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Abstract

How much do changes in the fragmentation of production contribute to growth? Using detailed plant-

level data on the manufacturing sector in India between 1990 and 2014, we study a version of Smithian

growth, the link between greater fragmentation of supply chains and productivity. We propose a mea-

sure of a plant’s vertical span, which corresponds roughly to the number of stages in a supply chain that

the plant performs in-house; when plants have smaller vertical spans, production is more fragmented.

We find that fragmentation increases with development in both the cross-section and time series. Fur-

ther, within locations at a point in time, larger plants tend to have smaller vertical spans, and those that

increase sales tend to decrease vertical span. Using changes in demand during the tariff liberalization

in the 1990s, we provide evidence that increased demand causes specialization. We find evidence from

economies of scale in specialization. We construct a general equilibrium model to rationalize these find-

ings and estimate the sources and magnitude of scale economies. Goods are produced in a succession

of steps, each combining labor and a set of intermediate inputs, giving rise to a tree-like structure.

Firms exert effort to find suppliers for inputs, and choose the set of production stages (and thereby

inputs) to produce the output at lowest cost. The structure implies that the returns to searching are

more strongly diminishing for inputs that are further upstream. Firms with high productivity draws

are therefore more likely to choose to be more vertically specialized.
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cialization
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1 Introduction

Since Adam Smith, economists have been postulating that specialization is one of the primary

drivers of improvements in standards of living.1 Specialization can take many forms; perhaps the

most salient is the fragmentation of supply chains, with different vertically related production stages

often done by different firms in different locations.2 Whether this increased specialization plays

an important role in growth is ultimately an empirical question: What is the relationship between

increased fragmentation and productivity growth?

In this paper we study the fragmentation of production in the Indian economy, from the time

of reform at the onset of the 1990s, up until 2015. We use detailed data on plants’ inputs and

outputs from annual manufacturing surveys to construct a measure of plants’ vertical spans of pro-

duction, a measure intended to capture the range of sequential production steps performed within

the plant. The first part of the paper explores the empirical relationship between plants’ vertical

specialization choices—as measured by their vertical spans of production—and productivity and

market conditions. We first examine the macro-level relationship between specialization and de-

velopment across time and space. We find that vertical span and income per capita are strongly

related. At the macroeconomic level, plants in richer districts of India are more vertically spe-

cialized, and state-level income growth is associated with within-plant reductions in vertical span.

This is consistent with Smith’s famous statement that “the division of labour is limited by the

extent of the market” (Stigler, 1951). Second, we assess the micro-level relationship between plant

size and vertical specialization among plants that produce the same product in the same location

at the same time. In contrast to the usual intuition that larger plants perform a wider range of

activities, we find that those with higher sales tend to have shorter vertical spans, i.e., perform

fewer sequential stages of production. This holds both across plants in the cross-section and also

for within-plant changes over time.

These correlations suggest a link between vertical specialization and growth. To make inference

about the direction of causality between size and vertical span, we exploit India’s tariff liberalization

at the start of the 1990’s. We find that plants respond to negative demand shocks (induced by

a reduction in the import tariff to the plant’s output) by increasing their span, and to positive

demand shocks by reducing their span, i.e., specializing in fewer sequential steps of production. In

addition, increases in demand are associated with using fewer inputs.

Finally, inspired by Young (1928), we study the presence of network economies. When tariffs on

a good ω are reduced, this negative demand shock propagates upstream to industries that supply ω.

At the same time, we also find that industries that are downstream from these upstream industries

also see a reduction in sales (even excluding ω itself). This suggests industry-level scale economies.

These network economies could be the results of internal economies of scale in production in the

1As virtually all papers on Smithian growth have noted, Adam Smith begins the first chapter of Wealth of Nations
with the statement: “The greatest improvement in the productive powers of labour [...] seem to have been the effects
of the division of labour.” (Wealth of Nations, Chapter 1, 1776, emphasis added). Smith goes on to present the
famous example of the pin factory, and how an increased division of labor leads to higher labor productivity.

2See, for example, Johnson and Noguera (2017) and Antràs (2020).
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upstream industries, or the result of external economies of scale operating along the value chain.

We rationalize and explain these findings using a simple model, which we later develop into a

full quantitative model. In the simple model, firms produce an output (“shirts”) using one of two

(perfectly substitutable) production functions: either from cloth (in which case the firm is vertically

specialized, and just tailors the cloth into shirts) or from yarn (in which case the firm performs both

the weaving of the cloth from yarn, and the tailoring of the shirts). Both production steps follow

a Cobb-Douglas production function in labor and the respective intermediate input. In the case of

the firm being integrated, it produces using the nested production function. Firms are born with

ex-ante heterogeneous Hicks-neutral productivity, and need to search for suppliers for each of the

two inputs, paying a cost that is convex in search effort. More search effort leads to more matches

with potential suppliers, and therefore on average a lower effective cost of that input. Following

realization of these draws, firms choose one of the two production structures (as well as suppliers)

to minimize cost.

The model implies that firms that are born with higher productivity have higher returns to

searching, and will therefore search more and obtain even lower costs, a manifestation of scale

economies. The sequential nature of production gives rise to a nonhomotheticity: when productivity

increases, the firm searches more for both inputs, but disproportionally more so for the downstream

input (cloth). This is because searching for cloth lowers the cost of the out-sourcing option by more

than seraching for yarn lowers the cost of the in-house option, as the latter requires labor and th

ecost of labor is invariant to search. Thus as the firm searches more, the expected expenditure

share of cloth rises relative to the expected expenditure share of yarn. The firm responds to this

by shifting it search effort toward suppliers of cloth, increasing the likelihood of a short vertical

span of production. This mechanism, whereby more productive firms select into being specialized,

is consistent with our empirical findings on the positive correlation between specialization and size.

The full quantitative model embeds this mechanism into a setup where value chains can be made

up of an arbitrarily large number of sequential steps, where each step combines primary factors with

an arbitrary number of inputs. Firms search for suppliers in all input markets in this tree, and face

a make-or-buy decision for each step. Building on Kortum (1997) and Oberfield (2018), we choose

functional form assumptions such that, conditional on search efforts, the cost of buying each input

from the market follows a Weibull distribution. The make or buy decision at each node is tractable

due to a functional form assumption that is new to the literature for the distribution of task-specific

productivity draws, which yields a Weibull-distributed unit cost for in-house production with the

same shape. Firms make profits from sales to households, and entry is elastic. The search process

features network economies through a matching function that is increasing in the mass of potential

suppliers. This elasticity, together with firm-level scale economies in the form of an elastic search

effort, drives the propagation of shocks across industries and speaks to our empirical results.

In the final section, we describe an approach to solve and estimate the model. Estimation is

still in progress.
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1.1 Related Literature

Our paper builds on a large theoretical literature that studies the relationship between special-

ization, market size, and economic performance, including classic papers by Young (1928), Stigler

(1951), Rosen (1978), and Becker and Murphy (1992), and more recent work by Yang and Borland

(1991), Baumgardner (1988a), Rodriguez-Clare (1996), Kelly (1997), Chaney and Ossa (2013),

Legros, Newman and Proto (2014), and Menzio (2020). In contrast to this work, our model is

written in such a way that it can be taken to the data and used for quantitative work.

There is a good amount of evidence that the specialization among workers is limited by the

extent of the market: Baumgardner (1988b) shows that the range of tasks performed by physicians

shrinks as local labor market grows. Garicano and Hubbard (2009) show that the fraction of lawyers

working in firms that specialize in particular fields grows with the size of the market. Duranton

and Jayet (2011) provide evidence that scarce specialist occupations are over-represented in large

cities. Tian (2018) shows that Brazilian manufacturing firms that are located in cities tend to hire

workers in more occupations. Atalay, Sotelo and Tannenbaum (2021) show that workers are more

specialized, relative to other workers in the same firm or the same occupation, when they work in

larger markets. Hansman et al. (2020) studies the vertical specialization and its relationship to the

demand for quality in the Peruvian fishmeal industry. Brown (1992), in a study of the German

cotton textile industry at the beginning of the 20th century, also finds a positive correlation between

scale and the degree of vertical specialization. He attributes the high degree of vertical integration

(compared to British cotton textile) to the underdevelopment of input markets.

Our modeling approach builds on existing approaches. We allow firms to choose from a set of

production functions, called “recipes”, similarly to Boehm and Oberfield (2020), and also related

to Acemoglu and Azar (2020), and Ciccone (2002). Our measure of the vertical span builds on

work by Alfaro et al. (2019) and Boehm and Oberfield (2020). In terms of its application to the

vertical scope of production, the paper relates to recent work by Chor, Manova and Yu (2021).

In terms of context, we build on work that studies the Indian trade liberalization in the early

1990s (Panagariya (2004), Sivadasan (2009), Topalova and Khandelwal (2011), and Goldberg et al.

(2010), among others) and manufacturing productivity growth in India more generally (Hsieh and

Klenow (2014), Bollard, Klenow and Sharma (2013)).

Finally, our work is related to the growing literature on endogenous production networks, e.g.

Oberfield (2018), Eaton, Kortum and Kramarz (2022), Lim (2018), Chaney (2014), Dhyne et al.

(2021), Startz (2021), Grant and Startz (2021), Taschereau-Dumouchel (2017), Huneeus (2018),

Panigrahi (2021), and Miyauchi (2018), among others. Our work also builds on studies that focused

on cross-country differences in input-output structure and its relation to development, Chenery et al.

(1986), Jones (2013), Boehm (2020), Fadinger, Ghiglino and Teteryatnikova (2021) and Bartelme

and Gorodnichenko (2015)
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2 Reduced-form regressions

2.1 Data and Context

Our main dataset is the Indian Annual Survey of Industries (ASI), a panel of formal manufacturing

plants that the Ministry of Statistics and Programme Implementation constructs and makes avail-

able to researchers. Each year the ASI surveys all plants that have more than 100 employees, and

a fifth of all plants with more than 20 employees (or more than 10 employees, if the plant is using

power). We use survey rounds from between the years 1989/90 and 2014/15 except 1990 to 1993

and 1995/96, for which no detailed data is available. Most relevant for our paper, the ASI con-

tains detailed information about the plants’ mix of outputs and intermediate inputs in addition to

commonly available factor costs. We concord all product codes to the five-digit classification used

in the 2007/08 round, which contains about 5,500 items that are similar in detail to six-digit HS

codes. Some early ASI rounds have low quality for certain parts of the survey and we exclude these

in our regressions; we discuss these choices along with more detail on concordances and summary

statistics in Appendix A.

Our empirical strategy employs the large changes in India’s barriers to importing from around

India’s vast trade liberalization at the beginning of the 1990’s. Before this liberalization, India’s

economic strategy emphasized self-sufficiency (Panagariya, 2004). Imports were generally subject

to licensing. While the list of items exempted from licensing grew towards the end of the 1980’s,

tariffs remained high. In 1991, India experienced a balance of payment crisis and depreciated the

rupee. Following the crisis, in July 1991 abolished the import licensing regime on all but a few items,

and started a series of large tariff cuts. Between 1991 and 1997, tariffs fell from an (unweighted)

average of 113 percent to an average of about 35 percent. While there was substantial variation

in tariffs before the reforms (the top tariff bracket was 355 percent), post-reform tariffs were much

more even. Since the levels of pre-reform tariffs had been determined much earlier, Topalova and

Khandelwal (2011) conclude that the “differential tariff changes across industries between 1991 and

1997 were as exogenous to the state of the industries as a researcher might hope for in a real-world

setting.”

We therefore combine the manufacturing survey data with information on import tariff levels.

With the exception of a few years at the start of the 1990’s, tariff data is available from UNCTAD;

for the remaining years we digitize and transcribe commercial publications that contain effective

import tariffs by six-digit HS code. We concord all tariffs to the common product classification

used by the ASI in the 2000’s. See Appendix A.1 for details.

2.2 Measuring the vertical span of production

We follow our earlier work (Boehm and Oberfield, 2020) to construct a measure of the vertical

span of production, by which we mean the number of consecutive production steps performed in

the plant. We give the precise definition in Appendix A.2, and convey the intuition here. In the
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Figure 1 Example of Vertical Distance between Output (Shirts) and Inputs

first step, we construct a measure of vertical distance between each output-input pair (ω, ω′). If

there is a single path in the IO matrix from input to the output in the IO matrix, then the vertical

distance is the number of links in that path, or the number of plants along the value chain from

the input to the output. If there are multiple such paths from the input to the output in the IO

matrix, then vertical distance is simply the cost-weighted average of the number of links in each

path. Suppose the (aggregate) materials expenditure mix of shirts is 70% cloth and 30% yarn, and

that the materials mix of cloth is 100% yarn. The distance between the output shirts and the input

cloth is one (because cloth only shows up directly as an input to shirts), and the distance between

shirts and yarn is 0.3× 1 + 0.7× 1.0× 2 = 1.7. In the second step, we construct the vertical span

of a (single-product) plant, which measures whether a plant tends to use inputs that are distant or

close. A plant’s vertical span is the cost-weighted average distance between its output and each of

its inputs. In this example, a plant that produces shirts and uses cloth as an input would have a

vertical span of 1, whereas one that uses yarn as an input would have a longer vertical span of 1.7.

In our view, the measure of vertical span does not measure a primitive attribute of technology,

as the vertical distance is partly determined by plant decisions in equilibrium. Further, the number

of plants between an input and an output in a value chain is not the same as the number of steps

between the input and the output, however one might define a “step.” Nevertheless, when we

compare plants that produce the same product, the plant with the higher vertical span arguably

performs more steps in-house then the plant with the lower vertical span.

2.3 Motivating facts

Our first fact is a robust relationship between the aggregate level of development and the degree of

vertical fragmentation of production. This relationship holds both in the cross-section and within

locations over time, and hence motivates our study of fragmentation in the context of economic

growth:

Fact 1 (Macro-level correlation between development and fragmentation) We have:

(a) Plants in richer districts have shorter vertical spans of production (within their industry)
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(b) Plants in states that grew faster have, on average, reduced their vertical span of production

more

Figure 2 Plants in richer districts are more vertically specialized
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Part (a) of Fact 1 is corroborated by Figure 2, which shows a binned scatter plot for the relation-

ship between the (residualized) measure of the vertical span of production and the (residualized) log

income per capita of the district where the plant is located in, after projecting on 5-digit industry

dummies. Among plants in the same industry, those in richer districts have shorter vertical spans of

production. Concerning part (b) of Fact 1, Table I shows that plants shortened their vertical spans

of production more in states that grew faster.3 In these (and subsequent) regressions we exclude

multi-product plants that, while economically important, are not easy to measure the vertical span

for.

