
Supplementary Information for: 
 
 
 

Comparing strategies to fine-map the association of common SNPs at 

chromosome 9p21 with type 2 diabetes and myocardial infarction 

Jessica Shea1–3, Vineeta Agarwala1,3–5, Anthony A Philippakis1,3–7, Jared Maguire1, Eric Banks1, Mark DePristo1, 

Brian Thomson1, Candace Guiducci1, Robert C Onofrio8, The Myocardial Infarction Genetics Consortium9, Sekar 

Kathiresan1,6,10-12, Stacey Gabriel1, Noël P Burtt1, Mark J Daly1,6,10,12, Leif Groop13 & David Altshuler1,3,6,10,12,14 

 

1Program in Medical and Population Genetics, Broad Institute of Harvard and Massachusetts Institute of 

Technology, Cambridge, Massachusetts, USA. 2Program in Biological and Biomedical Sciences, Harvard Medical 

School, Boston, Massachusetts, USA. 3Department of Genetics, Harvard Medical School, Boston, Massachusetts, 

USA. 4Program in Biophysics, Harvard University, Cambridge, Massachusetts, USA. 5Harvard-Massachusetts 

Institute of Technology Division of Health Sciences and Technology, Harvard Medical School, Boston, 

Massachusetts, USA. 6Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA. 7Department 

of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA. 8Genetic Analysis Platform, Broad 

Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. 9A list of members 

is provided in this Supplementary Note. 10Center for Human Genetic Research, Massachusetts General Hospital, 

Boston, Massachusetts, USA. 11Cardiovascular Research Center, Massachusetts General Hospital, Boston, 

Massachusetts, USA. 12Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA. 
13Department of Clinical Sciences, Diabetes and Endocrinology Research Unit, University Hospital Malmö, Lund 

University, Malmö, Sweden. 14Department of Molecular Biology, Massachusetts General Hospital, Boston, 

Massachusetts, USA. Correspondence should be addressed to D.A. (altshuler@molbio.mgh.harvard.edu). 

 
 

 
Information contained in this supplement: 
Supplementary Table 1 
Supplementary Figures 1-11 
Supplementary Note 
Supplementary References 
 
 
Supplementary information in separate files: 
Supplementary Tables 2-6 (Excel files) 



Supplementary Information for Shea et al. 
 
Supplementary Table 1: Regions sequenced and variants identified.  Six T2D-associated regions were sequenced in 
47 individuals from the HapMap CEU population.  For each region, boundaries were defined to encompass all SNPs 
having an r2 ≥ 0.2 to the SNP with the lowest association p-value.  The region on chromosome 9p21 near CDKN2A and 
CDKN2B was extended to cover the MI association.  These regions comprise a total of 1.8Mb of sequence. 
 

 
 
 

Chr 

 
 
 

Coordinates (hg18) 

 
 
 

Region Size (bp) 

 
 
 

Genes 

 
 

Percent of 
Bases Called 

 
 

Variants 
Identified 

 
 
 

Heterozygosity 
3 186812966 - 187078478 265512 SENP2, IGF2BP2 62% 442 1/2,501 
6 20617611 - 21368293 750682 CDKAL1 73% 2394 1/1,202 
8 118194972 - 118290242 95270 SLC30A8 65% 192 1/2,030 
9 21936711 - 22176221 239510 CDKN2A, CDKN2B 76% 635 1/1,266 

10 94084878 - 94484911 400033 MARCH5, IDE, KIF11, HHEX 38% 611 1/2,016 
16 52357187 - 52404063 46876 FTO 77% 189 1/621 
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Supplementary Figure 1:  Coverage of loci for (a) PCR and (b) Hybrid Selection DNA capture methods.
Each bar represents one individual, and the coverage of loci across the six (for PCR) or three (hybrid selection)
target regions for ranges 0x - 5x, 5x - 20x, 20x - 35x, >= 35x coverage is indicated by different shadings.  
Overall, approximately 70% of loci have 5x or greater coverage across all individuals; for hybrid selection only 
50% of loci have 5x or greater coverage.  Coverage for the the 9p21 locus across individuals (c) and genomic
position (d) is also shown.
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Initial genome mapping: Map 
sequencing reads using quality-
independent aligner (e.g. ILT)

1

 Adaptation: Replace Illumina
reported quality scores with 
empirically observed scores. 

2

Recalibration: Reassign quality 
scores using conditional logistic 
regression on read position and 
dinucleotide context.  Exclude 
bases with quality score < 10. 

