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Simultaneously optimizing many design parameters in time-consuming experiments
causes bottlenecks in abroad range of scientific and engineering disciplines'. One
such exampleis process and control optimization for lithium-ion batteries during
materials selection, cell manufacturing and operation. A typical objective is to
maximize battery lifetime; however, conducting even a single experiment to evaluate
lifetime can take months to years®>. Furthermore, both large parameter spaces and
high sampling variability>*” necessitate a large number of experiments. Hence, the
key challenge is to reduce both the number and the duration of the experiments
required. Here we develop and demonstrate a machine learning methodology to
efficiently optimize a parameter space specifying the current and voltage profiles of
six-step, ten-minute fast-charging protocols for maximizing battery cyclelife,

which canalleviate range anxiety for electric-vehicle users®®. We combine two key
elements to reduce the optimization cost: an early-prediction model’, which reduces
the time per experiment by predicting the final cycle life using data from the first few
cycles, and a Bayesian optimization algorithm'", which reduces the number of
experiments by balancing exploration and exploitation to efficiently probe the
parameter space of charging protocols. Using this methodology, we rapidly identify
high-cycle-life charging protocols among 224 candidates in 16 days (compared with
over 500 days using exhaustive search without early prediction), and subsequently
validate the accuracy and efficiency of our optimization approach. Our closed-loop
methodology automatically incorporates feedback from past experiments to inform
future decisions and can be generalized to other applications in battery design and,
more broadly, other scientific domains that involve time-intensive experiments and
multi-dimensional design spaces.

Optimal experimental design (OED) approaches are widely used to
reduce the cost of experimental optimization. These approaches
ofteninvolve a closed-loop pipeline where feedback from completed
experiments informs subsequent experimental decisions, balancing
the competing demands of exploration—that s, testing regions of the
experimental parameter space with high uncertainty—and exploita-
tion—thatis, testing promising regions based onthe results of the com-
pleted experiments. Adaptive OED algorithms have been successfully
applied to physical science domains, such as materials science*>™,
chemistry®™¢, biology" and drug discovery®, as well as to computer
science domains, such as hyperparameter optimization for machine
learning’®?°. However, while a closed-loop approach is designed to

minimize the number of experiments required for optimizing acrossa
multi-dimensional parameter space, the time (and cost) per experiment
may remain high, asis the case for lithium-ion batteries. Therefore, an
OED approach should account for both the number of experiments
and the cost per experiment. Multi-fidelity optimization approaches
havebeen developedtolearnfrombothinexpensive, noisy signals and
expensive, accurate signals. For example, in hyperparameter optimiza-
tion for machine learning algorithms, several low-fidelity signals for
predicting the final performance of an algorithmic configuration (for
example, extrapolated learning curves'®?, rapid testing on a subset
of the full training dataset®) are used in tandem with more complete
configuration evaluations??, For lithium-ion batteries, classical
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Fig.1|Schematic of our CLO system. First, batteries aretested. The cycling
datafromthe first 100 cycles (specifically, electrochemical measurements
such asvoltage and capacity) are used as input for an early outcome prediction
of cyclelife. These cycle life predictions from amachine learning (ML) model
aresubsequently sent to aBO algorithm, which recommends the next
protocols to test by balancing the competing demands of exploration (testing
protocols with high uncertainty in estimated cycle life) and exploitation

methods such as factorial design that use predetermined heuristics
to select experiments have been applied® 2, but the design and use
of low-fidelity signalsis challenging and unexplored. These previously
considered approaches do not discover and exploit the patterns present
inthe parameter space for efficient optimization, nor do they address
theissue of time per experiment.

In this work, we develop a closed-loop optimization (CLO) system
with early outcome prediction for efficient optimization over large
parameter spaces with expensive experiments and high sampling
variability. We employ this system to experimentally optimize fast-
charging protocols for lithium-ion batteries; reducing charging times
to approach gasoline refuelling timeis critical to reduce range anxiety
for electric vehicles®® but often comes at the expense of battery life-
time. Specifically, we optimize over a parameter space consisting of
224 unique six-step, ten-minute fast-charging protocols (that is, how
current and voltage are controlled during charging) to find charging
protocols with high cycle life (defined as the battery capacity falling
to 80% of its nominal value). Our system uses two key elements to
reduce the optimization cost (Extended Data Fig. 1). First, we reduce
the time per experiment by using machine learning to predict the out-
come of the experiment based on data from early cycles, well before
the batteries reach the end of life’. Second, we reduce the number
of experiments by using a Bayesian optimization (BO) algorithm to
balance the exploration-exploitation tradeoff in choosing the next
round of experiments'®", Testing a single battery to failure under our
fast-charging conditions requires approximately 40 days, meaning
that when 48 experiments are performed in parallel, assessing all 224
charging protocols with triplicate measurements takes approximately
560 days. Here, using CLO with early outcome prediction, only 16 days
were required to confidently identify protocols with high cycle lives
(48 parallel experiments). Inasubsequent validation study, we find that
CLOranks these protocols by lifetime accurately (Kendall rank correla-
tion coefficient, 0.83) and efficiently (15 times less time than abaseline
‘brute-force’ approach that uses random search without early predic-
tion). Furthermore, we find that the charging protocols identified as
optimal by CLO with early prediction outperform existing fast-charging
protocols designed to avoid lithium plating (a common fast-charging
degradation mode), the approach suggested by conventional battery
wisdom*#%?¢, This work highlights the utility of combining CLO with
inexpensive early outcome predictors to accelerate scientific discovery.
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(testing protocols with high estimated cycle life). This process iterates until the
testing budgetis exhausted. Inthisapproach, early prediction reduces the
number of cycles required per tested battery, while optimal experimental
designreducesthe number of experiments required. A small training dataset
ofbatteries cycled tofailureis used both to trainthe early outcome predictor
andtoset BO hyperparameters. Infuture work, design of battery materials and
processes could alsobeintegrated into this closed-loop system.

