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Abstract: Grafts and prosthetic materials used for the repair of bone
defects are often accompanied by comorbidity and rejection.
Therefore, there is an immense need for novel approaches to
combating the issues surrounding such defects. Because of their
accessibility, substantial proportion, and osteogenic differentiation
potential, adipose-derived stem cells (ASCs) make for an ideal
source of bone tissue in regenerative medicine. However, efficient
induction of ASCs toward an osteoblastic lineage in vivo is met with
challenges, and many signaling pathways must come together to
secure osteoblastogenesis. Among them are bone morphogenic
protein, wingless-related integration site protein, Notch, Hedgehog,
fibroblast growth factor, vascular endothelial growth factor, and
extracellular regulated-signal kinase. The goal of this literature
review is to conglomerate the present research on these pathways to
formulate a better understanding of how ASCs are most effectively
transformed into bone in the context of tissue engineering.

Key Words: Adipose-derived stem cells, bone regeneration,
osteogenic differentiation, tissue engineering

(J Craniofac Surg 2019;30: 703–708)

n 2001, 12,700 bone grafts were performed to repair craniofacial
1
I defects at a cost of over $549 million in children alone. Another

1.3–1.5 million grafts were constructed in 2010 to fix defects of the
cranium, sternum, ribs, and extremities.2 It is said that bone grafting
is also required in 1 out of every 4 dental implants.3 This reach
seems to be a transnational occurrence, as graft materials are
approved all over the world, with some countries placing great
importance on the procedures in training programs.2,4

Current treatment methods using autologous bone, allogenic
transplants, and prosthetic materials all carry significant drawbacks,
such as donor-site morbidity, immune rejection, and extrusion and
infection, while failing to meet the enormous and ever-increasing
demand for reconstruction of skeletal deficiencies.5 This gap has
provided impetus to develop regenerative medicine that is being
relied on more often to deal with disease and trauma. Engineering
bone tissue was only made possible with the discovery and utiliza-
tion of stem cells that are capable of self-renewal and differentiation
into a bevy of lineages.6 The implementation of stem cells for the
purpose of bone regeneration potentially eliminates the afore-
mentioned problems associated with autologous and allogenic
grafts.5

Because of their high differentiation potential and low morbidity
during harvesting, bone marrow stem cells (BMSCs) have been
considered the gold standard in bone tissue engineering.7–9 How-
ever, low cellular yields, as well as extremely painful extraction,
have pushed research in a novel direction, one that places fat at the
core of regenerative medicine.10–13 Adipose-derived stem cells
(ASCs) have similar transcription profiles to BMSCs for genes
induced in stem-cell phenotypes, and are identified for their ability
to differentiate into a vast array of lineages, including adipogenic,
chondrogenic, myogenic, neurogenic, and osteogenic forms.14,15

Roughly 5000 fibroblast colony-forming units (CFU-F) are
obtained per gram of adipose tissue, and ASCs constitute 2% of
the nucleated cells in processed lipoaspirate.16 Compared with
only 100 to 1000 CFU-F per milliliter of bone marrow, adipose
tissue makes for an excellent source of mesenchymal stem cells
(MSCs).16

Secondary to ASC harvesting, scaffolds are employed to
ensure proper behavior of the stem cells by generating controlled
niches and delivering appropriate biomaterials.17–19 Optimal
bone regeneration is achieved with certain physical and biological
characteristics of the scaffold, especially cell attachment sites, in
which the ideal osteogenic scaffold is a porous, biodegradable,
three-dimensional structure.20–23 The culture medium of ASCs
also largely helps determine differentiation potential toward
certain lineages.24

Although several papers demonstrate the osteogenic differenti-
ation of ASCs, the molecular mechanisms by which the ASCs
differentiate into osteoprogenitor cells are not as easily understood
and no systematic review of them exists in the literature. This
review serves to elucidate those mechanisms through research
endeavors that have successfully turned ASCs into bone. The
pertinent papers are classified according to main signaling path-
ways in Table 1.

METHODS
A search of the PubMed/Medline database was performed with the
search terms ‘‘adipose-derived stem cells’’ OR ‘‘ASCs’’ AND
‘‘osteogenic differentiation.’’ Initial results yielded 256 papers,
which was reduced to 179 after title screening. When subsequently
screened for content, 14 backgrounds (some of which were not
used) and 29 experimental papers were left. An additional 62
investigations found via connected articles were incorporated to
further substantiate the literature review.

RESULTS
Osteoblastogenesis or osteoblast differentiation during develop-
ment is controlled by a complex network at both the transcriptional
level and extracellular signaling pathways.5 The key players in the
transcriptional control of osteoblast differentiation are Runt-related
family 2 (RUNX2), formerly called Cbfa1,25–29 and the late
on of this article is prohibited.

