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This document provides a complete and detailed description of the analyses in the paper. 
Therefore, there is some overlap with the text in the Methods section in the main text of the 
paper.  
 
Ethical statement 

Recruitment protocols were approved by Institutional Review Boards at each HMP 
clinical site, and written informed consent was obtained from all study participants for data 
sharing through dbGap. All study participants have consented for the sequencing of their own 
genetic material [1]. Specifically, the HMP human subjects study was reviewed by the 
Institutional Review Boards (IRBs) at each sampling site: the BCM (IRB protocols H-22895 
(IRB no. 00001021) and H-22035 (IRB no. 00002649)); Washington University School of 
Medicine (IRB protocol HMP-07-001 (IRB no. 201105198)); and St Louis University (IRB no. 
15778). The study was also reviewed by the J. Craig Venter Institute under IRB protocol 2008-
084 (IRB no. 00003721), and at the Broad Institute of MIT and Harvard the study was 
determined to be exempt from IRB review. 

  
Host read data acquisition, filtering, and alignment 
 The processing of the raw data files through the genotyping step was performed on the 
compute cluster at the Broad Institute. We downloaded 1,553 raw Illumina read files (total of 8 
TB) in SRA format, representing samples from 98 individuals (HMP subjects), from the dbGaP 
database. The files were decrypted, and converted to FASTQ format using NCBI's SRA toolkit 
(version 1.0.0-b10) with default parameters. 152 files that failed the standard Illumina quality 
checks were excluded from the downstream analysis. The reads from the remaining 1401 files 
were aligned to the human genome (build hg19) using BWA v0.5.7 [2] with default settings for 
the alignment, except for the “bwa sampe” step, where the option “-a 2000” was used to 
change the maximum insert size from default 500 to 2000. Out of the 79,877,504,468 post-
filter reads, 35,828,514,379 were mapped to the human genome. 

The 1401 BAM files were reorganized by merging reads from different samples from 
the same subject into subject BAM files using samtools [3]. Each record was properly tagged 
with a Read Group (RG) reflecting the sequencing lane, the subject, the library of origin, and 
the sequencing platform. The merging failed for one individual (due to corruption of the 
original sample BAM files), and for 4 others the merged BAM files contained only reads from 
stools samples with virtually no human DNA present. These 5 subjects were excluded, leaving 
93 individual BAM files with sizes varying from 7 GB through 142 GB, with the average size 
of 31.4 GB. The number of mapped reads per individual varied widely between 23 thousand 
and 840 million with a few individuals scoring as many as 1.5 billion mapped reads. The 
average number of mapped reads per individual was 365 million. 

Further processing of the alignments was done using the GATK (build 5588) [4] and 
Picard (versions 1.41-1.46; http://picard.sourceforge.net/) packages. The GATK suite is very 
sensitive to the format of the input alignments. Therefore, in order to correct for a few 
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inconsistencies introduced by the BWA alignment program, each of the merged BAM files was 
subjected to the cleaning process using the CleanSam and FixMateInformation tools from the 
Picard package. The first of these tools soft-clips the alignments extending beyond the edge of 
a reference sequence, while the second synchronizes position information between reads in 
mate-pairs. Each subject BAM cleaned in this way was then run through the process of 
flagging the molecular duplicates and realignment around indels using the MarkDuplicates 
function from Picard and GATK’s RealignerTargetCreator and IndelRealigner functions, 
respectively. The realignment step was followed by a call to Picard’s  FixMateInformation 
procedure. Overall, it took about 3,600 CPU hours to process all BAM files through the 
cleaning and MarkDuplicates step, and another 1,000 CPU hours for realignment around 
indels. These parts of the calculation were parallelized over individual BAM files (i.e., each 
individual BAM file was processed on a single cluster processor) 