CLOwithearly outcome predictionis depicted schematicallyinFig.1.
The system consists of three components: parallel battery cycling, an
early predictor for cycle life and a BO algorithm. At each sequential
round, we iterate over these three components. The first component
is amulti-channel battery cycler; the cycler used in this work tests 48
batteries simultaneously. Before starting CLO, the charging proto-
cols for the first round of 48 batteries are chosen at random (without
replacement) from the complete set of 224 unique multi-step protocols
(Methods). Eachbattery undergoes repeated charging and discharging
for100 cycles (about 4 days; average predicted cycle life 905 cycles),
beyond which the experiments are terminated.

These cycling dataarethenfedasinputtothe early outcome predic-
tor, whichestimates the final cycle lives of the batteries given data from
the first 100 cycles. The early predictor is a linear model trained via
elastic netregression” on features extracted from the charging data of
thefirst 100 cycles (Supplementary Table 1), similar to that presented
inSeversonetal.’. Predictive features include transformations of both
differences between voltage curves and discharge capacity fade trends.
To train the early predictor, we require a training dataset of batteries
cycled to failure. Here, we used a pre-existing dataset of 41 batteries
cycledtofailure (cross-validation root-mean-square error, 80.4 cycles;
see Methods and Supplementary Discussion 1). Whereas obtaining
this datasetitselfrequires running full cycling experiments for asmall
training set of batteries (the cost we are trying to offset), this one-time
cost could be avoided if pretrained predictors or previously collected
datasetsareavailable. If unavailable, we pay an upfront costin collecting
this dataset; this dataset could also be used for warm-starting the BO
algorithm. The size of the dataset collected should best tradeoff the
upfront cost in acquiring the dataset to train an accurate model with
the anticipated reduction in experimentation requirements for CLO.

Finally, these predicted cycle lives from early-cycle data are fed into
the BO algorithm (Methods and Supplementary Discussion 2), which
recommends the next round of 48 charging protocols that best balance
the exploration-exploitation tradeoff. This algorithm (Methods and
Supplementary Discussion 2) builds on the prior work of Hoffman
etal.®and Grover et al.". The algorithm maintains an estimate of both
the average cycle life and the uncertainty bounds for each protocol;
these estimates are initially equal for all protocols and are refined as
additional data are collected. Crucially, to reduce the total optimiza-
tion cost, our algorithm performs these updates using estimates from
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Fig.2|Structure of our six-step, ten-minute fast-charging protocols.
Currentsare defined as dimensionless Crates; here,1Cis1.1A, or the current
required to fully (dis)charge the nominal capacity (1.1A h)in1h.a, Current
versus SOC for an example charging protocol, 7.0C-4.8C-5.2C-3.45C (bold
lines). Each charging protocolis defined by five constant current (CC) steps
followed by one constant voltage (CV) step. Thelast two steps (CC5and CV1)
areidentical forall charging protocols. We optimize over the first four
constant-current steps, denoted CC1, CC2,CC3 and CC4.Each of these steps
comprises a20%SOC window, such that CClranges from 0%t020%SOC, CC2

the early outcome predictorinstead of using the actual cyclelives. The
mean and uncertainty estimates for the cycle lives are obtained via a
Gaussian process (Methods), which hasasmoothing effect and allows
for updating the cycle life estimates of untested protocols with the
predictions from related protocols. The closed-loop process repeats
until the optimization budget, in our case 192 batteries tested (100
cycles each), is exhausted.

Our objectiveis to find the charging protocol which maximizes the
expected battery cycle life for afixed charging time (ten minutes) and
state-of-charge (SOC) range (0 to 80%). The design space of our 224 six-
step extreme fast-charging protocolsis presented in Fig. 2a. Multi-step
charging protocols,inwhichaseries of different constant-current steps
are applied within asingle charge, are considered advantageous over
single-step charging for maximizing cycle life during fast charging*#,
though the optimal combination remains unclear. As shownin Fig. 2b,
each protocolis specified by three independent parameters (CC1, CC2
and CC3); each parameter is a current applied over a fixed SOC range
(0-20%,20-40% and 40-60%, respectively). A fourth parameter, CC4,
isdependent on CC1, CC2, CC3 and the charging time. Given constraints
onthe current values (Methods), atotal of 224 charging protocols are
permitted. We test commercial lithiumiron phosphate (LFP)/graphite
cylindrical batteries (A123 Systems) in a convective environmental
chamber (30 °C ambient temperature). A maximum voltage of 3.6
Visimposed. These batteries are designed to fast-charge in 17 min
(ratetesting dataare presented in Extended Data Fig. 2). The cyclelife
decreases dramatically with faster charging time**, motivating this
optimization. Since the LFP positive electrode is generally considered
tobestable*®, we select this battery chemistry toisolate the effects of
extreme fast charging on graphite, which is universally employed in
lithium-ion batteries.