Table I Plants in states that grew faster have vertically specialized more

Dependent variable: Vertical Span

(1) (2) (3)

Log GDP/capitast -0.0716∗ -0.0601∗ -0.0551∗

(0.028) (0.026) (0.026)

Year FE Yes Yes
Plant FE Yes Yes
5-digit Industry FE Yes
5-digit Industry × Year FE Yes
Plant × 5-digit Industry FE Yes

R2 0.592 0.656 0.808
Observations 270003 269399 163668

Standard errors in parentheses, clustered at the state × 5-dgt industry level. SP plants only.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

3We use state-level growth rather than district-level growth because district-level income per capita is only available
for a single cross-section in 2005.
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Figure 3 Larger plants are more vertically specialized
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We next study the relationship between plant-size and vertical span. In many settings, larger

firms do more activities: it is well documented that they sell a wider variety of products and operate

in a wider range of industries, operate more plants, and sell to a wider variety of destinations.4

Nevertheless, we show here that larger and more successful plants tend to have shorter vertical

spans, and hence do fewer steps.

Fact 2 (Micro-level correlations between size and vertical span) We have:

(a) Plants with higher sales within their industry on average have a shorter vertical span

(b) Plants that, within their industry, grow faster on average reduce their vertical span more.

Figure 2.3 shows (a) by plotting the relationship between vertical span and size within 5-digit

industry × year cells. Table II shows that this correlation also holds within narrow industry ×
district × year cells, and also conditional on plant age and employment. Table III corroborates

part (b) of Fact 2 and shows regressions of the change in sales on the change in vertical span, over

all time horizons where firms produce the same single five-digit product. The point estimates are

consistently negative across specifications.

Finally, we mention some other covariates of vertical span: firms with shorter vertical span have

higher materials share of cost, are more likely to import, and have a higher share of relationship-

specific inputs in their materials basket. These correlations hold in the cross-section (within indus-

tries) and over time (within plant-industries). Table XII in Appendix C shows these results.

2.4 Determinants of Vertical Specialization

A plant’s vertical span and size are, of course, jointly determined. How a plant organizes itself may

affect its marginal cost and therefore its size, and a plant’s size might affect incentives to organize

4See, e.g., Bernard, Redding and Schott (2010), Cao et al. (2022), and Bernard and Jensen (1999).
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Table II More specialized plants are larger in their industry

Dependent variable: Log Sales

(1) (2) (3) (4) (5)

Vertical Span -0.719∗∗ -0.670∗∗ -0.431∗∗ -0.432∗∗ -0.193∗∗

(0.024) (0.023) (0.034) (0.034) (0.015)

Age 0.00616∗∗ -0.00314∗∗

(0.0012) (0.00068)

Log Employment 1.067∗∗

(0.015)

Year FE Yes Yes Yes Yes Yes
5-digit Industry FE Yes Yes
District FE Yes
Industry × District × Year FE Yes Yes Yes

R2 0.394 0.440 0.700 0.701 0.859
Observations 353659 295094 140610 136831 136608

Standard errors in parentheses, clustered at the 5-dgt industry level.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

Table III Plant growth is correlated with increased vertical specialization

Dependent variable: ∆ log Sales

(1) (2) (3) (4)

∆ Vertical Span -0.0655∗∗ -0.0445∗∗ -0.0284∗ -0.0259∗

(0.0082) (0.0087) (0.013) (0.011)

Year FE Yes
Product × Year FE Yes Yes Yes
Plant FE Yes
Plant × Product FE Yes

R2 0.00819 0.149 0.432 0.431
Observations 120436 111244 83026 74707

Changes within plant-products
Standard errors in parentheses, clustered at the state-industry level.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

its production in a particular way. In this section we attempt to identify a causal channel: if a

plant grows in response to higher demand, how does it change its vertical span?

As discussed in Section 2.1, we use tariff changes as a source of exogenous variation. These tariff

changes can act as a demand shock through import competition or as a supply shock by changing

the cost of materials. Table IV shows that changes in import tariffs are positively correlated

with changes in the sales of single-product plants that produce this good (the import competition

channel). In column (2), we also include the industry’s change in input tariffs (weighted by the

shares in the aggregate industry’s materials basket). The coefficient on this term is negative,

meaning that plant sales increase as input tariffs decrease. These relationships mean tariff changes

act as industry-level demand shifters and cost shifters.

We turn to exploring the direction of causality between scale and vertical span. Table V shows

regressions of the plant’s vertical span on sales (again, for single-product plants only), within plant
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Table IV Impact of Import Competition on Plant Sales

Dependent variable: ∆ log Sales

(1) (2)

∆ log Output Tariff 0.159+ 0.235∗

(0.090) (0.094)

∆ log(1 + τ̄ input
ωt ) -0.222+

(0.12)

Year-Pair FE Yes Yes

R2 0.0624 0.0626
Observations 104996 104985

Standard errors in parentheses, clustered at the state × industry level.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

× product pairs, and controlling for year effects. Columns (1)-(3) report OLS results, and find a

negative correlation between in sales and in span. Columns (4)-(6) instrument sales by log import

tariffs on the plants’ output. The IV coefficient estimates are larger than the OLS ones, and point

to a negative causal relationship: as plants shrink because of a reduced output tariff, they increase

their vertical span of production. Because output tariff changes may be correlated with input tariff

changes, columns (2) and (5) also control for plant-level input tariffs (where we weigh tariffs by the

plants’ expenditure shares at time of first observation), and whether those input tariff changes are

larger for inputs that are more distant.

Taken together, the regressions in Table V suggest that Smith’s famous adage about the division

of labor being limited by the extent of the market applies to our context in the sense that vertical

span captures the division of labor across production units.

Next, we turn to searching for network externalities. When firms receive a negative demand

shock, they scale down or exit. This means that there may be in turn lower demand for the goods

of producers further upstream, etc. In neoclassical models with constant returns, demand shocks

propagate upstream. In the presence of scale economies or network externalities, they may also

propagate downstream again.

In Table VI, we search for upstream propagation of demand shocks. We regress log sales of

plants j onto the weighted average log number of producers of j’s inputs in j’s state, where the

weights are again j’s materials shares at the time of first observation:

pjyj = β

(∑
ω̂∈Ω

pjω̂xjω̂∑
ω′ pjω′xjω′

log(#producers of ω̂ in state d)t

)
+ αjω + αωt + εjt

The inclusion of plant-product fixed effects means that we again look at changes in the dependent

and independent variables. Columns (1) to (3) estimate this relationship using OLS. In columns

(4) to (6) we instrument the number of producers in upstream industries ω̂ by the log tariff on

goods ω̃ weighted by the share of ω̂’s sales to ω̃, but excluding j’s industry ω itself:
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Table V Firms vertically specialize when they receive a positive demand shock

Dependent variable: Vertical Span

(1) (2) (3) (4) (5) (6)

Log Sales -0.0191∗∗ -0.0190∗∗ -0.0196∗∗ -0.512+ -0.382+ -0.252+

(0.0020) (0.0020) (0.0024) (0.28) (0.22) (0.13)

log(1 + τ̄ input
jωt ) -0.0877∗∗ -0.0209 -0.0830+ 0.0194

(0.026) (0.050) (0.050) (0.065)∑
i αi log(1 + τ̄ input

it )spanj -0.0910 -0.218∗

(0.056) (0.099)∑
i αi log(1 + τ̄ input

it )(distanceωi − spanj) -0.122 -0.336∗

(0.095) (0.15)

Year FE Yes Yes Yes Yes Yes Yes
Plant × Product FE Yes Yes Yes Yes Yes Yes

Estimator OLS OLS OLS IV IV IV

R2 0.765 0.765 0.731 -1.049 -0.569 -0.229
Observations 186628 186628 145181 138204 138204 137060

Standard errors in parentheses, clustered at the state-industry level. + p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

Regression contains single-product plants only. The left-hand side is the plant’s vertical span of
production; the right-hand side is log sales. Columns (3) and (4) instrument log sales by the log
tariff on the plant’s output ω.

∑
ω̂∈Ω

pjω̂xjω̂∑
ω′ pjω′xjω′

 ∑
ω̃∈Ω, ω̃ 6=ω

νω̂ω̃ log(1 + τω̃t)


where νω̂ω̃ denotes the share of sales of industry ω̂ to industry ω̃ (but ignoring sales to ω). In

other words, we instrument the number of producers in upstream industries by demand shocks to

industries downstream from these industries, but excluding the industry of j itself. The regressions

in Table XV of Appendix C confirm that tariff shocks in downstream industries affect entry.

The IV regressions in columns (4) to (6) find a positive and significant coefficient: the demand

shocks in the form of tariff changes to industries that are not directly vertically related also change

the cost of production in the industry. These changes to cost may be coming from internal economies

of scale in upstream sectors, or from network externalities as postulated by Young (1928). The

model in the next section will help to understand the role of both channels and serve as a basis for

identifying them.

2.5 Spiders, Snakes, and Trees

In this section we provide evidence on the structure of a firm’s production, studying how the number

of inputs a plant uses relates to vertical specialization. Baldwin and Venables (2013) coined names

of two commonly used models of the structure of production, spiders and snakes. In a spider,

input use has only a horizontal dimension. There is only one production stage which combines
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Table VI Demand shocks also propagate downstream

Dependent variable: log Sales

(1) (2) (3) (4) (5) (6)

Avg. log #Producers in Upstream Ind. 0.0466∗∗ 0.0383∗∗ 0.0375∗∗ 0.0383∗ 0.0613∗∗ 0.0738∗∗

(0.0041) (0.0050) (0.0060) (0.017) (0.017) (0.018)

log(1 + τ̄ input
jωt ) -0.0243 -0.0208

(0.096) (0.097)∑
i αi log(1 + τ̄ input

it )(distanceωi − spanj) -0.330∗∗ -0.333∗∗

(0.11) (0.11)

Year FE Yes Yes
Industry × Year FE Yes Yes Yes Yes
Plant × Industry FE Yes Yes Yes Yes Yes Yes

Estimator OLS OLS OLS IV IV IV

R2 0.942 0.952 0.954 0.00183 0.000631 0.000277
Observations 215805 199039 142041 215805 199039 142041

Standard errors in parentheses, clustered at the industry-year level. + p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

Regression contains single-product plants only. The left-hand side is the plant’s sales; the right-hand side is the
change in log sales. Changes are taken across all time horizons within the same plant-product pairs. Columns
(3), (4), (7), and (8) instrument ∆ log sales by the change in the log output tariff.

multiple intermediate inputs to produce output.5 In a snake, input use is vertical. There are

several sequential stages of production, and at each stage a single intermediate is combined with

labor and the output of that stage is passed on to the next stage.6 The length of a snake has a

clear connection to a plant’s vertical span, but no relation to the number of inputs. In contrast,

the width of a spider has a clear connection to number of inputs, but an ambiguous connection

to vertical span. A production tree combines the vertical dimension of a snake with the horizontal

dimension of a spider. There are multiple sequentially related stages, and each stage may require

more than one intermediate input.7 Figure 4 depicts these three types of production structures.

The different production structures hard-wire different relationships between the number of

tasks that are outsourced and the number of inputs. With a spider production structure, outsourc-

ing more tasks would correspond to purchasing more intermediate inputs. With a snake production

structure, the number of inputs used is invariant to outsourcing. With a tree production structure,

outsourcing more tasks would correspond to purchasing fewer intermediate inputs. For example,

the firm pictured in panel (c) can choose to purchase ω̃1 from a supplier or produce it in-house,

in which case it would purchase ω̃4 and ω̃5 from suppliers. The former corresponds to a shorter

vertical span and fewer inputs, whereas the latter corresponds to a longer vertical span and more

inputs.

5Spider production functions are standard in the macro literature with input-output structures such as Long
and Plosser (1983), Acemoglu et al. (2012), and Baqaee and Farhi (2019). Spider production structures with an
endogenous number/measure of intermediate inputs include Acemoglu, Antràs and Helpman (2007), Eaton, Kortum
and Kramarz (2022), Taschereau-Dumouchel (2017), Lim (2018), Huneeus (2018), Chan (2017), Blaum, Lelarge and
Peters (2015), and Tintelnot et al. (2018).

6Snake production structures have been used Dixit and Grossman (1982), Yi (2003), Levine (2010), Costinot,
Vogel and Wang (2013), Chaney and Ossa (2013), Fally and Hillberry (2018), and Antràs and de Gortari (2017).

7In graph theory, this is a rooted, directed tree.
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We therefore study the relationship between the number of inputs, the vertical span, and the

scale of production of plants. In particular, we present evidence that that is consistent with an

important role for a vertical dimension of input use, consistent with a snake or a tree structure.

Table VII shows correlations between the vertical span of plants and the number of five-digit

materials inputs that the plant consumes in the production process (alternatively, the inverse

Herfindahl of expenditure shares on 5-digit inputs8). In both the cross-section (within industries)

and in the time dimension, plants that have a long vertical span on average use more inputs. We

find that plants with larger share of intermediate inputs in total cost tend to use, if anything, fewer

inputs (Appendix C.2), consistent with a tree but not with a spider.

Table VIII shows regressions of the plant’s log number of inputs (columns (1) to (4)) or inverse

HHI of cost shares of the plant’s materials basket (columns (5) to (8)) on sales, within plant-product

pairs. In the IV specifications, columns (2), (3), (7), and (8), we again instrument sales using the

level of output tariffs. While the OLS estimates of the sales coefficient are perhaps positive, the

IV estimates show a clear picture: decreases in scale coming from negative demand shocks are

associated with an increase in the number of inputs, and vice versa.

Table VII Production Structures are Trees
Dependent variable: Vertical Span

(1) (2) (3) (4)

Log Number of Inputs 0.0169∗∗ 0.0533∗∗

(0.0031) (0.0045)

Inverse HHI of Materials Cost Shares 0.0269∗∗ 0.0337∗∗

(0.0021) (0.0042)

Year FE Yes Yes Yes Yes
Industry FE Yes Yes
Plant × Industry FE Yes Yes

Estimator OLS OLS OLS OLS

R2 0.302 0.766 0.304 0.767
Observations 353694 186641 353432 186486

Standard errors in parentheses, clustered at the state-industry level.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

Regression contains single-product plants only. The left-hand side is vertical span; the right-hand side variables
are the plant’s number of 5-digit materials inputs (columns (1) and (2)) and the inverse of the HHI of materials
shares (columns (3) and (4)).