 
First pass genotype calling 

Variants (SNPs and short indels) were called from all 93 cleaned and re-aligned BAM 
files using the GATK’s UnifiedGenotyper function with standard emission confidence 
parameter set to 3.0 (-stand_emit_conf 3.0). This value, much lower than the GATK default, 
was used in order to provide an exhaustive list of possible variants for subsequent filtering. The 
coverage for each individual was down-sampled to 200 (i.e., the option –dcov 200 was used). 
Other options of UnifiedGenotyper were kept at their default values. The calculation was 
parallelized over genomic coordinates by splitting the genome into 80,000 bp intervals and 
running UnifiedGenotyper for each of these intervals on a separate processor of the compute 
cluster. Typically, each job took about 1 hour of wall time, with the exception of a few 
intervals around centromeric or telomeric regions, for which the calculation needed more time 
and sometimes had to be parallelized further in order to fit within the compute cluster queue 
time limits. Overall, the genotyping part of the calculation required about 4800 CPU-hours. 
After excluding contigs that did not map to a known chromosome, this unfiltered, low-pass 
genotype set included 19,377,382 SNPs and 3,519,487 short InDels. 

 
Genotype call filtering, recalibration, and QC 
 In order to filter the genotype calls and keep only high-quality variants, we used GATK 
and applied several hard filters that are recommended for low-coverage whole-genome data 
[5]. Specifically, we excluded SNPs with low mapping quality (using the filter string “QUAL < 
10”), SNPs with a strand bias ("SB >= -0.1"), and SNPs that are otherwise of low quality 
(using the filter string MQ0 >= 4 && ((MQ0 / (1.0 * DP)) > 0.1)"). In addition, we masked out 
SNPs that are near InDels using a window size of 10. Lastly, we excluded any SNPs for which 
there is missing information and a clear filter decision could not be made.  
 Next, we performed variant score recalibration on the SNPs that have passed the above 
filters using the GATK VariantRecalibrator. As input to train the model, we used three input 
SNP sets: (i) HapMap3.3 SNPs, with the options “known=false, training=true, truth=true, 



