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Abstract

Arthropod pest outbreaks are unpredictable and not uniformly distributed within fields. Early outbreak detec-
tion and treatment application are inherent to effective pest management, allowing management decisions to
be implemented before pests are well-established and crop losses accrue. Pest monitoring is time-consuming
and may be hampered by lack of reliable or cost-effective sampling techniques. Thus, we argue that an im-
portant research challenge associated with enhanced sustainability of pest management in modern agricul-
ture is developing and promoting improved crop monitoring procedures. Biotic stress, such as herbivory
by arthropod pests, elicits physiological defense responses in plants, leading to changes in leaf reflectance.
Advanced imaging technologies can detect such changes, and can, therefore, be used as noninvasive crop
monitoring methods. Furthermore, novel methods of treatment precision application are required. Both
sensing and actuation technologies can be mounted on equipment moving through fields (e.g., irrigation
equipment), on (un)manned driving vehicles, and on small drones. In this review, we focus specifically on use
of small unmanned aerial robots, or small drones, in agricultural systems. Acquired and processed canopy re-
flectance data obtained with sensing drones could potentially be transmitted as a digital map to guide a second
type of drone, actuation drones, to deliver solutions to the identified pest hotspots, such as precision releases
of natural enemies and/or precision-sprays of pesticides. We emphasize how sustainable pest management in
21st-century agriculture will depend heavily on novel technologies, and how this trend will lead to a growing
need for multi-disciplinary research collaborations between agronomists, ecologists, software programmers,
and engineers.

Key words: biological control, integrated pest management, precision agriculture, remote sensing, unmanned aerial system

Arthropod pest outbreaks in field crops and orchards often show
nonuniform spatial distributions. For some pests, such as cab-
bage aphids [Brevicoryne brassicae L. (Hemiptera: Aphididae)] in
canola fields (Brassica spp.), and Asian citrus psyllids [Diaphorina
citri Kuwayama (Hemiptera: Liviidae)] in citrus orchards (Citrus
spp.) there is evidence of highest population densities along field
edges (Sétamou and Bartels 2015, Severtson et al. 2015, Nguyen
and Nansen 2018). For other pests, such as soybean aphids [Aphis
glycines Matsumura (Hemiptera: Aphididae)] in soybean (Glycine
max (L.) Merrill), and two-spotted spider mites |[Tetramychus
urticae Koch (Acari: Tetranychidae)] in cowpea (Vigna unguiculata
(L.) Walp.), parts of fields that are exposed to abiotic stress, such
as drought or nutrient deficiencies, tend to be more susceptible
(Mattson and Haack 1987, Abdel-Galil et al. 2007, Walter and

DiFonzo 2007, Amtmann et al. 2008, West and Nansen 2014). Thus,
as pests are spatially aggregated, precision agriculture technologies
can offer important opportunities for integrated pest management
(IPM) (Lillesand et al. 2007).

Precision pest management is twofold: first, reflectance-based
crop monitoring (using ground-based, airborne, or orbital remote
sensing technologies) can be used to identify pest hotspots. Second,
precision control systems, such as distributors of natural enemies
and pesticide spray rigs, can provide localized solutions. Both tech-
nologies can be mounted on equipment moving through fields (such
as irrigation equipment), on manned or unmanned vehicles driving
around in fields, or on aerial drones.

In this review, we focus specifically on the use of small drones
in IPM. Small drones are here defined as remotely controlled,
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unmanned flying robots that weigh more than 250 g but less than
25 kg, including payload (FAA 2018a). These types of drones typic-
ally have flight-times of a few minutes to hours and limited ranges
(Hardin and Jensen 2011). We will also briefly discuss the larger
drones that are typically used for pesticide sprays. Discussion of
smaller and larger drones is beyond the scope of this review, but
see Watts et al. (2012), and Anderson and Gaston (2013) for more
information. Drones used for detection of pest hotspots are here
referred to as sensing drones, while drones used for precision distri-
bution of solutions are referred to as actuation drones. Both types
of drones could communicate to establish a closed-loop IPM solu-
tion (Fig. 1). Importantly, use of drones in precision pest manage-
ment could be cost-effective and reduce harm to the environment.
Sensing drones could reduce the time required to scout for pests,
while actuation drones could reduce the area where pesticide ap-
plications are necessary, and reduce the costs of dispensing natural
enemies.

Reports of drones in agriculture started appearing around 1998
and increased dramatically in the last decade (Fig. 2). According to
the abstract of a licensed report, the worldwide drone market value
is currently estimated about $6.8 billion and is anticipated to reach
$36.9 billion by 2022 (WinterGreen Research 2016b). Another
paid report predicts that drones will reach a value of $14.3 billion
by 2028 (Teal Group 2019). Agricultural small drones currently
account for about $500 million, and their value is expected to
reach $3.7 billion by 2022 (WinterGreen Research 2016a). A dif-
ferent paid report predicts similar values (ABI Research 2018),

while a freely available resource predicts the value of drone-based
solutions for agriculture at $32 billion (PwC 2016). Recently, the
United Nations published a report on the use of drones for agri-
culture, stressing its potential benefits for food security (Sylvester
2018). A text message poll among ca. 900 growers based in the
United States showed that around 30% use drone-based tech-
nology for farming practices (Farm Journal Pulse 2019). Thus,
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although there is a big margin among predictions of future drone
use, an increasing number of growers is expected to use and/or own
a drone within the next decade.

There are various ways to classify drones (Watts et al. 2012).
For our purpose, we currently distinguish two major types of
small drones: rotary wing and fixed wing. Each of these has its
own advantages and limitations (Hogan et al. 2017). Multi-rotor
and single-rotor (helicopter) drones do not require specific struc-
tures for take-off and landing. Moreover, they can hover and per-
form agile maneuvering, making them suitable for applications
(e.g., inspection of crops and orchards or pesticide applications)
where precise maneuvering or the ability to maintain a visual of a
target for an extended period of time is required. Especially multi-
rotor drones tend to be easy to use, and relatively cheap to obtain.
Fixed-wing systems are usually faster than rotor-based systems,
and generally larger in size, allowing for higher payloads (Stark
et al. 2013b, Dalamagkidis 2015). Both have been used for preci-
sion agriculture (Barbedo 2019). Since drone technology quickly
improves, we will refrain from discussing drone types in further
detail, but see Dalamagkidis (2015) and Stark et al. (2013b) for
more information.

A number of reviews discuss the use of drones in precision
agriculture, focusing on airborne remote sensing for various ap-
plications, such as predicting yield and characterizing soil proper-
ties (Hardin and Jensen 2011, Prabhakar et al. 2012, Zhang and
Kovacs 2012, Mulla 2013, Gago et al. 2015, Nansen and Elliott
2016, Padua et al. 2017, Hunt and Daughtry 2018, Aasen et al.
2018, Gonzalez et al. 2018, Barbedo 2019, Maes and Steppe 2019).
In this review, we focus on precision management of arthropod pests
and describe the use of both sensing and actuation drones. First, we
provide an update about airborne remote sensing-based detection
of pest problems. Then, we evaluate the possibilities of actuation
drones for precision distribution of pesticides and natural enemies.
Also, we discuss the possibilities of sensing and actuation drones for
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Fig. 1. (a) State-of-the-art open-loop remote sensing paradigm and (b) closed-loop IPM paradigm envisioned in this article. Sensing drones could be used for
detection of pest hotspots, while actuation drones could be used for precision distribution of solutions. Adapted from Teske et al. (2019).
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Fig. 2. Number of articles published between 1998 and 2018 on the use of
drones in agriculture. Shown is the number of publications for each year
mentioning ‘drone’, ‘UAV’ (Unmanned Aerial Vehicle), or ‘UAS’ (Unmanned
Aerial System) and ‘agriculture’. The words ‘bee’, ‘honey bee’, and ‘hive’
were explicitly excluded from the search, to avoid including publications on
drones defined as male bees. Source: Web of Science.

novel functions in pest management. Lastly, we discuss challenges
and opportunities in the adoption of drone technology in modern
agriculture.

Sensing Drones to Monitor Crop Health

Traditional field scouting for pest infestations is often expensive
and time-consuming (Hodgson et al. 2004, Severtson et al. 2016b,
Dara 2019). It may be practically challenging, such as when a large
acreage is involved, when the arthropod pests are too small to see
with the naked eye, or when they reside in the soil or in tall trees.
In some cropping systems, effective scouting is hampered by lack of
reliable pest sampling techniques. Hence, one of the main drivers for
the implementation of drone-based remote sensing technologies into
agriculture is the potential time saved by automatizing crop moni-
toring, making the technology cost-effective for growers (Carriére
et al. 2006, Backoulou et al. 2011a, Dara 2019).

Compared to conventional platforms for remote sensing, such as
ground-based, aerial (with manned aircraft) and orbital (with sat-
ellites such as Landsat [30 m spatial resolution], Sentinel 2 [10 m]
or RapidEye [5 m]; Mulla 2013), sensing drones present several ad-
vantages that make them attractive for use in precision agriculture.
Sensing drones potentially allow for coverage of larger areas than
ground-based, handheld devices. They can fly at lower altitudes than
manned aircraft and orbital systems, increasing images’ spatial reso-
lution and reducing the number of mixed pixels (pixels representing
reflectance of both plant and soil, discussed in more detail below).
Also, they cost less to obtain and deploy than manned aircraft and
satellites and do not have long revisiting times like satellites, al-
lowing for higher monitoring frequencies (Zhang and Kovacs 2012,
Mulla 2013, Matese et al. 2015, Aasen and Bolten 2018, Barbedo
2019, Maes and Steppe 2019).

Remote Sensing in Precision Agriculture

Remote sensing is the detection of energy emitted or reflected by
various objects, either in the form of acoustical energy or in the form
of electromagnetic energy (including ultraviolet [UV] light, visible

light, and infrared light) (Usha and Singh 2013). It is a non-invasive,
relatively labor-extensive method that could be used to detect plant
stress before changes are visible by eye. For crops, remote sensing
equipment generally assesses the spectral range of visible light or
photosynthetically active radiation (PAR, 400-700 nm) and near-
infrared light (NIR, 700-1,400 nm), with most studies referring to
the 400-1,000 nm range (Nansen 2016). Particular stressors, such as
arthropod infestations, induce physiological plant responses, causing
changes in the plants’ ability to perform photosynthesis, which leads
to changes in leaf reflectance in parts of this spectral range. For aerial
remote sensing, a drone can be equipped with an RGB (red green
blue) sensor, a multispectral sensor with between 3 and 12 broad
spectral bands, or a hyperspectral sensor with hundreds of narrow
spectral bands.

An RGB sensor is low-cost, but results in limited spectral infor-
mation. A multispectral sensor results in more spectral information,
but a hyperspectral sensor is generally much better at differentiating
subtle differences in canopy reflectance than a multispectral sensor
(Yang et al. 2009a). However, since hyperspectral sensors are gen-
erally larger, they would require mounting on drones adapted for
heavier payloads. Also, they are generally more expensive, and data
analysis requires more time and experience, limiting use for indi-
vidual growers. A comprehensive review of the sensor types compat-
ible with drones has been written by Aasen et al. (2018).

Remote Sensing and Arthropod Pests

Remote sensing technologies have been used in precision agricul-
ture for the last few decades, with various applications, such as
yield predictions and evaluation of crop phenology (Mulla 2013).
Also, these techniques are being used to monitor different abi-
otic plant stressors, such as drought (Gago et al. 2015, Katsoulas
et al. 2016, Zhao et al. 2017, Jorge et al. 2019) and nutritional
deficiencies (Quemada et al. 2014), and biotic plant stressors, such
as pathogens (Calderén et al. 2013, Mahlein et al. 2013, Zarco-
Tejada et al. 2018), nematodes (Nutter et al. 2002), and weeds
(Rasmussen et al. 2013, Pefia et al. 20135). Likewise, remote sensing
technologies have been successfully used to detect stress caused
by various arthropod pests on a wide variety of field and orchard
crops (Riley 1989, Nansen 2016, Nansen and Elliott 2016; Tables
1-4). A limited amount of studies concerning arthropod-induced
stress detection used drone-based aerial remote sensing (Table 1),
manned aircraft-based aerial remote sensing (Table 2), or orbital
remote sensing (Table 3), while most studies used ground-based
remote sensing (Table 4).

In these tables, optical sensors are grouped, in addition to the
platform, they are mounted on, into RGB, multispectral, and
hyperspectral sensors. As stated above, generally, multispectral
sensors have 3-12 broad spectral bands at selected wavelength
ranges, whereas hyperspectral sensors have many (usually >20,
but up to several hundreds) narrow, contiguous spectral bands, ac-
quiring the spectrum within the selected spectral region with many
measurement points. However, there is no clear agreed on definition.
Therefore, the tables include multispectral sensors acquiring more
than 12 spectral bands. While grouping the sensors, we adhered to
the authors’ classifications (Tables 1-4).

Tables 1-4 focus on detection of arthropod pests; we did not ad-
dress diseases caused by arthropod vectors (e.g., Garcia-Ruiz et al.
2013). Also, these tables only contain studies related to crops and
orchards. We did not address forestry studies, as the body of lit-
erature on pest detection involves multi-species forests, adding an
additional layer of complexity as opposed to crops and orchards
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Table 3. Studies on orbital multispectral remote sensing to detect arthropod-induced stress in crops

No. of Plant
Spectral spectral Field common Arthropod Arthropod
resolution®  Sensor details bands observations name Plant species common name species Order: Family ~ References
M QuickBird, 3 Arthropod Cotton  Gossypium Cotton aphid  Aphis gossypii Hemiptera: Reisig and
DigitalGlobe counts hirsutum Aphididae Godfrey
2006,
2010
M QuickBird, 3 Arthropod Cotton  Gossypium Spider mite Tetranychus ~ Acari: Reisig and
DigitalGlobe counts hirsutum spp- Tetranychidae Godfrey
2006
M Terra, MODIS, 36  Arthropod Wheat  Triticum aestivum Wheat stem Cephus cinctus Hymenoptera: ~ Lestina
NASA counts sawfly Norton Cephidae etal.
2016
M Sentinel-2, S2A- 13 Arthropod Wheat  Triticum aestivum Hessian fly Mayetiola de- Diptera: Bhattarai
L1C, ESA? counts structor Cecidomyiidae et al.
2019
M HJ-1A/B, CCD 4 Arthropod Wheat  Triticum aestivumm Wheat aphid ~ Sitobion avenae Hemiptera: Luo et al.
sensor, NDRCC/ counts, Aphididae 2014
SEPA<, damage as-
sessments
Landsat-8, NASA 9  Arthropod Wheat  Triticum aestivum Wheat aphid ~ Sitobion avenae Hemiptera: Ma et al.
counts Aphididae 2019
Landsat-5 TM, 7 Arthropod Wheat  Triticum aestivum  Aphid NA Hemiptera: Huang
NASA counts Aphididae etal.
2011
M RapidEye, Planet 5 Arthropod Corn Zea mays Stem borer Busseola spp.  Lepidoptera: Abdel-
Labs counts Noctuidae Rahman
etal.
2017
M HJ-1A/B, CCD 4 Damage assess-Corn Zea mays Oriental Mythimna Lepidoptera: Zhang
sensor, NDRCC/ ments armyworm¢ separata Noctuidae etal.
SEPA¢, Walker? 2016

“M = multispectral.
"European Space Agency.

‘National Committee for Disaster Reduction and State Environmental Protection Administration of China.

The arthropod species was originally misidentified as Spodoptera frugiperda; a correction was issued. NA = information not provided.

in monoculture. More information about remote sensing in forestry
settings can be found elsewhere (Dash et al. 2016, Pddua et al. 2017,
Stone and Mohammed 2017, Dash et al. 2018).

It is important to note that with remote sensing, not the pests
themselves are detected, but patterns of canopy reflectance that are
indicative of arthropod-induced plant stress. Field observations to
confirm the presence of specific stressors remain necessary, but field
scouting can be more efficiently focused with the a priori knowledge
from remote sensing.

Analysis of Reflectance Spectra

For the detection of plant stress using remote sensing, the spectral
reflectance (the spectral signature or spectrum) of the vegetation is
analyzed. Figure 3 shows a spectrum of healthy soybean leaves as re-
corded by a ground-based hyperspectral field spectrometer, together
with the same spectrum resampled to the spectral resolution of a
hyperspectral imaging spectrometer for drones, and a multispectral
sensor for drones. The figure shows the large loss of information be-
tween a hyperspectral sensor and a multispectral sensor. With higher
spectral resolutions (i.e., more spectral bands), detailed spectral
characteristics become visible and can be used to analyze vegetation
spectra. This analysis can be done in various ways, e.g., by analyzing
spectral reflectance features (e.g., absorption bands or reflectance
peaks) that can be directly related to plant physiology, or indirectly

by building vegetation indices (VIs). These two techniques are ad-
dressed below exemplarily. An overview of techniques to quantify
vegetation biophysical variables using imaging spectroscopy is given
in Verrelst et al. (2019).

Spectral Features and Vis

An important spectral feature light region is the red edge, i.e., the
slope between the red and near infrared region of the spectrum,
around 700 nm. This spectral region relates to the chlorophyll con-
centration (Horler et al. 1983, Delegido et al. 2011, Huang et al.
2015b) and the Leaf Area Index (LAI), the area of green leaves per
unit of ground area (Delegido et al. 2013). The red edge position
(REP), the point of maximum slope in the red edge region, is a valu-
able indicator of stress and senescence (Das et al. 2014, Verrelst et al.
2019), possibly because various stressors decrease leaf chlorophyll
concentrations (Carter and Knapp 2001). For instance, an increased
reflectance around 740 nm is associated with spider mite suscepti-
bility in corn (Zea mays L.) (Nansen et al. 2013). Also, the overall
reflection level of the spectrum might be characteristic.