In all, we ran four CLO rounds sequentially, consisting of 185 bat-
teries in total (excluding seven batteries; see Methods). Using early
prediction, each CLO round requires four days to complete 100 cycles,
resulting inatotal testing time of sixteen days—amajor reduction from
the 560 days required to test each charging protocol to failure three
times. Figure 3 presents the predictions and selected protocols (Fig. 3a),
aswellasthe evolution of cycle life estimates over the parameter space

b CC4
(C rate)

4.75
4.50
4.25
4.00

3.75

ranges from20%to40%SOC, and so on. CC4 is constrained by specifying that
all protocols chargein the same total time (10 min) from 0% to 80% SOC. Thus,
our parameter space consists of unique combinations of the three free
parameters CC1,CC2and CC3.Foreachstep, we specify arange of acceptable
values; the upper limitis monotonically decreasing withincreasing SOC to
avoid the upper cutoff potential (3.6 Vfor all steps). b, CC4 (colour scale) asa
function of CC1,CC2and CC3 (onthex,yand zaxes, respectively). Each point
represents a unique charging protocol.

as the optimization progresses (Fig. 3a). Initially, the estimated cycle
lives for all protocols are equal. After two rounds, the overall structure
of'the parameter space (that is, the dependence of cycle life on charg-
ing protocol parameters CC1, CC2 and CC3) emerges, and aprominent
region with high cycle life protocols has beenidentified. The confidence
of CLOin this high-performing regionis furtherimproved fromround
2toround4, but overall the cycle life estimates do not change substan-
tially (Extended Data Fig. 3). By learning and exploiting the structure
of the parameter space, we avoid evaluating charging protocols with
low estimated cycle life and concentrate more resources on the high-
performing region (Extended Data Figs. 3-5). Specifically, 117 of 224
protocolsare never tested (Fig. 3¢); we spend 67% of the batteries test-
ing 21% of the protocols (0.83 batteries per protocol onaverage). CLO
repeatedly tests several protocols with high estimated cycle life to
decrease uncertainties due to manufacturing variability and the error
introduced by early outcome prediction. The uncertainty is expressed
asthepredictionintervals of the posterior predictive distribution over
cycle life (Extended Data Figs. 3g, 4, 5).

To the best of our knowledge, this work presents the largest known
map of cycle life as a function of charging conditions (Extended Data
Fig. 5). This dataset can be used to validate physics-based models of
battery degradation. Most fast-charging protocols proposed in the
battery literature suggest that current steps decreasing monotonically
as afunction of SOC are optimal to avoid lithium plating on graphite,
awell-accepted degradation mode during fast charging*®°%. In con-
trast, the protocolsidentified as optimal by CLO (for example, Fig. 3d)
are generally similar to single-step constant-current charging (that
is, CC1=CC2= CC3 = CC4). Specifically, of the 75 protocols with the
highest estimated cycle lives, only ten are monotonically decreasing
(thatis, CC;> CC,, foralli) and two are strictly decreasing (thatis, CC,>
CC,,). We speculate that minimizing parasitic reactions caused by heat
generation may be the operative optimization strategy for these cells,
as opposed to minimizing the propensity for lithium plating (Supple-
mentary Discussion 3). While the optimal protocol for a new scenario
would depend onthe selected charge time, SOC window, temperature
control conditions and battery chemistry, this unexpected result high-
lightsthe need for data-driven approaches for optimizing fast charging.
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Fig.3|Results of closed-loop experiments. a, Early cycle life predictions per
round. The tested charging protocols and the resulting predictions are plotted
forrounds 1-4. Each point represents a charging protocol, defined by CC1, CC2
and CC3 (thex,yand zaxes, respectively). The colour scale represents cycle life
predictions from the early outcome prediction model. The charging protocols
inthefirstround of testing are randomly selected. As the BO algorithm shifts
fromexploration to exploitation, the charging protocols selected for testing
by the closed loop in subsequent rounds fall primarily into the high-performing
region. b, Evolution of the parameter space per round. The colour scale
represents cycle life, as estimated by the BO algorithm. Theinitial cycle life

We validate the performance of CLO with early prediction onasubset
of nine extreme fast-charging protocols. For each of these protocols,
we cycle five batteries each to failure and use the sample average of the
final cycle lives as an estimate of the true lifetimes. We use this valida-
tion study to (1) confirm that CLO is able to correctly rank protocols
based on cycle life, (2) compare the cycle lives of protocols recom-
mended by CLO to protocols inspired by the battery literature and
(3) compare the performance of CLO to baseline ablation approaches
for experimental design. The charging protocols used in validation,

400 | Nature | Vol 578 | 20 February 2020

Predicted
cycle life
(cycles)
1,400
1,200

1,000

800

600

CLO-estimated

cycle life
(cycles)
1,200
1,100
1,000
900
800
700
d
10
—— CLO 1: 4.8C-5.2C-5.2C-4.160C
=== CLO 2: 5.2C-5.2C-4.8C-4.160C
8 CLO 3: 4.4C-5.6C-5.2C-4.252C
)
T 6
o s
g = T I
g 4 - ————
3
(6]
2 -
0 T T T x
0 20 40 60 80 100
SOC (%)

estimates are equivalent for all protocols; as more predictions are generated,
the BOalgorithmupdatesits cycle life estimates. The CLO-estimated mean
cyclelives after four rounds for all fast-charging protocols in the parameter
space arealso presented in Extended Data Fig. 5and Supplementary Table 3.
c, Distribution of the number of repetitions for each charging protocol
(excluding failed batteries). Only 46 of 224 protocols (21%) are tested multiple
times. d, Current versus SOC for the top three fast-charging protocols, as
estimated by CLO. CC1-CC4 are displayedin the legend. All three protocols
haverelatively uniform charging (thatis, CC1= CC2=CC3 = CC4).

some of which are inspired by existing battery fast-charging literature
(see Methods), span the range of estimated cycle lives (Extended Data
Fig. 6 and Extended Data Table 1). We adjust the voltage limits and
charging times of these literature protocols to match our protocols,
while maintaining similar current ratios as afunction of SOC. Whereas
theliterature protocols usedin these validation experiments are gener-
ally designed for batteries with high-voltage positive electrode chem-
istries, fast-charging optimization strategies generally focus on the
graphitic negative electrode*®. For these nine protocols, we validate
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Fig.4|Results of validation experiment. a, Discharge capacity versus cycle
number for all batteries in the validation experiment. The nine validation
protocolsinclude the top three protocols as estimated by CLO (‘CLO top 3’),
four protocolsinspired by the battery literature®** (‘Literature-inspired’) and
two protocols selected to obtain arepresentative sampling from the
distribution of CLO-estimated cycle lives among the validation protocols
(‘Other’).b, Comparison of early-predicted cycle lives from validation to
closed-loop estimates, averaged on a protocol basis. Each ten-minute charging
protocolis tested with five batteries. Error bars represent the 95% confidence
intervals. c, Observed versus early-predicted cycle life for the validation
experiment. Although our early predictor tends to overestimate cyclelife,

the ‘CLO-estimated’ cycle lives against the sample average of the five
final cycle lives.