These patterns are consistent with a tree production structure in which reductions in vertical

span and reductions in number of inputs go hand-in-hand. We found that reductions in vertical

8The inverse of the Herfindahl index is a common, ad hoc measure of the diversity of inputs. Simply counting the
number of inputs would not differentiate between a situation in which a plant splits its intermediate input spending
equally on two inputs, and one in which the plant uses two intermediate inputs but 99.9% of its expenditure on
intermediates is spent on one of them. In the latter case, we would argue that the plant “effectively” uses one
input. Formally, the inverse Herfindahl can be interpreted as the number n of inputs such that, if cost shares were
uniform across those n inputs, would deliver the same level of concentration of input spending as the actual input
bundle. To see this, note that with firm used n inputs each with a share 1/n, the inverse Herfindahl would be(∑n

i=1

(
1
n

)2)−1

= n. Thus we interpret the inverse Herfindahl index as capturing the “effective” number of inputs.
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Table VIII Firms reduce the number of inputs when they receive a positive demand shock

Dependent variable: log Number Of Inputs Dependent variable: Inverse Input HHI

(1) (2) (3) (4) (5) (6) (7) (8)

Log Sales 0.0477∗∗ 0.0479∗∗ -1.321∗ -0.674∗ 0.0101 0.0104 -1.888+ -1.055+

(0.0033) (0.0032) (0.64) (0.34) (0.0072) (0.0069) (1.03) (0.59)

log(1 + τ̄ input
jωt ) -0.244∗∗ -0.369∗∗ -0.411+ -0.498∗

(0.086) (0.10) (0.25) (0.24)

Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Plant × Product FE Yes Yes Yes Yes Yes Yes Yes Yes

Estimator OLS OLS IV IV OLS OLS IV IV

R2 0.871 0.872 -6.543 -1.816 0.807 0.808 -3.437 -1.076
Observations 188868 188803 138938 138898 192809 192809 142270 142270

Standard errors in parentheses, clustered at the state-industry level.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

Regression contains single-product plants only. The left-hand side is the plant’s number of 5-digit materials inputs
(columns (1) to (4)) and the inverse of the HHI of materials shares (columns (5) to (8)); the right-hand side is
log sales. Columns (3), (4), (7), and (8) instrument log sales by the log output tariff.

span correspond to using fewer intermediate inputs. Further, the same increases in demand that

cause plants to reduce vertical span also cause them to reduce the number of inputs. This finding

will guide the theoretical framework described below.
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Figure 4 Production Structures

The figure shows three different ways inputs (denoted by ω̃i) can be combined to form
an output ω. In a snake, each stage combines one input with primary factors to produce
the stage output, and several of these stages are performed sequentially to produce the
final output. In the spider, there is only one production stage which combines multiple
intermediate inputs to produce output. In general the production structures form a tree,
which combines multiple vertically related stages with the fact that more than one input
may be required to produce the stage output.

14



3 A Simple Model of Vertical Span

In this section, we describe a simple model of a firm’s vertical span of production. There are a large

number of industries. Each industry is comprised of firms that produce imperfectly substitutable

varieties. Firm j in industry ω produces a variety of ω, and is born with ex-ante productivity qj .

Each firm can, in principle, produce using different recipes that have different vertical spans. Each

firm pays a convex cost to search for suppliers. Firms encounter potential suppliers according to a

matching function.

The key mechanism operates through the decision to search for suppliers of different inputs.

Firms born with higher productivity or that expect higher demand will tend to search more, which

will be a source of increasing returns. As we will show, the vertical structure of the technology menu

makes the returns to searching across inputs asymmetric, and search decisions respond asymmet-

rically to changes in productivity and demand. This non-homotheticity implies that ex-ante het-

erogeneous firms select differentially into different vertical spans, generating the size/specialization

relationship emphasized in Section 2.1.

To build intuition, this section focuses on a simple version of the model. We focus mostly on

the problem of a single firm that can produce performing either one task or two vertically related

tasks arranged as a snake. In Section 5 we present a full quantitative model that allows for richer

production structures including trees and that can be taken to the data.

3.1 Environment: Simple Model

There are a large number of industries arranged in a circle. Each industry is indexed by ω. In

each industry there is a finite measure of firms that produce differentiated varieties. Each firm in

industry ω can produce in two ways, either using a variety in industry ω − 1 as an intermediate

input or using a variety in industry ω−2 as an intermediate input. That is, a firm can perform one

task in production, purchasing a variety of ω− 1 and using labor to transform it into its variety of

type ω; or perform two tasks, purchasing a variety of ω− 2, using labor to transform it into ω− 1,

and then using labor again to transform the product into its variety of type ω.

Firm j is born with an idiosyncratic Hicks-neutral productivity draw qj . Before producing, each

firm j in industry ω exerts search effort hj1 and hj2 to find potential suppliers in industries ω − 1

and ω − 2 respectively. Search yields a set of matches with potential suppliers. For each match,

firm j draws a match-specific, input-augmenting productivity z that is specific to using supplier s’s

variety as an input. After searching, firm j also gets an idiosyncratic productivity shock specific to

the more upstream task, Bj . If firm j produces using supplier s in industry ω − 1 as an input, its

production function is

yj = qjal
1−α
j1 [zj1sxj1s]

α ,

whereas if it uses supplier s in industry ω − 2 its production function is

yj = qjal
1−α
j1

[
Bjal

1−α
j2 (zj2sxj2s)

α
]α
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where a ≡ (αα(1 − α)1−α)−1 is a normalizing constant. The nested structure of the production

functions captures the sequential nature of the two tasks in the production process.

3.2 Market Structure

There is a representative household with nested CES preferences. It consumes an aggregate of

industry bundles, u ≡
(∑

ω δ
1
η
ω u

η−1
η

ω

) η
η−1

, where the industry bundle for industry ω is uω =(∫
Jω
u
ε−1
ε

ωj dj

) ε
ε−1

where Jω is the set of firms producing varieties in industry ω and ε > 1. δω

is a preference parameter that shifts the household’s demand for industry ω.

Firms sell their goods to the household and to other firms that are further downstream. We

assume in this section that firms price at marginal cost when selling to other firms.9 Firms engage

in monopolistic competition when selling to the household.

The mass of firms in each industry is endogenous. Upon entry, each firm draws its ex-ante

productivity q from a fixed distribution with CDF Q(·). We model entry by having a representative

entrepreneur that takes as given the distribution of profit within each industry, and chooses a mass

of entrants for each industry subject to a constant elasticity of transformation function

max
{Jω}

∑
ω

Jωπ̄ω − w
1

1 + 1/χ

(∑
ω

J
1+β
β

ω

) β
1+β

(1+1/χ)

where π̄ω is expected profit for an entrants into industry ω, or, equivalently, average profit among

all entrants into the industry. Note that this nests free entry (β, χ → ∞) and inelastic entry

(β = χ = 0) as special cases. We assume β < ∞, so that an increase in demand is not fully

absorbed by new entrants.

3.3 Search

We assume that the search happens according to a matching function. In particular, if a firm j in

industry ω exerts search effort hj1 to find suppliers in industry ω−1, the arrival of matches depends

on hj1M(Jω−1), where the matching function M is weakly increasing in the mass of firms |Jω−1|.
Following the findings of Miyauchi (2018), we assume that the arrival rate increases with the mass

of potential suppliers, but congestion from others buyers that are also searching for suppliers does

not reduce the matching rate.10 If M is strictly increasing, then the matching function exhibits

increasing returns.

9With a notion of bargaining power as in Oberfield (2018), the assumption that each firm sets a price of marginal
cost in firm-to-firm trade is equivalent to the equilibrium in which buyers have complete bargaining power.

10Miyauchi (2018) found that when a firm lost its supplier due to an unexpected supplier bankruptcy, the speed
with which the firm found a new supplier increased with density of suppliers, but was uncorrelated with buyer density.
In our view, this is the most credible evidence to date on matching functions in the context of firm-to-firm trade.
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3.4 Timing

Entry choices

Firms born with qj

Search effort choice {hjω̂}ω̂

Supplier set & productivity

draws realized

Make/buy & supplier choices

Production,

Consumption

All entering firms draw their Hicks-neutral productivity shifter qj . Then they simultaneously

decide how much to search, choosing hj1 and hj2. Nature then reveals each firm’s set of potential

suppliers along with match-specific productivities and each firm’s task productivity Bj . Then all

firms set prices and make production choices (i.e. choosing production function and suppliers to

minimize cost, and choosing quantities to maximize profit) simultaneously. Finally, production and

consumption occur.

For firm j in industry ω born with productivity qj , let πgrossωj be the realized gross profit (gross

of search costs). If that firm exerts search effort hj1 and hj2, then E [πωj |qj , hj1, hj2] is its expected

profit taking as given the search decision of all other firms, and expectations are taken over real-

izations of all firms’ matches and task productivities. We assume that the cost of search effort is

isoelastic. Then the firm’s choice of search effort maximizes expected profit net of search costs:

max
hj1,hj2

E
[
πgrossωj |qj , hj1, hj2

]
− w k

1 + γ
h1+γ
j1 − w k

1 + γ
h1+γ
j2 .

3.5 Functional Form Assumptions

We make some functional form assumptions that will help in the characterization of the equilibrium.

First, we assume that if firm j chooses search effort (hj1, hj2), then the number of poten-

tial suppliers in industry ω − 1 with match-specific productivity greater than z is Poisson with

mean hj1M(Jω−1)z−ζ , and the number of potential suppliers in industry ω− 2 with match-specific

productivity greater than z is Poisson with mean hj2M(Jω−2)z−ζ . We will use the shorthand

m1 = M(Jω−1) and m2 = M(Jω−2) when there is no risk of ambiguity. In our numerical imple-

mentations we parameterize M as M(J) = Jµ.

Second, we assume that the task productivities are independent and identically distributed

across firms and take the form Bj = ebj/ζ , where bj is a random variable with characteristic

function Γ(1−it)
Γ(1−αit) , or equivalently that ebj/α is an α-stable random variable. We discuss the role of

this functional form assumption in footnote 11 below.

Third, we assume that the distribution of productivity with which firms are born has a suffi-

ciently thin tail: limq→∞ q
ζ 1+γ

γ [1−Q(q)] = 0. This assumption ensures that average profits remain

finite.
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3.6 Characterizing the Equilibrium

We characterize the equilibrium by working backward. Each firm’s production cost exhibits con-

stant returns to scale. Given its search effort and that of other firms, the realization of matches, and

all firms’ production choices, let cj denote the realization of j’s unit cost. Let coj1 = mins∈Sj1
ps
zjs

be the effective cost delivered by the best supplier of input ω − 1, and coj2 = mins∈Sj2
ps
zjs

be the

effective cost delivered by the best supplier of input ω−2. The cost of producing intermediate ω−1

in-house is cij1 = 1
Bj
w1−α(coj2)α. Thus the effective cost of intermediate ω−1 is cj1 = min{coj1, cij1}.

Finally, j’s unit cost is cj = 1
qj
w1−αcαj1. Let Fω(c) denote the cumulative distribution of unit costs

in industry ω.

We first characterize the possible realizations of firm j’s unit cost, given its choices of search

effort. We then use this to solve for the optimal search effort.

Proposition 1 For a firm j in industry ω with productivity qj that chooses search effort hj1, hj2,

(a) The effective cost of outsourcing intermediate input ω− k follows a Weibull distribution with

counter-cumulative distribution

Pr
(
cojk > c|qj , hj1, hj2

)
= ehjkmk c̄

−ζ
ω−kc

ζ

with c̄ω−k ≡
(∫
c−ζdFω−k(c)

)− 1
ζ .

(b) The effective cost of producing ω − 1 in-house follows a Weibull distribution with counter-

cumulative distribution

Pr
(
cij1 > c|qj , hj1, hj2

)
= eh

α
j2m

α
2 (c̄αω−2w

1−α)
−ζ
cζ .

(c) The conditional probability that the firm uses a supplier in recipe using ω − 1 is chosen is

hj1m1c̄
−ζ
ω−1

hj1m1c̄
−ζ
ω−1 + hαj2m

α
2

(
c̄αω−2w

1−α
)−ζ

(d) The firm’s expected profit is

E
[
πgrossωj |qj , hj1, hj2

]
= Aωδωq

ε−1
j

{[
hj1m1c̄

−ζ
ω−1 + hαj2m

α
2

(
c̄αω−2w

1−α)−ζ]−αζ w1−α
}1−ε

where Aω ≡ upηpε−ηω
(ε−1)ε−1

εε Γ
(

1− α ε−1
ζ

)
Parts (a) and (b) of Proposition 5 characterize the distribution of costs of different choices

conditional on qj and on search choices. Both costs, in-house production and outsourcing, fol-

low a Weibull distribution with the same shape parameter, and the realizations are conditionally
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independent.11 The probability that the firm chooses to outsource the input hence follows the

well-known expression that depends on the relative scale parameters (part (c)). Part (d) gives the

expected profit conditional on qj and search choices, which allows us to restate the search effort

choice problem as:

max
hj1,hj2

Aωδωq
ε−1
j

{[
hj1m1c̄

−ζ
ω−1 + hαj2m

α
2

(
c̄αω−2w

1−α)−ζ]−αζ w1−α
}1−ε

− w k

1 + γ
h1+γ
j1 − w k

1 + γ
h1+γ
j2

(1)

The optimal choices of search intensity imply a non-homotheticity in input use:

Proposition 2 In industry ω, the probability of using ω−1 is increasing in qj. Sales are positively

correlated with the decision to use ω − 1.

The empirical counterpart to Proposition 2 is a negative correlation between vertical span and size

within industries: firms are born with varying Hicks-neutral productivity qj , and choose search

efforts based on this draw. Firms born with higher productivity choose higher search intensities

and but also increasingly tilt their search toward suppliers in industry ω − 1, resulting in a higher

probability of choosing the production function in ω − 1. At the same time, those firms born with

higher productivity are likely to have more customers and sell more to the household, and so will

end up being larger on average.

What is the source of this nonhomotheticity? Mathematically, given the curvature in the

expected profit as a function of the search intensities, the returns to search diminish more quickly

for suppliers in ω− 2 than for suppliers in ω− 1 (see equation (1)). Hence, those firms that search

more increasingly tilt their searches toward suppliers in ω − 1.

The intuition behind this result is subtle. ω−2 is more complementary with labor than is ω−1

(because labor used for the upstream task has a unitary elasticity with ω− 2 but is a substitute of

ω − 1). Labor is special because, unlike for intermediate inputs, the firm cannot reduce the wage.

A firm that increases search effort will gradually expand its expected expenditure share on ω − 1

11The functional form for the distribution of the task-specific productivity Bj is chosen to solve the following
problem. The effective cost of purchasing input ω − 1 follows a Weibull distribution with shape ζ. The effective cost
of purchasing input ω − 2 is also Weibull with shape ζ. Without Bj , the effective cost of producing ω − 1 in-house
would be Weibull-distributed with shape ζ

α
because ω−2 has an output elasticity of α in the production of ω−1. This

would be unfortunate because discrete choice problems with extreme-value random variables only work well when the
random variables have the same shape parameter. To make the discrete choice problem tractable, the distribution
of Bj is chosen so that the cost of producing ω − 1 in-house (incorporating Bj) follows a Weibull distribution with
shape ζ.

Why does this particular functional form work? We build on the observation of Shanbhag and Sreehari (1977)
that if Z is a standard exponential random variable and X is an α-stable random variable defined by the Laplace
transform E

[
e−uX

]
= e−u

α

, then
(
Z
X

)α
is also a standard exponential random variable. The proof is remarkably

simple:

Pr ((Z/X)α > u) = Pr
(
Z > u1/αX

)
=

∫ ∞
0

e−u
1/αxdPr(X ≤ x) = E

[
e−u

1/αX
]

= e−u .