It should be noted that a spectrum of an imaging spectrometer,
such as one mounted on drones, always describes an area, not a
point. This area, or pixel size, depends on the flight height of the
drone and can range from less than 1 cm? to more than 10 cm?. With
larger pixels, the recorded spectrum consists of reflectance of both
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Table 4. Continued

Arthropod common

Plant common
name

name

No. of spectral Field

Spectral

References

Order: Family

Arthropod species

Plant species

observations

bands

Sensor details

resolution?

Mirik et al.

Russian wheat Diuraphis noxia Hemiptera: Aphididae

Triticum aestivum

Arthropod counts ~ Wheat

2,048

$2000 spectrometer, Ocean

2007
Riedell and

aphid
Russian wheat

Optics Inc.

Hemiptera: Aphididae

Diuraphis noxia

Triticum aestivum

Wheat

Controlled infest-

512

Personal Spectrometer II,

Blackmer
1999
Do Prado

aphid

ations

ASD

Hemiptera:

Dichelops

Green belly stink

Zea mays

Corn

Controlled infest-

240

Pika II hyperspectral imaging

Ribeiro et al.

2018
Nansen et al.

Pentatomidae

melacanthus Dallas

bug

ations

camera, Resonon

Acari: Tetranychidae

Two-spotted spider Tetranychus urticae

Arthropod counts ~ Corn Zea mays

160

Pika II hyperspectral imaging

2010, Nansen

mite

camera, Resonon

2012

hyperspectral.

multispectral, H =

‘M

information not provided.

A fungus not infesting the plant, but growing on the arthropod’s sugary honeydew secretions. NA

the plant and the soil (mixed pixels). This should be considered when
analyzing the spectrum. Wherever possible, pixels that represent soil
or other types of non-canopy area are excluded from data analysis.
Various VIs assist in interpreting remote sensing data (Roberts
et al. 2001, Xue and Su 2017, Verrelst et al. 2019). These are mainly
ratios between multiple spectral bands (Glenn et al. 2008). An often-
used index is the Normalized Difference Vegetation Index (NDVI),
which incorporates the ratio of NIR and visible red light. Compared
to a healthy plant, an unhealthy plant will generally reflect more
visible light and less NIR light. In farming, the NDVI can be used as
a predictor of plant physiological status, as well as potential yield
(Pefiuelas and Filella 1998). NDVI has its limitations, e.g., when there
is a lot of soil in the background. To solve that issue, other VIs have
been developed, such as the Soil Adjusted Vegetation Index (SAVI)
(Huete et al. 1988). Where these two indices are broadband indices
(i.e., they can be calculated with multispectral data), hyperspectral
data allows for narrowband VIs that can more precisely focus on a
specific aspect. An example is the Modified Chlorophyll Absorption
in Reflectance Index (MCARI), which is defined to be maximally
sensitive to chlorophyll content (Daughtry et al. 2000). Xue and Su
(2017) provide a review of over 100 VIs for vegetation analysis.

Classification Accuracy

Classification algorithms, which could be based on the red edge and/
or VIs, can be developed to group plants based on spectral data by
relating field observations to spectral measurements (e.g., ‘healthy’
and ‘pest-infested’ plants). The algorithms can be based on various
statistical approaches (Lowe et al. 2017). Classification accuracy is
high if data has high robustness or repeatability. Different remote
sensing studies report different classification accuracies (Lowe et al.
2017). A recent study with drone-based remote sensing to detect
susceptibility against green peach aphid [Myzus persicae Sulzer
(Hemiptera: Aphididae)] in canola, using a multispectral sensor
mounted on an octocopter, a drone with eight rotors, reported a
classification accuracy of 69-100%. These values depended on ex-
perimental day, drone height above the canopy, and whether or
not non-leaf pixels were removed from the dataset. In this study,
aphid infestations happened naturally, and aphids were counted on
selected plants for ground verification of infestations (Severtson et al.
2016a). A study involving two-spotted spider mite-induced stress in
cotton (Gossypium spp.), using a multispectral sensor mounted on
a quadcopter, a drone with four rotors, reported a classification ac-
curacy of 74-95%. These values depended on classification methods.
Spider mite infestation levels were estimated based on plant damage
(Huang et al. 2018). As it is hard to reach 100% accuracy, especially
when data are obtained on different days, in most studies, there are
certain numbers of false positives (plants are classified as infested
while they are healthy) and/or false negatives (plants are classified as
healthy while they are infested) (Congalton 1991, Lowe et al. 2017).
Nevertheless, multiple robust classifications have been developed to
detect pest problems in different agro-ecosystems, which provide
good indicators for field scouting (Tables 1-4).

Drones, Remote Sensing, and Arthropod Pests

Everitt et al. (2003) provided an overview of the potential use of re-
mote sensing data collected in a manned aircraft for pest manage-
ment. The authors mapped four different pest-host systems (citrus
orchards, cotton crops, forests, and rangelands), and concluded
that aerial photography and videography could be used to detect
arthropod infestations in both agricultural and natural environments
(Everitt et al. 1994, 1996). With the development of unmanned
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Fig. 3. Spectra of soybean leaves at different spectral resolutions. (a) As recorded by a handheld spectrometer with 1 nm spectral resolution (e.g., FieldSpec,
ASD Inc., Boulder, CO). (b) Resampled to the spectral resolution of a hyperspectral imaging spectrometer (3-4 nm spectral resolution, e.g., OCl Imager, BaySpec,
San Jose, CA). (c) Resampled to the spectral resolution of a multispectral sensor (four spectral bands, e.g., Parrot Sequoia, Parrot, Paris, France).

aircrafts, it has become more affordable and practically feasible
to collect aerial remote sensing data. A recent study with drone-
based remote sensing to detect crop pests includes stress induced
by sugarcane aphid [Melanaphis sacchari Zehntner (Hemiptera:
Aphididae)] in sorghum (Sorghum bicolor (L.) Moench), using a
multispectral sensor mounted on a fixed-wing drone. Aphids were
counted throughout the growing season for ground verification
of infestations, and damage was assessed as coverage with sooty
mold, a fungus not infesting the plant, but growing on the aphids’
sugary honeydew secretions (Stanton et al. 2017). Colorado potato
beetle [Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae)]
damage in potato (Solanum tuberosum L.) has been assessed using
a multispectral sensor mounted on a hexacopter, a drone with six
rotors. Plants were infested with different numbers of beetles, and in-
sects were counted and plant damage was visually assessed for ground
verification of pest infestations (Hunt et al. 2016, Hunt and Rondon
2017) (Table 1). A study by F. Iost Filho, MSc, Dr. P. Yamamoto, and
collaborators at the University of Sao Paulo, Brazil, is analyzing the
effects of stress induced by several arthropod pests in soybean fields,
including silverleaf whitefly [Bemisia tabaci Gennadius (Hemiptera:
Aleyrodidae)], stink bugs (Hemiptera: Pentatomidae), and caterpillars
(Lepidoptera: Noctuidae). The system is composed of a drone-based
multispectral sensor and a ground-based hyperspectral sensor (Iost
Filho 2019). Researchers at the University of Wisconsin, W1 are cur-
rently using a quadcopter equipped with a multispectral sensor to de-
tect caterpillar damage in cranberry (Vaccinium macrocarpon Aiton)
(Seely 2018). An ongoing study by Dr. E. de Lange, Dr. C. Nansen
and collaborators at the University of California Davis, CA involves
detection of stress induced by two-spotted spider mite in strawberry
(Fragaria x ananassa Duchesne), using an octocopter equipped with
a hyperspectral sensor (Fig. 4). Furthermore, aerial remote sensing
can help distinguish between different non-crop plant species. If these
plant species were differentially preferred as alternate hosts by im-
portant pests, remote sensing could contribute to vegetation manage-
ment decisions (Sudbrink et al. 2015).

Barbedo (2019) compiled a list of drone-based remote sensing
studies for various applications, including detection of pests, patho-
gens, drought, and nutrient deficiencies. Drones are increasingly used
for remote sensing studies and are particularly cost-efficient for inspec-
tions of smaller fields (Matese et al. 2015). As technology improves
and costs decrease, they may also become more competitive for use in
larger fields. Ultimately, usefulness of drone-based remote sensing for
detection of pest problems will depend on individual grower needs.

Distinguishing Multiple Stressors With Remote
Sensing

Most of the above-mentioned studies are based on a system com-
posed of one arthropod pest species and one specific crop. However,
when multiple arthropod pests are present, more advanced methods
of data calibration and analysis are necessary. Prabhakar et al.
(2012) inferred that damage by different pests on the same host
plant requires a combination of multiple spectral bands for accurate
detection. Indeed, a greenhouse study in wheat (Triticum aestivum
L.) showed that reflectance data could be used to differentiate be-
tween two different pests. Plants were experimentally infested with
greenbugs [Schizaphis graminum Rondani (Hemiptera: Aphididae)]
or Russian wheat aphids [Diuraphis noxia Kurdjumov (Hemiptera:
Aphididae)], and insects were counted on a regular basis. The au-
thors did mention that additional field studies would be needed,
as other stressors could result in similar symptoms as aphid infest-
ations (Yang et al. 2009b). A field study in wheat used reflectance
data to differentiate between arthropod [wheat aphid, Sitobion
avenae Fabricius (Hemiptera: Aphididae)] and pathogen (yellow
rust, Puccinia striiformis Westend. f. sp. tritici Eriks and powdery
mildew, Blumeria graminis (DC.) Speer) infestations. Aphids oc-
curred naturally in the field, and pathogens were inoculated; for all
three stressors, damage levels were estimated. Overall classification
accuracy was 76% (Yuan et al. 2014). Another field study in wheat
used reflectance data to distinguish between arthropod infestations
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Fig. 4. Airborne remote sensing in California strawberry. Researchers from the University of California Davis obtain canopy reflectance data of arthropod-
infested plants with a drone-mounted hyperspectral sensor in a commercial strawberry field.

(Russian wheat aphid) and abiotic stressors (drought and agronomic
conditions, possibly poor tillage, germination, or fertilization). The
different stressors were verified onsite (Backoulou et al. 2011b).

However, laboratory and field studies on cotton plants exposed
difficulties distinguishing two arthropod pests, cotton aphid [Aphis
gossypii Glover (Hemiptera: Aphididae)] and two-spotted spider
mite, based on spectral signatures. In these studies, plants were ex-
perimentally infested, and insects were counted, or their presence or
absence was assessed, over time (Reisig and Godfrey 2007). It also
proved difficult to separate nitrogen deficiencies and aphid infest-
ations in cotton field studies. In these studies, aphids were natur-
ally present, and plots were treated with pesticides to increase aphid
populations, presumably by killing natural enemies. Aphids were
counted throughout the experimental period. Different amounts of
nitrogen were applied, which was verified with soil samples and ana-
lysis of plant nitrogen uptake (Reisig and Godfrey 2010).

An overview of the few studies on hyperspectral and multispec-
tral sensors to distinguish various biotic and abiotic stressors can be
found in Table 5. Spectral indices that accurately predict the presence
of various arthropod pests, as well as distinguish arthropod-induced
stress from other sources of stress, are required for a large number of
crops in order to be widely used in precision agriculture (Mulla 2013).

Actuation Drones for Precision Application of
Pesticides

While sensing drones could help detect pest hotspots, actuation
drones could help control the pests at these hotspots. Pest hotspots
could potentially be managed through variable rate application of
pesticides. Aircrafts have been used for decades for pesticide sprays,
but products are deposited over large areas, and a large amount is
lost to drift (Pimentel 1995, Bird et al. 1996). This is a concern for

neighboring terrestrial and aquatic ecosystems, as well as for human
health (Damalas 2015). Major factors determining spray drift are
droplet size (influenced by nozzle type and product formulation),
weather conditions (e.g., wind speed and direction), and application
method (e.g., spray height above the canopy) (Hofman and Solseng
2001, Al Heidary et al. 2014). Empirical and modeling studies
showed that spray drift into non-target areas can be considerable
(Woods et al. 2001, Sdnchez-Bayo et al. 2002, Teske et al. 2002, Tsai
et al. 2005, Al Heidary et al. 2014). Therefore, improved methods of
pesticide application are highly needed (Lan et al. 2010), and there
is potential for the use of drones in precision application of insecti-
cides and miticides (Costa et al. 2012; Faical et al. 2014a,b, 2016,
2017; Brown and Giles 2018). Some of the aspects that give drones
a competitive edge over manned crop dusters are their relative ease
of deployment, reduction in operator exposure to pesticides, and po-
tential reduction of spray drift (Faigal et al. 2014b).

Indeed, in Japan, where drones have been used in agricul-
ture since the 1980s, drones are widely used to spray pesticides on
rice, Oryza sativa L.. These drones are mostly heavier than 25 kg,
but we discuss them here, as they are among the most widely used
drones in pest management. Development of unmanned aerial ve-
hicles for crop dusting started at the Japanese Agriculture, Forestry,
and Fishery Aviation Association, an external organization of the
Japanese Ministry of Agriculture, Forestry, and Fisheries. A proto-
type was completed in 1986 by Yamaha, a Japanese multinational
corporation with a wide range of products and services, and the R-50
appeared on the market in 1987: the world’s first practical-use un-
manned helicopter for pesticide applications, with a payload of 20 kg
(Miyahara 1993, Sato 2003, Yamaha 2014a, Xiongkui et al. 2017).
A few successors have launched since, with greater payload capaci-
ties and simplicity of use (Yamaha 2014b, 2016). In Japan alone, as
of March 2016, about 2,800 unmanned helicopters are registered
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for operation, spraying more than a third of the country’s rice fields.
The use of unmanned crop dusters has also spread to other crops,
such as wheat, oats, and soybean, and the number of crops continues
to expand (Yamaha 2016). Japanese unmanned crop dusters are
also employed in South Korea (Xiongkui et al. 2017) and are cur-
rently being tested for spraying of pesticides in California vineyards
(Bloss 2014, Giles and Billing 2015, Gillespie 2015). On a small but
increasing scale, unmanned crop dusters are used in China, for crops
such as rice, mango, and plantain (Zhou et al. 2013, Tang et al. 2016,
Xiongkui et al. 2017, Lan and Chen 2018, Yang et al. 2018, Zhang
et al. 2019). Novel types of unmanned crop dusters and/or novel
spray rigs fitting commercially available drones are currently being
developed in China (Ru et al. 2011, Xue et al. 2016, Xiongkui et al.
2017), South Korea (Shim et al. 2009), the United States (Huang et al.
2009), Ukraine (Pederi and Cheporniuk 20135, Yun et al. 2017), and
Spain (Martinez-Guanter et al. 2019), among other places.

Recently, smaller drone-based crop dusters appeared on the
market, such as the DJI AGRAS MG-1S with a 10 kg payload
(DJI 2019). A collaboration between Japan’s Saga University, Saga
Prefectural Government Department of Agriculture, Forestry,
and Fisheries, and OPTiM Corporation resulted in AgriDrone, a
small drone that can pinpoint pesticide application. Interestingly,
AgriDrone is also equipped with an UV bug zapper, recognizing and
killing over 50 varieties of nocturnal agricultural pests at nighttime
(OPTiM 2016). However, no peer-reviewed literature on this system
has appeared since its announcement.

Current research focuses on improved spray coverage, to enable
large-scale adoption of drones for application of pesticides (Qin et al.
2016, Wang et al. 2019a, Wang et al. 2019b). In combination with
precision monitoring, precision application of pesticides could re-
duce the overall number of sprays, contributing to reduced pesticide
use and decreased development of resistance, as well as increased
presence of natural enemies (Midgarden et al. 1997).

Actuation Drones for Precision Releases of
Natural Enemies

Biological control is a potential sustainable alternative to pesticide
use. It is the use of a population of one organism to decrease the
population of another, unwanted, organism (Van Lenteren et al.
2018). Biological control organisms include, but are not limited to,
parasitoids, predators, entomopathogenic nematodes, fungi, bac-
teria, and viruses. A large variety is commercially available. Drones
may be a particularly useful tool for augmentative biological con-
trol, which relies on the large-scale release of natural enemies for
immediate control of pests (Van Lenteren et al. 2018). They could
distribute the natural enemies in the exact locations where they are
needed, which may increase biocontrol agent efficacy and reduce
distribution costs.

Some natural enemies, such as insect-killing fungi and nema-
todes, can be applied with conventional spray application equipment
(Shah and Pell 2003, Shapiro-Ilan et al. 2012). Therefore, these bio-
control agents could potentially be applied by drones as described
above for pesticides (Berner and Chojnacki 2017).

However, application of other natural enemies is often costly
and time-consuming. For example, the predatory mite Phytoseiulus
persimilis Athias-Henriot (Acari: Phytoseiidae), an important nat-
ural enemy of the worldwide pest two-spotted spider mite, is avail-
able in bottles mixed with the mineral substrate vermiculite, and
the recommended way of dispersal is by sprinkling contents onto
individual plants (e.g., Koppert 2017a, Biobest 2018). Phytoseiulus
persimilis has such a high level of specialization that populations

succumb when no prey is present (McMurtry and Croft 1997,
Cakmak et al. 2006, Gerson and Weintraub 2007, Dara 2014).
Various mechanical distribution systems have been developed to fa-
cilitate predator dispersal, such as the Mini-Airbug, a handheld ap-
pliance with a fan (Koppert 2017b), as well as other devices (Giles
et al. 1995, Casey and Parrella 2005, Opit et al. 2005). Growers in
Brazil are known to use dispensers attached to motorbikes (Parra
2014, Agronomic Nordeste 2015), but this could potentially damage
the crop. Release of natural enemies by aircraft was proposed in
the 1980s (Herren et al. 1987, Pickett et al. 1987), but small drones
would offer myriad possibilities. Coverage of larger areas com-
pared to manual distribution, reducing application costs per acre,
potentially increases the use of natural enemies in favor of pesticide
sprays. Development of drone-mounted dispensers has mainly fo-
cused on two types of natural enemies: predatory mites such as the
above-mentioned P. persimilis, and parasitoid wasps such as the egg-
parasitoid Trichogramma spp. (Hymenoptera: Trichogrammatidae).