3

Re-alignment: Re-align reads 
using a quality score-aware 
called (e.g. MAQ).  Exclude 

reads with low mapping quality. 

4

Variant discovery: calculate 
posterior probabilities of every 
genotype for each individual 
using a Bayesian framework. 

5

a lod

Genotype calling: Iteratively 
update prior probabilities based 
on observed allele frequencies; 
refine posterior probabilities and 
call individual genotypes above 

 threshold. 

6

Filter SNPs: Use multiple 
sequence re-alignment to 
remove SNPs occurring in 

clusters.  Remove SNPs with 
non-reference alleles exhibiting 

strand asymmetry. 

7

Supplementary Figure 2: Approach for identifying variants in next-generation sequencing.
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Supplementary Figure 3:  Variance explained under various stages of adjusting quality scores.
Each base comes equipped with a phred-style quality score q=-10log(ε), where ε is the probability that the 
base was miscalled.  Stated quality scores diverged from empirical estimates (a), and were
predominantly the same quality (b).  We developed a method of adapting quality scores to make them 
empirically accurate (c), but noted that the bases were still predominantly a single quality score after applying 
this method (d).  We therefore developed an additional method of recalibrating bases according to
covariates such as position in read and dinculeotide context; this gave a markedly more dispersed 
distribution of quality scores (e) that were still empirically accurate (f).



a b

Supplementary Figure 4:  Properties of sequencing data used in recalibrating quality scores.
For each base not aligning to a locus in dbSNP, we determined whether or not the base was
non-reference.  We then tallied the fraction of non-reference bases after stratifying on their 
dinucleotide context or position in the read.  Plotted above are representative lanes showing that 
the non-referecnce rate depends on (a) the dinucleotide context and (b) the position in the read.  
The dinucleotides most predictive of high and low non-reference rates and the profile of non-reference 
reads as function of read position varied from lane to lane.
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Supplementary Figure 5: Removal of additional artifacts to improve SNP calls.  We observed
an over-representation of SNPs in close proximity at non-dbSNP sites (a), which were removed
by multiple requence re-alignment (b).  We also observed non-reference calls for which the
evidence was confined to one strand (c), which occured predominantly at non-dbSNP sites; 
these sites were filtered out of the final call set.
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Supplementary Figure 6: Properties of variants identified across all six regions.
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Supplementary Figure 7: Sensitivity, specificity and accuracy of variant calls in sequencing data.   
(a) Sensitivity for HapMap sites in high-coverage sequencing data across all six regions.  We detected 
90% of HapMap SNPs polymorphic in the 47 sequenced individuals overall, and 99% when we had at least 
10-fold coverage in individuals with the variant allele.  (b) Accuracy of individual genotype calls made from 
sequencing data at HapMap sites across all six regions sequenced (n=28,507 comparisons).  (c) Comparison 
of our high-coverage sequencing to high-coverage 1kG Pilot 2 data  across all six regions in the two 
CEU individuals common to both projects. (d) Specificity at sites not previously genotyped in HapMap based 
on validation genotyping on chromosome 9p21.  (e) Accuracy of individual genotype calls made from 
sequencing data at sites not previously genotyped in HapMap based on validation genotyping on 
chromosome 9p21 (n=7,573 comparisons).
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Supplementary Figure 8: Percentage of variation on chromosome 9p21 captured in the MI disease cohort 
by different imputation scenarios.  (a-f) MACH imputation quality estimates (a, c, e) and overall percentage 
of variation captured in MI samples (b, d, f) for different imputation scenarios.  (a, c, e) MACH-estimated
r2 for each SNP versus genomic position.  SNPs not observed in the reference panel are assigned r2 = 0.  
Recombination rate was estimated from HapMap II.  (b, d, f) The fraction of variation captured in MI 
case-control samples versus MAF and MACH-estimated r2.  Imputation scenarios include imputing from 
HapMap II into the SNPs genotyped on the Affymetrix 6.0 array (a, b), imputing from 112 CEU individuals 
genotyped at HapMap II sites and validated sequencing sites into the SNPs genotyped on the Affymetrix 
6.0 array (c, d) and imputing from the same reference panel as c and d into SNPs genotyped on the 
Affymetrix 6.0 array plus additional tag SNPs genotyped in the MI cohort.
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Supplementary Figure 9: Adding tag SNPs improves imputation from multiple chips.  We performed
imputation from a genotyped reference panel (n=464 SNPs in 112 HapMap CEU individuals from 56 trios) 
into 90 HapMap TSI individuals genotyped at the same set of SNPs.  (a) Imputation results when genotypes 
in TSI individuals were downsampled to the SNPs present on the indicated commercial GWAS arrays.  
Y-axis shows the overall percent of SNPs in the reference panel captured in TSI samples. (b) Imputation results
when genotypes in TSI individuals were downsampled to SNPs present on the indicated commercial GWAS 
arrays plus the set of tag SNPs we genotyped in our entire T2D and MI cohorts to improve imputation (eg, the
set of tag SNPs used in Fig. 2 and Supplementary Fig. 8).  Affy5 and Affy6 indicated the Affymetrix 500K and
6.0 arrays, respectively.  The HumanHap and Human1M arrays are Illumina arrays.
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Supplementary Figure 10: Imputation directly from Illumina data.  We compared four methods for imputing
directly from Illumina data into our T2D samples on chromosome 9p21 and used genotypes for a sampling 
of the imputed SNPs (n=299 out of 413 imputed SNPs) in a subset of our T2D samples (n = 319 individuals) 
to evaluate imputation performance.  All methods performed comparably in terms of the fraction of imputed 
SNPs captured as a function of the MACH- or Beagle-estimated (a) and empirical (b) r2 between imputed 
dosages and true genotypes.  Phasing sequencing genotypes on top of HapMap haplotypes and imputing 
with MACH resulted in slightly higher accuracy at rare SNPs (c).
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Supplementary Figure 11: Comparison of MACH- and Beagle estimated r2 to empirical values when
imputing directly from Illumina data into disease samples.  We compared four methods of imputing 
directly from Illumina data. In each case, the imputation engine (MACH or Beagle) provides an estimate
of how well each SNP is imputed.  To evaluate how accurate these estimates are when imputing directly 
from Illumina data, we used genotypes at a sampling of imputed SNPs (n=299 out of 413 imputed SNPs) 
in a subset of our T2D samples (n=319 individuals) to calculate the r2 between imputed dosages and 
observed genotypes and compared these values to the estimates provided by the imputation engines for
each of the four methods: (a) phasing sequencing genotypes on top of HapMap haplotypes and imputing 
with MACH, (b) phasing sequencing genotypes along with HapMap genotypes and imputing with MACH, 
(c) imputing from sequencing likelihoods and HapMap genotypes directly into study samples using Beagle, 
and (d) creating phased haplotypes from sequencing likelihoods and HapMap genotypes using Beagle, 
and then imputing from those haplotypes into study samples using Beagle.
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SUPPLEMENTARY NOTE 
 