Thevalidationresults are presented in Fig. 4. The discharge capacity
fade curves (Fig. 4a) exhibit the nonlinear decay typical of fast charg-
ing>’. If we apply our early-prediction model to the batteries in the
validation experiment, these early predictions (averaged over each
protocol) match the CLO-estimated mean cycle lives well (Pearson
correlation coefficient r= 0.93; Fig. 4b). This result validates the per-
formance of the BO component of CLO in particular, since the CLO-
estimated cycle lives were inferred from early predictions. However,
our early-prediction model exhibits some bias (Fig. 4c), probably owing
to calendar ageing effects from different battery storage times®® (Sup-
plementary Table 2 and Supplementary Discussion 4). Despite this bias
inour predictive model, we generally capture the ranking well (Kendall
rank correlation coefficient, 0.83; Fig. 4d and Extended Data Fig. 7).
At the same time, we note that the final cycle lives for the top-ranked
protocols are similar. Furthermore, the optimal protocols identified
by CLO outperform protocols inspired by previously published fast-
charging protocols (895 versus 728 cycles on average; Extended Data
Fig. 6 and Extended Data Table 1). This result suggests that the efficiency
of our approach does not come at the expense of accuracy.

probably owingto calendar ageing effects (Supplementary Discussion 4), the
trend is correctly captured (Pearson correlation coefficientr=0.86).d, Final
cyclelives fromvalidation, sorted by CLO ranking. The length of each bar and
the annotations represents the mean final cycle life from validation per
protocol. Error barsrepresent the 95% confidence intervals. e, Ablation study
of various optimization approaches using the protocols and datain the
validation set (Methods). Error bars represent the 95% confidence intervals
(n=2,000). With contributions from both early prediction and Bayesian
optimization, CLO canrapidly identify high-performing charging protocols.
The gains from Bayesian optimization are larger whenresources are
constrained (Extended DataFig. 8).

Ourmethod greatly reduces the optimization time required compared
tobaseline optimizationapproaches (Fig.4e). Forinstance,aprocedure
thatdoesnot use early outcome prediction and simply selects protocols
randomly to test begins to saturate at acompetitive performance level
after about 7,700 battery-hours of testing. To achieve a similar level of
performance, CLO with both early outcome prediction and the BO algo-
rithmrequires only 500 battery-hours of testing. For this small-scale vali-
dation experiment, we observe that the early-prediction component of
CLOgreatly reduces the time per experiment. Here, random selection is
equivalenttoapure explorationstrategy and canachieve a performance
similar tothe BO-based approaches for smaller experimental budgets. In
later stages, random selectionis eventually outperformed by BO-based
approaches, which exploit the structure across the protocols and focus
onreducing the uncertainty in the promising regions of the parameter
space. Although these results are specific to this validation study, we
observe similar or larger gains in simulations when fewer batteries or
fewer parallel experiments (relative to the size of the parameter space)
are available (Extended Data Fig. 8). The relative gains from BO over
random selection are largest with minimal resources.

Finally, we compare our early predictor with other low-fidelity predic-
tors proposed instate-of-the-art multi-fidelity optimization algorithms
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intheliterature’?, and find that our approach outperforms these algo-
rithms (Supplementary Discussion2 and Supplementary Table 4). The
genericearly-prediction modelsinthese previous works fit composites
of parametric functions to the capacity fade curves, while our model
usesadditional featuresrecorded atevery cycle (for example, voltage).
This result highlights the value of designing predictive models for the
target application in multi-fidelity optimization.

In summary, we have successfully accelerated the optimization of
extreme fast charging for lithium-ion batteries using CLO with early
outcome prediction. Thismethod could extend to other fast-charging
design spaces, such as pulsed?*?® and constant-power® charging, as well
as to other objectives, such as slower charging and calendar ageing.
Additionally, this work opens up new applications for battery optimiza-
tion, suchas formation?, adaptive cycling®® and parameter estimation
for battery management system models®. Furthermore, provided that
asuitable early outcome predictor exists, this method could also be
applied to optimize other aspects of battery development, such as
electrode materials and electrolyte chemistries. Beyond batteries, our
CLO approach combining black-box optimization with early outcome
prediction can be extended to efficiently optimize other physical**'®
and computational®**? multi-dimensional parameter spaces that
involve time-intensive experimentation, illustrating the power of
data-driven methods to accelerate the pace of scientific discovery.
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Methods

Experimental

Commercial high-power lithium iron phosphate (LFP)/graphite A123
APR18650MI1A cylindrical cells were used in this work (packing date
2015-09-26, lot number EL1508007-R). These cells have a nominal
capacity of.1Ahand anominal voltage of 3.3 V. All currents are defined
in units of C rate; here, 1Cis 1.1 A, or the current required to fully (dis)
charge the nominal capacity (1.1A h) in 1 h. The manufacturer’s rec-
ommended fast-charging protocol is 3.6C (3.96 A) CC-CV. The rate
capability of these cellsis shown in Extended Data Fig. 2. The graphite
and LFP electrodes are 40 um thick and 80 um thick, respectively, as
quantified via X-ray tomography (Zeiss Xradia 520 Versa).