To combat two-spotted spider mite, an important pest of a large
number of crops worldwide, a California-based company is offering
services to distribute predatory mites using drones, on crops such as
strawberry (Parabug 2019). An Australia-based company also uses
drones to distribute predatory mites on strawberry crops (Drone
Agriculture 2018). At the University of Queensland in Australia, a
drone-mounted device is being developed to distribute predatory
mites in corn (Pearl 2015). At the University of California Davis, Dr.
Z. Kong and Dr. C. Nansen, in collaboration with aerospace engin-
eering students, have developed a platform for drone-based distri-
bution of predatory mites, BugBot (Teske et al. 2019) (Fig. 5). They
are currently testing the prototype and accompanying software, to
optimize natural enemy releases. We propose that collaboration be-
tween growers, agricultural scientists, aerospace engineers, and soft-
ware programmers is key in developing a product that is effective
and user-friendly.

Trichogramma spp. parasitoids are important biocontrol agents
of European corn borer [Ostrinia nubilalis Hiibner (Lepidoptera:
Crambidae)], a major pest of sweet corn in the United States and
Europe (Smith 1996). Various companies and research institutes
all over the world have started Trichogramma drone applications,
including Austria, Germany, France, Italy, and Canada (e.g., Chaussé
etal. 2017, Airborne Robotics 2018). Drone-released Trichogramma
parasitoids are also deployed in China for control of pests in
sugarcane (Saccharum spp.) (Li et al. 2013, Yang et al. 2018). In
Brazil, drone applications of Trichogramma spp., as well as the
parasitoid Cotesia flavipes Cameron (Hymenoptera: Braconidae),
are employed to combat the sugarcane borer [Diatraca saccharalis
Fabricius (Lepidoptera: Crambidae)] in sugarcane. Trichogramma
spp. are also employed against various other lepidopteran pests in
other crops (Parra 2014, Rangel 2016, Xfly Brasil 2017).

While we did not address pest management in forestry settings in
this review, a recent report by Martel et al. (2018) deserves to be men-
tioned, as it is the first to compare drone release and ground release of
natural enemies. The report evaluated the efficacy of Trichogramma
spp. to combat spruce budworm [Choristoneura fumiferana Clemens
(Lepidoptera: Tortricidae)], an important pest of fir and spruce trees in
Canada and the United States. Drone releases, using Trichogramma-
parasitized host eggs mixed with vermiculite, were compared to
ground releases, using commercially available cards containing para-
sitized eggs of Mediterranean flour moth [Ephestia kuebniella Zeller
(Lepidoptera: Pyralidae)]. Data were collected in two locations in
Quebec, Canada. In one of these locations, drone release resulted in
similar spruce budworm egg parasitism rates as ground release of
natural enemies. Results for the other location were inconclusive, as
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Fig. 5. Prototype of BugBot predatory mite dispenser. BugBot, developed by mechanical and aerospace engineering students at the University of California
Davis, is a drone-mounted dispenser that can distribute predatory mites, important biological control agents of spider mites. In the picture, the BugBot dispenses

vermiculite, the mineral substrate the predators can be obtained in.

egg parasitism rates were negligible. Drone releases were reportedly
faster than ground releases of natural enemies. Although more studies
are necessary, these preliminary results show the high potential of
drone-based Trichogramma distribution in forests, especially on
small scales, and in conditions under which insecticide applications
are not appropriate (Martel et al. 2018). It is important to perform
similar studies in field crops and orchards, to evaluate the efficacy of
drone-released natural enemies.

Other types of natural enemies can be drone-applied as well, such
as green lacewing, [Chrysoperla spp. (Neuroptera: Chrysopidae)] and
minute pirate bug [Orius insidiosus Say (Hemiptera: Anthocoridae)]
to control aphids and thrips, and mealybug destroyer [Cryptolaemus
montrouzieri Mulsant (Coleoptera: Coccinellidae)] to control
mealybugs (Parabug 2019). Researchers at the University of Southern
Denmark, in collaboration with Aarhus University, are currently
developing a dispensing mechanism for ladybirds and other im-
portant natural enemies of aphids (SDU 2018). EWH BioProduction,
a producer of beneficial organisms (EWH BioProduction 2019), is
also involved in this EcoDrone project, as well as Ecobotix, a com-
pany offering drone-based services, which is developing a separate
solution for dispensing natural enemies (Ecobotix 2018). Drone-
based dispensers could be adapted or newly developed for other
types of beneficial arthropods as well.

Thus far, little to no peer-reviewed research exists on the efficacy
of these operations. Therefore, this is a call for additional research.
It is of utmost importance to verify that natural enemies distributed
by drones are not damaged during transport and distribution and
are still effective as biological control agents. Also, it is necessary
to develop hardware and software mechanisms that can precisely
distribute the natural enemies in different weather conditions, par-
ticularly considering that wind is a crucial factor for the distribution.
Individual drone-mounted dispensers all use different technologies,
which could be compared to optimize natural enemy distribution.
This could pave the way for larger-scale operations of this promising
resource.

Novel Uses for Drones in Precision Pest
Management

Pest Outbreak Prevention

Sensing and actuation drones could potentially contribute to the pre-
vention of pest outbreaks. Plants exposed to abiotic stressors, such
as drought and nutrient deficiencies, are often more susceptible to
biotic stressors. This holds true for a large variety of arthropod pests,
such as spider mites (Garman and Kennedy 1949, Rodriguez and
Neiswander 1949, Rodriguez 1951, Perring et al. 1986, Stiefel et al.
1992, Machado et al. 2000, Abdel-Galil et al. 2007, Chen et al. 2007,
Nansen et al. 2013, Ximénez-Embun et al. 2017), aphids (Myers and
Gratton 2006, Walter and Difonzo 2007, Lacoste et al. 2015), and
lepidopteran larvae (Gutbrodt et al. 2011, 2012; Grinnan et al. 2013;
Weldegergis et al. 2015). Due to this well-established association be-
tween abiotic stressors and risk of arthropod pest outbreaks, it may
be argued that precision application of abiotic stress relief, such as
application of water and fertilizer, represents a meaningful approach
to reducing the risk of outbreaks by some arthropod pests (Nansen
et al. 2013, West and Nansen 2014). Indeed, pest management focus
could shift from being based mainly on responsive insecticide appli-
cations to a more preventative approach in which maintaining crop
health is the main focus (Culliney and Pimentel 1986, Altieri and
Nicholls 2003, Zehnder et al. 2007, Amtmann et al. 2008, West and
Nansen 2014). Use of sensing and actuation drones could contribute
to this shift, by assessing plant stress status, and preventative appli-
cations of water and fertilizers. To the best of our knowledge, drones
have thus far not been deployed for precision irrigation purposes,
and although drones are on the market that advertise the capacity to
apply liquid or granular fertilizers, there is no peer-reviewed literature
on their use. Many current spray tractors contain options for variable
rate applications of nutrients, for an adequate response to deficien-
cies detected with remote sensing (Raun et al. 2002). However, there
would be myriad opportunities for use of drones in this respect, due
to their maneuverability and capacity to treat small areas.
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Reducing Pest Populations: Sterile Insect Technique
and Mating Disruption

A potential new area for use of drones in pest management is
the release of sterile insects. Codling moth [Cydia pomonella
L. (Lepidoptera: Tortricidae)] is a major problem in apple or-
chards (Malus domestica Borkh.) (Judd and Gardiner 2005), and
pilot programs to release sterile insects with drones have been suc-
cessful in controlling codling moth populations in New Zealand,
Canada, and the United States (DuPont 2018, M3 Consulting
Group 2018, Seymour 2018, Timewell 2018). Furthermore, pilot
programs for control of pink bollworm [Pectinophora gossypiella
Saunders (Lepidoptera: Gelechiidae)] in cotton, and Mexican fruit
fly [Anastrepha ludens Loew (Diptera: Tephritidae)] in citrus, with
drone-released sterile insects proved effective for control of these
pests in the United States (Rosenthal 2017). Similarly, false codling
moth [ Thaumatotibia leucotreta Meyrick (Lepidoptera: Tortricidae)]
could successfully be controlled in citrus orchards in South Africa
(FlyH2 Aerospace 2018). The sterile insect technique (SIT) produces
sterile or partially sterile insects through irradiation. After mating
with wild insects, there is either no offspring, or the resulting off-
spring is sterile, resulting in reduced pest populations. SIT is en-
vironmentally friendly, species-specific, and compatible with other
management methods such as biological control, making it an im-
portant IPM tool (Simmons et al. 2010). Drone release of the sterile
insects may be cheaper and faster than ground release, which oc-
curs for instance by means of all-terrain vehicles (ATVs), or release
by manned aircraft (Tan and Tan 2013). For sterile codling moth,
drone-dispersal may also improve moth performance. Drones re-
lease the moths above the canopy whereas ATVs release them on the
orchard floor. Codling moth prefer to mate in the upper one-third
of the canopy, thus drone release may facilitate the moths reaching
their preferred habitat, while minimizing biotic and abiotic mortality
factors. Irradiated moths must be kept chilled during transportation
prior to orchard dispersal to prevent damage and scale loss. An op-
timized delivery system from the rearing facility to the orchard may
increase the sterile moths’ effectiveness in mating with wild moths
(DuPont 2018, Dr. E. Beers, personal communication). Therefore,
drone releases may make SIT more widely available.

Drones could also be deployed to place mating disruptors such
as SPLAT (specialized pheromone & lure application technology) in
commercial fields (FlyH2 Aerospace 2018). SPLAT is an inert matrix
which can be infused with pheromones and/or pesticides and is ap-
plied as dollops (ISCA 2019a, b). Mating disruption relies on the
release of pheromones, which interferes with mate finding (Miller
and Gut 2015), while attract-and-kill involves an attractant and a
killing agent (Gregg et al. 2018). A combination of these methods
effectively control various pests in a number of cropping systems,
including blueberry (Vaccinium corymbosum L.) and cranberry
(Rodriguez-Saona et al. 2010, Steffan et al. 2017). Researchers from
the University of Wisconsin are currently developing a drone re-
lease mechanism for SPLAT, to improve IPM practices in cranberry
(Miller 2015, Chasen and Steffan 2017, Seely 2018).

Pest Population Monitoring

Drones could also be used to track populations of mobile insects
that can be equipped with transponders, such as locusts (Tahir and
Brooker 2009). A recent paper by Stumph et al. (2019) described the
use of drones equipped with a UV light source and a video camera
to detect fluorescent-marked insects. Brown marmorated stink bugs
[Halyomorpha halys Stal (Hemiptera: Pentatomidae)], 13-16 mm
long, were coated in red fluorescent powder, and placed in a grass

field. Drone data were obtained at night, and specific software was
developed to visualize individual insects. This system provides a
relatively fast alternative for manual, time-consuming, mark-release-
recapture studies. Although insects still need to be coated initially,
the method eliminates the need to physically recapture the insects.
Also, it removes the need for destructive sampling, so that insects
could potentially be sampled over a longer time period. Thus, use
of this novel, drone-based system could improve efficiency and
cost-effectiveness of mark-release-recapture studies of insect migra-
tion (Stumph et al. 2019).

Furthermore, drones could be used to collect pest specimens for
monitoring (Shields and Testa 1999, Kim et al. 2018), or to survey for
pests, such as Asian longhorned beetles [Anoplophora glabripennis
Motschulsky (Coleoptera: Cerambycidae)], in tall trees, assisting tree
climbers (Rosenthal 2017). A recent review has even suggested the
use of drones for collection of plant volatiles (Gonzalez et al. 2018).
Indeed, plant volatiles induced in response to herbivory could indi-
cate the presence of specific pests (Turlings and Erb 2018, De Lange
etal.2019), and drone-based volatile collections have been deployed
for air quality measurements (Villa et al. 2016). Development of
novel sensors and technology will undoubtedly open the door to
various other uses of drones in agricultural pest management.

Challenges and Opportunities

Major challenges for the use of drones in precision agriculture are
the costs of drones and associated sensors and material, limited
flight time and payload, and continuously changing regulations. For
a more comprehensive review of challenges and opportunities of
drones in precision agriculture and environmental studies, two fields
that share similar uses of drones, see Hardin and Jensen (2011),
Zhang and Kovacs (2012), Whitehead and Hugenholtz (2014), and
Whitehead et al. (2014). We here focus specifically on the technical
challenges for the use of drones in precision pest management, and
highlight recent changes in regulations.

Costs

A major challenge for the use of drones in precision pest man-
agement is the initial steep costs of the material: the drone itself,
the various sensors or application technologies, mounting equip-
ment, and analysis software. Although costs are decreasing with
improving technology, sums are still relatively high. In 2017, costs
of a fixed-wing drone with hyperspectral sensor were estimated at
€120,000 ($144,000), while costs of a multi-rotor drone with a
multispectral sensor were estimated at €10,000 ($12,000) (Pddua
et al. 2017). Therefore, various companies are offering drone-related
services, such as renting out drones with remote sensing equipment
(e.g., Blue Skies 2019) or offering predator dispersal services (e.g.,
Parabug 2019). Also, consulting companies offer remote sensing and
data analysis services for a reasonable fee, even combined with other
agriculture-related services, to provide one platform for efficient
record-keeping and planning (e.g., UAV-IQ 2018).

Data Collection, Analysis, and Interpretation

Concerning sensing drones, repeatability of remote sensing data is a
recurring issue. Canopy reflectance varies depending on solar angle,
cloud coverage, and various other factors. Therefore, it is difficult
to compare data obtained on a specific day with data obtained the
next day, even the next hour. Novel methods for calibration and
processing of drone-based remote sensing data are continuously
being developed (Bourgeon et al. 2016, Singh and Nansen 2017,
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Aasen et al. 2018). Improved repeatability will render these data
more useful for precision detection of pest problems.

Data analysis is also an important challenge. Each mission with
a hyperspectral sensor typically results in multiple terabytes of data,
which must be properly stored, processed with specific software, and
analyzed by experts with years of experience. As a result, there is an
important time lag between data collection and the visibility of re-
sults. Processing of multispectral data is currently much faster than
processing of hyperspectral data, but the results are less precise in
terms of detection of pest problems (Yang et al. 2009a). Ultimately,
automation of data analysis will improve the usability of detailed
hyperspectral datasets by growers directly, leading to a timelier de-
tection and possible response to the discovery of pest hotspots. Also,
automated data analysis will facilitate communication between
sensing and actuation drones, so that an actuation drone can im-
mediately be deployed to provide solutions. Or, a single drone could
function simultaneously as sensor and actuator, and directly apply
solutions where necessary (Fig. 1).

Concerning actuation drones, peer-reviewed research has just
started to emerge, with many challenges to be overcome. One major
challenge is that, in order to develop an effective actuation drone
system, knowledge and expertise from multiple fields must be inte-
grated. First, knowledge from agricultural scientists will be needed
to answer research questions such as where, when, and how much of
the solutions (e.g., pesticides and natural enemies) should be applied
in an agricultural field. Second, engineers and software developers
will need to convert such knowledge into the design of hardware
and software components for the effective and efficient distribu-
tion of the solutions. Another technical challenge is the automation
of the distribution of solutions. Considering the complicated and
varied field and weather conditions, preferentially, users should not
be asked to set up all the software parameters by themselves. Instead,
the drone should be able to compute and implement the optimal
distribution strategy automatically (potentially being given a digital
map built by sensing drones). (Fig. 1)

FlightTime and Payload

Concerning both sensing and actuation drones, flight time and pay-
load are among the most limiting factors for use of drones in agri-
culture. Although individual drones can have payloads of 24 kg and
up (Yamaha 2016), it would be challenging, though not impossible
to develop a drone that can both detect pest hotspots and apply so-
lutions. Indeed, the above-mentioned AgriDrone can both detect pest
hot spots and apply localized solutions (OPTiM 2016). However,
to cover large areas, using a network of communicating drones, or
swarm, may eventually be most efficient (Stark et al. 2013a, Faigal
et al. 2014a, Gonzalez-de-Santos et al. 2017). Ultimately, one or
multiple sensing drones detecting pest hotspots will communicate
with one or multiple actuation drones dispensing biological control
organisms or agrochemicals exactly where needed; they can also
autonomously fly back to their base stations to recharge, without
further human intervention. Establishing drone swarms is an active
research area in the drone community (Bertuccelli et al. 2009, Alejo
et al. 2014, Ponda et al. 2015). However, how to translate these tech-
niques into the pest management application domain is still an open
question.

Adverse Weather Conditions and Other

Environmental Factors

Adverse weather conditions could limit sensing and actuation drone
activity. Most drones have an optimal operating temperature range.

Strong wind could interfere with obtaining aerial remote sensing
data, as well as with pesticide or biocontrol dispersal. Ideally, re-
mote sensing measurements should be taken all under the same
solar and sensor angle geometry, to avoid differences due to the
effect that natural surfaces scatter radiation unequally into all dir-
ections (Weyermann et al. 2014). Data acquisition with a clear,
cloudless sky, at solar noon reduces shadow influences as well as
variations between measurements due to changing light intensity
resulting from cloud cover (Souza et al. 2010). However, these con-
ditions cannot be easily obtained in farms all over the world. Clouds
and fog limit drone flights, and it is not recommended to fly a drone
in rain or snow conditions, or during thunderstorms. Other envir-
onmental factors limiting drone activity are differences in elevation
within fields or orchards, and presence of wildlife, such as birds
(Park et al. 2012).

Rules and Regulations

In the United States, Federal Aviation Regulations (FARs) are in
place for the commercial and research use of drones, prescribed by
the FAA. Until 2016, a manned aircraft pilot license was necessary
to fly a drone, which is costly to obtain and maintain. As of August
2016, a less stringent remote pilot license became available to op-
erate small drones, which made commercial drone use much more
readily available (FAA 2016). However, the regulations are regularly
updated, which requires that pilots keep continuous track of current
regulations.

