum familiar

from, say, quantum mechanics; namely,

µ̃x
a = µx

a + exAa . (65)

Of course, the field equations obtained from the variation above cannot be the final form,

since the term proportional to δnax implies that the momentum µ̃x
a must vanish. Clearly this

is not viable because it is essentially the condition that there be no energy or matter present.

This occurs because the components of δnax cannot all be varied independently. We need a

constrained variation. The pull-back formalism provides a set of alternative variables which

does precisely that — the XA
x can be varied independently. Also, we have to incorporate

the fact that the fluid momentum has changed from µx
a to µ̃x

a. This is straightforward since

all that is required is to take Eq. (5) and replace µx
a with µ̃x

a, µ
x
abc with µ̃x

abc, and use that,

as well as µ̃x = −uaxµ̃x
a, as the basis for what follows below.

B. Lagrangian Displacements

Even though we have as our unconstrained dynamical variables the scalars XA
x , ultimately

we want the action principle to produce field equations for the fluxes. After all, there
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is decades of literature and computational techniques for fluids based on solving for the

components nax and not the XA
x . Fortunately, we can use Lagrangian displacements to bridge

variations of matter space variables to those of spacetime. Denoted ξax , the Lagrangian

displacement for a fluid needs to be such that it tracks the virtual displacements of fluid

element worldlines in spacetime. And even though it is a spacetime vector, with four

components, it has been shown (see [1]) that there is gauge freedom that reduces the number

of degrees of freedom back to three.

Using the standard definition of a Lagrangian variation in the relativistic context [1], we

write

∆xX
A
x = δXA

x + LξxXA
x = 0 , (66)

where δXA
x is the Eulerian variation and Lξx is the Lie derivative. This means that convec-

tive variations are such that

δXA
x = −LξxXA

x = −ξax
∂XA

x

∂xa
. (67)

The displacements of the matter space fluid elements will lead to variations of nx
ABC , which,

in turn, will induce variations of nx
abc. The existence of more than one fluid means, also,

that we need to consider

∆xX
A
y = δXA

y + LξxXA
y = LξxXA

y − LξyXA
y =

(
ξax − ξay

) ∂XA
y

∂xa
. (68)

The Lagrangian variation of nx
abc in general is

∆xn
x
abc = xJ ABC

abc ∆xn
x
ABC , (69)

and thus

δnx
abc = −Lξxnx

abc + xJ ABC
abc ∆xn

x
ABC , (70)

where the Lie derivative of the nx
abc along the ξax is

Lξxnx
abc = ξdx

∂nx
abc

∂xd
+ nx

dbc

∂ξdx
∂xa

+ nx
adc

∂ξdx
∂xb

+ nx
abd

∂ξdx
∂xc

. (71)

Andersson and Comer [16] have demonstrated that allowing nx
ABC to be a function of all

the XA
x (including XA

y for y 6= x), all the gABx , and all the gABxy leads to a system of fluid

equations with dissipation of several types, among which is the resistive type of interactions

to be explored here and others coming from, say, shear and bulk viscosities. The resistive
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forms of dissipation are due to the presence of XA
y (for y 6= x) in the nx

ABC , and so we

consider here

∆xn
x
ABC =

∑
y 6=x

∂nx
ABC

∂XD
y

∆xX
D
y

=
∑
y 6=x

∂nx
ABC

∂XD
y

∂XD
y

∂xa
(
ξax − ξay

)
. (72)

Using the facts that

∆xg
ab = δgab − 2∇(aξb)x , (73)

δεabcd = −1

2
εabcdgefδgef , (74)

and

εbcdaLξxnx
bcd = 3!

(
ξbx∇bn

a
x − nbx∇bξ

a
x + nax∇bξ

b
x

)
, (75)

we find

δnax = δ

(
1

3!
εbcdanx

bcd

)
= nbx∇bξ

a
x − ξbx∇bn

a
x − nax

(
∇bξ

b
x +

1

2
gbcδgbc

)
+

1

µ̃xnx

nax
∑
y 6=x

Rxy
b

(
ξbx − ξby

)
, (76)

where

Rxy
a ≡

1

3!