If we raise each side of the equation to the power 1/ζ, we obtain that Zα/ζ

Xα/ζ
has the same distribution of Z

1
ζ . In

other words, the ratio of a Weibull-distributed random variable with shape ζ/α and the random variable Xα/ζ is a
Weibull-distributed random variable with shape ζ. Bj in the model plays the role of Xα/ζ .
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relative to ω − 2. This raises the return to searching for ω − 1 relative to the return to searching

for ω − 2.12

An example might help to illustrate the mechanism. Consider a producer of polished diamonds

who faces the choice of using cut diamonds or rough diamonds as inputs.13 These two recipes

are substitutable, but each production step requires her to combine labor and the intermediate

input in an imperfectly substitutable manner. When faced with a higher qj , the producer would

exert a higher search effort for both cut and rough diamonds. She would, however, increase her

search effort for rough diamonds (the upstream input) proportionally less than for cut diamonds,

knowing that when she searches more for rough diamonds the cost of self-produced cut diamonds

falls proportionally by less, because the rough diamonds would still need to be combined with labor,

whose cost is not decreasing.

3.7 A Shift in Demand

We now consider a shift in household preferences that raises demand for the industry ω. The

implications are summarized by Proposition 3

Proposition 3 Suppose that entry is not completely elastic or inelastic (β ∈ (0,∞)). An increase

in δω causes

� more entry in industry ω: Jω ↗

� the price levels in industry ω falls: pω, c̄ω ↘
12To see this, consider a related simpler problem: A firm produces with the production function y =

qf(l, h1x1, h2x2), faces isoelastic demand y = δp−ε, and can choose h1 and h2 at costs
h

1+γ
1

1+γ
and

h
1+γ
2

1+γ
. An in-

crease in q raises incentives to search. Changing either h1 or h2 leads to a change in the marginal product of h1

and of h2. To determine whether a firm born with higher productivity would tilt their search toward h1, one must
compare (i) how raising h1 would change the marginal product of h1 relative to the marginal product of h2, to (ii)
how raising h2 would change the marginal product of h2 relative to the marginal product of h1. These are encoded
in the Morishima elasticities of substitution between h1 and h2: A firm born with higher productivity would tilt its
search relatively more toward h1 (i.e. d lnh1

d ln q
> d lnh2

d ln q
) if the direct Morishima elasticity of substitution of input 1 for

input 2 is higher than the elasticity of input 2 for input 1.
More concretely, suppose that f takes the nested CES form,

y = q

{
(A1h1x1)

η−1
η +

[
(A0l)

φ−1
φ + (A2h2x2)

φ−1
φ

] φ
φ−1

η−1
η

} η
η−1

.

Under parameter restrictions which guarantee the choices of search effort are interior, whether an increase in q leads
to a larger proportional increase in h1 or h2 depend on whether η ≷ φ. That is, η > φ implies d lnh1

d ln q
> d lnh2

d ln q
> 0

whereas η < φ implies d lnh2
d ln q

> d lnh1
d ln q

> 0. Importantly, the cost shares of each input play no role (i.e., the relative
magnitudes of A0, A1, A2 play no role).

In the model, expected profit takes a form similar to this nested CES production function, where the elasticity of
substitution of the inner nest translates to one (the elasticity of substitution between labor and input ω − 2 in the
upstream production function), while the elasticity across outer nests translates to 1 + ζ (the effective elasticity of
substitution across production recipes induced by discrete choice across Weibull distributed random variables with
shape parameter ζ). Since 1 + ζ > 1, d lnh1

d ln q
> d lnh2

d ln q
> 0.

13In the former case, the producer would just polish the cut diamonds, whereas in the latter case she would have
to do both cutting and polishing.
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� the fraction of firms in industry ω using ω − 1 increases.

The proof shows that the positive demand shock sets in motion a sequence of events. First,

the demand shock raises profit. This increases entry, but since entry is not fully elastic, expected

demand for each firm rises. Firms increase their search intensity. Both the increased entry and

increased search intensity lower the industry price index, due both to increased variety and to lower

cost for each q. In addition, with increased search intensity, firms tilt their search toward suppliers

in industry ω − 1, for the same reason as above.14

We think of Proposition 3 as speaking to the empirical results in Table V, that demand shocks

affect the vertical span.

3.8 A Shift in Demand for an Upstream Industry

We next consider the impact of a shift in household demand for industry ω − 1.

Proposition 4 If δω−1 increases, then if γ is sufficiently large (search effort not too elastic):

� more entry in industry ω − 1: Jω−1 ↗, cω−1 ↘

� the fraction of firms in industry ω using ω − 1 increases

� total sales in industry ω increase

The first result—that the increase in δω−1 raises entry in ω−1 and increase the value of searching

for suppliers in ω − 1—is simply an application of Proposition 3. The increase in vω−1 would lead

to a reduction in the distribution of cost even if those in ω did not change their search effort. This

implies that the price index pω declines. The fact that vω−1 increases raises incentives to search,

but the fact that pω declines reduces incentives to search. If γ is sufficiently large, we can show that

the former dominates and all firms search more.15 When firms search more, search effort increases

more for suppliers in ω − 1 than for suppliers in ω − 2. This, along with the reduction in c̄ω−1

increases the probability that firms use suppliers in ω − 1. Finally, the fact that c̄ω falls and pω

decreases means that total industry sales rise.

14If entry were completely elastic (β → ∞), profit per firm would be independent of δω, as the number of firms
would increase until profit per firm matched the opportunity cost of entry. With the same profit per firm, incentives
to search would not change, and the fraction of firms in ω using suppliers in ω − 1 would not change. However, Jω
would increase, and gains from variety would imply that pω would fall. If m(Jω) is strictly increasing in Jω, then vω
would rise as well. If entry were completely inelastic, (β = 0), the number of firms would be fixed by construction.
However, the increased demand would increase incentives to search, leading to lower price index pω and higher vω.

15For any value of γ, the largest firms will become more likely to use ω − 1 as a supplier. But if γ is low, the
smallest firms may not. In particular, if the firms born with lowest productivity q are extremely unlikely to use a
supplier in ω−1, then the decline in c̄ω will have less impact on profitability than the decline in pω. If search effort is
sufficiently elastic (i.e., γ small enough), then the large firms would increase their search enough so that the decline
in pω is large. Then the low-q firms may reduce search effort, tilting their search more toward suppliers in ω − 2.
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Figure 5 Elasticity to an Increase in Scale

Note: This figure plots the respective elasticities of income per capita, search effort, entry, and
the share of firms outsourcing to an increase in the labor force. The final plot shows the share
of expenditures on intermediate inputs, both as a fraction of total production cost and as a
fraction of total production and search cost. The values of parameters are α = 0.75, ε = 2.5,
ζ = 1.5, χ = 0.3, γ = 3, and µ = 0.6.

3.9 An Economy-wide Increase in Scale

We now illustrate some key mechanisms in the model using a numerical example. We study the

impact of an increase in the labor force, L. This could be interpreted as population growth or

growth in efficiency units of labor per person. In particular, we study the elasticity of output per

worker, entry, search effort, and vertical span to L. For this exercise, we assume that all industries

are symmetric, and that the distribution of productivity within each industry is degenerate, so that

all entrants have the same ex-ante productivity q. In this simplified environment, it turns out that

these elasticities can be expressed in terms of parameters and a single endogenous statistic, O, the

share of firms that choose a vertical span of 1 (or, alternatively,the total spending on intermediate

inputs as a share of production costs which is equal to Oα+ (1−O)α2).

First, in the special case in which there is a fixed set of firms (χ = 0) and fixed search effort

(γ → ∞), income per capita is invariant to scale: d log u
d logL = 0. Second, suppose that search effort

remains fixed (γ →∞) and allow for entry (χ > 0), and allow gains from variety to consumption,

except in returns to search (µ = 0). In this case, there is only the usual returns to scale that would

be present in a standard one-sector model with increasing varieties, d log u
d logL = χ

χ+1
1
ε−1 .

Consider now the case of interest, with either endogenous search effort (γ < ∞) and/or entry

and returns to scale in search (µ > 0, χ > 0). The economy exhibits increasing returns to scale:

panel (a) of Figure 5 shows that the elasticity of income/capita to the size of the labor force is

positive. When the labor force grows, there is more entry and firms search more, as shown in panels
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(b) and (c). Both mechanisms raise income per capita, and both reduce firms’ vertical spans, as in

panel (d).

These effects are stronger when firms are more specialized, indicating the presence of an input-

output multiplier effect. From the perspective of canonical input-output models (e.g. Long and

Plosser (1983), Acemoglu et al. (2012) or Jones (2011, 2013)) this multiplier effect may appear

puzzling, since input-output multiplier effects are usually only present with increases in neutral

productivity, not labor-augmenting productivity.16 In our model, there is a sense in which the

expansion of labor supply is similar to an increase in labor-augmenting productivity, for which there

is no multiplier effect. But, differently from canonical models, some of that labor gets channeled

into search effort and into the creation of new firms. Both the search effort and the gains from

additional potential suppliers act like neutral shifters of those suppliers’ costs. That is, they both

reduce the effective cost of suppliers in a neutral way, not just augmenting the labor of those

suppliers.

More formally, recall that average effective cost of an intermediate input is c̄ ≡
(∫
c−ζdF (c)

)− 1
ζ .

In this simple economy, this cost index satisfies c̄ ∝ w1−α {h1M(J)c̄−ζ + hα2M(J)α(w1−αc̄α)−ζ
}−α/ζ

.

From this, we obtain that the expected effective cost of intermediate inputs falls with entry and

search effort:
d log c̄/w

d logL
= − s

1− s
1

ζ

{
µ
d log J

d logL
+
s1

s

d log h1

d logL
+
s2

s

d log h2

d logL

}
where s is the expected share of production costs spent on intermediate inputs, while s1 and s2 are

the expected shares of production costs spent on inputs from ω − 1 and ω − 2 respectively, so that

s = s1 + s2. The reduction in expected cost is coming fully from search efficiency and search effort.

Panel (d) shows that firms specialize more as the labor force expands. To see why, recall that

O is the fraction of firms that choose to outsource input ω− 1 rather than produce in-house, which

can be expressed as
O

1−O
=

h1M(J)c̄−ζ

hα2M(J)α(w1−αc̄α)−ζ
.

First, as firms exert more search effort, they tilt their search effort toward less distant inputs: panel

(b) shows that d log h1

d logL > d log h2

d logL . Second, since α < 1, firms tend to become more specialized as

search effort rises, when the matching rate increases, or when the cost of intermediates falls relative

to the wage. In fact, either of the first two forces would reduce the cost of intermediates relative

to the wage, amplifying the direct impact.17

16Consider an economy with roundabout production so that output can either be consumed (U) or used as an
intermediate input (X): the resource constraint is Y ≥ X + U . Suppose that the production function is Y =
A(BL)1−αXα, so that B is labor-augmenting productivity and A is neutral productivity. In a competitive equilibrium,
d logU
d logB

= 1 and d logU
d logA

= 1
1−α .

17Interestingly, while endogenous search effort is needed for larger firms to be more specialized in the cross-section,
it is not needed for specialization to rise with development; endogenous entry (χ > 0) and a matching rate that rises
with entry (µ > 0) are sufficient.
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4 Alternative Mechanisms

4.1 Cost of Coordination

Becker and Murphy (1992) emphasized the cost of coordinating tasks as an important delimiter of

the range of activities done in a single team. An implication they draw is that higher demand (or

productivity) larger firms find it in their interest to pay the coordination cost to do more activities.

In principle there are many types of coordinating costs. Here we discuss a few specific versions

of a coordinating cost, and discuss why we think they do not explain our results about size and

vertical specialization.

One such cost of coordination is a fixed cost that is increasing in the number of suppliers (a

special case, of course, is a separate fixed cost for each supplier).18 In such a setting, an increase in

demand would make a firm more willing to pay the cost to engage with more suppliers. However,

as discussed in Section 2.5, an increase in demand tends to cause firms to reduce the number of

suppliers.

Alternatively, it is possible that there is a cost of coordinating many activities within a firm.

For example, suppose a firm needed to do a range of horizontal tasks; it could perform each task in-

house or outsource it, but there was a fixed cost that increased with the number of tasks performed

in house (with, again, a special case of there being a fixed cost for each task).19 The prediction of

such a model is that an increase in demand would tend to make the firm do more tasks in house.

This would reduce the share of intermediate inputs. However, as discussed in Table XII, an increase

in demand tends to raise a firm’s cost share of intermediate inputs.

Finally, if a firm faced a fixed cost that increased with the number of tasks performed in-house,

but the tasks were arranged vertically as a snake, an increase in demand would cause the firm to

do more tasks in house, increasing vertical span.

4.2 Limited Span of Control

Another factor that might affect vertical specialization is a limited span of control, as in Lucas

(1978). For example, Bloom et al. (2013) found a correlation between the number of male family

members and the number of plants operated by the firm.20 While we are unaware of similar evidence

indicating that span of control considerations limit plant size (or the size of single-plant firms), it

is plausible that some plants are constrained in the quantity of labor that can be hired.

If a firm’s employment is constrained, an increase in demand could induce a decline in verti-

cal span. If demand rises, the firm might choose to meet that demand by shifting employment

18Such a production structure has been adopted by a large number of papers, including Acemoglu, Antràs and
Helpman (2007), Lim (2018), Huneeus (2018), Tintelnot et al. (2018). In general, such models do not have clear
implications about how vertical span would change with demand.

19For example, in Chan (2017), a firm faces a fixed cost of performing each task in house and a different fixed cost
of outsourcing a task.

20Bloom et al. (2013) found that the number of “family members [that] could currently work as directors in the
firm” accounts for 10% of the variation in the number of plants operated by a firm.
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to a downstream task and outsourcing the upstream task. Indeed, the vertical structure of 3.1

augmented with a constraint on labor would lead to such a prediction.21

One difference between span of control limitations and endogenous search for suppliers is the

predicted response of marginal cost to changes in demand. A limited span of control would suggest

that marginal cost would rise with an increase in demand, whereas search for suppliers would

imply that marginal cost would fall. The unit costs we can construct using our data are noisy–

partly because the units in which quantities are denominated change over time—so at this point

we are hesitant to make conclusive statements in either direction.

That said, our interpretation is consistent with the findings of Albornoz, Brambilla and Ornelas

(2021), who study Argentine firms after the sudden removal of preferential tariffs by the US following

an intellectual property dispute. They find that affected firms reduced sales to the US but also

reduced sales to other export markets, consistent with marginal cost declining with size.

4.3 Other Mechanisms

Our empirical findings suggest that larger firms pay lower prices, on average, than smaller firms. We

have posited that such a relationship arises naturally if firms can exert effort to such for suppliers.