A few basic rules in the United States include that the pilot in
command must keep a visual line of sight (VLOS) on the drone at all
times. Consequently, flying is only allowed at daylight hours. Drones
must fly at an altitude at or below 400 feet (122 m), at a speed at or
below 100 mph (161 km/h). They are not allowed to fly over people
that are not involved in the specific drone operation, and must al-
ways yield right of way to larger aircraft, including manned aircraft.
Waivers from these regulations, for instance to fly at nighttime, can
be requested through the FAA. Importantly, the pilot in command
must perform a pre-flight check before each flight, to ascertain that
the drone is in good condition for safe operation (FAA 2018b). In
the United States, drones for both commercial and private use must
be registered through the FAA. Regulations for operating and re-
gistering a drone may vary in different countries, so international
collaborators must make sure to follow the proper rules (Cracknell
2017, Stocker et al. 2017). In Brazil, where drones are regularly used
in precision agriculture (Jorge et al. 2014, Parra 2014), the use of
drones for civil and agricultural means was regulated as recently
as May 2017 by the National Agency of Civil Aviation (ANAC)
(Agéncia Nacional de Aviagio Civil 2017). Ultimately, when
drones become more mainstream, general rules may become more
standardized.

Communication With Growers

Importantly, increased use of drones in commercial agricultural op-
erations will not happen without adoption of the technology by
growers, and they will only adopt technology that is proven to work,
cost-effective, and compatible with established practices (Aubert
et al. 2012, Pierpaoli et al. 2013). Extensive communication and col-
laboration between scientists, industry professionals, and commer-
cial growers is needed to provide the best performing technology
that tailors to growers’ needs (Larson et al. 2008, Lindblom et al.
2017). Extension agents, dedicated to the translation of scientific
research to practical applications, may facilitate these connections,
through training and dialogue.
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Conclusion

Drones are becoming increasingly adopted as part of precision agri-
culture and IPM. Drones with remote sensing equipment (sensors)
are deployed to monitor crop health, map out variability in crop per-
formance, and detect outbreaks of pests. They could serve as decision
support tools, as early detection and response to suboptimal abiotic
conditions may prevent large pest outbreaks. When outbreaks do
occur, different drones (actuators) could be deployed to deliver swift
solutions to identified pest hotspots. Automating pesticide applications
and/or release of biological control organisms, through communica-
tion between sensing and actuation drones, is the future. This approach
requires multi-disciplinary research in which engineers, ecologists, and
agronomists are converging, with enormous commercial potential.

Acknowledgments

We thank April Teske and Kevin Goding for critical comments on
an earlier version of this manuscript. Thanks to Eli Borrego for
help creating Fig. 2. We thank the commercial growers who made
their fields available for research activities. EH.LE is supported by
the Coordenacdo de Aperfeicoamento de Pessoal de Nivel Superior
— Brasil (CAPES) - Finance Code 001. Z.K. is supported by the
California Department of Pesticide Regulation (project 18-PML-
R004). E.S.d.L. is supported by Western Sustainable Agriculture
Research and Education (project SW17-060, http://www.
westernsare.org/). This study was also supported by the American
Floral Endowment, the Gloeckner Foundation, and United States
Department of Agriculture, Agricultural Research Service (USDA
ARS) Floriculture and Nursery Research Initiative.

References Cited

Aasen, H., and A. Bolten. 2018. Multi-temporal high-resolution imaging
spectroscopy with hyperspectral 2D imagers — From theory to applicaton.
Remote Sens. Environ. 205: 374-389.

Aasen, H., E. Honkavaara, A. Lucieer, and P. Zarco-Tejada. 2018. Quantitative
remote sensing at ultra-high resolution with UAV spectroscopy: a review
of sensor technology, measurement procedures, and data correction work-
flows. Remote Sens. 10: 1091.

Abdel-Galil, F. A., M. A. M. Amro, and A. S. H. Abdel-Moniem. 2007. Effect
of drought stress on the incidence of certain arthropod pests and predators
inhabiting cowpea plantations. Arch. Phytopathology Plant. Protect. 40:
207-214.

Abdel-Rahman, E. M., M. Van den Berg, M. J. Way, and F. B. Ahmed. 2009.
Hand-held spectrometry for estimating thrips (Fulmekiola serrata) incidence
in sugarcane, pp. 268-271. In IEEE International Geoscience and Remote
Sensing Symposium, 12-17 July 2009, Cape Town, South Africa.

Abdel-Rahman, E. M., F. B. Ahmed, M. van den Berg, and M. J. Way. 2010.
Potential of spectroscopic data sets for sugarcane thrips (Fulmekiola serrata
Kobus) damage detection. Int. J. Remote Sens. 31: 4199-4216.

Abdel-Rahman, E. M., M. Way, F. Ahmed, R. Ismail, and E. Adam. 2013.
Estimation of thrips (Fulmekiola serrata Kobus) density in sugarcane using
leaf-level hyperspectral data. S. Afr. J. Plant & Soil. 30: 91-96.

Abdel-Rahman, E. M., T. Landmann, R. Kyalo, G. Ong’amo, S. Mwalusepo,
S. Sulieman, and B. Le Ru. 2017. Predicting stem borer density in maize
using RapidEye data and generalized linear models. Int. J. Appl. Earth Obs.
Geoinf. 57: 61-74.

ABI Research. 2018. Drones in agriculture: undeniable value and plenty of
growth, but not the explosion others predict. Available from https://www.
abiresearch.com/press/drones-agriculture-undeniable-value-and-plenty-gro/

Agéncia Nacional de Aviagao Civil. 2017. Regas da ANAC para uso de drones
entram em vigor. Available from http://www.anac.gov.br/noticias/2017/
regras-da-anac-para-uso-de-drones-entram-em-vigor/release_drone.pdf

Agronomic Nordeste. 2015. Trichobug (Trichogramma). Available from http://
agromicnordeste.com.br/produtos

Airborne Robotics. 2018. Agriculture & forestry. Available from https:/www.
air6systems.com/portfolio/agriculture-forestry/

Alejo, D., J. Cobano, G. Heredia, and A. Ollero. 2014. Optimal reciprocal
collision avoidance with mobile and static obstacles for multi-UAV systems,
pp. 1259-1266. In IEEE International Conference on Unmanned Aircraft
Systems (ICUAS), 27-30 May 2014, Orlando, FL.

Al Heidary, M., ]J. P. Douzals, C. Sinfort, and A. Vallet. 2014. Influence of
spray characteristics on potential spray drift of field crop sprayers: a litera-
ture review. Crop Prot. 63: 120-130.

Altieri, M. A., and C. I. Nicholls. 2003. Soil fertility management and insect
pests: harmonizing soil and plant health in agroecosystems. Soil Tillage Res.
72:203-211.

Alves, T. M., I. V. Macrae, and R. L. Koch. 2015. Soybean aphid (Hemiptera:
Aphididae) affects soybean spectral reflectance. J. Econ. Entomol. 108:
2655-2664.

Alves, T. M., R. D. Moon, I. V. MacRae, and R. L. Koch. 2019. Optimizing
band selection for spectral detection of Aphis glycines Matsumura in soy-
bean. Pest Manag. Sci. 75: 942-949.

Amtmann, A., S. Troufflard, and P. Armengaud. 2008. The effect of potas-
sium nutrition on pest and disease resistance in plants. Physiol. Plant 133:
682-691.

Anderson, K., and K. J. Gaston. 2013. Lightweight unmanned aerial vehicles
will revolutionize spatial ecology. Front. Ecol. Environ. 11: 138-146.

Aubert, B. A., A. Schroeder, and J. Grimaudo. 2012. IT as enabler of sustain-
able farming: an empirical analysis of farmers’ adoption decision of preci-
sion agriculture technology. Decis. Support Syst. 54: 510-520.

Backoulou, G. F,, N. C. Elliott, K. Giles, M. Phoofolo, and V. Catana. 2011a.
Development of a method using multispectral imagery and spatial pat-
tern metrics to quantify stress to wheat fields caused by Diuraphis noxia.
Comput. Electron. Agric. 75: 64-70.

Backoulou, G. F, N. C. Elliott, K. Giles, M. Phoofolo, V. Catana, M. Mirik,
and J. Michels. 2011b. Spatially discriminating Russian wheat aphid in-
duced plant stress from other wheat stressing factors. Comput. Electron.
Agric. 78: 123-129.

Backoulou, G. FE, N. C. Elliott, K. L. Giles, and M. N. Rao. 2013.
Differentiating stress to wheat fields induced by Diuraphis noxia from other
stress causing factors. Comput. Electron. Agric. 90: 47-53.

Backoulou, G. E.,, N. C. Elliott, K. L. Giles, and M. Mirik. 2015. Processed
multispectral imagery differentiates wheat crop stress caused by greenbug
from other causes. Comput. Electron. Agric. 115: 34-39.

Backoulou, G. F, N. C. Elliott, and K. L. Giles. 2016. Using multispectral im-
agery to compare the spatial pattern of injury to wheat caused by Russian
wheat aphid and greenbug. Southwest. Entomol. 41: 1-8.

Backoulou, G., N. Elliott, K. Giles, T. Alves, M. Brewer, and M. Starek. 2018a.
Using multispectral imagery to map spatially variable sugarcane aphid in-
festations in sorghum. Southwest. Entomol. 43: 37-44.

Backoulou, G. F, N. C. Elliott, K. L. Giles, M. ]J. Brewer, and M. Starek.
2018b. Detecting change in a sorghum field infested by sugarcane aphid.
Southwest. Entomol. 43: 823-832.

Barbedo, J. G. A. 2019. A review on the use of unmanned aerial vehicles and
imaging sensors for monitoring and assessing plant stresses. Drones 3: 40.
Berner, B., and J. Chojnacki. 2017. Influence of the air stream produced
by the drone on the sedimentation of the sprayed liquid that contains

entomopathogenic nematodes. J. Res. Appl. Agric. Eng. 62: 26-29.

Bertuccelli, L., H.-L. Choi, P. Cho, and J. How. 2009. Real-time multi-UAV
task assignment in dynamic and uncertain environments, pp. 1-16. In
AIAA Guidance, Navigation, and Control Conference, 10-13 August 2009,
Chicago, IL.

Bhattarai, G. P., R. B. Schmid, and B. P. McCornack. 2019. Remote sensing data
to detect hessian fly infestation in commercial wheat fields. Sci. Rep. 9: 6109.

Biobest. 2019. Drones bundled with cameras or sensors. Available from https://
www.blueskiesdronerental.com/product-category/rentals/drone-bundles/

Bird, S. L., D. M. Esterly, and S. G. Perry. 1996. Off-target deposition of pes-
ticides from agricultural aerial spray applications. J. Environ. Qual. 25:
1095-1104.

Bloss, R. 2014. Robot innovation brings to agriculture efficiency, safety, labor
savings and accurary by plowing, milking, harvesting, crop tending/picking
and monitoring. Ind. Rob. 41: 493-499.

020z Asenuer |z uo Jasn uonoag spioosy s[elas Aq 1.889995/892201/23l/€601 "0 /I0p/10B1Sqe-ajonie-a0ueApe/aal/woo dno-olwapeoe//:sdiy Wwolj papeojuMo(]


http://www.westernsare.org/
http://www.westernsare.org/
https://www.abiresearch.com/press/drones-agriculture-undeniable-value-and-plenty-gro/
https://www.abiresearch.com/press/drones-agriculture-undeniable-value-and-plenty-gro/
http://www.anac.gov.br/noticias/2017/regras-da-anac-para-uso-de-drones-entram-em-vigor/release_drone.pdf
http://www.anac.gov.br/noticias/2017/regras-da-anac-para-uso-de-drones-entram-em-vigor/release_drone.pdf
http://agromicnordeste.com.br/produtos
http://agromicnordeste.com.br/produtos
https://www.air6systems.com/portfolio/agriculture-forestry/
https://www.air6systems.com/portfolio/agriculture-forestry/
https://www.blueskiesdronerental.com/product-category/rentals/drone-bundles/
https://www.blueskiesdronerental.com/product-category/rentals/drone-bundles/

Journal of Economic Entomology, 2019, Vol. XX, No. XX

19

Blue Skies. 2019. Drones bundled with cameras or sensors. Available
from https://www.blueskiesdronerental.com/product-category/rentals/
drone-bundles/

Bourgeon, M.-A., J.-N. Paoli, G. Jones, S. Villette, and C. Gée. 2016. Field
radiometric calibration of a multispectral on-the-go sensor dedicated to
the characterization of vineyard foliage. Comput. Electron. Agric. 123:
184-194.

Brown, C. R., and D. K. Giles. 2018. Measurement of pesticide drift from
unmanned aerial vehicle application to a vineyard. Trans. ASABE 61:
1539-1546.

Cakmak, L., A. Janssen, and M. W. Sabelis. 2006. Intraguild interactions
between the predatory mites Neoseiulus californicus and Phytoseiulus
persimilis. Exp. Appl. Acarol 38: 33-46.

Calderén, R., J. A. Navas-Cortés, C. Lucena, and P. J. Zarco-Tejada. 2013.
High-resolution airborne hyperspectral and thermal imagery for early de-
tection of Verticillium wilt of olive using fluorescence, temperature and
narrow-band spectral indices. Remote Sens. Environ. 139: 231-245.

Carriere, Y., P. C. Ellsworth, P. Dutilleul, C. Ellers-Kirk, V. Barkley, and
L. Antilla. 2006. A GIS-based approach for areawide pest management:
the scales of Lygus hesperus movements to cotton from alfalfa, weeds, and
cotton. Entomol. Exp. Appl. 118: 203-210.

Carroll, M. W., J. A. Glaser, R. L. Hellmich, T. E. Hunt, T. W. Sappington,
D. Calvin, K. Copenhaver, and J. Fridgen. 2008. Use of spectral vegeta-
tion indices derived from airborne hyperspectral imagery for detection of
European corn borer infestation in Iowa corn plots. J. Econ. Entomol. 101:
1614-1623.

Carter, G. A., and A. K. Knapp. 2001. Leaf optical properties in higher plants:
linking spectral characteristics to stress and chlorophyll concentration. Am.
J. Bot. 88: 677-684.

Casey, C. A., and M. P. Parrella. 2005. Evaluation of a mechanical dis-
penser and interplant bridges on the dispersal and efficacy of the predator,
Phytoseiulus persimilis (Acari: Phytoseiidae) in greenhouse cut roses. Biol.
Control 32: 130-136.

Chasen, E., and S. Steffan. 2017. Update on mating disruption in cranberries:
the story of SPLAT®. Proceedings of the Wisconsin Cranberry School
25: 23-25. Available from https:/fruit.wisc.edu/wp-content/uploads/
sites/36/2017/03/2017-Cranberry-School-Proceedings-Final.pdf

Chaussé, S., L. Jochems-Tanguay, T. Boislard, D. Cormier, and J. Boisclair.
2017. Lachers de trichogrammes par drones, une nouvelle approche pour
lutter contre la pyralide du mais dans le mais sucré de transformation. In
Congres Annuel de la Société d’Entomologie du Québec, 23-24 November
2017, Longueuil, Canada. Available from https://www.irda.qc.ca/assets/
documents/Publications/documents/simon_chausse_seq2017.pdf

Chen, Y., G. P. Opit, V. M. Jonas, K. A. Williams, J. R. Nechols, and
D. C. Margolies. 2007. Twospotted spider mite population level, distribu-
tion, and damage on ivy geranium in response to different nitrogen and
phosphorus fertilization regimes. J. Econ. Entomol. 100: 1821-1830.

Chen, T., R. Zeng, W. Guo, X. Hou, Y. Lan, and L. Zhang. 2018. Detection of
stress in cotton (Gossypium hirsutum L.) caused by aphids using leaf level
hyperspectral measurements. Sensors 18: 2798.

Congalton, R. G. 1991. A review of assessing the accuracy of classifications of
remotely sensed data. Remote Sens. Environ. 37: 35-46.

Costa, F. G., J. Ueyama, T. Braun, G. Pessin, E. S. Osorio, and P. A. Vargas.
2012. The use of unmanned aerial vehicles and wireless sensor net-
work in agricultural applications, pp. 5045-5048. In IEEE International
Geoscience and Remote Sensing Symposium, 22-27 July 2012, Munich,
Germany.

Cracknell, A. P. 2017. UAVs: regulations and law enforcement. Int. . Remote
Sens. 38: 3054-3067.

Culliney, T. W., and D. Pimentel. 1986. Ecological effects of organic agricul-
tural practices on insect populations. Agric. Ecosyst. Environ. 15: 253-266.

Dalamagkidis, K. 2015. Classification of UAVs, pp. 83-91. In K. P. Valavanis
and G. J. Vachtsevanos (eds.), Handbook of unmanned aerial vehicles.
Springer, Dordrecht, Netherlands.

Damalas, C. A. 2015. Pesticide drift: seeking reliable environmental indi-
cators of exposure assessment. [z R. H. Armon and O. Honninen (eds.),
Environmental indicators. Springer, Dordrecht, Netherlands.

Dara, S. K. 2014. Predatory mites for managing spider mites on strawberries.
UC ANR eJournal of Entomology and Biologicals. Available from https:/
ucanr.edu/blogs/blogcore/postdetail.cfm?postnum=14065

Dara, S. K. 2019. The new integrated pest management paradigm for the
modern age. J. Int. Pest Manag. 10: 12.

Das, P. K., K. K. Choudhary, B. Laxman, S. V. C. K. Rao, and M. V. R. Seshasai.
2014. A modified linear extrapolation approach towards red edge position
detection and stress monitoring of wheat crop using hyperspectral data. Int.
J. Remote Sens. 35: 1432-1449.

Dash, J. P, D. Pont, R. Brownlie, A. Dunningham, M. Watt, and G. Pearse.
2016. Remote sensing for precision forestry. NZ J. Forestry 60: 15-24.