 
Sequencing 
 
I.  Sequencing protocols and data pre-processing 
Six regions associated with Type 2 Diabetes (T2D) were selected for targeted re-sequencing.  Region boundaries were 
selected to contain all SNPs in linkage disequilibrium (r2 ≥ 0.2) with the T2D-associated SNP of lowest p-value. For 
chromosome 9p21, we also sequenced the region associated with myocardial infarction (MI).  In total, these 6 regions 
comprise nearly 1.8Mb of sequence, with individual regions ranging from ~47kb to ~750kb in size.  Supplementary 
Table 1 lists the exact coordinates for each region, as well as a list of all genes contained within them. 
 
DNA was captured for sequencing by long-range PCR with 2-5kb amplicons (Supplementary Table 2.1) or by hybrid 
selection (HS) using 170bp baits (Supplementary Table 2.2) tiled across the region on an Agilent microarray1.  All re-
sequencing was performed at the Broad Institute in 2008 using Illumina Genome Analyzers (GA).  Runs from PCR-based 
capture generated 36bp reads and runs from HS-based generated 46-50bp reads.  We sequenced these regions in 47 
individuals of European ancestry from the HapMap CEU population2. 
 
We noted that HS resulted in more uniform, but lower, coverage than PCR-based capture (Supplementary Fig. 1 a-d).  
Overall, 70% of the targeted regions had at least 5x coverage in all individuals (Supplemental Fig. 1c). 
 
II. Alignment and data pre-processing 
An overview of our analysis framework for variant calling from Illumina sequencing data is shown in Supplementary 
Figure 2.  Reads were first aligned to the reference genome using Imperfect Lookup Table (ILT), an aligner developed at 
the Broad Institute that does not utilize base quality scores when aligning.  This is important given that quality scores from 
the Illumina GA are not reflective of true error rates (see below).  
  