An alternative mechanism that yields similar cross-sectional results is that sellers practice second

degree price discrimination and offer quantity discounts, as in Meleshchuk (2019).22

5 A Quantitative Model

In this section we extend the baseline model to so that production modules use multiple inputs.

Household preferences, market structure, and timing are the same as in the simple model.

21Both a quantity constraint on labor and increase in search effort would lead to a decline in the cost of intermediates
relative to the shadow cost of labor, leading to substitution toward the downstream intermediate which is a better
substitute for labor (a higher Morishima elasticity of substitution).

22Monopsonistic behavior in intermediate input markets, on the other hand, is not consistent with marginal cost
declining with size. Monopsonistic behavior requires an upward sloping supply curve for each intermediate input.
While this could be consistent with larger firms attaining larger markdowns on intermediate input purchases, it also
means that when the firm is larger and chooses to buy larger quantities of intermediate inputs, it must pay more for
the marginal unit.
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5.1 Recipes and Production

Output

Make

or

Buy

Make

or

Buy

Make

or

Buy

Make

or

Buy

Make

or

Buy

Buy Make

or

Buy

Make

or

Buy

Make

or

Buy

Make

or

Buy

Buy Make

or

Buy

A firm’s production possibilities can be described by a tree of production modules. A production

module to make ω is a production function that uses a particular set of inputs Ω̂ω and labor. The

firm can either buy each input ω̂ ∈ Ω̂ω from a supplier or it can produce it in-house with another

production module to produce ω̂. We say that Ω̂∞ω is the set of all inputs that are nodes in the tree

formed by the production modules.

The firm searches for suppliers. For each input ω̂ ∈ Ω̂∞ω , its search effort hω̂ delivers a set of

potential suppliers Sjω̂ from whom it may purchase input ω̂. For each potential supplier s ∈ Sjω̂,

the firm draws a match-specific productivity zjs; with unit price ps, the effective cost of purchasing

that input from that supplier is ps
zjs

. Since the buyer will choose the supplier that delivers the lowest

effective cost, the cost of outsourcing input ω̂ is cojω̂ = mins∈Sjω̂
ps
zjs

.

The firm can also produce some inputs in-house using a production module. A production

module to produce ω̂ in-house delivers an effective cost cijω̂ (which we characterize below). The

firm’s effective cost of input ω̂ is thus

cjω̂ = min
{
cijω̂, c

o
jω̂

}
We assume that each production module is Cobb Douglas. The production module to produce

an input ω delivers an in-house unit cost of

cijω =
1

Bjω
wα

ω
l

∏
ω̂∈Ω̂ω

c
αωω̂
jω̂

Bjω̃ is a random firm-module specific productivity shifter and αωω̂ are the output elasticities of a

module input ω̂.

A firm born in industry ω also has a core production module from which it produces ω. It

cannot outsource the production module, and there is no productivity shifter B. This production
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module takes the form

cjω =
1

q
wα

ω
l

∏
ω̂∈Ω̂ω

c
αωω̂
jω̂

where q is a firm-specific productivity shifter. Every module has constant returns to scale, αωl +∑
ω̂∈Ωω

αωω̂ = 1, and labor is essential, αωl > 0.

5.2 Entry

The mass of firms in each industry is endogenous. We model entry by having a representative

entrepreneur that takes as given the distribution of profit within each industry, and chooses a mass

of entrants for each industry subject to a constant elasticity of transformation function

max
{Jω}

∑
ω

Jωπ̄ω − w
kE

1 + 1/χ

(∑
ω

(
δEω
)− 1

β J
1+β
β

ω

) β
1+β

(1+1/χ)

where π̄ω is average profit among all entrants into industry ω, and δEω is a shifter of the supply of

entrants for industry ω. The solution is

Jω = δEω π̄
β
ωπ̄

χ−β(wkE)−χ

where π̄ ≡
(∑

ω δ
E
ω π̄

1+β
ω

) 1
1+β

is an index of average profit. β indexes the ease of shifting entry

between industries, and χ indexes the response of total entry to labor devoted to entry. Note that

this specification nests free entry with β, χ→∞, in which case equilibrium requires π̄ω = wkE ,∀ω,

and exogenous entry with β, χ → 0, in which case Jω = δEω . We assume that β < ∞, so that an

increase in industry demand is not fully absorbed by new entrants.

Each new entrant draws the productivity of its core module, q, from an industry-specific distri-

bution with distribution function Qω(q).

5.3 Functional Form Assumptions

In this section, we make several functional form assumptions that will be useful in facilitating a

characterization of the equilibrium.

First, we specify the distribution of match-specific productivities. We assume that if firm j

chooses search effort hjω̂ for some input ω̂ for use in a module to produce ω, then the number of

potential suppliers of varieties of ω̂ with match-specific productivity greater than z is Poisson with

mean hjω̂mωω̂z
−ζ . mωω̂ is a measure of matches, which we will later endogenize.

Second, we specify the distribution of module-specific productivities, which are independent

across firms and modules. For a module to produce ω with output elasticities αωl , {αωω̂}ω̂∈Ω̂ω
, the

productivity shifter Bjω takes the form eb/ζ with b drawn from a distribution with characteristic

27



function23

Γ(1− it)∏
ω̂∈Ωω

Γ
(
1− αωω̂it

)
Third, we assume that the number of production modules in the tree is finite.

Finally, we assume that the distribution of productivity with which firms are born has a suffi-

ciently thin tail: limq→∞ q
ζ 1+γ

γ [1−Qω(q)] = 0.

5.4 Characterizing the Equilibrium

We characterize the equilibrium by working backward. We normalize the wage to 1.

We first characterize possible realizations of firm j’s unit cost, given its choices of search effort.

We then use this to restate the firm’s problem in order to solve for its choice of search effort.

Proposition 5 For firm j in industry ω with productivity qj that chooses search effort {hjω̃}ω̃∈Ω̂∞ω
,

� The effective unit cost of outsourcing input ω̂ ∈ Ω̂ω̃ follows a Weibull distribution with counter-

cumulative distribution

Pr(cojω̂ > c) = e−hjω̂mω̃ω̂ c̄
−ζ
ω̂ cζ

with c̄ω̂ ≡
(∫
c−ζdFω̂(c)

)− 1
ζ and Fω̂(·) is the distribution function of unit cost among firms in

industry ω̂.

� For any input ω̂ ∈ Ω̂ω̃ that can be produced in-house, the effective unit cost of producing it

in-house follows a Weibull distribution with counter-cumulative distribution

P
(
cijω̂ > c

)
= e−T

−ζ
jω̂ c

ζ

where {Tjω̃}ω̃∈Ω∞ω are defined iteratively as

Tjω̃ = wα
ω̃
l

∏
ω̂∈Ω̂ω̃

[
hjω̂mω̃ω̂ c̄

−ζ
ω̂ + T−ζjω̂

]−αω̃ω̂
ζ

where we use the convention that Tjω̂ =∞ if the input is a leaf of the production tree (i.e., if

in-house production is infeasible).

� The probability of outsourcing input ω̂ ∈ Ω̂ω̃ conditional on using it in production is

hjω̂mω̃ω̂ c̄
−ζ
ω̂

hjω̂mω̃ω̂ c̄
−ζ
ω̂ + T−ζjω̂

(2)

23There are two special cases in which such a random variable has a well-known name. If the recipe uses no
intermediate inputs, b follows a Gumbel distribution. If the recipe uses exactly one intermediate input with output
elasticity αωω̂, e−b follows a one-sided Levy-stable distribution with characteristic exponent αωω̂, which has the Laplace

transform E
[
e−ub̃ji

]
= e−u

α
ρ
ω̂ . In Appendix E we show such a random variable exists, building on Shanbhag, Pestana

and Sreehari (1977) who show the existence of a closely related random variable.
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This is independent of the firm’s cost or of the probability of outsourcing other inputs.

� The firm’s expected profit is

Aωδωq
ε−1
j T 1−ε

jω −
∑
ω̂∈Ω̂∞ω

wk
h1+γ
jω̂

1 + γ

where Aω ≡ upηpε−ηω
(ε−1)ε−1

εε
∏
ω̂∈Ω̂ω

Γ
(

1− αωω̂
ε−1
ζ

)
.

An implication of the functional form assumptions is that the effective unit cost of outsourcing

each input ω̂ ∈ Ω̂ω̃ follows a Weibull distribution with scale that depends on search effort and the

availability of good suppliers, hjω̂mω̃ω̂ c̄
−ζ
ω̂ and shape ζ.24 In addition, conditioning on search effort

across all inputs, the unit cost for in-house production of each input follows a Weibull distribution

with shape parameter ζ and scale T ζjω̂.25 Because the two Weibull distributions share the same

shape parameter, the usual discrete-choice logic implies that a simple expression for the probability

of outsourcing a particular input, (2).

Corollary 1 Given search choices, the industry average cost index satisfies

c̄−ζω =
∏
ω̂∈Ω̂ω

Γ (1− αωω̂)

∫
qζTω(q)−ζdQω(q)

and the industry price index satisfies

p1−ε
ω =

ε

ε− 1
Jω

∏
ω̂∈Ω̂ω

Γ

(
1− αωω̂

ε− 1

ζ

)∫
qε−1Tω(q)1−εdQω(q)

5.5 Optimal Search Effort

With this, we can characterize the optimal choice of search effort. The firm’s problem can be

expressed as a recursive cost-minimization problem. In particular, for the module to produce ω,

define the cumulative search cost function

Kω (Tω) = min
{hω̂}ω̂∈Ω̂∞ω

∑
ω̂∈Ω̂∞ω

k
h1+γ
ω̂

1 + γ
.

24The logic closely follows Oberfield (2018).
25Why does the cost of in-house production follow a Weibull distribution? We show this by induction, starting

upstream. For any input that is a leaf, the effective cost of the input follows a Weibull distribution with shape
parameter ζ. Consider module to produce ω̃, with inputs Ω̂ω̃. The cost of purchasing any input from a supplier
follows a Weibull distribution with shape ζ. Suppose that unit cost of in-house production of input ω̂ follows a
Weibull distribution with shape ζ. Since the firm will procure ω̂ in the way that delivers the lowest cost, and the
family of Weibull distributions with the same shape is closed, the cost to the firm of procuring the input will be
Weibull with shape ζ. The cost for the module is the product of the cost of each input, raised to the respective
output elasticities {αω̃ω̂}ω̂∈Ω̂ω̃

, multiplied by the random variable Bjω̃. While the product of independent Weibulls
is not Weibull, the distribution of Bjω̃ is reverse engineered so that the resulting unit cost of ω̃ follows a Weibull
distribution with shape ζ.
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This is the minimal search cost across all inputs upstream from the module required to deliver a

distribution of unit cost for the module with scale parameter Tω. With this notation, the firm’s

problem can be expressed as

max
Tjω

Aωδωq
ε−1
j T 1−ε

jω − wKω (Tjω) .

Further, the cumulative search cost function Kω has an iterative representation

Kω (Tω) = min
{hω̂ ,Tω̂}ω̂∈Ω̂ω

∑
ω̂∈Ω̂ω

[
k

1 + γ
h1+γ
ω̂ +Kω̂ (Tω̂)

]

subject to

Tω ≥ wα
ω
l

∏
ω̂∈Ω̂ω

[
hω̂mωω̂ c̄

−ζ
ω̂ + T−ζω̂

]−αωω̂
ζ

The next lemma derives some useful properties of the cumulative search cost functions, Kω.

Lemma 1 Each Kω(·) is such that Kω(0) = 0, is strictly increasing, strictly convex, twice con-

tinuously differentiable, and the policy functions {hω̂(·), Tω̂(·)}ω̂∈Ωω
are differentiable and strictly

increasing in Tω.

This Lemma is helpful in characterizing several features of firms’ choices.

Proposition 6 Among firms in ω, those born with higher productivity choose higher search effort

for all nodes. Further, for any input for which it is feasible to produce in-house, the probability of

outsourcing the input is strictly increasing in q.

The proposition follows from Lemma 1 and the fact that a firm born with higher productivity

would choose to invest more in lowering its cost by choosing higher Tω. The proof of Lemma 1 notes

first that, for any module, cost minimization implies that lowering its unit cost involves searching

more for direct suppliers and for suppliers further upstream. That is, higher Tω corresponds to

both higher hω̂ and higher Tω̂ for each of the module’s inputs ω̂ ∈ Ω̂ω. Second, for each of input for

which in-house production is feasible, hω̂ rises proportionally more than T ζω̂ , d lnhω̃
d lnTω

>
d lnT ζω̂
d lnTω

. This

happens because the cost of finding suppliers rises less steeply than the cost of reducing the in-house

production cost by searching for suppliers further upstream. The critical step is that producing

in-house requires labor, and searching for suppliers further upstream cannot reduce the cost of

labor used in-house, whereas outsourcing an input replaces labor. The labor required to produce

in-house ultimately limits the effectiveness of reducing cost by searching for upstream suppliers

relative to doing so by searching for suppliers further downstream.26

With this, we can derive some cross sectional predictions.

26Another way to see the role of labor is to consider the following thought experiment. For a module to produce

ω, no labor was required to produce in house, so that αω̂l → 0 for all ω̂ ∈ Ω̂∞ω . In that limit, d lnhω̂
d lnTω

→ d lnT
−ζ
ω̂

d lnTω
, i.e.,

production becomes homothetic.
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Proposition 7 In industry ω, the probability of outsourcing any intermediate input (conditional

on using it) is increasing in sales.

The empirical counterpart to Proposition 7 is a negative correlation between vertical span and

size within industries, as discussed in Section 2.3. The leap from the previous proposition is moving

from q to sales. Firms with higher q search more and tend to have lower cost, enabling them to sell

more, on average, to both the household and to other firms. To prove the result, we simply note

that conditioning on q, a firm’s sourcing decisions are independent of its sales.

6 Estimation and Quantitative Evaluation (In Progress)

6.1 Solving the Model

Before describing the algorithm, we collect the model’s key equations in one place.

For a firm born with productivity q, the firm’s problem gives its profit and the first order

conditions give its choices:

πω(q) = max
Tω

δωAωq
ε−1T 1−ε

ω − wKω (Tω)

where

Aω = upηpε−ηω

(ε− 1)ε−1

εε

∏
ω̂∈Ω̂ω

Γ

(
1− αωω̂

ε− 1

ζ

)
,

the industry price index satisfies

p1−ε
ω =

ε

ε− 1

∏
ω̂∈Ω̂ω

Γ

(
1− αωω̂

ε− 1

ζ

)
Jω

∫
qε−1Tω(q)1−εdQω(q),

and the cumulative search cost function Kω for module to produce ω can be expressed iteratively

as

Kω(Tω) = min
{hω̂ ,Tω̂}ω̂∈Ω̂ω

∑
ω̂∈Ω̂ω

[
k

1 + γ
h1+γ
ω̂ +Kω̂ (Tω̂)

]
subject to

Tω ≤ wα
ω
l

∏
ω̂∈Ωω

[
hω̂mωω̂ c̄

−ζ
ω̂ + T−ζω̂

]−αωω̂
ζ

where the average cost index satisfies

c̄−ζω =
∏
ω̂∈Ω̂ω

Γ (1− αωω̂)

∫
qζTω(q)−ζdQω(q).