The cells were cycled with various charging protocols butidentically
discharged. Cells were charged with one of 224 candidate six-step, ten-
minute charging protocols from 0% to 80% SOC, as detailed below. After
afive-secondrest, all cells then charged from 80% to 100% SOC with
a1C CC-CV charging step to 3.6 V and a current cutoff of C/20. After
another five-secondrest, all cells subsequently discharged witha CC-CV
discharge at4Cto 2.0 V and a current cutoff of C/20. The cells rested
for another five seconds before the subsequent charging step started.
Thelower and upper cutoffvoltages were2.0 Vand 3.6 V, respectively,
asrecommended by the manufacturer. Inthis work, cyclelifeis defined
asthe number of cycles until the discharge capacity falls below 80% of
the nominal capacity.

All cells were tested in cylindrical fixtures with 4-point contactsona
48-channel Arbin Laboratory Battery Testing battery cycler placed in
anenvironmental chamber (Amerex Instruments) at 30 °C. The cycler
calibration was validated before the state of the experiment.

Inthe closed-loop experiment, four experiments did not reach100
cycles owing to contact issues either at the start or partially through
the experiment. These experiments were runon channels17 and 27in
round 1(oed_0) and channels 4 and 5in round 2 (oed_1). Additionally,
ineachround, one protocol per round that should have been selected
(thatis, withatop-48 upper bound) was not selected and replaced with
the protocol with the 49th-highest upper bound owing to a process-
ing error (Extended Data Fig. 4), but this error is not expected to have
alarge effect. Additional experimental issues are documented in the
notes of the datarepository.

Charging protocol and parameter space design

Cells were charged with one of 224 different four-step charging proto-
cols. Eachof the first four stepsis asingle constant-current step applied
over a20%SOC range; thus, the 224 charging protocols represent dif-
ferent combinations of current steps within the 0% to 80% SOC range.
We can define the charging time from 0% to 80% SOC by:

; _02 02 02 02
0-80%~ cC1 €C2 CC3 CC4

In all protocols considered here, we constrain ¢, to be 10 min. We
now write CC4 as a function of the first three charging steps, as:

CC4= 0.2
Tl (02 02 02
60 \ccl1' ccz2 ' cc3

Thus, each protocol can be uniquely defined by CC1, CC2 and CC3.

Eachindependent parameter can take on one of the following dis-
crete values: 3.6C, 4.0C, 4.4C, 4.8C,5.2C and 5.6C. Furthermore, CC1
can take on values of 6.0C, 7.0C and 8.0C, and CC2 can take on values
of 6.0C and 7.0C. CC4 is not allowed to exceed 4.81C. The maximum
allowable current for each parameter decreases withincreasing SOC to
avoid reaching the upper cutoffvoltage of 3.6 V. With these constraints,
atotal of 224 charging protocols are permitted.

Foraconsistent protocol nomenclature, we define each fast-charging
protocol as CC1-CC2-CC3-CC4. For example, the charging protocol
with the highest CLO-estimated mean cycle life is written 4.8C-5.2C-
5.2C-4.160C.

Early outcome predictor

The early outcome predictor for cycle life is similar to that presented
in Severson et al.’. This linear model predicts the final log,, cycle life
(number of cycles to reach 80% of nominal capacity, or 0.88 A h) using
features from the first100 cycles. The training setisidentical tothe one
used in Severson et al.> and consists of 41 batteries. The linear model
takes the form:

o~ _ T
Y=WX

Here y is the predicted cycle life for battery i, x; is a p-dimensional
feature vector for battery iand wis a p-dimensional model coefficient
vector. Features are z-scored (mean-subtracted and normalized by the
standard deviation) to the training set before model evaluation.

Regularization, or simultaneous feature selection and modelfitting,
was performed using the elastic net”. Regularization penalizes overly
complex fits to improve both generalizability and interpretability.
Specifically, the coefficient vector W is found via the following expres-
sion:

. . 1-a
w= argmmw{lly—XwH% +/l(TI|wI|§ + allwlll)}

Here Aand a are hyperparameters; Ais anon-negative scalarand aisa
scalar between O and 1. The first term minimizes the squared loss, and
the second term performs both continuous shrinkage and automatic
feature selection. During model development, we apply fourfold cross-
validation and Monte Carlo sampling with the training set to optimize
the values of the hyperparameters Aand a.

AsinSeversonetal®, the available features were based on the differ-
ence between discharge voltage curves of cycles100 and 10, or trends
inthe discharge capacity. The five selected features, their correspond-
ing weights and the z-scored values are presented in Supplementary
Table 1. The training (cross-validated) error was 80.4 cycles (10.2%);
the test error on a test set from Severson et al.’ was 122 cycles (12.6%).

Theearly predictor automatically flags predictions as anomalousif
the 95% prediction interval exceeds 2,000 cycles. The two-tailed 95%
predictioninterval is computed by:

95%P1 =2t (42 n-py X RMSE.[1+x] (X"X)'x;

where tis the Student’s ¢ value, a is the significance level (0.05 for
95% confidence), nis the number of samples, p is the number of fea-
tures, RMSE is the root-mean-square error of the training set (in units
of cycles), x;is the vector of selected features for battery i and Xis
the matrix of selected features for all observations in the training
set.