After quality score adaptation (Section III below), we re-aligned the reads using MAQ3, which provides greater accuracy 
than ILT but relies on having accurate base quality scores.  In aligning with MAQ, we used the following settings: -D, -e 
100, -s 0.  We discarded all reads with a mapping quality score < 20. 
 
III. Quality score adaptation 
The Illumina GA provides each sequenced base (bi) with a phred-style quality score (qi) 
 

qi=-10log10εi   (3.1) 
 
where εi represents the probability that base bi has been erroneously called.  Inspection of output quality scores reveals 
that stated error rates diverge from empirical values and are predominantly the same value (Supplementary Fig. 3a, b).  
Specifically, let Bq be the collection of all bases with quality score q, and let Mq⊂Bq be the subset of bases with quality 
score q that are non-reference (i.e., aligned bases that do not agree with the reference).  Then for each q, we compute: 
 

 (3.2) 

 
Thus,  represents the empirical quality score for all bases with stated quality score q.  Note that this calculation implicitly 
assumes that all non-reference bases are errors, an overly conservative estimate.  To address this difficulty, in computing 

 we ignore all dbSNP positions; since the frequency of polymorphisms outside dbSNP sites is ~10-5, and since the error 
rate of the Illumina GA is much higher (~1-5%), this provides a reasonable estimate of the empirical error rate .  As 
shown in Supplementary Figure 3a,  is not, in general, equal to q; in an “adaptation” procedure, we replace stated 
quality scores with empirical values (Supplementary Fig. 3c). 
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IV. Quality score recalibration 
After adaptation, the majority of bases were still assigned identical quality scores (Supplementary Fig. 3d), resulting in 
low information content.  To address this, we identified several covariates, including dinucleotide context and base 
position within a read, that were predictive of base error rates even after stratifying on quality score.  Specifically, we 
associate each sequenced base bi to a dinucleotide context di as well as its relative position pi in a read.  We observed that 
error rates (as measured by empirical non-reference rates) were non-uniform across both these metrics (Supplementary 
Fig. 4a, b). Moreover, the values of d and p causing the highest and lowest error rates varied from lane to lane, depending 
on the experimental chemistries used.   
 
We developed a “recalibration” method to repartition observed quality scores based on these metrics using conditional 
logistic regression.  Each base emitted from the sequencer gives a 4-tuple (bi, qi, di, pi), and the following regression 
across all bases yields values for the coefficients  
 

  (4.1) 

 
The coefficients   can then be used to compute a new estimate  of the quality score for base bi 

 

   (4.2) 

 
After performing re-calibration, the distribution of quality scores was markedly more uniform, and empirical quality 
scores matched their stated values when conditioned on both position in read and dinucleotide (Supplementary Fig. 3e, 
f).  Because there were frequently large jumps in error rates at the first and last bases of a read, these bases were dropped 
in all analyses. 
 
We also noted that false-positive calls often occurred at positions where aligned bases were of lower quality or fewer in 
number than bases immediately adjacent to them.  To quantify this, we used a “neighborhood quality standard” (NQS).  
At a given genomic locus l, let bl,j be all bases across all individuals that map to position l.  We define the NQS at l by 
 

  (4.3) 

 
NQS is a weak but consistent predictor of base error rate; we removed its effects by discretizing the NQS score at each 
locus and adapting the quality scores.   
 
We evaluated the fraction of variance explained 1) in the raw quality scores, 2) after adaptation, 3) after re-calibration 
over the position and dinucleotide covariates, and 4) after recalibration over NQS.  The variance explained was computed 
using the method of Nagelkerke4.  As shown in Supplementary Figure 3, the raw quality scores explain no variance and 
assigning each base the average error rate of the lane explains more variance than the raw quality scores.  After all 
recalibrations were made to the quality scores, approximately 40% of the variance is explained.  Thus, adaptation and 
recalibration act to explain a substantial amount of variance, yet there are also likely other covariates that might also be 
utilized to further improve quality scores.  