∂XD
y

∂xa
µ̃ABCx

∂nx
ABC

∂XD
y

(77)

and it satisfies the identity

uayR
xy
a ≡ 0 . (78)

The total “resistivity” current Rx
a is

Rx
a =

∑
y 6=x

(Ryx
a −Rxy

a ) , (79)

which has the identity ∑
x

Rx
a ≡ 0 . (80)

C. The Field Equations

We now return to the flux variations of the combined fluid, Coulomb, and Maxwell actions

given in Eq. (64). The fact that we are summing over all constituents leads to∑
x

∑
y 6=x

Rxy
a

(
ξax − ξay

)
=
∑
x

∑
y 6=x

(Rxy
a −Ryx

a ) ξax = −
∑
x

Rx
aξ
a
x , (81)
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so that the variation of the action (excluding the Hilbert action for reasons stated earlier)

for the system is

δS =

∫
M

d4x
√
−g

{
−
∑
x

(fx
a + Γxµ̃

x
a −Rx

a) ξ
a
x −

1

4π

(
∇bF

ab − 4π
∑
x

jax

)
δAa

+
1

2

[
Ψgab +

∑
x

naxµ
b
x −

1

16π

(
FcdF

cdgab − 4F acF b
c

)]
δgab

}
. (82)

where

fx
a = nbxω̃

x
ba ≡ 2nbx∇[aµ̃

x
b] , (83)

Γx = ∇an
a
x , (84)

and

Ψ = Λ−
∑
x

µx
cn

c
x . (85)

The momentum equation for each fluid is

fx
a + Γxµ̃

x
a = Rx

a , (86)

the Maxwell equation (including also Eq. (45)) is

∇bF
ab = ∇b

(
∇aAb −∇bAa

)
= 4π

∑
x

jax , (87)

and the stress-energy tensor is

T ab = Ψgab +
∑
x

naxµ
b
x −

1

16π

(
FcdF

cdgab − 4F acF b
c

)
. (88)

D. Impact of Change of Gauge for Aa

An electromagnetic gauge transformation will impact the fluid equations of motion be-

cause of the change to the momentum; i.e. letting Āa = Aa +∇aφ we find

µ̃x
a = µx

a + exAa −→ µ̄x
a = µx

a + exĀa = µ̃x
a + ex∇aφ . (89)

It is important here to consider in more detail the ramifications of such a change of gauge,

since an application of the present work will be to numerical evolutions [18]. In the numerical

setting, we expect to be solving for the vector potential Aa as we evolve the system. This

will require a choice of gauge for the vector potential, which will affect the explicit values of

terms (such as the resistivity) in the equations of motion.
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In Eq. (86) (i.e. the fluid equation of motion), we see the term involving Γx is changed

but not fx
a . What also changes is Rx

a, since the quantity µ̃ABCx in Rxy
a [cf. Eq. (77)] depends

on Aa. Letting R̄x
a denote the resistivity in the new gauge, we find

R̄x
a =

∑
y 6=x

(
R̄yx
a − R̄xy

a

)
=
∑
y 6=x

1

3!
εebcd

[
(µ̃y

e + ey∇eφ) yJ ABC
bcd

∂ny
ABC

∂XD
x

∂XD
x

∂xa

− (µ̃x
e + ex∇eφ) xJ ABC

bcd

∂nx
ABC

∂XD
y

∂XD
y

∂xa

]
= Rx

a +Gx
a , (90)

where

Gx
a =

∑
y 6=x

(Gyx
a −Gxy

a ) , Gxy
a =

1

3!
εebcdex

(
xJ ABC

bcd

∂nx
ABC

∂XD
y

∂XD
y

∂xa

)
∇eφ . (91)

Note that ∑
x

Rx
a =

∑
x

Gx
a = 0 =⇒

∑
x

R̄x
a =

∑
x

Rx
a +

∑
x

Gx
a = 0 . (92)

In the new gauge the fluid equation of motion becomes

0 = f̄x
a + Γxµ̄

x
a + R̄x

a

= fx
a + Γx (µ̃x

a + ex∇aφ)− (Rx
a +Gx

a) . (93)

Projecting along nax we find

0 = Γxn
a
x (µ̃x

a + ex∇aφ)− nax (Rx
a +Gx

a) . (94)

We have seen above that the observables, including the stress-energy tensor, Faraday

tensor, and all hydrodynamic variables are independent of the choice of gauge for Aa, as

expected. However, the fluid field equations are modified, which is also expected. Never-

theless, we can determine the modifications and thereby evolve the system regardless of the

choice of gauge.