Dash, J. P, G. D. Pearse, and M. S. Watt. 2018. UAV multispectral imagery
can complement satellite data for monitoring forest health. Remote Sens.
10: 1216.

Daughtry, C. S. T., C. L. Walthall, M. S. Kim, E. Brown de Colstoun, and
J. E. McMurtrey III. 2000. Estimating corn leaf chlorophyll concentration
from leaf and canopy reflectance. Remote Sens. Environ. 74: 229-239.

De Lange, E. S., J. Salamanca, J. Polashock, and C. Rodriguez-Saona. 2019.
Genotypic variation and phenotypic plasticity in gene expression and emis-
sions of herbivore-induced volatiles, and their potential tritrophic implica-
tions, in cranberries. J. Chem. Ecol. 45: 298-312.

Del-Campo-Sanchez, A., R. Ballesteros, D. Hernandez-Lopez, J. F. Ortega, and
M. A. Moreno; Agroforestry and Cartography Precision Research Group.
2019. Quantifying the effect of Jacobiasca lybica pest on vineyards with
UAVs by combining geometric and computer vision techniques. PLoS One
14: e0215521.

Delegido, J., J. Verrelst, L. Alonso, and J. Moreno. 2011. Evaluation of
Sentinel-2 red-edge bands for empirical estimation of green LAI and chloro-
phyll content. Sensors (Basel). 11: 7063-7081.

Delegido, J., J. Verrelst, C. M. Meza, J. . Rivera, L. Alonso, and J. Moreno.
2013. A red-edge spectral index for remote sensing estimation of green LAI
over agroecosystems. Europ. J. Agronomy 46: 42-52.

DJI. 2019. AGRAS MG-18S. Available from https://www.dji.com/mg-1s

Do Prado Ribeiro, L., A. L. S. Klock, J. A. W. Filho, M. A. Tramontin,
M. A. Trapp, A. Mithofer, and C. Nansen. 2018. Hyperspectral imaging
to characterize plant-plant communication in response to insect herbivory.
Plant Methods. 14: 54.

Drone Agriculture. 2018. Formerly aerobugs. Available from https://www.
droneagriculture.com.au/

DuPont, T. 2018. Adding to the codling moth IPM tool box.
WSU Tree Fruit. Available from http:/treefruit.wsu.edu/article/
adding-to-the-codling-moth-ipm-tool-box/

Ecobotix. 2018. Available from https://www.ecobotix.com/. In Danish.

Elliott, N. C., M. Mirik, Z. Yang, T. Dvorak, M. Rao, J. Michels, T. Walker,
V. Catana, M. Phoofolo, K. L. Giles, and T. Royer. 2007. Airborne multi-
spectral remote sensing of Russian wheat aphid injury to wheat. Southwest.
Entomol. 32: 213-219.

Elliott, N., M. Mirik, Z. Yang, D. Jones, M. Phoofolo, V. Catana, K. Giles, and
G. J. Michels. 2009. Airborne remote sensing to detect greenbug stress to
wheat. Southwest. Entomol. 34: 205-211.

Elliott, N. C., G. FE. Backoulou, M. J. Brewer, and K. L. Giles. 2015. NDVI
to detect sugarcane aphid injury to grain sorghum. J. Econ. Entomol. 108:
1452-1455.

Everitt, J., D. Escobar, K. Summy, and M. Davis. 1994. Using airborne video,
global positioning system, and geographical information system technolo-
gies for detecting and mapping citrus blackfly infestations. Southwest.
Entomol. 19: 129-138.

Everitt, J., D. Escobar, K. Summy, M. Alaniz, and M. Davis. 1996. Using spa-
tial information technologies for detecting and mapping whitefly and har-
vester ant infestations in south Texas. Southwest. Entomol. 21: 421-432.

Everitt, J. H., K. R. Summy, D. E. Escobar, and M. R. Davis. 2003. An over-
view of aircraft remote sensing in integrated pest management. Subtrop.
Plant Sci. 55: 59-67.

EWH BioProduction. 2019. Available from https://bioproduction.dk/?lang=en

FAA. 2016. Press release - New FAA rules for small unmanned aircraft sys-
tems go into effect. Available from https://www.faa.gov/news/press_releases/
news_story.cfm?newsld=20734

020z Asenuer |z uo Jasn uonoag spioosy s[elas Aq 1.889995/892201/23l/€601 "0 /I0p/10B1Sqe-ajonie-a0ueApe/aal/woo dno-olwapeoe//:sdiy Wwolj papeojuMo(]


https://www.blueskiesdronerental.com/product-category/rentals/drone-bundles/
https://www.blueskiesdronerental.com/product-category/rentals/drone-bundles/
https://fruit.wisc.edu/wp-content/uploads/sites/36/2017/03/2017-Cranberry-School-Proceedings-Final.pdf
https://fruit.wisc.edu/wp-content/uploads/sites/36/2017/03/2017-Cranberry-School-Proceedings-Final.pdf
https://www.irda.qc.ca/assets/documents/Publications/documents/simon_chausse_seq2017.pdf
https://www.irda.qc.ca/assets/documents/Publications/documents/simon_chausse_seq2017.pdf
https://ucanr.edu/blogs/blogcore/postdetail.cfm?postnum=14065
https://ucanr.edu/blogs/blogcore/postdetail.cfm?postnum=14065
https://www.dji.com/mg-1s
https://www.droneagriculture.com.au/
https://www.droneagriculture.com.au/
http://treefruit.wsu.edu/article/adding-to-the-codling-moth-ipm-tool-box/
http://treefruit.wsu.edu/article/adding-to-the-codling-moth-ipm-tool-box/
https://www.ecobotix.com/
https://bioproduction.dk/?lang=en
https://www.faa.gov/news/press_releases/news_story.cfm?newsId=20734
https://www.faa.gov/news/press_releases/news_story.cfm?newsId=20734

20

Journal of Economic Entomology, 2019, Vol. XX, No. XX

FAA.2018a. Unmanned Aircraft Systems frequently asked questions. Available
from https://www.faa.gov/uas/resources/faqs/

FAA. 2018b. Unmanned Aircraft Systems getting started. Available from
https://www.faa.gov/uas/getting_started/

Faical, B. S., F. G. Costa, G. Pessin, J. Ueyama, H. Freitas, A. Colombo,
P. H. Fini, L. Villas, F. S. Osorio, P. A. Vargas, and T. Braun. 2014a. The
use of unmanned aerial vehicles and wireless sensor networks for spraying
pesticides. J. Syst. Architect. 60: 393-404.

Faical, B. S., G. Pessin, G. P. R. Filho, A. C. P. L. E. Carvalho, G. Furquim, and
J. Ueyama. 2014b. Fine-tuning of UAV control rules for spraying pesticides
on crop fields, pp. 527-533. In IEEE International Conference on Tools with
Artificial Intelligence (ICTAI), Limassol, Cyprus.

Faigal, B. S., G. Pessin, G. P. R. Filho, A. C. P. L. F. Carvalho, P. H. Gomes, and
J. Ueyama. 2016. Fine-tuning of UAV control rules for spraying pesticides
on crop fields: an approach for dynamic environments. Int. J. Artif. Intell.
Tools 25: 1660003.

Faical, B. S., H. Freitas, P. H. Gomes, L. Y. Mano, G. DPessin,
A. C. P. L. E de Carvalho, B. Krishnamachari, and J. Ueyama. 2017. An
adaptive approach for UAV-based pesticide spraying in dynamic environ-
ments. Comput. Electron. Agric. 138: 210-223.

Fan, Y., T. Wang, Z. Qiu, J. Peng, C. Zhang, and Y. He. 2017. Fast detection of
striped stem-borer (Chilo suppressalis Walker) infested rice seedling based
on visible/near-infrared hyperspectral imaging system. Sensors 17: 2470.

Farm Journal Pulse. 2019. Results: will you use a drone on your farm
this year? Available from http://pulse.farmjournalmobile.com/index.
php?campaign_id=476

Fitzgerald, G. J., S. J. Maas, and W. R. Detar. 2004. Spider mite detection
and canopy component mapping in cotton using hyperspectral imagery and
spectral mixture analysis. Precis. Agric. 5: 275-289.

FlyH2 Aerospace. 2018. Agriculture - greenfly aviation. Available from https://
flyh2.com/agriculture-greenfly-aviation/

Fraulo, A. B., M. Cohen, and O. E. Liburd. 2009. Visible/near infrared re-
flectance (VNIR) spectroscopy for detecting twospotted spider mite (Acari:
Tetranychidae) damage in strawberries. Environ. Entomol. 38: 137-142.

Gago, J., C. Douthe, R. Coopman, P. Gallego, M. Ribas-Carbo, J. Flexas,
J. Escalona, and H. Medrano. 2015. UAVs challenge to assess water stress
for sustainable agriculture. Agric. Water Manag. 153: 9-19.

Garcia-Ruiz, E, S. Sankaran, J. M. Maja, W. S. Lee, ]J. Rasmussen, and
R. Ehsani. 2013. Comparison of two aerial imaging platforms for identi-
fication of Huanglongbing-infected citrus trees. Comput. Electron. Agric.
91: 106-115.

Garman, P., and B. H. Kennedy. 1949. Effect of soil fertilization on the rate of
reproduction of the two-spotted spider mite. J. Econ. Entomol. 42: 157-158.

Genc, H., L. Genc, H. Turhan, S. Smith, and ]J. Nation. 2008. Vegetation in-
dices as indicators of damage by the sunn pest (Hemiptera: Scutelleridae) to
field grown wheat. Afr. J. Biotechnol. 7: 173-180.

Gerson, U., and P. G. Weintraub. 2007. Mites for the control of pests in pro-
tected cultivation. Pest Manag. Sci. 63: 658-676.

Giles, D. K., and R. C. Billing. 2015. Deployment and performance of a UAV
for crop spraying. Chem. Eng. Trans. 44: 307-312.

Giles, D. K., J. Gardner, and H. Studer. 1995. Mechanical release of predacious
mites for biological pest control in strawberries. Trans. Am. Soc. Agric. Eng.
38:1289-129%6.

Gillespie, A. 2015. Dispatches - FAA gives approval to pesticide-spraying
drone. Front. Ecol. Environ. 13: 236-240.

Glenn, E. P, A. R. Huete, P. L. Nagler, and S. G. Nelson. 2008. Relationship
between remotely-sensed vegetation indices, canopy attributes and plant
physiological processes: what vegetation indices can and cannot tell us
about the landscape. Sensors (Basel). 8: 2136-2160.

Gonzalez, F., A. Mcfadyen, and E. Puig. 2018. Advances in unmanned aerial
systems and payload technologies for precision agriculture, pp. 133-155. In
G. Chen (ed.), Advances in agricultural machinery and technologies. CRC
Press, Boca Raton, FL.

Gonzalez-de-Santos, P., A. Ribeiro, C. Fernandez-Quintanilla, F. Lopez-
Granados, M. Brandstoetter, S. Tomic, S. Pedrazzi, A. Peruzzi, G. Pajares,
G. Kaplanis, et al. 2017. Fleets of robots for environmentally-safe pest con-
trol in agriculture. Precis. Agric. 18: 574-614.

Gregg, P. C., A. P. Del Socorro, and P. J. Landolt. 2018. Advances in attract-
and-kill for agricultural pests: beyond pheromones. Annu. Rev. Entomol.
63:453-470.

Grinnan, R., T. E. Carter, and M. T. ]J. Johnson. 2013. Effects of drought, tem-
perature, herbivory, and genotype on plant-insect interactions in soybean
(Glycine max). Arthropod Plant Interact. 7: 201-215.

Gutbrodt, B., K. Mody, and S. Dorn. 2011. Drought changes plant chemistry
and causes contrasting responses in lepidopteran herbivores. Oikos 120:
1732-1740.

Gutbrodt, B., S. Dorn, S. B. Unsicker, and K. Mody. 2012. Species-specific
responses of herbivores to within-plant and environmentally mediated
between-plant variability in plant chemistry. Chemoecology 22: 101-111.

Hardin, P. J., and R. R. Jensen. 2011. Small-scale unmanned aerial vehicles in
environmental remote sensing: challenges and opportunities. GISci. Remote
Sens. 48: 99-111.

Hart, W. G., and V. I. Meyers. 1968. Infrared aerial color photography for de-
tection of populations of brown soft scale in citrus groves. J. Econ. Entomol.
61: 617-624.

Hart, W. G, S. J. Ingle, M. R. Davis, and C. Mangum. 1973. Aerial photog-
raphy with infrared color film as a method of surveying for citrus blackfly.
J. Econ. Entomol. 66: 190-194.

Herren, H. R., T. ]J. Bird, and D. ]J. Nadel. 1987. Technology for automated
aerial release of natural enemies of the cassava mealybug and cassava green
mite. Int. J. Trop. Insect Sci. 8: 883-885.

Herrmann, I, M. Berenstein, A. Sade, A. Karnieli, D. ]J. Bonfil, and
P. G. Weintraub. 2012. Spectral monitoring of two-spotted spider mite
damage to pepper leaves. Remote Sens. Lett. 3: 277-283.

Herrmann, 1., M. Berenstein, T. Paz-Kagan, A. Sade, and A. Karnieli. 2015.
Early detection of two-spotted spider mite damage to pepper leaves by spec-
tral means, pp. 661-666. In European Conference on Precision Agriculture,
12-16 July 2015, Volcani Center, Israel.

Herrmann, 1., M. Berenstein, T. Paz-Kagan, A. Sade, and A. Karnieli. 2017.
Spectral assessment of two-spotted spider mite damage levels in the leaves of
greenhouse-grown pepper and bean. Biosyst. Eng. 157: 72-85.

Hodgson, E. W., E. C. Burkness, W. D. Hutchison, and D. W. Ragsdale. 2004.
Enumerative and binomial sequential sampling plans for soybean aphid
(Homoptera: Aphididae) in soybean. J. Econ. Entomol. 97: 2127-2136.

Hofman, V., and E. Solseng. 2001. Reducing spray drift. AE-1210. North
Dakota State University Extension Service, Fargo, ND. Available from
https://library.ndsu.edu/ir/bitstream/handle/10365/5111/ae1210.
pdf?sequence=1

Hogan, S. D., M. Kelly, B. Stark, and Y. Chen. 2017. Unmanned aerial systems
for agriculture and natural resources. Calif. Agric. 71: 5-14.

Horler, D. N. H., M. Dockray, and J. Barber. 1983. The red edge of plant leaf
reflectance. Int. J. Remote Sens. 4: 273-288.

Huang, Y., W. C. Hoffmann, Y. Lan, W. Wu, and B. K. Fritz. 2009. Development
of a spray system for an unmanned aerial vehicle platform. Appl. Eng. Agric.
25: 803-809.

Huang, W., J. Luo, J. Zhao, J. Zhang, and Z. Ma. 2011. Predicting wheat
aphid using 2-dimensional feature space based on multi-temporal Landsat
TM, pp. 1830-1833. In IEEE International Geoscience and Remote Sensing
Symposium, 24-29 July 2011, Vancouver, BC, Canada.

Huang, J., H. Liao, Y. Zhu, J. Sun, Q. Sun, and X. Liu. 2012a. Hyperspectral
detection of rice damaged by rice leaf folder (Craphalocrocis medinalis).
Comput. Electron. Agric. 82: 100-107.

Huang, W., J. Luo, J. Zhang, J. Zhao, C. Zhao, ]. Wang, G. Yang, M. Huang,
L. Huang, and S. Du. 2012b. Crop disease and pest monitoring by remote
sensing. In B. Escalante (ed.), Remote sensing — applications. InTech, Rijeka,
Croatia.

Huang, W., J. Luo, Q. Gong, J. Zhao, and J. Zhang. 2013. Discriminating
wheat aphid damage level using spectral correlation simulating analysis,
pp. 3722-3725. In 1EEE International Geoscience and Remote Sensing
Symposium, 21-26 July 2013, Melbourne, VIC, Australia.

Huang, W., Q. Guan, J. Luo, J. Zhang, J. Zhao, D. Liang, L. Huang, and
D. Zhang. 2014. New optimized spectral indices for identifying and moni-
toring winter wheat diseases. IEEE J. Sel. Topics Appl. Earth Observ. Remote
Sens. 7: 2516-2524.

020z Asenuer |z uo Jasn uonoag spioosy s[elas Aq 1.889995/892201/23l/€601 "0 /I0p/10B1Sqe-ajonie-a0ueApe/aal/woo dno-olwapeoe//:sdiy Wwolj papeojuMo(]


https://www.faa.gov/uas/resources/faqs/
https://www.faa.gov/uas/getting_started/
http://pulse.farmjournalmobile.com/index.php?campaign_id=476
http://pulse.farmjournalmobile.com/index.php?campaign_id=476
https://flyh2.com/agriculture-greenfly-aviation/
https://flyh2.com/agriculture-greenfly-aviation/
https://library.ndsu.edu/ir/bitstream/handle/10365/5111/ae1210.pdf?sequence=1
https://library.ndsu.edu/ir/bitstream/handle/10365/5111/ae1210.pdf?sequence=1

Journal of Economic Entomology, 2019, Vol. XX, No. XX

21

Huang, J.-R., J.-Y. Sun, H.-J. Liao, and X.-D. Liu. 2015a. Detection of brown
planthopper infestation based on SPAD and spectral data from rice under
different rates of nitrogen fertilizer. Precis. Agric. 16: 148-163.

Huang, J., C. Wei, Y. Zhang, G. A. Blackburn, X. Wang, C. Wei, and J. Wang.
2015b. Meta-analysis of the detection of plant pigment concentrations using
hyperspectral remotely sensed data. PLoS One 10: e0137029.

Huang, H., J. Deng, Y. Lan, A. Yang, X. Deng, L. Zhang, S. Wen, Y. Jiang,
G. Suo, and P. Chen. 2018. A two-stage classification approach for the
detection of spider mite-infested cotton using UAV multispectral imagery.
Remote Sens. Lett. 9: 933-941.