We also examined the effect of recalibration on SNP calling.  Adaptation and recalibration lead to a dramatic reduction in 
the total number of SNPs while causing almost no change to the number of dbSNP sites discovered, suggesting that the 
majority of removed SNPs were false positives. 
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V. SNP calling algorithm 
We developed a Bayesian framework for detecting SNPs which has since been incorporated into the Genome Analysis 
Toolkit (GATK) 5,6.  Specifically, let G={AA, AC, AG, AT, CC, …, TT} represent the ten possible diploid genotypes at a 
given locus, and let D represent the collection of bases and their quality scores observed at that locus.  Following the 
notation of the previous section, D={(b1,q1), …(bN,qN)}, where bi is the i’th base, qi is its corresponding quality score after 
recalibration, and qi=-10logεi where εi is the probability that base bi has been miscalled. 
We seek to compute the posterior probability of each genotype G given the data D 
 

  (5.1) 

 
Let Ni denote any base not equal to bi.  Then G∈{bibi, biNi, NiNi} at the i’th base, and  will vary with the value of 
G and bi  

  (5.2) 

 
The term  represents our prior probability of observing genotype G at the locus.  For most applications, we use a 
variation-aware prior.  Specifically, if the locus has been genotyped in the HapMap project, we let  be the expected 
frequency of G under the assumption of Hardy-Weinberg equilibrium based on the reported CEU frequencies; for sites 
that are in dbSNP but not genotyped in HapMap, we assume a minor allele frequency of 0.05 and compute the expected 
frequency of G under the assumption of Hardy-Weinberg equilibrium; finally, for sites that are not in dbSNP, we assume 
a prior probability of 2*10-4 for heterozygous non-reference genotypes and 10-5 for homozygous non-reference genotypes.  
Note, however, that in several applications (e.g., discovering the strand asymmetry and clustering artifacts shown in 
Supplementary Fig. 5a-c), it is useful to evaluate SNP-calling performance by stratifying on membership in dbSNP.  In 
these cases, the preceding priors would clearly be problematic as they are biased toward re-discovering known sites.  
Therefore, in these applications we place a prior of 10-3 for any heterozygous non-reference genotype, and 10-5 for any 
homozygous non-reference genotype. 
 
VI. Removing SNP clusters 
As shown in Supplementary Figure 5a, SNPs often occurred in clusters.  This clustering of SNPs tended to occur more 
frequently at non-dbSNP sites, suggestive of false positives. In many cases, we observed that the cause of SNP clustering 
was either an insertion/deletion or a locally repetitive region.  To address this, we developed a method to perform multiple 
sequence realignment (MSR) at specified regions.  At each interval where SNP clustering is observed, the MSR allows at 
most one insertion or deletion in each read.  Let bi,j denote a base aligning to locus i in read j before MSR, and let  be 
a base aligning to locus i in read j after MSR when allowing an insertion or deletion D.  For each possible insertion or 
deletion D at the locus, a measure of the goodness of fit is computed by 
 

  
where 

 
and  is the estimated error rate of bi,j from the previously described recalibration procedure.  We then take the insertion 
or deletion D that maximizes , and retain those insertions or deletions for which .  The effect of MSR is 
shown in Supplementary Figure 5b; this markedly reduced the number of clustered SNPs. 
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VII.  Improving SNP calls through iterative updating of priors 
We developed a two-step method of iteratively updating the prior probability of genotypes at each SNP to incorporate 
information from all individuals in the study.  Intuitively, the goal of this analysis is to demand less evidence in order to 
call a non-reference genotype at loci that are more frequently observed to be non-reference.  
 
Step I: Estimate the population allele frequencies fA, fC , fG, fT using the sequenced individuals according to the formula  
 

    (7.1) 

 
where  is the posterior probability of the genotype NjNk in sequenced individual i, and I is the number of 
sequenced individuals. 
 
Step II:  Update the prior probability of the genotype NjNk according to the expected frequencies under Hardy-Weinberg 
equilibrium  
 

  (7.2) 

 
and use this value to re-compute the posterior probability of genotype NjNk. 
 

   (7.3) 

 
We iterate Steps I and II until the new frequency of each nucleotide computed in Step I is < 0.0001 of its previous value.  
The output of this procedure is both an updated posterior probability for each genotype, as well as an estimate of the allele 
frequencies fj.  We have found that this procedure substantially increases the sensitivity of SNP calling, especially at lower 
coverage sites.  
 
VI. Removal of strand asymmetries 
We noted that for many SNPs, particularly at non-dbSNP sites, the evidence for the non-reference allele was confined to 
either the forward or reverse strand (Supplementary Fig. 5c).  We therefore developed a method for testing whether any 
observed strand asymmetries were statistically significant.   
 
Let D be the collection of bases at a given locus, and let D+ and D- be those bases that occur on the forward and reverse 
strands, respectively.  We apply the iterative procedure of the previous section in order to estimate the allele frequencies 

 and  on each strand separately, as well as the allele frequencies fj using both strands simultaneously.  Let , 
 and  be the probabilities of the data using these estimated allele frequencies as in equation 7.3 and 5.1.  