E. Gauge Invariance and Charge Conservation

To see other consequences of gauge invariance, we will consider a variation of the total

action, where the vector potential variation takes the form

δAa = ∇aδφ . (95)
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We assume that ξax = 0 and δgab = 0 under the change of gauge; thus, even though the term

Rxy
a acquires the gauge term Gxy

a [cf. Eq. (91)] it does not affect δnax. The total action thus

reduces to

δS = − 1

4π

∫
M

d4x
√
−g

(
∇bF

ab − 4π
∑
x

jax

)
∇aδφ

= − 1

4π

∫
M

d4x
√
−g∇a

(
∇bF

ab − 4π
∑
x

jax

)
δφ , (96)

which implies

∇a

(
∇bF

ab
)

= 4π
∑
x

ex∇an
a
x = 4π

∑
x

exΓx . (97)

However, the commutation of covariant derivatives acting on a two-index object is

∇a∇bF
c
d −∇b∇aF

c
d = Rc

eabF
e
d −Re

dabF
c
e ; (98)

hence,
1

4π
∇a

(
∇bF

ab
)

=
1

4π
RabF

ab ≡ 0 , (99)

since the Ricci tensor is symmetric and the Faraday tensor is antisymmetric. Thus, we

recover the expected conservation of charge:∑
x

exΓx =
∑
x

∇aj
a
x = 0 . (100)

Using the field equations, and Eqs. (80) and (100), we can show that ∇aT
ab vanishes iden-

tically (as it should from diffeomorphism invariance):

∇bT
b
a = ∇b

[
Ψδba +

∑
x

nbxµ
x
a −

1

16π

(
FcdF

cdδba − 4F bcFac
)]

=
∑
x

Rx
a +

(∑
x

exΓx

)
Aa ≡ 0 . (101)

IV. A PHENOMENOLOGICAL APPROACH TO THE RESISTIVITY

Having completed the formal considerations, we can turn our attention to applications.

As we do so, it is very important to appreciate that the nx
ABC and how they enter Λ is assumed

to be “known” a priori. It is not until a specific application is intended that one would

necessarily require an explicit relation. An analogy is the Lagrangian for an interacting
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complex scalar field. A potential V (φ†φ) is introduced, but not generally specified until the

Euler-Lagrange equations are derived and a specific application is pursued.

At this point, the action principle has given us the tensorial structure of the equations

and how many different dissipative processes exist in general. Ideally, what we would do

next is use microphysics to specify the nx
ABC and Λ. Admittedly that task is daunting and

would require more specifics about the actual systems to be described. Instead, we will

develop here a phenomenological form of the resistivityRx
a, which is consistent with the field

equations above, the various identities, and the Second Law of Thermodynamics.

To begin, it is convenient to introduce a fiducial frame-of-reference1 whose worldline is

determined by the unit four-velocity ua. Locally, we can decompose our fields into pieces

parallel to ua and perpendicular to ua using the projection operator

⊥ab≡ δab + uaub , uau
a = −1 . (102)

For instance, the particle flux unit vectors are now decomposed as

vax ≡ γx ⊥ab ubx =⇒ uax = γx (ua + vax) , γ2x = (1− vaxvxa)
−1 , (103)

where vax is the (coordinate-based time) three-velocity.

Recall that the resistivity is given by [cf. Eqs. (78) and (79)]

Rx
a =

∑
y 6=x

(Ryx
a −Rxy

a ) , uayR
xy
a = 0 , (104)

and Rxy
a is defined in Eq. (77). Its decomposition is

R̂xy
a ≡⊥ba R

xy
b =⇒ Rxy

a =
(
−ubRxy

b

)
ua + R̂xy

a . (105)

The constraint on Rxy
a [cf. Eq. (78)] becomes

0 = uayR
xy
a = γy

(
ua + vay

)
Rxy
a

=⇒ −uaRxy
a = vayR̂

xy
a ; (106)

thus, Rxy
a — for given x and y — has only 3 free components R̂xy

a , and takes the form

Rxy
a =

(
δba + vbyua

)
R̂xy
b . (107)

1 In an accompanying paper [17], we will consider a family of worldlines of this type and form a fibration

of spacetime, and in [18] we will make use of a field Na which is surface-forming and hence can provide a

foliation for a 3 + 1 decomposition of spacetime.
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Putting all these pieces together, the total resistivity takes the form

Rx
a =

∑
y 6=x

[(
vbxR̂

yx
b − v

b
yR̂

xy
b

)
ua + R̂yx

a − R̂xy
a

]
. (108)

It is easy to see that the “time” and “space” pieces separately satisfy Eq. (80).