Huete, A. R. 1988. A soil-adjusted vegetation index (SAVI). Remote Sens.
Environ. 25: 295-309.

Hunt, E. R., and C. S. T. Daughtry. 2018. What good are unmanned air-
craft systems for agricultural remote sensing and precision agriculture? Int.
J. Remote Sens. 39: 5345-5376.

Hunt, J. E. R., and S. I. Rondon. 2017. Detection of potato beetle damage
using remote sensing from small unmanned aircraft systems. J. Appl.
Remote Sens. 11: 026013.

Hunt, J. E. R., S. I. Rondon, P. B. Hamm, R. W. Turner, A. E. Bruce, and
J. J. Brungardt. 2016. Insect detection and nitrogen management for irri-
gated potatoes using remote sensing from small unmanned aircraft systems,
pp- 98660N. Iz SPIE Commercial + Scientific Sensing and Imaging, 17-21
April 2016, Baltimore, MD.

Tost Filho, E. H. 2019. Remote sensing for monitoring whitefly, Bemisia tabaci
biotype B (Hemiptera: Aleyrodidae) in soybean. Master’s thesis. University
of Sio Paulo, Piracicaba, Sio Paulo, Brazil (in Portuguese with English
abstract).

ISCA. 2019a. Mating disruption. Available from https://www.iscatech.com/
solutions/mating-disruption/

ISCA. 2019b. Attract & kill: the hybrid IPM solution. Available from https://
www.iscatech.com/solutions/attract-kill/

Jorge, L. A. C., Z. N. Brandio, and R. Y. Inamasu. 2014. Insights and re-
commendations of use of UAV platforms in precision agriculture in Brazil,
pp. 18. In SPIE Remote Sensing, 22-25 September 2014, Amsterdam,
Netherlands.

Jorge, J., M. Vallbé, and J. A. Soler. 2019. Detection of irrigation
inhomogeneities in an olive grove using the NDRE vegetation index
obtained from UAV images. Eur. J. Remote Sens. 52: 169-177.

Judd, G. J. R., and M. G. T. Gardiner. 2005. Towards eradication of cod-
ling moth in British Columbia by complimentary actions of mating disrup-
tion, tree banding and sterile insect technique: five-year study in organic
orchards. Crop Prot. 24: 718-733.

Katsoulas, N., A. Elvanidi, K. Ferentinos, T. Bartzanas, and C. Kittas. 2016.
Calibration methodology of a hyperspectral imaging system for greenhouse
plant water stress estimation. Acta Hortic. 1142: 119-126.

Kim, H. G., J.-S. Park, and D.-H. Lee. 2018. Potential of unmanned aerial
sampling for monitoring insect populations in rice fields. Fla. Entomol. 101:
330-334.

Koppert. 2017a. Spidex - Phytoseiulus persimilis. Available from https:/www.
koppert.com/products/products-pests-diseases/spidex/

Koppert. 2017b. Mini-airbug. Available from https:/www.koppert.com/
products/distribution-appliances/mini-airbug/

Lacoste, C., C. Nansen, S. Thompson, L. Moir-Barnetson, A. Mian,
M. McNee, and K. C. Flower. 2015. Increased susceptibility to aphids of
flowering wheat plants exposed to low temperatures. Environ. Entomol. 44:
610-618.

Lan, Y., and S. Chen. 2018. Current status and trends of plant protection UAV
and its spraying technology in China. Int. J. Precis. Agric. Aviat. 1: 1-9.

Lan, Y., S. J. Thomson, Y. Huang, W. C. Hoffmann, and H. Zhang. 2010.
Current status and future directions of precision aerial application for site-
specific crop management in the USA. Comput. Electron. Agric. 74: 34-38.

Lan, Y., H. Zhang, J. W. Hoffmann, and J. D. Lopez. 2013. Spectral response
of spider mite infested cotton: mite density and miticide rate study. Int.
J. Agric. Biol. Eng. 6: 48-52.

Larson, J. A., R. K. Roberts, B. C. English, S. L. Larkin, M. C. Marra,
S. W. Martin, K. W. Paxton, and J. M. Reeves. 2008. Factors affecting
farmer adoption of remotely sensed imagery for precision management in

cotton production. Precis. Agric. 9: 195-208.

Lestina, J., M. Cook, S. Kumar, J. Morisette, P. J. Ode, and F. Peairs. 2016.
MODIS imagery improves pest risk assessment: a case study of wheat
stem sawfly (Cephus cinctus, Hymenoptera: Cephidae) in Colorado, USA.
Environ. Entomol. 45: 1343-1351.

Li, H., W. A. Payne, G. J. Michels, and C. M. Rush. 2008. Reducing plant
abiotic and biotic stress: drought and attacks of greenbugs, corn leaf aphids
and virus disease in dryland sorghum. Environ. Exp. Bot. 63: 305-316.

Li, D., X. Yuan, B. Zhang, Y. Zhao, Z. Song, and C. Zuo. 2013. Report of
using unmanned aerial vehicle to release Trichogramma. Chin. ]. Biol.
Control 29: 455-458 (in Chinese with English abstract).

Lillesand, T. M., R. W. Kiefer, and J. W. Chipman. 2007. Remote sensing and
image interpretation, pp. 736. Wiley, Hoboken, NJ.

Lindblom, J., C. Lundstrém, M. Ljung, and A. Jonsson. 2017. Promoting sus-
tainable intensification in precision agriculture: review of decision support
systems development and strategies. Precis. Agric. 18: 309-331.

Liu, X.-D., and Q.-H. Sun. 2016. Early assessment of the yield loss in rice due
to the brown planthopper using a hyperspectral remote sensing method. Int.
J. Pest Manag. 62: 205-213.

Liu, Z., J.-A. Cheng, W. Huang, C. Li, X. Xu, X. Ding, J. Shi, and B. Zhou.
2012. Hyperspectral discrimination and response characteristics of stressed
rice leaves caused by rice leaf folder, pp. 528-537. In D. Li and Y. Chen
(eds.), Computer and computing technologies in agriculture V. CCTA 2011.
IFIP advances in information and communication technology, vol. 369.
Springer, Berlin/Heidelberg, Germany.

Liu, Z.-Y., J.-G. Qi, N.-N. Wang, Z.-R. Zhu, J. Luo, L.-]. Liu, J. Tang, and
J.-A. Cheng. 2018. Hyperspectral discrimination of foliar biotic damages in
rice using principal component analysis and probabilistic neural network.
Precision Agric. 19: 973-991.

Lobits, B., L. Johnson, C. Hlavka, R. Armstrong, and C. Bell. 1997. Grapevine
remote sensing analysis of phylloxera early stress (GRAPES): remote sensing
analysis summary. NASA Tech. Memo, Moffett Field, CA. 112218.

Lowe, A., N. Harrison, and A. P. French. 2017. Hyperspectral image analysis
techniques for the detection and classification of the early onset of plant
disease and stress. Plant Methods. 13: 80.

Luedeling, E., A. Hale, M. Zhang, W. ]. Bentley, and L. C. Dharmasri. 2009.
Remote sensing of spider mite damage in California peach orchards. Int.
J. Appl. Earth Obs. Geoinf. 11: 244-255.

Luo, J., D. Wang, Y. Dong, W. Huang, and J. Wang. 2011. Developing an aphid
damage hyperspectral index for detecting aphid (Hemiptera: Aphididae)
damage levels in winter wheat, pp. 1744-1747. In IEEE International
Geoscience and Remote Sensing Symposium (IGARSS), 2-29 July 2011,
Vancouver, BC, Canada.

Luo, J., W. Huang, Q. Guan, J. Zhao, and J. Zhang. 2013a. Hyperspectral
image for discriminating aphid and aphid damage region of winter wheat
leaf, pp. 3726-3729. In IEEE International Geoscience and Remote Sensing
Symposium, 21-26 July 2013, Melbourne, VIC, Australia.

Luo, J., W. Huang, L. Yuan, C. Zhao, S. Du, J. Zhang, and ]J. Zhao. 2013b.
Evaluation of spectral indices and continuous wavelet analysis to quantify
aphid infestation in wheat. Precis. Agric. 14: 151-161.

Luo, J., W. Huang, J. Zhao, J. Zhang, C. Zhao, and R. Ma. 2013c. Detecting
aphid density of winter wheat leaf using hyperspectral measurements. IEEE
J. Sel. Top. Appl. Earth Obs. Remote Sens. 6: 690-698.

Luo, J., W. Huang, J. Zhao, J. Zhang, R. Ma, and M. Huang. 2014. Predicting
the probability of wheat aphid occurrence using satellite remote sensing and
meteorological data. Optik 125: 5660-5665.

M3 Consulting Group. 2018. Codling moth sterile insect release. Available
from https://www.m3cg.us/sir/

Ma, H., W. Huang, Y. Jing, C. Yang, L. Han, Y. Dong, H. Ye, Y. Shi, Q. Zheng,
L. Liu, and C. Ruan. 2019. Integrating growth and environmental param-
eters to discriminate powdery mildew and aphid of winter wheat using
bi-temporal Landsat-8 imagery. Remote Sens. 11: 846.

Machado, S., E. D. Bynum, T. L. Archer, R. J. Lascano, L. T. Wilson,
J. Bordovsky, E. Segarra, K. Bronson, D. M. Nesmith, and W. Xu. 2000.
Spatial and temporal variability of corn grain yield: site-specific relation-
ships of biotic and abiotic factors. Precis. Agric. 2: 359-376.

Maes, W. H., and K. Steppe. 2019. Perspectives for remote sensing with
unmanned aerial vehicles in precision agriculture. Trends Plant Sci. 24:
152-164.

020z Asenuer |z uo Jasn uonoag spioosy s[elas Aq 1.889995/892201/23l/€601 "0 /I0p/10B1Sqe-ajonie-a0ueApe/aal/woo dno-olwapeoe//:sdiy Wwolj papeojuMo(]


https://www.iscatech.com/solutions/mating-disruption/
https://www.iscatech.com/solutions/mating-disruption/
https://www.iscatech.com/solutions/attract-kill/
https://www.iscatech.com/solutions/attract-kill/
https://www.koppert.com/products/products-pests-diseases/spidex/
https://www.koppert.com/products/products-pests-diseases/spidex/
https://www.koppert.com/products/distribution-appliances/mini-airbug/
https://www.koppert.com/products/distribution-appliances/mini-airbug/
https://www.m3cg.us/sir/

22

Journal of Economic Entomology, 2019, Vol. XX, No. XX

Mabhlein, A. K., T. Rumpf, P. Welke, H. W. Dehne, L. Pliimer, U. Steiner,
and E. C. Oerke. 2013. Development of spectral indices for detecting and
identifying plant diseases. Remote Sens. Environ. 128: 21-30.

Martel, V., S. Trudeau, R. Johns, E. Owens, S. M. Smith, and G. Bovin. 2018.
Testing the efficacy of Trichogramma minutum in the context of an ‘Early
Intervention Strategy’ against the spruce budworm using different release
methods. SERG-i Annual Reports. Quebec, Canada. pp. 276-283.

Martin, D. E., and M. A. Latheef. 2017. Remote sensing evaluation of two-
spotted spider mite damage on greenhouse cotton. J. Vis. Exp. 122: 54314.

Martin, D. E., and M. A. Latheef. 2018. Active optical sensor assessment of
spider mite damage on greenhouse beans and cotton. Exp. Appl. Acarol 74:
147-158.

Martin, D. E., and M. A. Latheef. 2019. Aerial application methods control
spider mites on corn in Kansas, USA. Exp. Appl. Acarol 77: 571-582.

Martin, D. E., M. A. Latheef, and ]J. D. Lopez. 2015. Evaluation of selected
acaricides against twospotted spider mite (Acari: Tetranychidae) on green-
house cotton using multispectral data. Exp. Appl. Acarol 66: 227-245.

Martinez-Guanter, J., P. Agiiera, J. Agiiera, and M. Pérez-Ruiz. 2019. Spray and
economics assessment of a UAV-based ultra-low-volume application in olive
and citrus orchards. Precision Agric. doi:10.1007/s11119-019-09665-7

Matese, A., P. Toscano, S. F. Di Gennaro, L. Genesio, F. P. Vaccari, J. Primicerio,
C. Belli, A. Zaldei, R. Bianconi, and B. Gioli. 2015. Intercomparison of
UAV, aircraft and satellite remote sensing platforms for precision viticulture.
Remote Sens. 7: 2971-2990.

Mattson, W. J., and R. A. Haack. 1987. The role of drought in outbreaks of
plant-eating insects. BioScience 37: 110-118.

McMurtry, J. A., and B. A. Croft. 1997. Life-styles of Phytoseiid mites and
their roles in biological control. Annu. Rev. Entomol. 42: 291-321.

Midgarden, D., S. J. Fleischer, R. Weisz, and Z. Smilowitz. 1997. Site-specific
integrated pest management impact on development of Esfenvalerate re-
sistance in Colorado potato beetle (Coleoptera: Chrysomelidae) and on
densities of natural enemies. J. Econ. Entomol. 90: 855-867.

Miller, N. 2015. CALS researchers deploy insect ‘birth control’ to protect cran-
berries. University of Wisconsin-Madison News. Available from https://news.
wisc.edu/cals-researchers-deploy-insect-birth-control-to-protect-cranberries/

Miller, J. R., and L. J. Gut. 2015. Mating disruption for the 21 century:
matching technology with mechanism. Environ. Entomol. 44: 427-453.

Mirik, M., G. J. Michels, Jr, S. Kassymzhanova-Mirik, N. C. Elliott, and
R. Bowling. 2006a. Hyperspectral spectrometry as a means to differentiate
uninfested and infested winter wheat by greenbug (Hemiptera: Aphididae).
J. Econ. Entomol. 99: 1682-1690.

Mirik, M., G. ]J. Michels, S. Kassymzhanova-Mirik, N. C Elliott, V. Catana,
D. B. Jones, and R. Bowling. 2006b. Using digital image analysis and
spectral reflectance data to quantify damage by greenbug (Hemiptera:
Aphididae) in winter wheat. Comput. Electron. Agric. 51: 86-98.

Mirik, M., G. Michels, S. Kassymzhanova-Mirik, and N. Elliott. 2007.
Reflectance characteristics of Russian wheat aphid (Hemiptera: Aphididae)
stress and abundance in winter wheat. Comput. Electron. Agric. 57:
123-134.

Mirik, M., R. Ansley, G. Michels, and N. Elliott. 2012. Spectral vegetation
indices selected for quantifying Russian wheat aphid (Diuraphis noxia)
feeding damage in wheat (Triticum aestivum L.). Precis. Agric. 13: 501-516.

Mirik, M., R. J. Ansley, K. Steddom, C. M. Rush, G. J. Michels, F. Workneh,
S. Cui, and N. C. Elliott. 2014. High spectral and spatial resolution
hyperspectral imagery for quantifying Russian wheat aphid infestation in
wheat using the constrained energy minimization classifier. J. Appl. Remote
Sens. 8: 083661.

Miyahara, M. 1993. Utilization of helicopter for agriculture in Japan. Korean
J. Weed Sci. 13: 185-194.

Mohite, J., A. Gauns, N. Twarakavi, and S. Pappula. 2018. Evaluating the
capabilities of Sentinel-2 and Tetracam RGB+ 3 for multi-temporal detec-
tion of thrips on capsicum, pp. 106640U. In Autonomous air and ground
sensing systems for agricultural optimization and phenotyping III, vol.
10664. SPIE Commercial + Scientific Sensing and Imaging, 15-19 April
2018, Orlando, FL.

Mulla, D. J. 2013. Twenty five years of remote sensing in precision agriculture:
key advances and remaining knowledge gaps. Biosyst. Eng. 114: 358-371.

Myers, S. W., and C. Gratton. 2006. Influence of potassium fertility on soy-
bean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), population
dynamics at a field and regional scale. Environ. Entomol. 35: 219-227.

Nansen, C. 2012. Use of variogram parameters in analysis of hyperspectral
imaging data acquired from dual-stressed crop leaves. Remote Sens. 4:
180-193.

Nansen, C. 2016. The potential and prospects of proximal remote sensing of
arthropod pests. Pest Manag. Sci. 72: 653-659.

Nansen, C., and N. Elliott. 2016. Remote sensing and reflectance profiling in
entomology. Annu. Rev. Entomol. 61: 139-158.

Nansen, C., T. Macedo, R. Swanson, and D. K. Weaver. 2009. Use of spa-
tial structure analysis of hyperspectral data cubes for detection of insect-in-
duced stress in wheat plants. Int. J. Remote Sens. 30: 2447-2464.

Nansen, C., A. ]J. Sidumo, and S. Capareda. 2010. Variogram analysis of
hyperspectral data to characterize the impact of biotic and abiotic stress of
maize plants and to estimate biofuel potential. Appl. Spectrosc. 64: 627-636.

Nansen, C., A. J. Sidumo, X. Martini, K. Stefanova, and J. D. Roberts. 2013.
Reflectance-based assessment of spider mite “bio-response” to maize leaves
and plant potassium content in different irrigation regimes. Comput.
Electron. Agric. 97: 21-26.

Nebiker, S., N. Lack, M. Abacherli, and S. Liderach. 2016. Light-weight
multispectral UAV sensors and their capabilities for predicting grain yield
and detecting plant diseases. ISPRS Int. Arch. Photogramm. Remote Sens.
Spat. Inf. Sci. XLI-B1: 963-970.

Nguyen, H. D. D., and C. Nansen. 2018. Edge-biased distributions of insects.
A review. Agron Sustain. Dev. 38: 11.