	
   4	
  

prior=15.0”, (ii) dbSNP build 132 SNPs, with the options “known=true, training=false, 
truth=false, prior=8.0”, (iii) 1000 Genomes Project SNPs from Omni 2.5 chip, with the options 
“known=false, training=true, truth=false, prior=12.0”. After applying the recalibration using 
the GATK ApplyRecalibration command with the parameter “--ts_filter_level 99.0”, and 
excluding variants that did not pass the various filters, we were left with 13,190,940 SNPs 
across the 93 individuals. Of this set, 7,229,492 SNPs (60.3%) were also found in dbSNP. 
 As quality control, we plotted the number of sites filtered out by each filter or 
combination of filters, as well as the Ti/Tv ratio for each filter combination (Figure S6). The 
sites that passed our filtering criteria have the highest Ti/Tv ratio (mean 2.1), which is close to 
the expected value observed in many sequencing projects, including the 1000 Genomes Project 
pilot data (genomic average Ti/Tv of 1.96)[6]. In addition, we plotted the coverage across the 
set of filtered and recalibrated SNPs in a number of ways. First, we plotted the mean coverage 
per site summed across all individuals (Figure S2). The mean depth of coverage for each site is 
1061 reads (median 1093), and 99% of sites are covered at >500x across 93 individuals. Next, 
we plotted the mean coverage for each individual (Figure S3). There is noticeable variability 
across individuals, with one individual covered at >50x and some <5x. However, most 
individuals have a mean coverage in the range of 5x-20x, and only two individuals have a 
mean coverage of <3x. Considering the number of SNPs called for each individual, we again 
see some variability (Figure S8), with the same two individuals with fewer SNPs (around 10M, 
compared to a mean of 12.9M across all individuals). Although this variability was expected, 
given that the total number of reads mapped varied greatly across individuals, we decided to 
exclude from the association analysis the two individuals with < 10M SNPs, to make sure the 
results are not biased by low-coverage calls.  
 When we consider the frequency spectrum of alleles in our sample (Figure S7), we see 
an enrichment of low-frequency variants, as consistent with many recent population-scale 
sequencing studies [7]. We see a similar distribution when we consider allele sharing across 
individuals (Figures S8 and S9), with most alleles appearing in only one individual. Since 
alleles at lower frequencies are less informative for association analysis, we excluded from 
downstream analysis SNPs that are at frequency of less than 5% in our sample, leaving us a set 
of 5,536,004 SNPs. Of this set, 5,108,016 SNPs are also found in dbSNP (92.3%).  
 Finally, we transformed the SNP data using the make-bed command in PLINK, keeping 
only SNPs with minor allele frequency above 10% (using the parameter --maf 0.1), SNP with 
P-value > 10-3 for Hardy-Weinberg equilibrium (HWE; using the parameter --hwe 0.001), 
autosomal SNPs, and SNPs with less than 50% missing information (using the parameter --
geno 0.5). The final BED file included 4,205,323 SNPs that set that passed these QC thresholds 
and were used in the analysis. 
 Pairwise identity-by-state (IBS) distances between individuals were calculated from the 
filtered SNP data using PLINK (http://pngu.mgh.harvard.edu/~purcell/plink) [8]. We 
performed metric multidimensional scaling analysis (MDS) on the pairwise IBS distance 
matrix using PLINK. 
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Microbiome data acquisition and initial filtering and processing 
 OTU tables generated by the HMP consortium from sequencing of the 16S variable 
region 3-5 (V35) were downloaded from the HMP DACC website 
(http://hmpdacc.org/HMQCP) on June 21, 2012. For a detailed description of this dataset and 
the pipeline used to generate it see [1]. Briefly, the 16S sequences were processed by the HMP 
consortium using the QIIME pipeline [9-12], which uses an OTU-binning approach, and 
attaches a taxonomic classification for each OTU. The unfiltered table contained 45,383 rows 
(OTUs) and 4,790 columns (samples), representing samples taken from 18 (female) or 15 
(male) body sites, including stool, saliva, tongue dorsum, hard palate, buccal mucosa, attached 
keratinized gingiva, palatine tonsils, throat, anterior nares, supragingival_plaque, subgingival 
plaque, left antecubital fossa, right antecubital fossa, left retroauricular crease, right 
retroauricular crease, vaginal introitus, mid vagina, and posterior fornix. First, we mapped the 
sample IDs in the OTU table to the IDs of the HMP individuals for which we have genotype 
data, and excluded columns in the OTU table that represent individuals without such 
information. The resulting table contained information for 2170 (45%) microbiome samples, 
representing the 93 genotyped individuals. We note that the number of individuals for which 
we had both genetic and genotype data varied across body sites (figure S4). Since we only had 
data for <40 female individuals, we excluded from further analyses the three female-specific 
body sites (vaginal introitus, mid vagina, and posterior fornix). We used QIIME [9] to calculate 
alpha and beta diversity and perform a Principal Coordinate Analysis (PCoA) using these OTU 
tables for each body site. 
 
Host-bacteria Correlation analysis  
 We used the first 5 principal coordinates (PCs) of the microbiome 16S data in each of 
the 15 body sites as quantitative traits, which we correlated against genetic variation in the 
host. Prior to running this analysis we normalized the PC values using the Box-Cox 
transformation with the formula 

y(λ)  = (yλ – 1) / λ 
where λ was calculated using the function box.cox.powers in R (in the package “car”).  
 Next, we filtered the SNP data using the make-bed command in PLINK, keeping only 
SNPs with minor allele frequency above 10% (using the parameter --maf 0.1), SNP with P-
value > 10-3 for Hardy-Weinberg equilibrium (using the parameter --hwe 0.001), autosomal 
SNPs, and SNPs with less than 50% missing information (using the parameter --geno 0.5). The 
final BED file included 4,205,323 SNPs that set that passed these QC thresholds and were used 
in the analysis. 
 Correlation analysis of normalized trait values was performed in PLINK 
(http://pngu.mgh.harvard.edu/~purcell/plink) v1.07 [8]. We used a linear model (with the --
linear parameter), and included the following covariates: 