Equilibrium entry decisions satisfy

Jω = δE π̄βωπ̄
χ−β(wkE)−χ
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with π̄ =
(∑

ω δ
E
ω π̄

1+β
ω

) 1
1+β

and π̄ω =
∫ {

δωAωq
ε−1Tω(q)1−ε − wKω (Tω(q)) dQω(q)

}
dQω(q).

Total spending up equals total revenue, which, in turn, equals the total wage bill for variable

production times the markup, or up = ε
ε−1wL

Production.

The labor market clearing condition is

Lproduction + LEntry + LSearch = L

Total labor used for search and for entry across all industries are

LSearch =
∑
ω

JωL̄
Search
ω =

∑
ω

Jω

∫
Kω (Tω(q)) dQω(q)

LEntry =
kE

1 + 1/χ

( π̄

wkE

)1+χ

.

The Algorithm:

In the model, the structure of production is a directed acyclic graph. Our approach to solving

the model will be to begin upstream to solve the decisions of firms and then iteratively work our

way downstream. As we describe below, we can do this conditional on a single general equilibrium

variable.

1. Guess X ≡ (ε−1)ε−1

εε
u(p/w)η[

( π̄w )
χ−β

(kE)−χ
] ε−η
ε−1

. This variable summarizes general equilibrium consid-

erations.

2. Proceed iteratively, starting with the most upstream industry to solve for industry variables

and cost functions and then proceed downstream. For industry ω:

(a) First, solve for the cost function Kω(·). We first convert the cost to units of labor.

Given the wage, w, let K̃ω(T̃ ) ≡ Kω(wT̃ ), so that T̃ is in units of labor. Then K̃ω can

be defined recursively as

K̃ω(T̃ω) = min
{hω̂ ,T̃ω̂}ω̂∈Ω̂ω

∑
ω̂∈Ω̂ω

[
k

1 + γ
h1+γ
ω̂ + K̃ω̂

(
T̃ω̂

)]

subject to

T̃ω ≤
∏
ω̂∈Ωω

[
hω̂mωω̂

( c̄ω̂
w

)−ζ
+ T̃−ζω̂

]−αωω̂
ζ

The cost of any primary input is exogenous, and for any input ω̂ that is further upstream,

we have already solved for K̃ω̂(·) and c̄ω̂
w from the previous step or, if a primary input,

from technology.

(b) We next solve for Aω
w . Given Aω

w and K̃ω, we can solve for T̃ω(q) = Tω(q)
w for each q. Aω

w

and Tω(·)
w are sufficient for expected profit for entrants, π̄ωw . Note that Aω

w can be expressed
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as Aω
w = X

[
δEω
(
π̄ω
w

)β ∫
qε−1

(
Tω(q)
w

)1−ε
dQω(q)

]− ε−η
ε−1 {∏

ω̂∈Ω̂ω
Γ
(

1− αωω̂
ε−1
ζ

)} η−1
ε−1

.

(c) Tω(·)
w is also sufficient to recover the average cost index relative to labor, c̄ω

w

3. Once we have these π̄ω
w for all industries, we can compute the average profit index π̄

w =(∑
ω δ

E
ω

(
π̄ω
w

)1+β
) 1

1+β
, which is sufficient to characterize the measure of entrants, Jω, in each

industry. With this, we can compute the industry price index pω
w , and total labor used for

search across all firms in the industry. With this, we can compute the aggregate price index

p
w =

(∑
ω δω

(pω
w

)1−η) 1
1−η

.

4. Compute X ≡ (ε−1)ε−1

εε
u(p/w)η[

( π̄w )
χ−β

(kE)−χ
] ε−η
ε−1

and check whether it matches the initial guess. We

already have p
w and π̄

w . We can recover u from up = ε
ε−1w

(
L− LSearch − LEntry

)
.

6.2 Estimation of Model Parameters

6.2.1 Constructing the Production Tree

We take the model to the manufacturing data by assuming that each product ω corresponds to a

five-digit product code. We proceed in the following steps. The details are in Appendix A.3.

1. We set some of the industries ω to be leaf industries, i.e. industries which produce only

using labor. In the data, this corresponds to product codes that fall outside of manufacturing

(i.e. agriculture, mining) as well as some goods where consumption vastly exceeds domestic

production.

2. We then construct a directed acyclical graph of input-output relationships between products.

Starting with leaf industries, we find all goods that produced only using leaf industry inputs,

then all goods that are produced from those goods and leaf goods, etc. In order to allow

the construction of such a graph without any cycles, we treat some less important observed

inputs as primary inputs (cf. Tintelnot et al. (2018)).27

3. Starting again upstream, we recursively calibrate the production function parameters αωω̂ for

each module ω and each direct input ω̂ to match the aggregate expenditure on direct inputs

and inputs upstream from them. We calibrate αωl to match the residual expenditure on

primary inputs, netting out primary factor expenditure associated with intermediate input

expenditures from non-direct inputs (which are determined by the α’s of modules further

upstream).

27Some large firms span many products, making it more likely that cycles arise. In contrast, the graph we are
constructed is based on the production functions of plants that produce single products. As a result, fewer links need
to be severed.

33



6.2.2 Calibration of Shifters

In this section, we take as given the production trees and the elasticities γ, β, χ, ζ, ε, η, φ and show

how the we pin down all of the shifters in the economy.

We have data on shares of each industry in final consumption, HHω, the measure of firms in

each industry, Jω, and for each of an industry’s direct inputs, the fraction of firms in an industry

that purchase the input from a supplier, Ōω̂. We also can compute each firm’s value added and

wage bill.28

1. Normalizations and choice of units

(a) We choose units of labor so that L = 1.

(b) We normalize each qω to unity.29

(c) We normalize the cost of search parameter k to unity.30

(d) For any leaf input, normalize c̄ω and mωω̂ to equal the wage.31

(e) We normalize the sum of the preference shifters and entry shifters to unity:
∑

ω δω =∑
ω δ

E
ω = 1.

2. Next, we infer LProduction, LSearch, and LEntry. First, the sales to the household is equal

to value added. Since firms charge the usual markup of ε
ε−1 , the share of labor used in

production satisfies Value Added
wLProduction

= ε
ε−1 . Second, we assume that labor used for entry does

not appear in our data, so that the remaining labor in the wage bill represents search for

suppliers: wLSearch = Wage Bill − wLProduction. Third, note also that the ratio of profit to

expenditure on entry depends on the rate of diminishing returns to entry:
∑
ω Jωπ̄ω

wLEntry
= 1 + 1

χ ,

and that total profit is the difference between aggregate Value Added and the Wage Bill.

Since we have chosen units so that L = 1, these together imply

LEntry =

χ
χ+1(Value Added−Wage Bill)
χ
χ+1Value Added + 1

χ+1Wage Bill

LProduction =
ε−1
ε Value Added

χ
χ+1Value Added + 1

χ+1Wage Bill

LSearch =
Wage Bill− ε−1

ε Value Added
χ
χ+1Value Added + 1

χ+1Wage Bill

3. Calibrate {mωω̂} proceeding iteratively, starting with the most upstream industries.

(a) Consider industry ω. For each direct input ω̂ ∈ Ω̂ω, we already have the cumulative

search cost function, Kω̂.

28Note that here the wage bill corresponds to total expenditure on primary inputs.
29A model with

{
qω, δω, {mωω̂}

}
is equivalent to one with q′ω = 1, δ′ω = δωq

ε−1
ω , and m′ωω̂ = mωω̂q

ζ
ω̂.

30A model with k and {{mωω̂}} is equivalent to one with k′ = 1 and m′ωω̂ = mωω̂

k
1

1+γ
.

31Since production of any good is ultimately Cobb-Douglas across primary inputs, changing the cost of any primary
input would simply be absorbed by changes in the demand shifters {δω}.
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(b) For each non-leaf, direct input, ω̂, guess mωω̂. We already have
∫
qζT ζω̂dQω̂(q) from the

previous step. Thus we have vωω̂.

(c) For each leaf direct input, ω̂, we have normalized c̄ω̂ = 1 and mωω̂.

(d) Given mωω̂ c̄
−ζ
ω̂ for each direct input and Kω̂ for each non-leaf direct input, we can solve

for Kω.

(e) We next solve for pω
w . We guess a value for pω

w . Then, noting that HHω = δωp
1−η
ω

p1−η and

up = ε
ε−1wL

production, imply that

δωAω =δωup
ηpε−ηω w−ε = HHω

p1−η

p1−η
ω

upηpε−ηω w−ε = HHω
1

p1−η
ω

ε

ε− 1
wLproductionpε−ηω w−ε

=HHω
ε

ε− 1
Lproduction(pω/w)ε−1

With this, one can solve for Tω(q) for each q. Finally, we check that
(pω
w

)1−ε ∝
Jω
∫
qTω(q)ε−1dQω(q).

(f) Compute the fraction of firms in industry ω that outsource each direct input. Check

that these match the data. If not, adjust the guess of {mωω̂}.

4. After we have solved for each pω/w, we next solve for δω. Using HHω = δωp
1−η
ω

p1−η from household

optimization and the normalization
∑

ω δω = 1 gives

δω =
HHωp

η−1
ω∑

ω′ HHω′p
η−1
ω′

5. Solve for δEω using Jω = δEω π̄
β
ωπ̄χ−β(wkE)−χ and the normalization

∑
ω δ

E
ω = 1, which together

yield

δEω =
Jωπ̄

−β
ω∑

ω′ Jω′ π̄
−β
ω′

6. kE is set to match labor used for entry

LEntry =
kE

1 + 1/χ

( π̄

wkE

)1+χ

.

6.2.3 Calibration of Elasticities

We have seven elasticities to pin down. We set ε− 1 = ζ = 1.5. These parameters characterize the

elasticity of substitution across varieties in the same industry of the household and of downstream

firms. We assume that these elasticities are the same. We set the elasticity of substitution across

baskets equal to the within-basket elasticity, η = ε. We set the overall entry elasticity χ = 0.3,

and β = 1. Together, these calibration choices imply that seven percent of labor is used on search,

and 20 percent of labor is used on entry. For the distribution of firm productivities q we choose a
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Pareto distribution with lower bound of unity and tail exponent of 8. For the matching function,

we follow Miyauchi (2018) and set M(Jω) = J0.6
ω . In the baseline calibration, we set γ = 3.

6.3 A counterfactual increase in L

Similarly to Section 3.9, we explore numerically the economy’s response in utility, the price level,

and allocation of labor to a change in the labor force L. Figure 6 shows the proportional response

of a simulated economy that contains all industries up to 10 production steps away the exogenous

industries (which corresponds to 80% of all industries, and 84% of sales to households). Following

a 100 percent increase in L, the price level in this simulated economy falls by 27 percent. The share

of labor allocated to entry and to search increases by about one half.

Figure 6 Counterfactual increase in size of the economy L
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7 Conclusion

How do firms organize the vertical extent of their activities, and what are the implications for the

relationship between specialization and growth? We present data on the vertical span of production

of Indian manufacturing plants. At the macro level, specialization—plants having short vertical

spans—is positively correlated with the level of development. At the micro level, among plants

that produce the same output, plants that produce at larger scales have shorter vertical spans.

We present a theory where firms are born with ex-ante heterogeneous Hicks-neutral productivity

and search for suppliers of inputs at different stages in their value chain, eventually choosing

the cost-minimizing bundle of inputs and suppliers. When intermediate inputs are imperfectly

substitutable with primary production factors, a non-homotheticity emerges: firms that are ex-

ante more productive search disproportionately more for inputs further downstream, and end up

more likely to have a short vertical span. A full quantitative model points to the presence of

considerable economies of scale in production, creating a strong link between specialization and

growth at the aggregate level.
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A Data Appendix

A.1 Data Sources and Variable Definitions

� Plant-level data: Our plant data is India’s Annual Survey of Industries (ASI), published by

the Central Statistics Office, Ministry of Statistics and Program Implementation (MOSPI).

The data is at annual frequency, each reporting year starts on April 1st and ends on March

31st. Our data covers the years 1989/90, 1993/94, 1994/95, and 1996/97 to 2014/15. In the

following, we denote ASI rounds by the year in which they end (e.g. ‘2004” for “2003/04”).

Product codes for inputs and outputs vary across the years. We map all product codes

to the ones used between 1998 and 2008 (“ASIC 2008”). We map the pre-1997 product

codes to ASIC 2008 using a concordance that we create manually from the input and output

descriptions published by MOSPI. We concord input and output product codes for 2008/09

and 2009/10 to ASIC 2008 using the concordance used in Boehm and Oberfield (2020). The

years 2010/11 to 2014/15 use the NPCMS product classification, which we convert to ASIC

2008 codes using the concordance published by the Ministry. Codes for 1997 largely follow

the 2008 classification, but unlike the other rounds, the 1997 ASI does not list packaging

materials and auxiliary consumables (nuts, bolts, etc) as separate input categories, making

the breakdown of the plants’ materials basket inconsistent with the other years. We therefore

exclude observations from that round in all regressions where variables that rely on the

composition of plant inputs are used (most notably, regressions with the vertical span).

� Total cost: Sum of the user cost of capital, the total wage bill, energy, services, and mate-

rials inputs. Total cost is set to be missing if and only if the user cost of capital, the wage

bill, or total materials are missing. The user cost of capital is constructed using the per-

petual inventory method as in the Appendix of Greenstreet (2007), using depreciation rates

of 0%, 5%, 10%, 20%, and 40% for land, buildings, machinery, transportation equipment,

and computers & software, respectively. Capital deflators are from the Ministry’s wholesale

price index (except buildings, for which we use the CPWD building cost index up to 1994,

and the Construction Cost Index CIDC Average after 1994), and the nominal interest rate is

the India Bank Lending Rate, from the IMF’s International Financial Statistics (on average

about 11%). Services input expenditures include payments for “work done by others on ma-

terials provided by the factory”, operating expenditures (inward freight and transportation

charges, local taxes and licence fees), and non-operating expenditures (payments for commu-

nication, accounting services, financial and insurance services, legal services, contractor fees,

and others).

� Materials expenditure in total cost: and subsequent tables) Total expenditure on 5-digit

intermediate inputs (which excludes energy and services) divided by total cost (see above).

� Rauch classification of goods: From James Rauch’s website, for 5-digit SITC codes. Con-
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corded from SITC codes to ASIC via the SITC-CPC concordance from UNSTATS, and the

NPCMS-ASIC concordance from the Indian Ministry of Statistics (NPCMS is based on CPC

codes).

� Dependence on relationship-specific inputs, by industry: Total expenditure of single-product

plants in an industry on relationship-specific inputs (according to the concorded Rauch clas-

sification), by 3-digit industry, divided by total expenditures on intermediate inputs that are

associated with a 5-digit product code (which excludes services and most energy intermediate

inputs).