703

mailto:hakanorbay78@hotmail.com
mailto:derek.asserson2615@cnsu.edu
http://dx.doi.org/10.1097/SCS.0000000000005447


Copyright © 2019 Mutaz B. Habal, MD. Unautho

TABLE 1. Classification of Signaling Pathways by Paper

Author Year Signaling Pathway

Arnsford et al 2009 Wnt

Bandyopadhyay et al 2006 BMP

Behr et al 2012 VEGF

Bergwitz et al 2001 Wnt

Boyden et al 2002 Wnt

Burke et al 1998 FGF

Cadigan et al 1997 Wnt

Chang et al 2007 Wnt

Chen et al 2004 BMP

Chillakuri et al 2012 Notch

Cowan et al 2004 BMP

Daluiski et al 2001 BMP

Deregowski et al 2006 Notch

Ding et al 2014 VEGF

Dragoo et al 2003 BMP

Dragoo et al 2005 BMP

Eswarakumar et al 2002 FGF

Fan et al 2016 Notch

Fan et al 2013 BMP

Fan et al 2014 BMP

Fan et al 2016 BMP

Fischer et al 2002 Wnt

Gilboa et al 2000 BMP

Gong et al 2001 Wnt

Grottkau et al 2013 BMP, Wnt, Hedgehog

Heldin et al 1997 BMP

Hilton et al 2008 Notch

Hung et al 2015 ERK

Jacob et al 2006 FGF

Kadesch 2004 Notch

Kokabu et al 2012 BMP

Kwan et al 2011 FGF

Levi et al 2010 BMP

Levi et al 2011 BMP

Li et al 2016 VEGF

Lin et al 2008 BMP

Liu et al 2002 FGF

Long et al 2013 Hedgehog

Lu et al 2012 BMP

Lu et al 2013 BMP

Marie 2003 FGF

Marie 2012 FGF

Mie et al 2000 BMP

Montero et al 2000 FGF

Nakamura et al 1997 Hedgehog

Ohbayashi et al 2002 FGF

Quarto et al 2006 FGF

Quarto et al 2008 FGF

Rice 2008 BMP, Wnt

Santos et al 2010 VEGF

Sarkar et al 2001 FGF

Schmuhl et al 2014 ERK

Spinella-Jaegle et al 2001 Hedgehog

St-Jacques et al 1999 Hedgehog

Stevens et al 2010 Wnt

Tu et al 2007 Wnt

Vanhatupa et al 2015 BMP

Westendorf et al 2004 Wnt

Wodarz et al 1998 Wnt

Yuasa et al 2002 Hedgehog
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transcription factor osterix (OSX).30,31 Extracellular signaling path-
ways converge on these transcription factors to orchestrate and
regulate osteoblastogenesis. The pathways are bone morphogenic
protein (BMP), wingless-related integration site protein (Wnt),
Notch, Hedgehog, fibroblast growth factor (FGF), vascular endo-
thelial growth factor (VEGF), and extracellular regulated-signal
kinase (ERK) (Fig. 1). The same signaling pathways play a role in
the direction of putative adult stem cells to an osteoblastic lineage,
demonstrated by the bone markers alkaline phosphatase (ALP),
type I collagen, osteopontin (OPN), and osteocalcin (OCN),
as well as matrix mineralization,32 for the purpose of tissue engi-
neering.33,34

Bone Morphogenic Protein
The BMPs belong to the transcription growth factor beta super-

family.35,36 This group is perhaps the most well-known of the
cytokines involved in osteogenesis, and as such, the majority of
studies related to ASCs and bone formation has revolved around the
BMP pathway.

The BMPs operate through signaling mothers against decapen-
taplegic (Smad) 1 phosphorylation.35,37 The phosphorylated Smads
promote osteogenic differentiation by forming a complex with
Smad4.34 The BMPs also increase the transcription of RUNX2.38

Subtypes BMP2 and BMP4 are particularly important, governing
crucial steps of differentiation by managing the transition from
RUNX2- to OSX-positive cells.39–41 The ASCs increase bone
regeneration significantly when loaded onto a scaffold with
BMP2 or when transfected with the BMP2 gene.42–47 On the
contrary, BMP3 is thought to have a negative regulatory effect
on osteogenesis48 through interaction with the BMP receptor type II
to inhibit BMP2 and BMP4 signaling.49