1. Individual sex (binary variable); 
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2. Individual age; 
3. Site where microbiome data were collected. This was extracted from the “collectsite” 

column in the HMP map files, and was coded as a binary variable representing one of 
two collection centers (St. Louis and Houston); 

4. Center where sequencing was performed. This was extracted from the “RUNCENTER” 
column in the HMP map files, and was coded as three binary variable representing the 
four sequencing centers: BCM (Baylor College of Medicine), BI (Broad Institute), 
JCVI (J. Craig Venter Institute), and WUGC (Washington University Genome Center). 
Note that some samples were sequenced in multiple centers. 

5. The total number of sequences for each individual in the metagenomic sequencing data. 
This value was extracted from the OTU file for each body site, and represented here as 
a covariate instead of normalizing the trait values by this number prior to the analysis. 
Note that since this covariate has a different value for each body site, we created 15 
body site-specific covariate files that were used in the association analysis. 

6. The positions on the first five dimensions in the MDS analysis of the genotype data (see 
above).  

 
  
Collapsing microbiome data by taxonomy  

To test for correlations with specific microbiome taxa, we first aimed to use the 
taxonomic abundance data in the OTU table as quantitative traits. However, the dataset is 
large, with thousands of rows that can represent potential traits, many of which are 
intercorrelated and/or have identical taxonomic assignments. Thus, we aimed to reduce the 
dimensionality of the data by collapsing it by taxonomic assignment, and use filtering to 
include only informative traits. Using the procedure described below allowed us to reduce the 
number of traits tested to ~41 per body site on average. 

First, we sought to collapse the OTU abundance data to represent single 
distinguishable phylogenetic taxa. The original OTU table contained taxonomic assignments 
for each row at the level of genus or above. We used this taxonomic assignment, and summed 
read counts over rows that correspond to identical taxa, using the complete taxonomic 
identification string. More specifically, we went over the unique phylogenetic assignments in 
each body site-specific OTU table. For each label (e.g., 
“Root;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Streptococcaceae;g__Streptococcus”) 
we identified all multi-level taxonomic assignments that correspond to its location in the 
phylogenetic tree as represented in the label string. In the example above, there are five 
taxonomic assignments: 
    (1) p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Streptococcaceae;g__Streptococcus 
    (2) p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Streptococcaceae 
    (3) p__Firmicutes;c__Bacilli;o__Lactobacillales 
    (4) p__Firmicutes;c__Bacilli 
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    (5) p__Firmicutes 
Overall, there were 742 unique taxa represented in the data, including 389 unique genera, 180 
families, 100 orders, 47 classes, and 26 phyla.  
 For each taxon, we identified all the rows that correspond to it in the body site-specific OTU 
table, and summed across these rows, to achieve a single read count representing this taxon for 
each individual. By collapsing the data for each taxon in each body site, we were able to reduce 
the dimensionality of the data, as well as represent it in a phylogenetic context, with a single 
row representing each node in the underlying phylogenetic tree. We note that in most cases our 
collapsing method included only a single OTU from the original table, and >95% of taxa 
represent <10 OTUs from the original table. This process resulted in body site-specific tables 
of read counts where each row corresponds to a unique and single phylogenetic taxon. The 
number of taxa in each body site is shown in Figure S14. We found the largest number of taxa 
on the skin (at least 450 in each of the four body sites on the skin), and the fewest in the tongue 
dorsum and supragingival plaque with 228.  
 