� Gross domestic product per capita, by district: Nominal district domestic product was as-

sembled from various state government reports, for the year 2005 (to maximize coverage).

Missing for Goa and Gujarat and some union territories, and for some individual districts in

the other states. Population data from the 2001 and 2011 Census of India, interpolated to

2005 assuming a constant population growth rate in each district. Whenever district domes-

tic product per capita was unavailable, we used gross state domestic product per capita, as

reported by the Ministry of Statistics and Program Implementation.

� Gross state domestic product per capita: Nominal gross state domestic product per capita,

by state and year, from CMIE’s “States of India” database.

� Vertical Span: See Appendix A.2.

� Import Tariffs: Effective applied tariffs, whenever available, otherwise MFN applied tariffs.

Tariffs for the tariff years 1996 to 2014 are from TRAINS. For the tariff years 1989, 1993,

and 1994, we digitized and coded the six-digit harmonized system codes from the respective

edition of Arun Goyal’s Customs Tariff books. This excludes tariffs for headings 84 (“nuclear

reactors, boilers, machinery and mechanical applications, and parts thereof”) and 85 (“elec-

trical machinery and equipment, and parts thereof”), which cannot be reasonably mapped to

the six-digit level because of long lists of exceptions (140 pages in Goyal’s 1989 book). We

concord all codes to the 2007 revision of the harmonized system, and then via CPC/NPCMS

to ASIC 2008, as in Boehm and Oberfield (2020). We impute tariffs for years where they are

missing by linearly interpolating within the ASIC code, and assign each tariff year to the ASI

year that maximizes the overlap (e.g. tariff year 1989 to the ASI year 1989/90).

A.2 Definition of Vertical Span

See Appendix B of Boehm and Oberfield (2020) for definition and examples of vertical distance

and vertical span. We follow these steps:

1. For a given product ω, construct the materials cost shares of industry ω on each input

2. Recursively construct the cost shares of the input industries (and inputs’ inputs, etc...),

excluding all products that are further downstream.
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3. Vertical distance between ω and ω′ is the average number of steps between ω and ω′, weighted

by the product of the cost shares.

Tables IX and X give examples of vertical distance.

Table IX Vertical distance examples for 63428: Cotton Shirts

Mean Vertical Distance

Fabrics/Cloths 1.66
Yarns 2.58
Ginned & pressed cotton 3.44
Raw cotton 4.09

Table X Vertical distance examples for 73107: Aluminium Ingots

Vertical Distance

Anodes, copper 1.00
Aluminium scrap 1.19
Aluminium oxide 1.25
Bauxite, calcined 2.18
Caustic soda (sodium hydroxide) 2.39
Bauxite, raw 3.03
Coal 3.43

The vertical span is the cost-weighted distance of a plant’s inputs from its output. We define

vertical span for single-product plants only.

A.3 Mapping the data to the model

A.3.1 Defining the sample for the quantitative exercise

Interpreting the data through the lens of our model imposes some requirements on the data. We

therefore restrict the sample to observations that we can use for the estimation:

� We remove plant-year observations that have missing total cost (which arises mainly because

of missing labor or capital expenditures).

� We remove plant-year observations that do not report at least one 5-digit materials input

with positive nonmissing associated expenditures

� We remove observations from years 1996/97, 1998/99, and 1999/2000, because plants seem

to underreport intermediate inputs in those rounds.

Furthermore, for the calibration and estimation we only use single-product plants.

A.3.2 Constructing the graph of input-output relationships

In general we assume that each five-digit ASIC code corresponds to an industry ω, and model their

position in the production tree as determined by the inputs that plants use to produce them. That

said, we model some industries ω as leaf nodes, i.e. we do not model their inputs explicitly:
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� Non-manufacturing industries: Industries corresponding to 5-digit codes where total

consumption exceeds total production by more than 30%, and some additional codes that are

part of agriculture, mining, and services. Also industries where the aggregate materials share

is below 2%.

� MP-only industries: 5-digit codes that are not produced by single-product plants with

valid input codes

� Residual industries: Some industries defined as residuals (“not elsewhere classified”, “oth-

ers” etc), or govern broad types of inputs (“paint”, “aromatic chemicals”). Plants in these

industries usually have different input mixes because they produce different goods, not nec-

essarily because the plants differ in organizational form.

The model assumes that the production tree (the input-output relationships) for each good

takes the shape of a directed acyclical graph, i.e. no circular input structures. We clean the data

manually to remove cycles:

(i) We merge a small number of goods that are chemically identical but differ in their state of

matter (e.g. liquid and gaseous nitrogen), or where the product descriptions are virtually

indistinguishable (e.g. “aluminium oxide” and “alumina (aluminium oxide)”).

(ii) We remove a small number of input-output relationships that would otherwise give rise to

cycles. Some of those cases seem to have arisen from survey respondents confusing inputs and

outputs. Some of them arise because respondents seem to have included packing materials

or capital goods in their reported intermediate inputs (e.g. tin plates in the production of

mushrooms, hospital furniture in amoxycilin). These removed inputs account for less than

TODO% of total intermediate input expenditure.

(iii) Finally, we remove all inputs that account for less than 5% of materials expenditures in an

industry (unless they are reported by more than 15% of all plant-years, and at least 5), and

all inputs that are identical to the outputs.

In the structural work we treat materials expenditures removed in steps (ii) and (iii) as primary

input expenditures.

The resulting input-output relationships form a directed acyclical graph, which we construct

recursively: we starting from the leaf goods and assign them a downstreamness of 0, then calcu-

late the set of goods ω that only rely on inputs with a downstreamness of 0 and assign them a

downstreamness of 1, then calculate the set of goods ω that only rely on inputs with a downstream-

ness of 0 or 1 and assign them a downstreamness of 2, etc. The resulting DAG has a maximum

downstreamness of 40.

A.3.3 Calibrating the α
ρ(ω̂)
ω̂

We again start with goods that have a downstreamness of 0, and proceed by moving further

downstream. For goods ω with a downstreamness of 0, we set α
ρ(ω)
l equal to the share of expenditure
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on primary inputs in total cost, and we set each α
ρ(ω)
ω̂ to the share of expenditure on ω̂ in total

cost. For goods ω with a downstreamness greater than 2:

1. We first set α
ρ(ω)
ω̂ = 0 for all inputs ω̂ that have a downstreamness of more than one less than

the downstreamness of ω. In other words, we set the input requirements for non-direct inputs

to zero.

2. We calculate the α
ρ(ω)
ω̂ for direct inputs ω̂ as well as α

ρ(ω)
l as expenditure shares of direct

inputs and primary factors in the aggregate input basket. If a good ω̃ is showing up multiple

times upstream from ω, we split expenditures equally between all direct inputs. For each

input observed in the data, we also account a share of primary input expenditures (as given

by the α’s to that input). The remainder of the observed primary factor expenditure is used

to calculate the direct primary factor coefficient, α
ρ(ω)
l . Whenever this coefficient is below

5%, we assume that primary factors have been underreported and set the share to 5%.

B Robustness

C Further Results

C.1 Further correlates of vertical span

Table XI Cross-sectional correlates of Vertical Span

Dependent variable: Vertical Span

(1) (2) (3) (4) (5) (6) (7)

Log Employment -0.0589∗∗ -0.0661∗∗

(0.0031) (0.0028)

Sales/Cost Ratio -0.0540∗∗ 0.00316
(0.0051) (0.0062)

Materials Share of Cost -0.250∗∗ -0.306∗∗

(0.018) (0.023)

Importer Dummy -0.163∗∗ -0.0723∗∗

(0.0094) (0.0084)

Exporter Dummy -0.0903∗∗ -0.0168∗

(0.0068) (0.0075)

Share of R-Inputs in Materials Cost -0.260∗∗ -0.242∗∗

(0.021) (0.022)

Year FE Yes Yes Yes Yes Yes Yes Yes
Industry FE Yes Yes Yes Yes Yes Yes Yes

R2 0.317 0.304 0.310 0.309 0.322 0.322 0.371
Observations 353170 331685 332356 353694 150416 347548 147649

Standard errors in parentheses, clustered at the 5-dgt industry level.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01
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Table XII Other Plant-level Correlates of Vertical Span

Dependent variable: Vertical Span

(1) (2) (3) (4) (5) (6)

Materials Share of Cost -0.250∗∗ -0.119∗∗

(0.018) (0.015)

Importer Dummy -0.163∗∗ -0.0143∗∗

(0.0094) (0.0055)

Share of R-Inputs in Materials Cost -0.260∗∗ -0.181∗∗

(0.021) (0.021)

Year FE Yes Yes Yes Yes Yes Yes
Industry FE Yes Yes Yes
Plant x Industry FE Yes Yes Yes

R2 0.310 0.309 0.322 0.774 0.765 0.773
Observations 332356 353694 347548 173141 186641 181958

Standard errors in parentheses, clustered at the 5-dgt industry level.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01
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C.2 Materials shares and number of inputs

Table XIII Materials Shares and Number of Inputs

Dependent variable: Materials Share in Total Cost

(1) (2) (3) (4)

Inverse HHI of Materials Cost Shares -0.00727∗∗ -0.000160
(0.00063) (0.00097)

Number of Inputs -0.00575∗∗ -0.00174∗

(0.00050) (0.00076)

Year × 5-digit Industry × District FE Yes Yes Yes Yes
Plant × Product FE Yes Yes

R2 0.722 0.928 0.722 0.928
Observations 137013 63325 137013 63325

SP plants only. Number of inputs exclude those with small cost shares (<5%).
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

Table XIV Input Adoption

Dependent variable: Input Used Dummy 1(Xjω̂t > 0)

(1) (2)

log(1 + τit) -0.0506∗∗ -0.0373∗∗

(0.0067) (0.0071)

Year FE Yes Yes
Plant × Input FE Yes Yes
Plant × Product FE Yes

R2 0.337 0.361
Observations 2460831 2454899

Standard errors in parentheses.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

Regression at the level of plant × input × year, on single-product plants only. The left-hand side
is a dummy for whether expenditure on input ω̂ is positive; the right-hand side is the log tariff on
input ω̂ at time t.
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Table XV Supply and demand shifters determine entry

Dependent variable: log Producers |J |dωt
(1) (2)

log(1 + τ̄ input
it ) -0.108∗∗ -0.0496∗∗

(0.025) (0.015)

log(1 + τoutput
it ) 0.186∗∗ 0.251∗∗

(0.021) (0.013)

Year FE Yes
State FE Yes
Industry FE Yes
State × Year FE Yes
State × Industry FE Yes

R2 0.481 0.844
Observations 548180 537013

Standard errors in parentheses.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

The left-hand side is the log number of producers of a good ω at time t in state d. The right-hand
side are log import tariffs on ω’s input industries, weighted by I-O table cost shares (“log upstream
tariff”) and log import tariffs on downstream industries, weighted by ω’s sales shares. Weights are
invariant across time and space.
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C.3 Pre- to post-liberalization

Table XVI Tariff changes act as demand and supply shocks: pre/post liberalization

Dep. var.: ∆t
1990 log Sales

(1) (2)

∆t
1990 log(1 + τoutput

ωt ) 1.302+ 1.533+

(0.75) (0.79)

∆t
1990 log(1 + τ̄ input

ωt ) -1.188
(0.77)

Year FE Yes Yes

R2 0.0852 0.0903
Observations 2376 2376

Standard errors in parentheses, clustered at the state × industry level.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

The sample consists of all census plants that are observed in 1990 and post-1997 as single-product
plants producing the same product. Changes are within plant-product.

Table XVII Vertical span and market size: pre/post liberalization

Dependent variable: ∆t
1990 Vertical Span

(1) (2) (3)

∆t
1990 log Sales -0.147+ -0.166+ -0.237+

(0.084) (0.086) (0.12)

∆t
1990 log(1 + τ̄ input

it ) 0.194 1.421+

(0.24) (0.77)

∆
∑
i αi log(1 + τ̄ input

it )(distanceωi − spanj) -0.747
(0.75)

∆
∑
i αi log(1 + τ̄ input

it )spanj -1.031+

(0.62)

Year FE Yes Yes Yes

R2 -0.194 -0.255 -0.498
Observations 2179 2179 2128

Standard errors in parentheses, clustered at the state × industry level.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

The sample consists of all census plants that are observed in 1990 and post-1997 as single-product
plants producing the same product. Changes are within plant-product. The regressions in both
columns instrument ∆t

1990 log sales by the corresponding change in the log output tariff over the
same horizon.

50



Table XVIII Vertical span and market size: pre/post liberalization

Dependent variable: log Sales

(1) (2) (3) (4) (5) (6)

Avg. log #Producers in Upstream Ind. 0.0655∗∗ 0.0560∗∗ 0.0551∗∗ 0.0201 0.119∗∗ 0.115∗∗

(0.013) (0.018) (0.018) (0.043) (0.044) (0.044)

log(1 + τ̄ input
jωt ) 0.540∗ 0.519∗

(0.26) (0.26)

Year FE Yes Yes
Industry × Year FE Yes Yes Yes Yes
Plant × Industry FE Yes Yes Yes Yes Yes Yes

Estimator OLS OLS OLS IV IV IV

R2 0.916 0.943 0.943 0.00262 -0.000638 0.000690
Observations 13683 9768 9757 13683 9768 9757

Standard errors in parentheses, clustered at the industry-year level.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

Analogously to Tables XVI and XVII, we limit the sample to plants that are observed as single-
product plants in 1990 and post-1997. The dependent variable is log sales of plant j; the right-hand
side variable is the average log number of producers in j’s state in industries upstream from j
(with weights taken at the time of j’s first observation). Columns (4) to (6) instrument the average
log number of producers in upstream industries by the tariff on industries downstream of these
upstream industries, excluding the industry of the left-hand side plant.

D Proofs and Additional Theoretical Results

D.1 Proofs for Simple Model of Section 3

We first derive an expression for the effective cost of outsourcing each input. Let Fω(c) be the

distribution of unit cost among those in industry ω.

Lemma 2 If firm j in industry ω exerts search effort hjk to search for suppliers of ω − k then

Pr
(
cojk > c|qj , hj1, hj2

)
= ehjkmk c̄

−ζ
ω−kc

ζ

with c̄ω−k =
(∫
c−ζdFω−k(c)

)− 1
ζ .