Then we can compute the statistical significance of any observed strand asymmetries with a standard likelihood ratio test 
 

 
 
where χ1

2 is a chi-squared random variable with one degree of freedom. 
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Sensitivity, Specificity, and Accuracy Analysis for Sequencing Calls 
 
I. Sensitivity for HapMap SNPs 
We used HapMap II data2 (Release 23a) for all six regions sequenced.  This dataset contained 1545 SNPs in the 
sequenced regions that were polymorphic in the 47 individuals sequenced, of which we called 90%.  The vast majority of 
HapMap SNPs that we did not call were missed due to having low or no coverage in the sequencing data.  When we had 
greater than 10-fold coverage in individuals with the variant allele, we called 99% of HapMap SNPs (Supplementary 
Fig. 7a).   
 
The 1% of well-covered SNPs that we missed fell into two categories: (1) SNPs that were initially called by our SNP 
calling algorithm but that were subsequently filtered out due to strand asymmetry or an overlapping indel and (2) SNPs 
represented by a single heterozygous individual for whom we had high (30-300X) coverage but saw no evidence for the 
variant allele, suggesting these are possible genotype errors in HapMap.  
 
II. Comparison to 1000G Pilot 2 Data 
1000G Pilot 27 included high coverage  (>25x) data for one CEU trio; the parents in this trio were also sequenced in our 
project. We compared our sequencing calls for these individuals to 1000G Pilot 2 data.  Across the six regions we 
sequenced, 1000G Pilot 2 called 1593 SNPs in the CEU father (NA12891) and 1769 SNPs in the CEU mother 
(NA12892).  The 1000G Pilot 2 project had much more uniform coverage than our project; we had greater than 10-fold 
coverage at only 70% of these sites of variation.  At this subset of well-covered sites, we detected 97% of the 1000G Pilot 
2 SNPs in our sequencing across all 47 individuals, and made a variant call within NA12891 and NA12892 in 95-96% of 
cases; furthermore, at variant sites called by both projects, we called exactly the same genotype in 99% of cases 
(Supplementary Fig. 7c). 
 
Over half of the SNPs that targeted re-sequencing did not detect (20 out of 37 variants in NA12891, for example) were 
initially called and then subsequently filtered out due to the presumed presence of insertion-deletion variants or due to 
strand asymmetry.  However, 15 of these 20 sites are in fact annotated in dbSNP as potential insertion-deletion sites, 
suggesting that our MSR filtering procedure is relatively specific.  Thus, after correcting for likely false positive sites, the 
true sensitivity of our project as compared to the 1000G Pilot 2 data is 98% for overall variant detection and 97% for 
detection of the variant allele within NA12891 and NA12892.  These sensitivities are slightly lower than the 99% 
sensitivity achieved for sites of common variation in HapMap, but this was expected given that less evidence is available 
for the detection of rare alleles.  
 
III. Validation genotyping of variant calls in sequencing data 
To evaluate the specificity of variant calls from targeted re-sequencing, we performed validation genotyping of non-
HapMap sites on chromosome 9p21 (Supplementary Fig. 7d).  In this validation, we attempted to type all variants seen 
more than once in our sequencing data, as well as a random sampling of variants seen only once (singletons).  We did not 
attempt all singletons because the vast majority of these were novel (Supplementary Fig. 6) and possibly private 
mutations.  A detailed summary of validation analysis on chromosome 9p21 is provided in Supplementary Table 4. 
 
IV. Accuracy of individual genotype calls in sequencing data 
As described above, the Bayesian SNP caller generates a posterior probability of each possible genotype for each 
individual at each site.  We made individual genotype calls at sites where the lod score (log10 of the ratio of the two 
highest genotype posterior probabilities) exceeded 3.0.  We compared these high-confidence genotypes to HapMap 
genotypes across the six regions sequenced and to validation genotypes on chromosome 9p21 (Supplementary Fig. 7b, 
e).  
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Study Samples and Clinical Characteristics 
 
The study samples used here have been previously described8,9.  For T2D, the samples were from the Diabetes Genetics 
Initiative cohort.  This cohort has 2931 individuals previously analyzed in our T2D GWAS: 2097 unrelated individuals 
and 834 individuals in discordant sibships9.  We used only individuals from the unrelated case-control group.  We 
excluded 49 individuals for whom we found genotype discrepancies in multiple rounds of genotyping and used the 
remaining 2048 individuals (1000 cases and 1048 controls).  These individuals had been previously genotyped on the 
Affymetrix GeneChip Human Mapping 500K SNP Array Set9. 
 