Microbiome data advanced filtering 

Next, we used a number of filters to exclude uninformative traits from the 
association analysis. First, for each body site, we excluded taxa for which there is no data (zero 
reads) across individuals. Second, we excluded taxa for which data is sparse. This was 
achieved by counting, for each taxon, the proportion of zero-count cells, namely, the 
proportion of individuals for which there are no reads mapped to this taxon. When we plot 
these proportions across taxa (Figure S15), we see a clear bimodal distribution, where some 
taxa have a low proportion of zero counts, and some taxa have a high proportion of zero-
counts. We used a cutoff of 50%, and excluded from further analysis all taxa for which half or 
more of the individuals have no reads assigned. The two steps above reduced the number of 
taxa considerably (Figure S14), ranging from an ~80% reduction in the number of taxa in the 
skin sites, to 57% in the tongue dorsum. 

As another filtering measure, we wanted to exclude taxa for which data is highly 
correlated, as testing such taxa for association would be redundant and uninformative. We first 
calculated the pairwise Pearson correlation between each pair of taxa in each body site, and 
plotted the distribution of values (Figure S16). In all body sites there is a clear enrichment of 
very high pairwise correlations, with a peak around r2 = 1. Figure S17 shows dotplots of the 
first 10 taxa in the GI tract, where high correlations between some taxon pairs are visible. To 
investigate this further, we clustered the taxa based on their pairwise correlations and displayed 
the results in a heatmap (Figure S18). There are multiple highly correlated clusters, each with a 
small number of taxa. Upon closer examination, we find that each of these clusters correspond 
to a group of taxa that represent consecutive levels in the phylogenetic tree. In other words, 
these high correlations are usually caused by a lower-ranked taxon that is driving the levels in a 
number of higher-ranked taxa. For example, Figure S19 shows a cluster (GI tract data) where 
the counts in the genus Akkermansia are driving the counts in all higher levels of the 
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phylogeny, up to the phylum level. Considering these observations, we decided to include only 
the lowest rank taxa from each highly correlated cluster in each body site. Specifically, we 
identified all pairs of taxa with an r2 of at least 0.9, and excluded the more higher-ranked taxon 
of the pair from future analysis. This resulted in an exclusion of ~50% of remaining taxa 
(Figure S14).  

 
Identifying interactions between host genetic variation and specific taxa 

After the above filtering steps, our final set of traits included 615 taxa across the 15 
body sites (see Figure S14), with an average of 41 taxa per body site. The variability in this 
number across body sites was not large, with a range of 25 taxa in the attached keratinized 
gingiva to 53 taxa in the Saliva. We filtered the genetic variation data to reduce the number of 
statistical test to include only protein-coding SNPs. We used ANNOVAR [13] to annotate the 
above set of filtered SNPs, and identified 33,814 protein-coding SNPs. We used this set of 
coding SNPs and ran the correlation analysis as described above against the taxon-level 
abundance data. 
 