In the closed-loop experiment, three tests returned predictions
with a prediction interval outside of the threshold; these anoma-
lous predictions were excluded. These tests were run on channel
27 inround1(oed_0), channel 12 in round 3 (oed_2) and channel 6 in
round 4 (oed_3). Furthermore, in the validation experiment, one test
returned a prediction with a predictioninterval outside of the thresh-
old (channel 12; 3.6C-6.0C-5.6C-4.755C), although the final cycle life
was reasonable.

We note that the predictions from this model exhibited systematic
bias for the cells in the validation experiments, which we attribute to
theincreased calendar ageing of these cells relative to the training set
(Supplementary Table 2 and Supplementary Discussion 4).
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Bayesian optimization algorithm

To perform optimal experimental design, we consider the setting of
best-arm identification using multi-armed bandits. Here each arm is
acharging protocol and the goalis toidentify the best arm, or equiva-
lently the charging protocol with the highest expected cycle life. Many
variants of the problem have been studied in prior work®~S; our algo-
rithm builds on the approaches of Hoffman et al.'° and Grover et al.".
We consider further modifications in Supplementary Discussion 2.

In particular, we assume a Bayesian regression setting, where there
exists an unknown set of parameters (6 € RY that relate a charging
protocol xtoits cycle life (a scalar) via a Gaussian likelihood function.
Here, x denotes the CC1, CC2, CC3 configurations of a charging pro-
tocol, whichis projected onto ad-dimensional feature vector ¢(x). We
set d = 224, and the feature representations ¢(x) are obtained by
approximating aradial-basis function kernel,K(x,-,xj)=exp(y||x,-—xj||§),
using Nystroem’s method. Here, x; and x; are the CC1, CC2 and CC3
configurtions for two arbitrary charging protocols and the inverse of
the kernel bandwidth, y > O is treated as a hyperparameter.

The Gaussian likelihood function relates a charging protocol to its
cycle life distribution. For a protocol x, the mean of this likelihood
function is given as 8"g(x). The variance of this likelihood function
is the sum of two uncertainty terms, both of which we assume to be
homoskedastic (thatis, uniformacross all protocols). The first termis
the empirical variance averaged across the repeated runs of individual
protocols presentinthe training dataset (same as that used for training
the early predictor). This accounts for variability due to exogenous
factors such as manufacturing. Second, since we do not wait for an
experiment to complete, the likelihood variance additionally needs
to accommodate an additional uncertainty term due to the early out-
come prediction component of the pipeline. We do so by computing
the residual variance of the early predictions on the held-out portion
of the dataset and set the aforementioned uncertainty term to be the
maximum of the residual variances. We assume that the two sources
of uncertainty are independent, and hence the overall variance of the
likelihood distribution is given by the sum of the squares of both vari-
ance terms described above.

To perform inference over the unknown parameters 6 and subse-
quent predictions of cycle lives, we employ a Gaussian process. In a
Gaussian process, the prior over € is assumed to be isotropic Gauss-
ian; such a prior is conjugate to the Gaussian likelihood, and as a con-
sequence the Gaussian posterior can be obtained in closed-form via
the Bayes rule. This posterior is used to define a Gaussian predictive
distribution over the cycle life for any given charging protocol with
mean u and variance ¢*

Finally, to select a charging protocol, we optimize an acquisition
function based on upper confidence bounds. The acquisition function
selects protocols where the noisy predictive distribution over cycle
life has high mean u (to encourage exploitation) and high variance ¢*
(toencourage exploration). The meanand upper and lower confidence
bounds forany armiisgivenby y, ;  B,0, ;at round k, such that the rela-
tive weighting of the two terms s controlled by the exploration tradeoff
hyperparameter, 8> 0. The exploration tradeoff hyperparameter at
round k, B,, is decayed multiplicatively at every round of the closed
loop by another hyperparameter, € €(0,1], as given by 8, = B,£ .

BO hyperparameter optimization

The BO algorithm relies on eight hyperparameters, each of which
canbe categorized as either aresource hyperparameter, a parameter
space hyperparameter or an algorithm hyperparameter. We note that
the BO algorithm runs in the fixed-budget setting; here, the budget
refers to the number of iterations of the closed loop we run, exclud-
ing validation experiments. We describe each category of hyperpa-
rameters below; the values of each hyperparameter are tabulated in
Supplementary Table 5.

Resource hyperparameters are specified by the available testing
resources. The ‘batch size’ represents the number of parallel tests. We
setabatchsize of 48 given our 48-channel battery cycler. The ‘budget’
represents the number of batches tested during CLO. The budget
excludes batches used to develop the early predictor and validation
batches. The budget is typically constrained by either the available
testing time or the number of cells. In this case, we set abudget of 4,
yielding a cell budget of 192 cells and a time budget of 16 days (4 days
per batch of 48 cells tested for 100 cycles).

Parameter space hyperparameters are specified by the optimization
problem. Here, we use the same data available from the training set of
the early predictor to estimate these parameters, despite a different
charging protocol structure. The ‘standardization mean’ represents
the estimated mean cycle life across all protocols. The ‘standardiza-
tionstandard deviation’ represents the estimated standard deviation
of cyclelife across all protocols; in other words, this parameter repre-
sents the range of cycle lives in the parameter space. The ‘likelihood
standard deviation’ represents the estimated standard deviation of a
single protocol tested multiple times, which is a measure of the sam-
pling error; this sampling error includes both the intrinsic variability
and the prediction error.

Algorithm hyperparameters control the performance of the Bayesian
optimization algorithm. yisthe kernel bandwidth, which controls the
interaction strength between neighbouring protocolsin the parameter
space. Highy favours under-smoothing of the parameter space, thatis,
the protocols have weak relationships with their neighbours. 8, repre-
sents theinitial value of B, the exploration tradeoff hyperparameter;
controls the balance of exploration versus exploitation. High S, favours
exploration over exploitation. e represents the decay constant of beta
per round; as the experiment progresses, ¢ shifts towards stronger
exploitation (given by B, = B,*, where B, represents the exploration
constantat round k, 0-indexed). High e favours arapid transition from
exploration to exploitation.