Using the fluid equations of motion we can relate the resistivity to the particle number

creation rate Γx. Note that Eq. (108) implies

uaxR
x
a = γx (ua + vax)Rx

a = −γx
∑
y 6=x

waxyR̂
xy
a , (109)

where

waxy = vax − vay . (110)

A projection of the fluid field equation [cf. Eq. (86)] along the uax flow leads to

Γxu
a
xµ̃

x
a ≡ −µ̃xΓx = uaxR

x
a , (111)

so that

Γx =
(
γ−1x µ̃x

)−1∑
y 6=x

waxyR̂
xy
a . (112)

To further constrain the resistivity, we can use conservation of charge [cf. Eq. (100)], overall

charge neutrality, and the Second Law of Thermodynamics (Γs ≥ 0). The conservation of

charge implies

0 =
∑
x

exΓx =
∑
x

ex

γ−1x µ̃x

∑
y 6=x

waxyR̂
xy
a , (113)

and the Second Law of Thermodynamics takes the form

Γs =
(
γ−1s µ̃s

)−1 ∑
{x6=s}

wasxR̂
sx
a ≥ 0 . (114)

We have not yet made any approximation in our system. However, our goal here is

to produce a phenomenological model, and so it makes sense to now employ the standard

analysis due to Onsager [28] (see also [29, 30]). The point is to introduce a form for the

dissipation by identifying thermodynamic fluxes — here the R̂xy
a — and forces — the waxy.

These quantities must be such that they tend to drive the system to equilibrium — the

fluids become comoving (waxy = 0 for all x and y) — while simultaneously maintaining the

inequality of Eq. (114).
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Clearly, a model which makes the entropy production manifestly positive-definite will

work and so we assume

R̂xy
a = R̄xywxy

a =⇒ Rxy
a = R̄xy

(
δba + uav

b
y

)
wxy
b , (115)

which leads to

Rx
a =

∑
y 6=x

[(
R̄yxvbx + R̄xyvby

)
ua +

(
R̄yx + R̄xy

)
δba
]
wyx
b . (116)

Now introduce

Rxy = R̄yx + R̄xy (117)

(obviously symmetric in x and y) to get

Rx
a =

(∑
y 6=x

R̄xywbxyw
xy
b

)
ua +

∑
y 6=x

Rxy
(
δba + vbxua

)
wyx
b . (118)

Noting that

Γx =
(
γ−1x µ̃x

)−1∑
y 6=x

R̄xywbxyw
xy
b , (119)

we finally arrive at

Rx
a =

(
γ−1x µ̃xΓx

)
ua +

∑
y 6=x

Rxy
(
δba + vbxua

)
wyx
b . (120)

If there are no reactions (Γx = 0) then

Rx
a =

∑
y 6=x

Rxy(δba + vbxua)w
yx
b . (121)

Given that the resistivities can depend, in principle, on all of the fluids in the system, any

restriction like zero particle creation for a subset of the fluids will have an impact on all the

particle creation rates; in particular, the entropy creation rate.

V. WHAT IS THE MINIMAL MODEL THAT INCLUDES RESISTIVITY?

Even with this more specific model, there are still a number of degrees of freedom — the

undetermined coefficients R̄xy; namely, if we have Nc constituents, then for each choice of

x, there will be Nc− 1 choices for y, and thus a maximum of Nc (Nc − 1) coefficients. Note

that the condition expressed in Eq. (80) is satisfied identically and so it does not reduce

the number of free R̄xy. The conservation of charge is another matter. Ideally, it is also
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an identity, meaning that the total action SFMC must be constructed in such a way that

it incorporates the electromagnetic gauge symmetry. However, in our phenomenological

model, we have chosen a form for the Rxy
a — it has not been derived as in Eq. (79) —

and so we must impose charge conservation “by hand”, meaning that Eq. (100) is in fact

an additional constraint on the system. Hence, a complete specification of the model will

require knowing Nc (Nc − 1)− 1 of the R̄xy coefficients.