Downregulation of the osteogenic inhibitor Noggin in ASCs
triggered more appreciable mandibular regeneration in rats, and this
effect became more pronounced when Noggin-/- ASCs were sup-
plemented with BMP2.50–52 Furthermore, tumor necrosis factor
alpha (TNF-a), a major inflammatory factor peaking after bone
fracture, promoted BMP2 establishment in human primary osteo-
blasts and inhibited osteogenic differentiation when the pathway
was contacted with Noggin.53 Preconditioning with TNF-a aug-
mented proliferation, mobilization, and osteogenic differentiation
of ASCs and upregulated BMP2, upon silencing of BMP2 by
siRNA.54
rized reproduction of this article is prohibited.
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FIGURE 1. Schematic of osteogenic differentiation induced by adipose-derived
stem cells. ALP, alkaline phosphatase; ASC, adipose-derived stem cell; BMP,
bone morphogenic protein; ERK, extracellular regulated-signal kinase; FGF,
fibroblast growth factor; MSC, mesenchymal stem cell; OCN, osteocalcin; OPN,
osteopontin; OSX, osterix; RUNX2, runt-related family 2; VEGF, vascular
endothelial growth factor; Wnt, wingless-related integration site protein.
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Wingless-Related Integration Site Protein
The Wnt family consists of a large number of secreted glycol

proteins that are involved in embryonic development, tissue induc-
tion, and axis polarity.55,56 Wnt ligands bind to frizzled receptors at
the cell surface and to LRP5 and LRP6 coreceptors.34 LRP5 gain of
function results in increased bone mass,57 whereas mutations in the
gene cause osteoporosis-pseudoglioma syndrome.58

Canonical Wnt signaling results in stabilization and transloca-
tion of b-catenin to the nucleus, where it binds to T-cell factor/
lymphoid enhancer factor (TCF/Lef) transcription factors.38 b-
catenin-TCF/Lef complexes activate transcription of multiple
Wnt-responsive genes, including those implicated in proliferation,
osteoblast differentiation, and osteogenesis.59–61

Noncanonical Wnt10b is identified for its unique requirement
for maintenance of mesenchymal progenitor activity in adult bone
after it was distinguished as the only Wnt ligand linking to
mesenchymal progenitor function in humans and mice.62 Some
studies revealed that noncanonical Wnt signaling, namely that of
Wnt5a with Ror2 and RhoA as counterparts, plus N-cadherin-
mediated b-catenin signaling, are necessary for mechanically
induced osteogenesis.63 Furthermore, Wnt4 may have potentiality
in improving bone regeneration and repair of craniofacial defects.64

Wnt3a and Wnt7b, also of the noncanonical variety, signal through
G-proteins to activate phosphatidylinositol signaling and PKCd, the
latter of which is necessary for osteoblastogenesis.65

Notch
The Notch network is known to be part of an evolutionarily

conserved mechanism that balances proliferation and differentia-
tion of stem cells.66 Such action begins with the Jagged
Delta protein’s attachment to the receptor34 prior to cleavage by
g-secretase to release the Notch intracellular domain.67

Notch inhibition in the embryonic limb leads to increased bone
mass and a reciprocal decrease in bone marrow mesenchymal
progenitors, thereby suggesting Notch’s function in suppressing
osteogenic differentiation and maintaining a sizable progenitor
pool.68 Notch is thought to act by quelling RUNX2 transcriptional
activity by induction of the transcription factors HEY1 and HEYL,
which physically interact with RUNX2.69

The miR-34a was found to upregulate RUNX2 by inhibiting
retinoblastoma binding protein 2 via the NOTCH1/CYCLIN D1
coregulatory network.70 Another report, however, observed that
Notch-1 overexpression inhibited osteogenesis by interrupting
canonical Wnt signaling, but failed to do so with interrupted BMP.71

Hedgehog
Pattern arrangement of bone tissue is greatly influenced by

Hedgehog signaling, albeit little work on it has been executed.34

In particular, Indian Hedgehog (IHH) plays a decisive job in
endochondral development, as Ihh-/- mice lack osteoblasts within
the endochondral tissue, but not in intramembranous tissue.72

Without IHH, mesenchymal progenitors in the perichondrium of
the cartilaginous anlagen do not express Runx2 and hence fail to
undergo differentiation.73 The IHH receptor Smoothened (Smo) has
been deemed necessary to build trabecular bone.72

On the contrary to IHH, Sonic Hedgehog (Shh) induces ALP
expression74,75 and augments selectivity in the differentiation of
MSCs into the osteoblast lineage.76

Fibroblast Growth Factor
The FGF2, FGF9, FGF18, and their corresponding receptors,

FGFR1, FGFR2, and FGFR3, are all linked to skeletal development
of the long bones and calvarium.77,78 Embryos of genotype Fgf18-/-
Copyright © 2019 Mutaz B. Habal, MD. Unautho
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had defects in osteoblast maturation despite normal Runx2 expres-
sion.79,80 In contrast, FGFR1 activity has a tendency to launch
osteogenic differentiation at an early stage, only to inhibit mineral-
ization capabilities in mature osteoblasts.81 Gain of function muta-
tions in FGFR1, FGFR2, and FGFR3 caused craniosynostosis,
while implantation of beads soaked with FGF2 and FGF4 around
sutures caused osteogenesis and later suture closure.82,83