Thealgorithm hyperparameters were estimated by creating a phys-
ics-based simulator based on the range of cycle lives obtained in the
preliminary batch, testing all hyperparameter combinations on the
simulator, and selecting the hyperparameter combination with the
best performance (that is, that which most consistently obtains the
true cyclelife). These results are visualized in Extended Data Fig. 9; we
note that the performance of BO is relatively insensitive to the selected
combination of algorithm hyperparameters, meaning sufficiently
high performance can be achieved even with suboptimal algorithm
hyperparameters. Other approaches, such as using the early-predictor
training dataset, are also possible for optimization of the algorithm
hyperparameters (Supplementary Discussion1).

Physics-based simulator

We used a physics-based simulator for hyperparameter optimization;
this simulator allows us to estimate the shape and range of cycle lives
in the parameter space, although the simulator is not designed to be
an accurate representation of battery degradation during fast charg-
ing. This finite element simulator was originally designed to estimate
the heat generation during charginginan18650 cylindrical battery by
approximating the battery asalong cylinder, which simplifies to a one-
dimensional radial heat transfer problem. The equations and thermal
properties were sourced from Drake et al.> and Cengel and Boles™. The
output from these simulations is a matrix of temperature as a func-
tion of both radial position and time. We use total solid-electrolyte
interphase (SEI) growth as a proxy for degradation. First, we estimate
the temperature dependence of SEI growth from the C/10 series of
figure 7 from Smith et al.*® (Supplementary Table 6). Simultaneously,
we compute the expected temperature profilesin the battery as afunc-
tion of charging protocol with respect to time and position. We then
approximate the kinetics of SEl growth with an Arrhenius equation,
suchthat SElgrowthincreases withincreasingtemperature. SEIgrowth



(in arbitrary units) is calculated for each temperature element in the
position-time array via:

RPN

where Dis the degradation parameter, E, is the effective activation
energy for SEI growth (Supplementary Table 6) and k; is Boltzmann'’s
constant. The cyclelifeis then calculated from the degradation param-
eter using the range of expected cycle lives (as estimated from the
early-predictor training dataset):

Cycle life = 500+C/D

where Cis a constant (5 x 10™) that scales D to reasonable values of
cyclelife.

Validation experiments

After the closed-loop experiment completed, we selected nine pro-
tocols to test to failure (five batteries per charging protocol). This
experiment allowed us to (1) evaluate the performance of the closed
loop by comparing the CLO-estimated mean cycle lives to the mean
cyclelife of multiple batteries tested to failure for multiple protocols,
(2) compare the protocols with the highest CLO-estimated meancycle
lives to conventional fast-charging protocol design principles from
the battery literature, and (3) generate a small dataset with which we
can evaluate the performance of the closed loop relative to baseline
optimization approaches.

The selected protocols are displayed in Extended Data Fig. 6 and
Extended Data Table 1. Of our nine fast-charging protocols, three were
the top three CLO-estimated protocols; four were based on approxima-
tions of multi-step fast-charging protocolsin the battery literature (see
Extended Data Table 1); and two were selected to obtain a representa-
tive sampling from the distribution of CLO-estimated cyclelives. The
four protocols based on approximations of multi-step fast-charging
protocols in the battery literature were obtained by determining the
current ratios between various steps and translating those ratios to
our ten-minute fast-charging space. The voltage limits were consistent
with our charging protocols, thatis, 2.0 Vand 3.6 V.

Five batteries per charging protocol were tested to obtain a rea-
sonable estimate of the true cycle lives. In this experiment, one test
returned aprediction with a predictioninterval outside of the threshold
(channel12;3.6C-6.0C-5.6C-4.755C) and was excluded. A comparison
of the three different methods for cycle life results (CLO, early predic-
tions from validation, and final measurements from validation) are
presented in Extended Data Fig. 7.

Validation ablation study
For the ablation study using the charging protocols and data from the
validation experiments, we systematically compared the full closed-
loop system against three other ablation baselines which use (1) only
early prediction (no BO exploration-exploitation, purely random
exploration), (2) only BO exploration-exploitation (no early predic-
tion), (3) purely random exploration without any early prediction. As
highlighted earlier, since the final cycle lives for the protocols in the
validation study have anoticeable bias that can be explained by calen-
darageing (Supplementary Discussion 4), we perform asimple additive
bias correction for each of the final cycle lives beforehand to suppress
any undesirable influence of this bias in interpreting the results.
Werunthe four ablation baselines for avarying number of sequential
rounds. Since our validation space is relatively small (nine charging
protocols, five batteries tested per protocolin our validation dataset),
we run only one battery per round (that is, we assume a one-channel
battery cycler). The baselines that use BO exploration—-exploitation
additionally require hyperparameters to be specified before beginning

the experiment, as described in the Methods section ‘BO hyperparam-
eter optimization’. The best hyperparameters are chosen separately for
eachroundbased onthe performance obtained on the physics-based
simulator, averaged over 100 random seeds.

Whenanablation baseline queries for the cycle life of agiven charging
protocol, the returned value corresponds to one of the five runsin our
validation dataset, chosen viarandom sampling with replacement (that
is, bootstrapped). The experimental time cost of this query is equal to
100 cycles for ablation baselines that use early prediction and equals
the full cycle life otherwise. Finally, to account for the randomness at
the beginning of the experiment (thatis, round O when every ablation
baseline randomly selects a protocol), we report the performance of
each ablation baseline averaged over a sequence of 2,000 randomly
initialized experiments. To specify the y-axis of Fig. 4e, we assume that
each full cycle (charging, discharging, resting) requires one hour of
experimental testing.