Enrichment analysis 
 Using the output of the correlation analysis, we considered SNPs with P-value ≤ 10-6, 
and identified genes that overlap or are located ≤ 50kb from these SNPs, using data for all 
known human genes taken from the refGene table (hg19 genome build), downloaded from the 
UCSC Genome Browser database in July 2012. The identified genes were used as input to 
functional enrichment analysis, performed using Ingenuity Pathway Analysis (IPA; August 
2012 software release), a program that uses Ingenuity’s high-quality knowledge base, which 
includes curated information on genes, pathways, and interactions (see www.ingenuity.com). 
IPA generates a P-value using a Fisher exact test comparing the expected and observed genes 
in a given pathway. The most enriched canonical pathways are listed in Table S1. To identify 
the bacterial taxa driving these enrichments, we calculated correlations between each OTU and 
the PCs in each body site. The most highly correlated OTU for each PC where correlation with 
host genetics was found is listed in Table S1. We also used the InnateDB database 
(www.innatedb.com) to identify enrichment of specific gene ontology (GO; 
www.geneontology.org [14]) categories (Table S3) and additional pathway databases (Table 
S4), including KEGG (www.genome.jp/kegg) [15] and Reactome (www.reactome.org).   
 To make sure the specific cutoff values chosen in this analysis do not affect the 
enrichment result, we repeated this analysis with varying P-value and gene distance cutoffs 
(see Table S2). Specifically, we used two P-value cutoffs (P ≤ 10-6 and P ≤ 5x10-7) and three 
gene distance cutoffs (D ≤ 50k, D ≤ 20k, and D ≤ 5k), and examined the enrichment P-value 
and rank of pathways of interest (Table S2). 
 Figure 2 shows an enrichment analysis that includes data from the GWAS catalog [16], 
which was downloaded from www.genome.gov/26525384 in June 2013, and data generated by 
the GTEx consortium [17], which were downloaded from the GTEx portal 
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(www.broadinstitute.org/gtex/) on October 2013. The enrichment plots shown in Figure 2 were 
calculated as follows: given a dataset (e.g., GWAS catalog genes involved in obesity-related 
traits), and given a P-value cutoff (Pi, shown on the x-axis of the figure), we identified the set 
of genes or SNPs for which P ≤ Pi. Next, we calculated the overlap between Gi and the genes 
or SNPs identified to be correlated with the microbiome in the current paper. The fold 
enrichment (y-axis) for Pi is the number observed compared to expected overlapping genes or 
SNPs, where the expected number is the overlap among genes or SNPs not in Gi. 
 To identify enrichment in an independent cohort, we used data from the TwinsUK 
Project, which included both stool microbiome 16S data, as well as host genetic data assessed 
by SNP genotyping, from 984 adults [18]. OTU tables and PCs were generated using the 
QIIME pipeline as described above. Host SNP genotyping data were fully imputed using 
IMPUTE version 2[19], and quality checked as previously described [20]. SNPs were removed 
if they had a minor allele frequency below 5%, a genotyping rate below 95% or extreme 
deviation from HWE (p<0.001).  Deviation from HWE was determined using the genotypes 
from only a single twin from each twin pair. Only imputed SNPs with an imputation accuracy 
score (IMPUTE INFO field) greater than 0.9 were included in the analysis. The final number 
of SNPs used for the association analysis was 1,310,141. To test for correlation between host 
SNPs and fecal microbiome PCs, we used the score test implemented in the software Merlin 
[21] to account for the relatedness of the individuals (option –fastassoc). The recombination 
rates from HapMap II release 22 were used as the genetic map input to Merlin. Model 
covariates included the number of sequences per sample, sample batch, sequencing run, the 
person that extracted the DNA, the gender, the age, and the first 3 PCs of the MDS. After 
quality filtering of traits and genotypes, 170 MZ twin pairs, 241 DZ twin pairs, and 162 
unrelated individuals were included in the association analysis. For the analysis shown in 
Figure 2C, we used correlation P-values for SNPs and nearby genes, and calculated fold-
enrichment for several P-value as described above. 
 
FST analysis  
We used FST data downloaded from the database of recent positive selection across human 
populations [22] via http://jjwanglab.org/dbpshp in March 2014. We compared FST values in 
SNPs that were correlated with microbiome PCs with P<10-4 in each of the four body sites and 
the rest of the SNPs in our sample. To compare two sets of FST values we used a permutation 
test on the medians as follows: we randomly split the data into two groups the same size of the 
two original groups, and calculated the difference in medians between the two groups. This 
process was repeated 10,000 times, and the P-value was defined as the proportion of 
permutations in which difference in medians was greater that the real difference between the 
two original groups. Figure 4 shows all the comparisons made and highlights in color cases 
where the calculated P-value was smaller than 10-3. The error bars in the figure are 95% 
confidence intervals that were calculated using bootstrapping as follows: for a given set of FST 
values, we subsampled with replacement a sample of the same size, and calculated the median 
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of the sample. This was repeated 10,000 times, with the median recorded in each iteration. The 
95% CI was defined as the range between the 2.5 and 97.5 percentiles of all subsample 
medians.  
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