FGF2 serves as the quintessential example of how FGF is
connected to bone formation.84 Although the promotion of bone
repair via ASC mediation had been previously reported in vivo,
FGF2 was additionally found to inhibit terminal osteogenic differ-
entiation by antagonizing the retinoic acid-mediated upregulation
of BMP receptor type IB.85–87 This paradox can be explained when
one considers the principal function of FGF2, to promote the
proliferation and expansion of osteoprogenitor cells to maximize
the osteoprogenitor pool for future differentiation.85 Still, other
discussions are rooted in the fact that FGF2 can activate different
signaling pathways, including ERK, PI3K, and PKC, of which stage
and context would resolve the proliferation-versus-differentiation
debate.84,88 Given the complexity of FGF, as well as other signaling
pathways, the ability to guide a specific one in the context of ASC-
based therapy for bone formation would be a sweeping step in
regenerative medicine.5

Vascular Endothelial Growth Factor
Neurovascularization and angiogenesis are paramount to proper

bone foundation.89 It has been exhibited that VEGFA had a more
potent effect in precipitating ASC-mediated calvarial regeneration
than either BMP2 or FGF2, through a combination of osteogenesis
and angiogenesis.90

Dimethyloxaloglycine was tested for a dose-dependent effect by
levels of RUNX2, OCN, and ALP expression, plus VEGF, which is
produced as a product of HIF-1a overexpression.91 The ASCs
expressing Runx2 in combination with a vascularized flap led to
more effective bone repair than either facet acting alone, VEGF and
collagen type I were indicators.92

Extracellular Signal-Regulated Kinase
Another pathway that deals with osteogenic differentiation is

ERK, which is sometimes referred to as mitogen-activating protein
kinase, and where platelet-derived growth factor (PDGF) comes
into play.93 In 1 study, in the presence of PDGF-BB, ASCs, not
BMSCs, heightened osteogenic differentiation by increasing Runx2
and OCN output.94

Other Pathways Involved in Osteogenic
Differentiation

Erythropoietin has been reported to give rise to osteogenesis by
inhibiting PPARg, while IGF1 does the same through TAZ, and
when joined, resulted in even higher levels of Runx2, OPN, OCN,
ALP, and matrix mineralization.95 The ASCs magnofected with
Bcl2, an inhibitor of apoptosis, prompted greater ALP, extracellular
matrix mineralization, and expression of Ocn, Opn, and Runx2 than
nucleofected cells.96 miR-135 was shown to positively regulate
osteogenic differentiation based on bone markers and extracellular
matrix decomposition through a potentially new miR135/Hoxa2/
Runx2 pathway.97 The role of the transcription factor dFosB has
been explored, and the results obtained pointed to increased bone
mass and decreased adipocyte origination upon overexpression.98,99

A final biomolecule that has been scrutinized is growth and
differentiation factor 5, which appears to be more effective than
BMP2 in inducing onset of osteogenic differentiation while simul-
taneously prompting vascularization through VEGF.99,100
rized reproduction of this article is prohibited.
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DISCUSSION
Taken together, these limited numbers of studies have assisted in
mapping out the signaling pathways that ASCs go through to become
bone. Most work has looked at the function that the BMP course
fulfills, followed by those of Wnt, Notch, Hedgehog, FGF, VEGF,
and ERK. By differing scaffold type and culture medium, molecular
composition, mechanical stress, chemical amalgamation, or bioen-
gineering, the effectiveness of osteogenic differentiation can be
evaluated. Activity of ALP, emergence of collagen type I, expression
of OCN and OPN, and mineralization through calcium precipitation
were quantified in most cases to analyze potential.

It has become increasingly clear that with proper control of outside
inputs, ASCs make an excellent choice for bone tissue engineering in
clinical practice. The ideal mixture of favorable inducers is not as
straightforward, but the depth of research insists that multiple
manipulation strategies exist, as long as the stem cells are exposed
to at least one inducer of osteogenesis early on. Additionally, there is a
trend in combining inducers as to achieve optimal outcomes.

New methods are necessitated to not only reduce the culture
period and quantity of growth factors, but also to enhance the
efficiency of osteogenesis and thus bone regeneration. One approach
is delivery of cytokines incorporating these molecules into scaffolds
as basic as liposomes and microspheres.17 This makes the growth
factor retainable at the site of interest for an extended period while
maintaining its biologic activity. Engineered ASCs with gene trans-
fection by virus vectors have evolved to be an attractive option to
ameliorate bone repair, especially in large bone defects.34 As bone
formation by implantation of ASCs must be preceded by the in vitro
osteogenic differentiation of these cells, it is compulsory to design
procedures that ensure a well-characterized and consistent cell
population following the differentiation process.34
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