For MI, we used early-onset MI cases and matched controls from five studies that are part of the Myocardial Infarction 
Genetics Consortium8.  The five studies were (i) Heart Attack Risk in Puget Sound; (ii) Registre Gironi del Cor; (iii) 
Massachusetts General Hospital Premature Coronary Artery Disease; iv) FINRISK; and v) Malmö Diet and Cancer Study. 
The collection and clinical characteristics of these samples have been previously described8. These studies included a total 
of 1274 cases and 1407 controls.  These samples had been previously genotyped on the Affymetrix Genome-Wide Human 
SNP Array 6.08. 
 
 
Imputation From Genotyped Reference Panel on Chromosome 9p21 
 
I. Reference Panel 
To create a genotyped reference panel for chromosome 9p21, we genotyped all validated sequencing SNPs in 168 
individuals (56 parent-offspring trios) of European ancestry from the HapMap III CEU population10.  HapMap III 
(Release 2) contained 137 SNPs polymorphic in the 168 individuals; we used HapMap III data for these sites.  The final 
reference panel contained 464 SNPs across ~240kb on chromosome 9p21.  A detailed list of SNPs in this reference panel 
is given in Supplementary Table 5.  For Figure 2 and Supplementary Figure 8, we evaluated the proportion of the 464 
SNPs represented in the genotyped reference panel that were captured in the T2D and MI cohorts. 
 
II. Phasing and Imputation 
When imputing from the genotyped reference panel or HapMap II (Fig. 2, Supplementary Fig. 8), we used PHASE11,12 
(Version 2.1) to create phased haplotypes for the reference panel.  We used trio information to inform phasing (-P1 
option); all other PHASE parameters were default values.  Imputation from reference haplotypes was performed using 
MACH13,14 (Version 1.0.16).  We used 100 rounds and the default values for other MACH parameters.  
 
III. Identification of tag SNPs 
Tagger15 (pairwise tagging, r2 threshold 0.8) was used to identify a set of tag SNPs to capture poorly imputed (MACH-
estimated r2 < 0.8) variants.  These tags were genotyped in the entire T2D and MI cohorts.  After quality control filtering, 
this added 94 SNPs to the T2D cohort (final number of SNPs = 145) and 73 SNPs to the MI cohort (final number of SNPs 
= 167). This corresponds to a marker density of ~1SNP/1.5kb across the ~240kb region.  We note that we performed this 
tagging on an early version of our dataset that was subsequently revised as we improved our SNP caller (for calling 
variants in Illumina data).  While these tags were designed with an earlier dataset, we find that they effectively tag the 
common variation in our final dataset (Fig. 2e, f and Supplementary Fig. 8e, f). 
 
IV. Evaluation of tagging for additional GWAS arrays 
To evaluate whether the improvement in imputation observed upon addition of tag SNPs was specific to Affymetrix 
arrays, we tested the effect of adding the same set of tag SNPs to additional commercial arrays.  We considered, in 
addition to the Affymetrix 500K and 6.0 arrays, the Illumina HumanHap300, HumanHap500, HumanHap650Y, and 
Human1M arrays. 
 
We imputed from our genotyped reference panel (n=464 SNPs in 112 CEU individuals from 56 trios) into 90 additional 
HapMap samples of European ancestry (from the HapMap III TSI population) which we had previously genotyped at the 
same set of 464 SNPs present in the genotyped reference panel.   For these imputations, we downsampled the markers in 
the 90 TSI individuals to the set of SNPs present on each of the commercial GWAS arrays and evaluated the overall 
fraction of markers in the reference panel captured with a MACH-estimated r2 of at least 0.8 (Supplementary Fig. 9a).  
Consistent with our observations for the Affymetrix arrays, intermediate frequency (MAF 2-5%) variants were largely not 
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imputed well, although – as expected – they were imputed better from the more dense GWAS chips (e.g. the Human IM). 
Adding the tag SNPs to the array SNPs (Supplementary Fig. 9b) resulted in improved imputation across all minor allele 
frequencies for all chips tested. 
 
 
Imputation Directly from Illumina Sequencing Data 
 
I. Methods tested 
We tested several methods for imputing directly from high coverage re-sequencing data.  In all cases, the reference panel 
consisted of only the 47 individuals sequenced.  Imputation was performed into our T2D cohort, using GWAS genotypes 
in the T2D samples. 
 