Overpotential analysis

To determine the dependence of overpotential on current and SOC
during charging (Extended DataFig. 2e-f), we perform a pseudo-galva-
nostaticintermittent titration technique experiment on two minimally
cycled batteries and two degraded batteries (80% of nominal capacity
remaining). We probe currents ranging from 3.6C to 8C at 20%, 40%,
60%and 80% SOC, mirroring the currentand SOC values used in charg-
ing protocol design. In this experiment, we start at an initial SOC 20%
lower than the target, for example, we start at 0% SOC to probe 20%
SOC. We then charge at a given current rate, for example, 3.6C, until
wereach20%SOC. Thecellrestsfor1h,andthenthe cell discharges at
1Cbackto 0% SOC. We repeat this sequence for all current values, after
whichwe charge the cell at 1C to the next initial SOC, for example, 20%
SOC to probe 40% SOC, and repeat for each SOC of interest.

To compute the overpotential, we compare the voltage at the start
and end of the 1-hrest periods. Nearly all of the potential drop occurs
immediately (<100 ms) after the start of the rest period. Given the
linear trends observed (implying ohmic-limited rate capability), we
then performalinear fit on each overpotential-current series. Inthese
fits, the slope represents the ohmic resistance.
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Extended DataFig. 3| Additional optimizationresults.a, b, Mean of the
absolute differencein CLO-estimated cycle lives withiincreasing rounds,
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changes arerelatively smallbeyond round 2, suggesting that the closed loop
can performwell with even smaller time or battery budgets. c, Changein
Kendallrank correlation coefficient with increasing rounds. Fromround 3 to
round 4, theranking of the top protocols shifts, but the cycle lives of these top
protocols are similar. d, Distribution of CLO-estimated mean cycle lives after
round 4. The mean and standard deviationare 943 cyclesand 126 cycles,
respectively. e, Correlation between CLO-estimated meancycle lives and the
sum of squared currents, asimplified measure of heat generation (P=/’R). This
relationship suggests that minimizing heat generation, as opposed to avoiding

lithium plating, may be the operative optimization strategy for these cells
under these conditions. f, Standard deviation (0, ;) versus mean (u, ;) of the BO
predictive distribution over cycle life after round 4. The standard deviation
quantifies the uncertainty in the cycle life estimates and is generally low for
protocols estimated to have high mean cycle life, since these protocols are
probed more frequently. We start with arelatively wide, flat prior (standard
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Extended DataFig. 4 |Means and upper/lower confidence bounds
(1 £ B0 ) oncyclelife per round k. Protocol indices on the x-axis are sorted
byrankafter round 4. The weighted interval around the estimated mean,
Bi0yi= (Bog") o, weights the protocol-specific standard deviation at round k,
o, (estimated by the Gaussian process model) with the exploration tradeoff
hyperparameter at round k, 5;. The upper and lower confidence bounds are
plotted for all charging protocols before round1(a) and after rounds1(b), 2 (c),
3(d) and 4 (e). The predictive distributions for all charging protocols have
identical means and standard deviations before the first round of testing.
Because the standard deviations are weighted by 8, =B,cand €=0.5, the

weighted confidence bounds rapidly decrease with increasing round number,
favouring exploitation (examination of protocols with high means). The BO
algorithm recommends the 48 protocols with the highest upper bounds (red
points); the upper bounds are high either due to high uncertainty (exploration)
or highmeans (exploitation). The algorithm rapidly shifts from exploration to
exploitation as g, rapidly shrinks the upper bounds withincreasing round
index. We note that one protocol per round that should have beenselected
(thatis, withatop-48 upper bound) was not selected owing to a processing
error;instead, the protocol with the 49th-highest upper bound was selected.
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Extended Data Table 1| Selected charging protocols for validation

Charging CLO-estimated Early-Predlcted Final cycle life
rotocol cycle life cycle life (from (from Source
P validation) validation)
3.6C-6.0C-5.6C- 39
4755C 1103 £ 131 1013 £ 115 755 + 81 Zhang
Protocol with
4.4C-5.6C-5.2C- third-highest
4957C 1174 £76 1056 + 127 884 + 132 CLO-estimated
mean cycle life
Protocol with
4.8C-5.2C-5.2C- highest CLO-
4160C 1185+ 78 1047 £49 890 + 90 estimated mean
cycle life
Protocol with
5.2C-5.2C-4.8C- second-highest
4160C 1183 £ 86 1098 =134 912+ 118 CLO-estimated
mean cycle life
6.0C-5.6C-4.4C-
3 834C 954 + 164 963 + 26 880 + 85
7.0C-4.8C-4.8C- Samsung
3.652C 876 + 183 964 + 43 870 + 70 patents 0!
8.0C-4.4C-4.4C- "
3.940C 818 +212 854 + 44 702 + 51 Notten et al.
8.0C-6.0C-4.8C- 43,44
3.000C 775 £273 698 + 40 584 £ 60 Tesla patents
8.0C-7.0C-5.2C-
2 680C 648 + 174 580 + 68 496 + 49

The columns represent the CLO-estimated mean cycle lives of each protocol, early predictions in the validation experiment and the final tested cycle lives. For the CLO-estimated cycle lives,
the errors represent the CLO-estimated standard deviation after round 4 (o, ;). For the early-predicted and final cycle lives from validation, the errors represent 95% confidence intervals (n = 5;
but n = 4 for the early predictions of 3.6C-6.0C-5.6C-4.755C). The two protocols without a source were selected to obtain a representative sampling from the distribution of CLO-estimated cycle
lives. Literature fast-charging protocols are from refs. 3944,
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