Nigam, R., R. Kot, S. S. Sandhu, B. K. Bhattacharya, R. S. Chandi, M. Singh,
J. Singh, and K. Manjunath. 2016. Ground-based hyperspectral remote
sensing to discriminate biotic stress in cotton crop, pp. 98800H. In SPIE
Asia-Pacific Remote Sensing Symposium, 4-7 April 2016, New Delhi, India.

Nutter, F. W., G. L. Tylka, J. Guan, A. J. Moreira, C. C. Marett, T. R. Rosburg,
J. P. Basart, and C. S. Chong. 2002. Use of remote sensing to detect soybean
cyst nematode-induced plant stress. J. Nematol. 34: 222-231.

Opit, G. P, J. R. Nechols, D. C. Margolies, and K. A. Williams. 2005. Survival,
horizontal distribution, and economics of releasing predatory mites (Acari:
Phytoseiidae) using mechanical blowers. Biol. Control 33: 344-351.

OPTiM. 2016. OPTiM’s AgriDrone undergoes the world’s first successful
trials for insect extermination by drone. Available from https://en.optim.
co.jp/news-detail/11172

Padua, L., J. Vanko, J. Hruska, T. Adao, J. J. Sousa, E. Peres, and R. Morais.
2017. UAS, sensors, and data processing in agroforestry: a review towards
practical applications. Int. J. Remote Sens. 38: 2349-2391.

Parabug. 2019. Parabug, biocontrol by drone. Available from https://www.
parabug.solutions/

Park, C. Y., B.-W. Jang, J. H. Kim, C.-G. Kim, S.-M. June 2012. Bird strike
event monitoring in a composite UAV wing using high speed optical fiber
sensing system. Compos. Sci. Technol. 72: 498-505.

Parra, J. R. P. 2014. Biological control in Brazil: an overview. Sci. Agric. 71:
420-429.

Pearl, E. 2015. Drone used to drop beneficial bugs on corn crop. The University
of Queensland, Australia, News (UQ News). Available from https:/www.
uq.edu.au/news/article/2015/04/drone-used-drop-beneficial-bugs-corn-crop

Pederi, Y. A., and H. S. Cheporniuk. 2015. Unmanned aerial vehicles and new
technological methods of monitoring and crop protection in precision agri-
culture, pp. 298-301. In IEEE International Conference Actual Problems
of Unmanned Aerial Vehicles Developments, 13-15 October 20135, Kiev,
Ukraine.

Peiia, J. M., J. Torres-Sanchez, A. Serrano-Pérez, A. 1. de Castro, and F. Lopez-
Granados. 2015. Quantifying efficacy and limits of unmanned aerial vehicle
(UAV) technology for weed seedling detection as affected by sensor reso-
lution. Sensors 15: 5609-5626.

Peniuelas, J., and 1. Filella. 1998. Visible and near-infrared reflectance tech-
niques for diagnosing plant physiological status. Trends Plant Sci. 3:
151-156.

Peiiuelas, J., L. Filella, P. Lloret, F. Munoz, and M. Vilajeliu. 1995. Reflectance
assessment of mite effects on apple trees. Int. J. Remote Sens. 16:
2727-2733.

020z Asenuer |z uo Jasn uonoag spioosy s[elas Aq 1.889995/892201/23l/€601 "0 /I0p/10B1Sqe-ajonie-a0ueApe/aal/woo dno-olwapeoe//:sdiy Wwolj papeojuMo(]


https://news.wisc.edu/cals-researchers-deploy-insect-birth-control-to-protect-cranberries/
https://news.wisc.edu/cals-researchers-deploy-insect-birth-control-to-protect-cranberries/
https://en.optim.co.jp/news-detail/11172
https://en.optim.co.jp/news-detail/11172
https://www.parabug.solutions/
https://www.parabug.solutions/
https://www.uq.edu.au/news/article/2015/04/drone-used-drop-beneficial-bugs-corn-crop
https://www.uq.edu.au/news/article/2015/04/drone-used-drop-beneficial-bugs-corn-crop

Journal of Economic Entomology, 2019, Vol. XX, No. XX

23

Perring, T. M., T. O. Holtzer, J. L. Toole, and J. M. Norman. 1986.
Relationships between corn-canopy microenvironments and banks grass
mite (Acari: Tetranychidae) abundance. Environ. Entomol. 15: 79-83.

Pickett, C. H., F. E. Gilstrap, R. K. Morrison, and L. F. Bouse. 1987. Release
of predatory mites (Acari: Phytoseiidae) by aircraft for the biological con-
trol of spider mites (Acari: Tetranychidae) infesting corn. J. Econ. Entomol.
80: 906-910.

Pierpaoli, E., G. Carli, E. Pignatti, and M. Canavari. 2013. Drivers of preci-
sion agriculture technologies adoption: a literature review. Proc. Technol.
8: 61-69.

Pimentel, D. 1995. Amounts of pesticides reaching target pests: environmental
impacts and ethics. J. Agric. Environ. Ethics 8: 17-29.

Ponda, S. S., L. B. Johnson, A. Geramifard, and J. P. How. 2015. Cooperative
mission planning for multi-UAV teams, pp. 1447-1490. In K. P. Valavanis
and G. J. Vachtsevanos (eds.), Handbook of unmanned aerial vehicles.
Springer, Dordrecht, Netherlands.

Prabhakar, M., Y. Prasad, M. Thirupathi, G. Sreedevi, B. Dharajothi, and
B. Venkateswarlu. 2011. Use of ground based hyperspectral remote
sensing for detection of stress in cotton caused by leafthopper (Hemiptera:
Cicadellidae). Comput. Electron. Agric. 79: 189-198.

Prabhakar, M., Y. G. Prasad, and M. N. Rao. 2012. Remote sensing of biotic
stress in crop plants and its applications for pest management, pp. 517—
545. In B. Venkateswarlu, A. K. Shanker, C. Shanker and M. Maheswari
(eds.), Crop stress and its management: perspectives and strategies. Springer,
Dordrecht, Netherlands.

Prabhakar, M., Y. G. Prasad, S. Vennila, M. Thirupathi, G. Sreedevi, G. R. Rao,
and B. Venkateswarlu. 2013. Hyperspectral indices for assessing damage by
the solenopsis mealybug (Hemiptera: Pseudococcidae) in cotton. Comput.
Electron. Agric. 97: 61-70.

Prasannakumar, N., S. Chander, R. Sahoo, and V. Gupta. 2013. Assessment
of brown planthopper, (Nilaparvata lugens)[Stil], damage in rice using
hyperspectral remote sensing. Int. J. Pest Manag. 59: 180-188.

Prasannakumar, N., S. Chander, and R. Sahoo. 2014. Characterization of
brown planthopper damage on rice crops through hyperspectral remote
sensing under field conditions. Phytoparasitica 42: 387-395.

PwC. 2016. Clarity from above. PwC global report on the commercial ap-
plications of drone technology. Available from https://www.pwec.pl/pl/pdf/
clarity-from-above-pwec.pdf

Qin, W.-C., B.-]. Qiu, X.-Y. Xue, C. Chen, Z.-F. Xu, and Q.-Q. Zhou. 2016.
Droplet deposition and control effect of insecticides sprayed with an un-
manned aerial vehicle against plant hoppers. Crop Prot. 85: 79-88.

Quemada, M., J. Gabriel, and P. Zarco-Tejada. 2014. Airborne hyperspectral
images and ground-level optical sensors as assessment tools for maize ni-
trogen fertilization. Remote Sens. 6: 2940-2962.

Rangel, R. K. 2016. Development of an UAVS distribution tools for pest’s
biological control “Bug Bombs!”, pp. 1-8. In IEEE Aerospace Conference,
5-12 March 2016, Big Sky, MT.

Rasmussen, J., J. Nielsen, F. Garcia-Ruiz, S. Christensen, J. C. Streibig, and
B. Lotz. 2013. Potential uses of small unmanned aircraft systems (UAS) in
weed research. Weed Res. 53: 242-248.

Raun, W. R., J. B. Solie, G. V. Johnson, M. L. Stone, R. W. Mullen,
K. W. Freeman, W. E. Thomason, and E. V. Lukina. 2002. Improving ni-
trogen use efficiency in cereal grain production with optical sensing and
variable rate application. Agron. J. 94: 815-820.

Reisig, D., and L. Godfrey. 2006. Remote sensing for detection of cotton
aphid- (Homoptera: Aphididae) and spider mite- (Acari: Tetranychidae)
infested cotton in the San Joaquin Valley. Environ. Entomol. 335:
1635-1646.

Reisig, D., and L. Godfrey. 2007. Spectral response of cotton aphid-
(Homoptera: Aphididae) and spider mite- (Acari: Tetranychidae) infested
cotton: controlled studies. Environ. Entomol. 36: 1466-1474.

Reisig, D. D., and L. D. Godfrey. 2010. Remotely sensing arthropod and
nutrient stressed plants: a case study with nitrogen and cotton aphid
(Hemiptera: Aphididae). Environ. Entomol. 39: 1255-1263.

Riedell, W. E., and T. M. Blackmer. 1999. Leaf reflectance spectra of cereal
aphid-damaged wheat. Crop Sci. 39: 1835-1840.

Riley, J. R. 1989. Remote sensing in entomology. Ann. Rev. Entomol. 43:
247-271.

Roberts, D. A., K. L. Roth, and R. L. Perroy. 2001. Hyperspectral vegetation
indices, pp. 309-327. In P. S. Thenkabail, J. G. Lyon, and A. Huete (eds.),
Hyperspectral remote sensing of vegetation. CRC Press, Boca Raton, FL.

Rodriguez, J. G. 1951. Mineral nutrition of the two-spotted spider mite,
Tetranychus bimaculatus Harvey. Ann. Entomol. Soc. Am. 44: 511-526.

Rodriguez, J. G., and R. B. Neiswander. 1949. The effect of soil soluble salts
and cultural practices on mite populations on hothouse tomatoes. J. Econ.
Entomol. 42: 56-59.

Rodriguez-Saona, C., D. Polk, R. Holdcraft, D. Chinnasamy, and A. Mafra-
Neto. 2010. SPLAT-OrB reveals competitive attraction as a mechanism of
mating disruption in oriental beetle (Coleoptera: Scarabaeidae). Environ.
Entomol. 39: 1980-1989.

Rosenthal, G. 2017. PPQ explores the tantalizing promise of unmanned air-
craft systems. USDA APHIS. Available from https://www.aphis.usda.gov/
aphis/ourfocus/planthealth/ppq-program-overview/plant-protection-today/
articles/unmanned-aircraft-systems

Ru, Y., H. Zhou, Q. Fan, and X. Wu. 2011. Design and investigation of
ultra-low volume centrifugal spraying system on aerial plant protection,
no. 1110663. In ASABE Annual International Meeting, 7-10 August 2011,
Louisville, KY.

Sanchez-Bayo, F., S. Baskaran, and I. R. Kennedy. 2002. Ecological relative
risk (EcoRR): another approach for risk assessment of pesticides in agricul-
ture. Agric. Ecosyst. Environ. 91: 37-57.

Sato, A. 2003. The RMAX helicopter UAV. Yamaha Moter Co., LTD.,
Shizuoka, Japan. Available from https://pdfs.semanticscholar.org/5d80/faa
e7d1ffd27422df3ad6e3d08dc6bdb1920.pdf

SDU. 2018. EcoDrone. University of Southern Denmark (SDU). Available
from https://www.sdu.dk/en/om_sdu/institutter_centre/sduuascenter/
researchprojects

Seely, R. 2018. Drones, joysticks, and data-driven farming, pp. 16-21. In
Grow. University of Wisconsin-Madison College of Agricultural and Life
Sciences. Available from https://grow.cals.wisc.edu/wp-content/uploads/
sites/14/2018/06/Grow-Summer2018-web.pdf

Sétamou, M., and D. W. Bartels. 2015. Living on the edges: spatial niche oc-
cupation of Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera:
Liviidae), in citrus groves. PLoS One 10: e0131917.

Severtson, D., K. Flower, and C. Nansen. 2015. Nonrandom distribution of
cabbage aphids (Hemiptera: Aphididae) in dryland canola (Brassicales:
Brassicaceae). Environ. Entomol. 44: 767-779.

Severtson, D., N. Callow, K. Flower, A. Neuhaus, M. Olejnik, and C. Nansen.
2016a. Unmanned aerial vehicle canopy reflectance data detects potassium
deficiency and green peach aphid susceptibility in canola. Precis. Agric. 17:
659-677.

Severtson, D., K. Flower, and C. Nansen. 2016b. Spatially-optimized sequen-
tial sampling plan for cabbage aphids Brevicoryne brassicae L. (Hemiptera:
Aphididae) in canola fields. J. Econ. Entomol. 109: 1929-1935.

Seymour, R. 2018. Drones tested for moth drops in Okanagan orchards.
Kelowna Daily Courier. Available from http://www.kelownadailycourier.ca/
news/article_abc959f2-3376-11e8-8de7-efac785fe8d1.html

Shah, P. A., and J. K. Pell. 2003. Entomopathogenic fungi as biological control
agents. Appl. Microbiol. Biotechnol. 61: 413-423.

Shapiro-Ilan, D. I., R. Han, and C. Dolinksi. 2012. Entomopathogenic nema-
tode production and application technology. J. Nematol. 44: 206-217.

Shi, Y., W. Huang, J. Luo, L. Huang, and X. Zhou. 2017. Detection and dis-
crimination of pests and diseases in winter wheat based on spectral indices
and kernel discriminant analysis. Comput. Electron. Agric. 141: 171-180.

Shields, E. J., and A. M. Testa. 1999. Fall migratory flight initiation of the po-
tato leafhopper, Empoasca fabae (Homoptera: Cicadelliade): observations
in the lower atmosphere using remote piloted vehicles. Agric. For. Meteorol.
97: 317-330.

Shim, D. H., J.-S. Han, and H.-T. Yeo. 2009. A development of unmanned
helicopters for industrial applications. J. Intell. Robot. Syst. 54: 407-421.
Simmons, G. S., D. M. Suckling, J. E. Carpenter, M. F. Addison, V. A. Dyck,
and M. J. B. Vreysen. 2010. Improved quality management to enhance
the efficacy of the sterile insect technique for lepidopteran pests. J. Appl.

Entomol. 134: 261-273.

Singh, K., and C. Nansen. 2017. Advanced calibration to improve robust-

ness of drone-acquired hyperspectral remote sensing data, pp. 1-6. In IEEE

020z Asenuer |z uo Jasn uonoag spioosy s[elas Aq 1.889995/892201/23l/€601 "0 /I0p/10B1Sqe-ajonie-a0ueApe/aal/woo dno-olwapeoe//:sdiy Wwolj papeojuMo(]


https://www.pwc.pl/pl/pdf/clarity-from-above-pwc.pdf
https://www.pwc.pl/pl/pdf/clarity-from-above-pwc.pdf
https://www.aphis.usda.gov/aphis/ourfocus/planthealth/ppq-program-overview/plant-protection-today/articles/unmanned-aircraft-systems
https://www.aphis.usda.gov/aphis/ourfocus/planthealth/ppq-program-overview/plant-protection-today/articles/unmanned-aircraft-systems
https://www.aphis.usda.gov/aphis/ourfocus/planthealth/ppq-program-overview/plant-protection-today/articles/unmanned-aircraft-systems
https://pdfs.semanticscholar.org/5d80/faae7d1ffd27422df3ad6e3d08dc6bdb1920.pdf
https://pdfs.semanticscholar.org/5d80/faae7d1ffd27422df3ad6e3d08dc6bdb1920.pdf
https://www.sdu.dk/en/om_sdu/institutter_centre/sduuascenter/researchprojects
https://www.sdu.dk/en/om_sdu/institutter_centre/sduuascenter/researchprojects
https://grow.cals.wisc.edu/wp-content/uploads/sites/14/2018/06/Grow-Summer2018-web.pdf
https://grow.cals.wisc.edu/wp-content/uploads/sites/14/2018/06/Grow-Summer2018-web.pdf
http://www.kelownadailycourier.ca/news/article_abc959f2-3376-11e8-8de7-efac785fe8d1.html
http://www.kelownadailycourier.ca/news/article_abc959f2-3376-11e8-8de7-efac785fe8d1.html

24

Journal of Economic Entomology, 2019, Vol. XX, No. XX

International Conference on Agro-Geoinformatics, 7-10 August 2017,
Fairfax, VA.

Smith, S. M. 1996. Biological control with Trichogramma: advances, suc-
cesses, and potential of their use. Annu. Rev. Entomol. 41: 375-406.

Souza, E. G., P. C. Scharf, and K. A. Sudduth. 2010. Sun position and
cloud effects on reflectance and vegetation indices of corn. Agron. J. 102:
734-744.

Stanton, C., M. ]. Starek, N. Elliott, M. Brewer, M. M. Maeda, and T. Chu.
2017. Unmanned aircraft system-derived crop height and normalized dif-
ference vegetation index metrics for sorghum yield and aphid stress assess-
ment. J. Appl. Remote Sens. 11: 026035.

Stark, B., S. Rider, and Y. Chen. 2013a. Optimal pest management by net-
worked unmanned cropdusters in precision agriculture: a cyber-physical
system approach, pp. 296-302. In IFAC Proceedings. IFAC Workshop on
Research, Education and Development of Unmanned Aerial Systems, 20-22
November 2013, Compiegne, France.

Stark, B., B. Smith, and Y. Chen. 2013b. A guide for selecting small un-
manned aerial systems for research-centric applications, pp. 38-45. In IFAC
Proceedings. IFAC Workshop on Research, Education and Development of
Unmanned Aerial Systems, 20-22 November 2013, Compiegne, France.

Steffan, S. A., E. M. Chasen, A. E. Deutsch, and A. Mafram-Neto. 2017.
Multi-species mating disruption in cranberries (Ericales: Ericaceae): early
evidence using a flowable emulsion. J. Insect Sci. 17: 54.

Stiefel, V. L., D. C. Margolies, and P. J. Bramel-Cox. 1992. Leaf temperature
affects resistance to the banks grass mite (Acari: Tetranychidae) on drought-
resistant grain sorghum. J. Econ. Entomol. 85: 2170-2184.