Haplotype creation with PHASE, imputation with MACH 
As described above, we made individual genotype calls from the sequencing data at sites where the lod score (log10 of the 
ratio of the two highest genotype posterior probabilities) exceeded 3.0; we used these genotypes for imputation (singletons 
in the sequencing data were excluded). 
 
Individual genotypes from sequencing data (n=220 non-singleton SNPs) were either phased on top of HapMap II 
haplotypes (Release 22, n=246 SNPs) (-k used to specify known phase at HapMap sites) or phased along with HapMap 
genotypes for the 47 sequenced individuals using PHASE.  The HapMap haplotypes were created using trio information; 
phasing on top of these haplotypes has the advantage of preserving this information.  Imputation from the reference 
haplotypes was performed using MACH (100 rounds, all other parameters were default values).  
 
Likelihoods-based imputation with Beagle 
Of course, information is lost in converting the genotype probabilities from the sequencing data into hard genotype calls.  
Most notably, there are many instances in which we do not make a genotype call due to an insufficient lod score.  We 
therefore also tried likelihoods-based imputation with a newly available version of Beagle16-18 (Version 3.1).   
 
As described above, our SNP caller calculates the posterior probability of each genotype, given the observed sequencing 
data (P(Genotype|Data)).  The genotype likelihood used in Beagle imputation is the probability of observing the 
sequencing data given a particular genotype at the site (P(Data|Genotype)), which we calculate with a re-arrangement of 
equation 5.1 above. 
 
For these methods, we expressed HapMap genotypes (n=246) as likelihoods (P = 0.999 for the observed genotype and P 
= 0.001 for other possible genotypes) and integrated these with genotype likelihoods calculated from sequencing data at 
non-HapMap, non-singleton sites (n=220).  We then used Beagle to impute directly from this likelihoods reference panel 
into T2D samples (single step procedure).  We also tried using Beagle to first create phased reference haplotypes from the 
likelihoods reference panel and then to impute from the phased haplotypes into T2D samples (two step procedure).  
 
II. “Truth” dataset and evaluation of method performance 
Of the 466 SNPs in the reference panel, 53 were genotyped in the T2D samples, leaving 413 SNPs to be imputed. We 
used several metrics to evaluate imputation performance.  First, both MACH and Beagle provide, for each SNP, an 
measure of imputation quality related to the estimated correlation between the imputed allele dosage and the true allele 
dosage; we refer to these values as the “estimated r2”.  To enable empirical evaluation of imputation performance, we 
genotyped a sampling of the imputed SNPs (n=299) in a subset of our T2D samples (n=319 individuals).  For each variant 
we calculated the squared correlation between the imputed dosage from imputation and the observed genotype.  We refer 
to these values as the “empirical r2”.   
 
We found that all methods performed comparably in terms of the fraction of variants captured by both estimated and 
empirical r2 over a range of r2 thresholds (Supplementary Fig. 10a, b), but noted that phasing the sequencing calls on top 
of known HapMap haplotypes gave slightly higher imputation accuracy at low-frequency sites (Supplementary Fig. 
10c).  We also found that the estimated r2 values provided by MACH or Beagle for each imputation analysis were well 
calibrated to the empirical values (Supplementary Fig. 11).  Because of the improved accuracy at low-frequency sites, 
we used the method of phasing sequencing genotypes on top of HapMap haplotypes and imputing with MACH for all 
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subsequent imputations from sequencing data (this method was used for Fig. 3). 
 
III. Imputation from 1000 Genomes 
Out of the 58 CEU founders sequenced in 1000G Pilot 1, 55 individuals had phased haplotypes available from HapMap 
III10.  Non-singleton 1000G genotype calls (n=325 SNPs) for these 55 individuals were phased on top of HapMap 
haplotypes (n=124 SNPs) using PHASE and imputation was performed using MACH as described above. 
 
 
List of Members of the Myocardial Infarction Genetics Consortium 
 
Heart Attack Risk in Puget Sound (Seattle, Washington, USA): Stephen M Schwartz, David S Siscovick 
 
Registre Gironi del Cor (Spain): Roberto Elosua 
 
Massachusetts General Hospital Premature Coronary Artery Disease Study (Boston, Massachusetts, USA): Sekar 
Kathiresan 
 
FINRISK (Finland): Veikko Salomaa 
 
Malmö Diet and Cancer Study (Malmö, Sweden): Olle Melander 
 
Broad Institute of Harvard and Massachusetts Institute of Technology (Cambridge, Massachusetts, USA): Benjamin F 
Voight, Sekar Kathiresan, David Altshuler 
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