We will first consider the simplest problem of a two-fluid, two-constituent system where

the two types of particles (with labels e and p) have equal but opposite charges (−ee = ep ≡

e). The particle creation rates are

γ−1e µ̃eΓe = R̄epw2
ep , (122)

γ−1p µ̃pΓp = R̄pew2
pe . (123)

(noting that waep is spatial). Note that charge conservation [cf. Eq. (113)] implies Γe = Γp,

or

γ−1p µ̃pR̄ep = γ−1e µ̃eR̄pe . (124)

As the sum of Re
a and Rp

a vanishes identically, we see, as expected, that there is only one

free component R̄ep. Finally, the two resistivities are

Re
a = R̄ep

[
w2

epua −
(

1 +
γ−1p µ̃p

γ−1e µ̃e

)
wep
b

(
δba + vbeua

)]
, (125)

Rp
a =

γ−1p µ̃p

γ−1e µ̃e
R̄ep

[
w2

epua +

(
1 +

γ−1e µ̃e

γ−1p µ̃p

)
wep
b

(
δba + vbpua

)]
. (126)

However, many applications in plasma physics have zero particle creation rates, and we see

in this case that the resistivities vanish. Essentially, we are proving that there can be no

resistivity without also taking into account heat; i.e. a non-zero entropy creation rate.

The simplest, non-trivial system has the two charged fluids and entropy. The creation

rates expand to

γ−1e µ̃eΓe = R̄epw2
ep + R̄esw2

es , (127)

γ−1p µ̃pΓp = R̄pew2
pe + R̄psw2

ps , (128)

γ−1s µ̃sΓs = R̄sew2
se + R̄spw2

sp , (129)

23



and the resistivities are

Re
a =

(
R̄epw2

pe + R̄esw2
se

)
ua + (Rpewpe

b +Rsewse
b )
(
δba + vbeua

)
, (130)

Rp
a =

(
R̄pew2

ep + R̄psw2
sp

)
ua + (Repwep

b +Rspwsp
b )
(
δba + vbpua

)
, (131)

Rs
a =

(
R̄sew2

es + R̄spw2
ps

)
ua + (Reswes

b +Rpswps
b )
(
δba + vbsua

)
. (132)

Charge conservation gives

0 =

(
1

γ−1p µ̃p
R̄pe − 1

γ−1e µ̃e
R̄ep

)
w2

pe +

(
1

γ−1p µ̃p
R̄psw2

ps −
1

γ−1e µ̃e
R̄esw2

es

)
(133)

and the Second Law [cf. Eq. (114)] implies

R̄se , R̄sp ≥ 0 . (134)

If we now assume that there is no charge creation, then

0 = R̄epw2
ep + R̄esw2

es , (135)

0 = R̄pew2
ep + R̄psw2

ps . (136)

Unlike before, we can satisfy these conditions with something as simple as requiring the co-

efficients R̄ep, R̄pe, R̄es, and R̄ps to vanish.2 This will leave us with only two free coefficients,

R̄se and R̄sp, and resistivities of the form

Re
a = R̄sewse

b

(
δba + vbeua

)
, (137)

Rp
a = R̄spwsp

b

(
δba + vbpua

)
, (138)

Rs
a =

(
R̄sew2

es + R̄spw2
ps

)
ua +

(
R̄sewes

b + R̄spwps
b

) (
δba + vbsua

)
. (139)

Perhaps the most important point of developing this kind of phenomenological model is

to show that, even without specific forms for the nx
ABC and Λ, the multi-fluid formalism is

robust enough to build increasingly complex models without first having to perform micro-

physical calculations. Of course, we would still need some insight from microphysics; e.g. to

determine R̄se and R̄sp.

2 Since w2
ep, w2

es, and w2
ps are linearly independent, this is tantamount to assuming that the R̄xy have

negligible dependence on the relative velocities.
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VI. CONCLUSIONS AND FOLLOW-ON WORK

The relativistic fluid system is the backbone of modeling many astrophysical phenomena,

cosmology and high-energy physics. Here, we have taken a unique step in the development

of the fluid modeling scheme: an action principle has been used to build a system of field

equations for relativistic plasmas including resistivity. This is a “first principles” approach

which is logically concise in the sense that many of the assumptions about the system’s

physics can be traced to the initial phase of constructing the action; in particular, it was

straightforward to take the action principle for dissipative, relativistic fluids from [16] and

add to it the standard action for electromagnetic fields and the usual Coulomb coupling of

the charged fluxes to the electromagnetic four-potential.