Stocker, C., R. Bennett, F. Nex, M. Gerke, and J. Zevenbergen. 2017. Review
of the current state of UAV regulations. Remote Sens. 9: 459.

Stone, C., and C. Mohammed. 2017. Application of remote sensing technolo-
gies for assessing planted forests damaged by insect pests and fungal patho-
gens: a review. Curr. For. Rep. 3: 75-92.

Stumph, B., M. Hernandez Virto, H. Medeiros, A. Tabb, S. Wolford, K. Rice,
and T. Leskey. 2019. Detecting invasive insects with unmanned aerial ve-
hicles. In IEEE International Conference on Robotics and Automation
(ICRA), 20-24 May 2019, Montreal, Canada.

Sudbrink, D., F. Harris, J. Robbins, P. English, and J. Willers. 2003. Evaluation
of remote sensing to identify variability in cotton plant growth and cor-
relation with larval densities of beet armyworm and cabbage looper
(Lepidoptera: Noctuidae). Fla. Entomol. 86: 290-294.

Sudbrink, D. L., S. J. Thomson, R. S. Fletcher, F. A. Harris, P. J. English, and
J. T. Robbins. 2015. Remote sensing of selected winter and spring host
plants of tarnished plant bug (Heteroptera: Miridae) and herbicide use strat-
egies as a management tactic. Am. J. Plant Sci. 6: 1313-1327.

Sylvester, G. 2018. E-agriculture in action: drones for agriculture. Food
and Agriculture Organization of the United Nations and International
Telecommunication Union, Bangkok, Thailand. Available from http:/www.
fao.org/3/i8494en/i8494en.pdf

Tahir, N., and G. Brooker. 2009. Feasibility of UAV based optical tracker for
tracking Australian plague locust, pp. 1-10. Iz Australasian Conference on
Robotics and Automation, 2-4 December 2009, Sydney, NSW, Australia.

Tan, L. T., and K. H. Tan. 2013. Alternative air vehicles for sterile insect tech-
nique aerial release. J. Appl. Entomol. 137: 126-141.

Tan, Y., J.-Y. Sun, B. Zhang, M. Chen, Y. Liu, and X.-D. Liu. 2019. Sensitivity
of a ratio vegetation index derived from hyperspectral remote sensing to the
brown planthopper stress on rice plants. Sensors 19: 375.

Tang, Z., Y. Li, J. Zhao, and D. Hu. 2016. Research on trajectory planning
algorithm of plant-protective UAV, pp. 110-113. In IEEE International
Conference on Aircraft Utility Systems, 10-12 October 2016, Beijing, China.

Teal Group. 2019. Teal Group predicts worldwide civil drone production will
almost triple over the next decade. Available from https://www.tealgroup.
com/index.php/pages/press-releases/60-teal-group-predicts-worldwide-
civil-drone-production-will-almost-triple-over-the-next-decade

Teske, M. E., S. L. Bird, D. M. Esterly, T. B. Curbishley, S. L. Ray, and
S. G. Perry. 2002. AgDRIFT: a model for estimating near-field spray drift
from aerial applications. Environ. Toxicol. Chem. 21: 659-671.

Teske, A. L., G. Chen, C. Nansen, and Z. Kong. 2019. Optimised dispensing of
predatory mites by multirotor UAVs in wind: a distribution pattern model-
ling approach for precision pest management. Biosyst. Eng. 187: 226-238.

Timewell, E. 2018. Dropped in for fruitless sex. The New Zealand Institute for
Plant and Food Research. Available from https://www.plantandfood.co.nz/
page/news/media-release/story/dropped-in-for-fruitless-sex/

Tsai, M.-Y., K. Elgethun, J. Ramaprasad, M. G. Yost, A. S. Felsot, V. R. Hebert,
and R. A. Fenske. 2005. The Washington aerial spray drift study: modeling
pesticide spray drift deposition from an aerial application. Atmos. Environ.
39: 6194-6203.

Turlings, T. C. J., and M. Erb. 2018. Tritrophic interactions mediated by
herbivore-induced plant volatiles: mechanisms, ecological relevance, and
application potential. Annu. Rev. Entomol. 63: 433-452.

UAV-IQ. 2018. An efficient approach to sustainable farming. Available from
http://www.uaviq.farm/en/home/

Usha, K., and B. Singh. 2013. Potential applications of remote sensing in horti-
culture - a review. Sci. Hort. 153: 71-83.

Vanegas, E.,, D. Bratanov, K. Powell, J. Weiss, and F. Gonzalez. 2018a. A novel
methodology for improving plant pest surveillance in vineyards and crops
using UAV-based hyperspectral and spatial data. Sensors 18: 260.

Vanegas, F.,, D. Bratanov, J. Weiss, K. Powell, and F. Gonzalez. 2018b. Multi
and hyperspectral UAV remote sensing: grapevine phylloxera detection in
vineyards, pp. 1-9. In IEEE Aerospace Conference, 3-10 March 2018, Big
Sky, MT.

Van Lenteren, J. C., K. Bolckmans, J. Kohl, W. J. Ravensberg, and A. Urbaneja.
2018. Biological control using invertebrates and microorganisms: plenty of
new opportunities. BioControl 63: 39-59.

Verrelst, J., Z. Malenovsky, C. Van der Tol, G. Camps-Valls, J.-P. Gastellu-
Etchegorry, P. Lewis, P. North, and J. Moreno. 2019. Quantifying vegetation
biophysical variables from imaging spectroscopy data: a review on retrieval
methods. Surv. Geophys. 40: 589-629.

Villa, T., F. Gonzalez, B. Miljievic, Z. Ristovski, and L. Morawska. 2016. An
overview of small unmanned aerial vehicles for air quality measurements:
present applications and future prospectives. Sensors 16: 1072.

Walter, A. J., and C. D. Difonzo. 2007. Soil potassium deficiency affects soy-
bean phloem nitrogen and soybean aphid populations. Environ. Entomol.
36:2-33.

Wang, G., Y. Lan, H. Qi, P. Chen, A. Hewitt, and Y. Han. 2019a. Field evalu-
ation of an unmanned aerial vehicle (UAV) sprayer: effect of spray volume
on deposition and the control of pests and disease in wheat. Pest Manag.
Sci. 75: 1546-1555.

Wang, G., Y. Lan, H. Yuan, H. Qi, P. Chen, F. Ouyang, and Y. Han. 2019b.
Comparison of spray deposition, control efficacy on wheat aphids and
working efficiency in the wheat field of the unmanned aerial vehicle with
boom sprayer and two conventional knapsack sprayers. Appl. Sci. 9: 218.

Watts, A. C., V. G. Ambrosia, and E. A. Hinkley. 2012. Unmanned aircraft
systems in remote sensing and scientific research: classification and consid-
erations of use. Remote Sens. 4: 1671.

Weldegergis, B. T., F. Zhu, E. H. Poelman, and M. Dicke. 2015. Drought stress
affects plant metabolites and herbivore preference but not host location by
its parasitoids. Oecologia. 177: 701-713.

West, K., and C. Nansen. 2014. Smart-use of fertilizers to manage spider
mites (Acari: Tetrachynidae) and other arthropod pests. Plant Sci. Today
1: 161-164.

Weyermann, J., A. Damm, M. Kneubiihler, and M. E. Schaepman. 2014.
Correction of reflectance anisotropy effects of vegetation on airborne spec-
troscopy data and derived products. IEEE Trans. Geosci. Remote Sens. 52:
616-627.

Whitehead, K., and C. H. Hugenholtz. 2014. Remote sensing of the envir-
onment with small unmanned aircraft systems (UASs), part 1: a review of
progress and challenges. J. Unmanned Veh. Syst. 2: 69-85.

Whitehead, K., C. H. Hugenholtz, S. Myshak, O. Brown, A. LeClair,
A. Tamminga, T. E. Barchyn, B. Moorman, and B. Eaton. 2014. Remote
sensing of the environment with small unmanned aircraft systems (UASs),
part 2: scientific and commercial applications. J. Unmanned Veh. Syst. 2:
86-102.

Willers, J. L., M. R. Seal, and R. G. Luttrell. 1999. Remote sensing, line-
intercept sampling for tarnished plant bugs (Heteroptera: Miridae) in mid-
south cotton. J. Cotton Sci. 3: 160-170.

Willers, J. L., J. N. Jenkins, W. L. Ladner, P. D. Gerard, D. L. Boykin,
K. B. Hood, P. L. McKibben, S. A. Samson, and M. M. Bethel. 2005.

020z Asenuer |z uo Jasn uonoag spioosy s[elas Aq 1.889995/892201/23l/€601 "0 /I0p/10B1Sqe-ajonie-a0ueApe/aal/woo dno-olwapeoe//:sdiy Wwolj papeojuMo(]


http://www.fao.org/3/i8494en/i8494en.pdf
http://www.fao.org/3/i8494en/i8494en.pdf
https://www.tealgroup.com/index.php/pages/press-releases/60-teal-group-predicts-worldwide-civil-drone-production-will-almost-triple-over-the-next-decade
https://www.tealgroup.com/index.php/pages/press-releases/60-teal-group-predicts-worldwide-civil-drone-production-will-almost-triple-over-the-next-decade
https://www.tealgroup.com/index.php/pages/press-releases/60-teal-group-predicts-worldwide-civil-drone-production-will-almost-triple-over-the-next-decade
https://www.plantandfood.co.nz/page/news/media-release/story/dropped-in-for-fruitless-sex/
https://www.plantandfood.co.nz/page/news/media-release/story/dropped-in-for-fruitless-sex/
http://www.uaviq.farm/en/home/

Journal of Economic Entomology, 2019, Vol. XX, No. XX

25

Site-specific approaches to cotton insect control. Sampling and remote
sensing analysis techniques. Precis. Agric. 6: 431-452.

WinterGreen Research. 2016a. Agricultural drones market shares, strat-
egies, and forecasts, worldwide, 2016 to 2022. WinterGreen Research, Inc.
Lexington, MA.

WinterGreen Research. 2016b. Drones market shares, strategies, and forecasts,
worldwide, 2016 to 2022. WinterGreen Research, Inc. Lexington, MA.

Woods, N., I. P. Craig, G. Dorr, and B. Young. 2001. Spray drift of pes-
ticides arising from aerial application in cotton. J. Environ. Qual. 30:
697-701.

Xfly Brasil. 2017. Lancador de Trichogramma Granel. Available from https://
www.xflybrasil.com/trichogramma

Ximénez-Embun, M. G., P. Castanera, and F. Ortego. 2017. Drought stress in
tomato increases the performance of adapted and non-adapted strains of
Tetranychus urticae. J. Insect Physiol. 96: 73-81.

Xiongkui, H., ]J. Bonds, A. Herbst, and J. Langenakens. 2017. Recent devel-
opment of unmanned aerial vehicle for plant protection in East Asia. Int.
J. Agric. Biol. Eng. 10: 18-30.

Xu, H., Y. Ying, X. Fu, and S. Zhu. 2007. Near-infrared spectroscopy in
detecting leaf miner damage on tomato leaf. Biosyst. Eng. 96: 447-454.

Xue, J., and B. Su. 2017. Significant remote sensing vegetation indices: a re-
view of developements and applications. J. Sensors 1353691.

Xue, X., Y. Lan, Z. Sun, C. Chang, and W. C. Hoffmann. 2016. Develop an
unmanned aerial vehicle based automatic aerial spraying system. Comput.
Electron. Agric. 128: 58-66.

Yamaha. 2014a. Development of the R-50 industrial-use unmanned heli-
copters. Available from https://global.yamaha-motor.com/about/history/
stories/0028.html

Yamaha. 2014b. Industrial-use unmanned helicopters draw attention as so-
lutions. Available from https://global.yamaha-motor.com/about/history/
stories/0044.html

Yamaha. 2016. Evolution from the RCASS - The original model that led to
multipurpose capability. Available from https://global.yamaha-motor.com/
about/technology/electronic/010/

Yang, Z., M. N. Rao, N. C. Elliott, S. D. Kindler, and T. W. Popham. 2005.
Using ground-based multispectral radiometry to detect stress in wheat
caused by greenbug (Homoptera: Aphididae) infestation. Comput. Electron.
Agric. 47: 121-135.

Yang, C.-M., C.-H. Cheng, and R.-K. Chen. 2007. Changes in spectral char-
acteristics of rice canopy infested with brown planthopper and leaffolder.
Crop Sci. 47: 329-335.

Yang, C., J. H. Everitt, J. M. Bradford, and D. Murden. 2009a. Comparison
of airborne multispectral and hyperspectral imagery for estimating grain
sorghum yield. Trans. Am. Soc. Agric. Eng. 52: 641-649.

Yang, Z., M. N. Rao, N. C. Elliott, S. D. Kindler, and T. W. Popham. 2009b.
Differentiating stress induced by greenbugs and Russian wheat aphids in
wheat using remote sensing. Comput. Electron. Agric. 67: 64-70.

Yang, S., X. Yang, and J. Mo. 2018. The application of unmanned aircraft sys-
tems to plant protection in China. Precis. Agric. 19: 278-292.

Yuan, L., Y. Huang, R. W. Loraamm, C. Nie, J. Wang, and J. Zhang. 2014.
Spectral analysis of winter wheat leaves for detection and differentiation of
diseases and insects. Field Crops Res. 156: 199-207.

Yuan, L., H. Zhang, Y. Zhang, C. Xing, and Z. Bao. 2017. Feasibility as-
sessment of multi-spectral satellite sensors in monitoring and discriminating
wheat diseases and insects. Optik 131: 598-608.

Yun, G., M. Mazur, and Y. Pederii. 2017. Role of unmanned aerial vehicles in
precision farming. Proc. Natl. Aviat. Univ. N1: 106-112.

Zarco-Tejada, P. J., C. Camino, P. S. A. Beck, R. Calderon, A. Hornero,
R. Hernandez-Clemente, T. Kattenborn, M. Montes-Borrego, L. Susca,
M. Morelli, et al. 2018. Previsual symptoms of Xylella fastidiosa infection
revealed in spectral plant-trait alterations. Nat. Plants 4: 432-439.

Zehnder, G., G. M. Gurr, S. Kiithne, M. R. Wade, S. D. Wratten, and E. Wyss.
2007. Arthropod pest management in organic crops. Annu. Rev. Entomol.
52: 57-80.

Zhang, C., and J. M. Kovacs. 2012. The application of small unmanned aerial
systems for precision agriculture: a review. Precis. Agric. 13: 693-712.

Zhang, M., A. Hale, and E. Luedeling. 2008. Feasibility of using remote
sensing techniques to detect spider mite damage in stone fruit orchards,
pp. 1323-1326. In IEEE International Geoscience and Remote Sensing
Symposium, 7-11 July 2008, Boston, MA.

Zhang, C., D. Walters, and J. M. Kovacs. 2014. Applications of low alti-
tude remote sensing in agriculture upon farmers’ requests—a case study in
northeastern Ontario, Canada. PLoS One 9: €112894.

Zhang, J., Y. Huang, L. Yuan, G. Yang, L. Chen, and C. Zhao. 2016. Using sat-
ellite multispectral imagery for damage mapping of armyworm (Spodoptera
frugiperda) in maize at a regional scale. Pest Manag. Sci. 72: 335-348.

Zhang, J., N. Wang, L. Yuan, F. Chen, and K. Wu. 2017. Discrimination of
winter wheat disease and insect stresses using continuous wavelet features
extracted from foliar spectral measurements. Biosyst. Eng. 162: 20-29.

Zhang, X.-Q., Y.-J. Liang, Z.-Q. Qin, D.-W. Li, C.-Y. Wei, J.-J. Wei, Y.-R. Li,
and X.-P. Song. 2019. Application of multi-rotor unmanned aerial vehicle
application in management of stem borer (Lepidoptera) in sugarcane. Sugar
Tech. 5: 847-852. doi:10.1007/s12355-018-0695-y

Zhao, J., D. Zhang, J. Luo, D. Wang, and W. Huang. 2012. Identifying leaf-
scale wheat aphids using the near-ground hyperspectral pushbroom imaging
spectrometer, pp. 275-282. In International Conference on Computer and
Computing Technologies in Agriculture, 29-31 October 2011, Beijing, China.

Zhao, T., B. Stark, Y. Chen, A. L. Ray, and D. Doll. 2017. Challenges in water
stress quantification using small unmanned aerial system (sUAS): lessons
from a growing season of almond. J. Intell. Robot. Syst. 88: 721-735.

Zhou, Z.,Y. Zang, Z. Zhao, X. Luo, and X. Zhou. 2010. Canopy hyperspectral
reflectance feature of rice caused by brown plant-hopper (Nilaparvata
lugens) infestation, no. 1009569. In ASABE Annual International Meeting,
20-23 June 2010, Pittsburgh, PA.

Zhou, Z.,Y. Zang, X. Luo, Y. Lan, and X. Xue. 2013. Technology innovation
development strategy on agricultural aviation industry for plant protection
in China. Trans. Chin. Soc. Agric. Eng. 29: 1-10 (in Chinese with English
abstract).

020z Asenuer |z uo Jasn uonoag spioosy s[elas Aq 1.889995/892201/23l/€601 "0 /I0p/10B1Sqe-ajonie-a0ueApe/aal/woo dno-olwapeoe//:sdiy Wwolj papeojuMo(]


https://www.xflybrasil.com/trichogramma
https://www.xflybrasil.com/trichogramma
https://global.yamaha-motor.com/about/history/stories/0028.html
https://global.yamaha-motor.com/about/history/stories/0028.html
https://global.yamaha-motor.com/about/history/stories/0044.html
https://global.yamaha-motor.com/about/history/stories/0044.html
https://global.yamaha-motor.com/about/technology/electronic/010/
https://global.yamaha-motor.com/about/technology/electronic/010/