The present discussion is complemented by two companion papers. In [17] we use this

work’s results to develop a fully relativistic framework that allows for four (fluid) compo-

nents: normal and superconducting currents, heat flow, and a final component with normal

and superfluid flows. The purpose of the model is to extend and make contact with (in the

appropriate limit) ideal magnetohydrodynamics. A key component of the framework is the

insertion of a suitable family of observers of the fluid flow, who basically provide a fibration

of spacetime. While the model is suitable to describe isolated superfluid neutron stars, it is

not appropriate for numerical simulations of (say) merging neutron stars. Progress in this

direction is made in [18], which connects with the present discussion through use of a 3+1

foliation of spacetime.

While our focus here was on the resistivity, there is a clear process for building on these

results by adding in other dissipation channels (such as those arising from bulk and shear

viscosities) already included in the action principle of Andersson and Comer [16]. Basically,

we may follow the procedure presented here, with the only change being to include terms

like the matter space metrics gABx and gABxy [cf. Eqs. (18) and (20)] in the variation of nx
ABC

[cf. Eq. (72)]. This speaks to the power of having a first principles approach to developing

the overall form of the field equations, even if details of the formalism still will require

microphysics for dissipation coefficients [such as R̄se and R̄sp in the phenomenological model;

cf. Eq. (139)].

To conclude, the variational approach has allowed us to make significant progress, both

formal and practical, on a problem which is central to modern relativistic astrophysics. The
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framework we have developed is ready to be applied and we expect to report progress on a

set of relevant problems in the near future.
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Appendix A: Vector Potential “Entrainment”

It may be worth noting that the Coulomb action in Eq. (62) depends on the metric, and

the combination naxAa, which is exactly of the entrainment form, if we consider it as part of

the fluid action SM (cf. Eq. (56)). This means that, at least formally, we can consider Λ

to be a functional of the set {n2
x, n

2
xy, n

a
xAa}. This may be interesting as there are general

constraints that can be had for plasmas if we make statements about gauge-invariance of the

total fluid/plasma action and the vector potential entrainment. It is plausible that more

general forms for the entrainment could lead to known results in, say, non-linear media in a

more efficient way.

It is straightforward to work through the steps of varying the new action and obtaining

the equations of motion:

S = SM
(
n2
x, n

2
xy, A

2
x

)
+ SMax (Aa) , (A.1)

where

A2
x ≡ −naxAa . (A.2)

Next,

δS =

∫
M

d4x
√
−g

[∑
x

µx
aδn

a
x −

∑
x

∂Λ

∂A2
x

(Aaδn
a
x + naxδAa)

+
1

2

(
Λgab +

∑
x

naxµ
b
x

)
δgab

]
+

1

4π

∫
M

d4x
√
−g
(
∇aF

ab
)
δAb

− 1

32π

∫
M

d4x
√
−g
(
FcdF

cdgab − 4F acF b
c

)
δgab

=

∫
M

d4x
√
−g

{
−
∑
x

(fx
a + Γxµ̃

x
a −Rx

a) ξ
a
x −

1

4π

(
∇bF

ab − 4π
∑
x

Qxn
a
x

)
δAa

+
1

2

[
Ψgab +

∑
x

naxµ
b
x −

1

16π

(
FcdF

cdgab − 4F acF b
c

)]
δgab

}
, (A.3)
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where

µ̃x
a = µx

a +QxAa , Qx

(
n2
x, n

2
xy, A

2
x

)
≡ − ∂Λ

∂A2
x

. (A.4)

We recover the minimal coupling when

Qx = ex . (A.5)

What happens if we now impose gauge-invariance on the whole system? We consider a

variation of only the vector potential which is of the form

δAa = ∇aδφ . (A.6)

Taking into account the identity in Eq. (100), we see that∑
x

∇a (Qxn
a
x) = 0 . (A.7)

This can also be written as ∑
x

(
QxΓx + nx

dQx

dτx

)
= 0 . (A.8)

If Qx depends on only XA
x (it is Lie-dragged by uax) then this reduces to∑

x

QxΓx = 0 . (A.9)
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