Proof. If firm j exerts search effort hjk, the arrival rate of potential suppliers of ω−k with match-

specific productivity better than z is hjkmkz
−ζ . Thus the probability that the firm’s best outside

supplier delivers cost greater than c is

Pr
(
cojk > c

)
= e−hjkmk

∫ ∫
1{ csz ≤c}dFω−k(cs)ζz−ζ−1dz

= e−hjkmkc
ζ
∫ ∫

1{ csu ≤1}dFω−k(cs)ζu−ζ−1du

= e−hjkmk c̄
−ζ
ω−kc

ζ
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where c̄ω−k is defined to satisfy

c̄−ζω−k ≡
∫ ∫

1
{cs
u
≤ 1
}
dFω−k(cs)ζu

−ζ−1du

=

∫ ∫
1 {t ≤ 1} c−ζs dFω−k(cs)ζt

ζ−1dt

=

∫
c−ζs dFω−k(cs)

Claim 1 If firm j in industry ω exerts search effort h2, its cost of producing ω − 1 in-house will

follow a Weibull distribution

Pr
(
cij1 > c|hj2

)
= e−h

α
j2m

α
2 (w(1−α)c̄αω−2)

−ζ
cζ

Proof. If firm j in industry ω uses supplier s in industry ω − 2, its effective cost of ω − 1 will

be 1
Bj
w1−α

(
ps
zs

)α
. Conditional on task productivity Bj and match-specific productivity zs, the

probability that the supplier’s price ps is low enough so that the the supplier delivers effective cost

of ω − 1 weakly less than c–that is, 1
Bj
w1−α

(
ps
zs

)α
< c– is Fω−2

(
B

1/α
j zsw

− 1−α
α c1/α

)
. Integrating

across possible match-specific draws, the arrival rate of such a supplier is∫
hj2m2Fω−2

(
B

1/α
j zw−

1−α
α c1/α

)
ζz−ζ−1dz = hj2m2

(
B

1/α
j w−

1−α
α c1/α

)ζ ∫
Fω−2 (u) ζu−ζ−1dz

= hj2m2w
− 1−α

α
ζc

ζ
αB

ζ
α
j

∫
u−ζdFω−2 (u) du

= hj2m2w
− 1−α

α
ζc

ζ
αB

ζ
α
j c̄
−ζ
ω−2

Given Bj , the probability that no such supplier arrives is then

e−hj2m2w
− 1−α

α ζ(Bjc)
ζ
α c̄−ζω−2

Finally, integrating across realizations of Bj and using the functional form E
[
e−uB

ζ/α
]

= e−u
α

gives

Pr
(
cij1 > c|hj2

)
= E

[
e−hj2m2w

− 1−α
α ζc

ζ
α c̄−ζω−2B

ζ
α
j

]
= e−h

α
j2m

α
2 (w(1−α)c̄αω−2)

−ζ
cζ

Claim 2 If firm j chooses search effort hj1 and hj2, the probability that the firm uses a supplier

in ω − 1 is
hj1m1c̄

−ζ
ω−1

hj1m1c̄
−ζ
ω−1 + hαj2m

α
2

(
w(1−α)c̄αω−2

)−ζ
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Proof. Given h1 and h2, what is the probability that the firm chooses to use a supplier from ω−1?

Pr
(
cij1 ≤ coj1|hj1, hj2

)
=

∫
Pr
(
cij2 > c

)
dPr

(
coj1 < c

)
=

∫
e−h

α
j2m

α
2 (w(1−α)c̄αω−2)

−ζ
cζe−hj1m1c̄

−ζ
ω−1c

ζ
h1jm1ζc

ζ−1dc

=
hj1m1c̄

−ζ
ω−1

hj1m1c̄
−ζ
ω−1 + hαj2m

α
2

(
w(1−α)c̄αω−2

)−ζ

Claim 3 If firm j chooses search effort hj1 and hj2, its expected gross profit is

E [πj |qj , hj1, hj2] = Aωδωq
ε−1
j

{[
hj1m1c̄

−ζ
ω−1 + hαj2m

α
2

(
w(1−α)c̄αω−2

)−ζ]−αζ
w1−α

}1−ε

where Aω ≡ upηδωpε−ηω
(ε−1)ε−1

εε Γ
(

1− α ε−1
ζ

)
Proof. Given h1, and h2, the probability that the firm’s effective cost of ω − 1 is greater than c is

Pr
(
min

{
ci1, c

o
1

}
> c|h1, h2

)
= Pr (co1 > c|h1) Pr

(
ci1 > c|h2

)
= e−hj1m1c̄

−ζ
ω−1c

ζ
e−h

α
j2m

α
2 (w(1−α)c̄αω−2)

−ζ
cζ

= e−T
−ζ
1 cζ

where T1 ≡
[
hj1m1c̄

−ζ
ω−1 + hαj2m

α
2

(
w(1−α)c̄αω−2

)−ζ]− 1
ζ

Given q, h1, and h2, the probability that the firm’s cost is greater than is c

Pr

(
1

q
w1−α (min

{
ci1, c

o
1

})α
> c

∣∣∣∣ q, h1, h2

)
= Pr

(
min

{
ci1, c

o
1

}
>
( qc

w1−α

)1/α
∣∣∣∣ q, h1, h2

)
= e

−T−ζ1

(
qc

w1−α

)ζ/α

= e
−
(

qc

Tα1 w
1−α

)ζ/α

The firms gross profit comes only from sales to the household. Given isoelastic demand, uj ≤
upηδωp

ε−η
ω p−εj , the firm chooses price pj = ε

ε−1cj , so its expected gross profit is E
[
upηδωp

ε−η
ω

(ε−1)ε−1

εε c1−ε
j

]
=
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upηδωp
ε−η
ω

(ε−1)ε−1

εε E
[
c1−ε
j

]
. The final term is

E
[
c1−ε|q, h1, h2

]
=

∫ ∞
0

c1−εd

1− e
−
(

qc

Tα1 w
1−α

)ζ/α
=

(
q

Tα1 w
1−α

)ε−1 ∫ ∞
0

u1−εd
{

1− e−uζ/α
}

=

(
q

Tα1 w
1−α

)ε−1 ∫ ∞
0

v
−α ε−1

ζ d
{

1− e−v
}

=

(
q

Tα1 w
1−α

)ε−1

Γ

(
1− αε− 1

ζ

)

D.1.1 Optimal Search Behavior

In this section, we normalize the wage to unity. Total expected profit is then for a firm with

productivity q is

max
h1,h2

Aωδωq
ε−1
[
h1m1c̄

−ζ
ω−1 + hα2m

α
2 c̄
−αζ
ω−2

]α ε−1
ζ − k

1 + γ
h1+γ

1 − k

1 + γ
h1+γ

2

The first order conditions are

khγ1 = Aωδωq
ε−1
[
h1m1c̄

−ζ
ω−1 + hα2m

α
2 c̄
−αζ
ω−2

]α ε−1
ζ
−1
α
ε− 1

ζ
m1c̄

−ζ
ω−1

khγ2 = Aωδωq
ε−1
[
h1m1c̄

−ζ
ω−1 + hα2m

α
2 c̄
−αζ
ω−2

]α ε−1
ζ
−1
α2 ε− 1

ζ
hα−1

2 mα
2 c̄
−αζ
ω−2

Note that 1 + γ > α ε−1
ζ gurantees that the second order condition hold.

Let T ≡
[
h1m1c̄

−ζ
ω−1 + hα2m

α
2 c̄
−αζ
ω−2

]− 1
ζ

amd r =
Aωδωα

ε−1
ζ

k . Then these FOCs can be expressed

as

hγ1 = rqε−1
(
T−ζ

)α ε−1
ζ
−1
m1c̄

−ζ
ω−1

hγ2 = rqε−1
(
T−ζ

)α ε−1
ζ
−1
αhα−1

2 mα
2 c̄
−αζ
ω−2

Let O =
h1m1c̄

−ζ
ω−1

h1m1c̄
−ζ
ω−1+hα2m

α
2 c̄
−αζ
ω−2

be the probability of outsourcing the more upstream task.

d lnT−ζ

d ln qε−1
= O

d lnh1

d ln qε−1
+ (1−O)α

d lnh2

d ln qε−1

54



γ
d lnh1

d ln qε−1
= 1−

(
1− αε− 1

ζ

)
d lnT−ζ

d ln qε−1

γ
d lnh2

d ln qε−1
= 1−

(
1− αε− 1

ζ

)
d lnT−ζ

d ln qε−1
− (1− α)

d lnh2

d ln qε−1

Together, these imply that

d lnT−ζ

d ln qε−1
= O

1

γ

[
1−

(
1− αε− 1

ζ

)
d lnT−ζ

d ln qε−1

]
+ (1−O)α

1

γ + (1− α)

[
1−

(
1− αε− 1

ζ

)
d lnT−ζ

d ln qε−1

]
or

d lnT−ζ

d ln qε−1
=

1
1

O 1
γ

+(1−O) α
γ+(1−α)

+ 1− α ε−1
ζ

> 0

Plugging this in gives

γ
d lnh1

d ln qε−1
=

1

1 +
[
O 1
γ + (1−O) α

γ+(1−α)

] (
1− α ε−1

ζ

) > 0

(γ + 1− α)
d lnh2

d ln qε−1
=

1

1 +
[
O 1
γ + (1−O) α

γ+(1−α)

] (
1− α ε−1

ζ

) > 0

Claim 4 Pr(use ω−1)
Pr(use ω−2) is strictly increasing in q.

Proof. Let Oω (q) be the probability that a firm in ω born with productivity q ends up using ω−1

as a input. We have

Oω (q)

1−Oω (q)
=
h1m1c̄

−ζ
ω−1

hα2m
α
2 c̄
−αζ
ω−2

Differentiating with respect to qε−1 and using the expressions for

d ln Oω(q)
1−Oω(q)

d ln qε−1
=

d lnh1

d ln qε−1
− α d lnh2

d ln qε−1
=

d lnh1

d ln qε−1
− αγ

γ + (1− α)

d lnh1

d ln qε−1

The conclusion that
d ln

Oω(q)
1−Oω(q)

d ln qε−1 > 0 follows from
(

1− αγ
γ+(1−α)

)
= (1−α)(1+γ)

γ+(1−α) > 0 and d lnh1
d ln qε−1 .

Lemma 3 Among those born with productivity q, sales is independent of input choice.
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Proof. Among those with productivity q, the realization of unit cost is independent of input choice:

Pr
(
co1 < ci1|c1 = c, q, h1, h2

)
=

Pr
(
co1 = c, ci1 > c|q, h1, h2

)
Pr (c1 = c|q, h1, h2)

=
h1m1c̄

−ζ
ω−1ζc

ζ−1e−h1m1c̄
−ζ
ω−1c

ζ
e−h

α
2m

α
2 (w(1−α)c̄αω−2)

−ζ
cζ[

h1m1c̄
−ζ
ω−1 + hα2m

α
2

(
w(1−α)c̄αω−2

)−ζ]
ζcζ−1e

−
[
h1m1c̄

−ζ
ω−1+hα2m

α
2 (w(1−α)c̄αω−2)

−ζ]
cζ

=
h1m1c̄

−ζ
ω−1

h1m1c̄
−ζ
ω−1 + hα2m

α
2

(
w(1−α)c̄αω−2

)−ζ
Since this probability of producing in-house is the same for all values of c, it must be independent

of sales, which is a random variable hat is measurable with respect to the firms unit cost but not

with respect to its choice of input.

Claim 5 Among those in industry ω, those with higher sales are more likely to use a supplier in

industry ω − 1

Proof. Using the law of toal covariance, we can express this as

Cov (Sales, use ω − 1) = E [Cov (Sales, use ω − 1) |q] + cov [E [Sales|q] , E [use ω − 1|q]]

The first term is zero and the second term is positive.

Since using a supplier in industry 1 maps directly into a shorter vertical span and higher

intermediate input share, we immediately have the following corollary

Corollary 2 Among those in industry ω, those with higher sales are more likely to have a shorter

vertical span and higher intermediate input share

D.1.2 Demand Shocks

We consider in this section the impact of an increase in the demand for industry ω, i.e., and increase

in δω.

Proposition 8 If δω increases, Jω increases, pω and c̄ω fall, and fraction of firms using ω − 1

rises.

Proof. A shock to δω does not change profit in ω − 1 or ω − 2, so it must be that c̄ω−1 and c̄ω−2

are unchanged. We first establish that d lnAωδω
d ln δω

> 0. Let π̄ω (q) be the expected profit of a firm

born with productivity q.

π̄ω
(
Aωδωq

ε−1
)

= max
h1,h2

Aωδωq
ε−1
[
h1m1c̄

−ζ
ω−1 + hα2m

α
2 c̄
−αζ
ω−2

]α ε−1
ζ − k

1 + γ
h1+γ

1 − k

1 + γ
h1+γ

2
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Using the envelope theroem, we have

dπ̄ω
(
Aωδωq

ε−1
)

d lnAωδωqε−1
= Aωδωq

ε−1
[
h1m1c̄

−ζ
ω−1 + hα2m

α
2 c̄
−αζ
ω−2

]α ε−1
ζ
> 0

The elasticity with respect to δω is simply
dπ̄ω(Aωδωqε−1)

d ln δω
=

dπ̄ω(Aωδωqε−1)
d lnAωδωqε−1

d lnAωδω
d ln δω

. With this, we

can see how average profit π̄ω =
∫
π̄ω (q) dQ (q) changes with δω:

d ln π̄ω
d ln δω

=

∫ dπ̄ω(Aωδωqε−1)
d ln δω

dQ (q)∫
π̄ω (q) dQ (q)

=

∫ dπ̄ω(Aωδωqε−1)
d lnAωδωqε−1 dQ (q)∫
π̄ω (q) dQ (q)

d lnAωδω
d ln δω

We next study the impact of δω on
∫
E
[
c1−ε|q

]
dQ (q). Note that E

[
c1−ε|q

]
= Γ

(
1− α ε−1

ζ

)
qε−1

[
hj1m1c̄

−ζ
ω−1 + hαj2m

α
2 c̄
α−ζ
ω−2

]α ε−1
ζ

.

Differentiating yields

d lnE
[
c1−ε|q

]
d ln δω

= α
ε− 1

ζ

[
Oω (q)

d lnh1

d ln δω
+ (1−Oω (q))α

d lnh2

d ln δω

]
Similarly, the first order conditions for h1 and h2 imply that these are functions of Aωδωq

ε−1.

Following the logic about how serach effort changes with qε−1 in the introduction to the section,

we have

γ
d lnh1

(
Aωδωq

ε−1
)

d lnAωδω
=

1

1 +
[
O 1
γ + (1−O) α

γ+(1−α)

] (
1− α ε−1

ζ

)
(γ + 1− α)

d lnh2

(
Aωδωq

ε−1
)

d lnAωδω
=

1

1 +
[
O 1
γ + (1−O) α

γ+(1−α)

] (
1− α ε−1

ζ

)
Plugging these in yields

d lnE
[
c1−ε|q

]
d lnAωδω

=
α ε−1

ζ

[
Oω (q) 1

γ + (1−Oω (q)) α
γ+1−α

]
1 +

[
Oω (q) 1

γ + (1−Oω (q)) α
γ+1−α

] (
1− α ε−1

ζ

) > 0

With these, we can derive an expression for the change in the household’s price index for industry

ω. This price index satisfies

p1−ε
ω =

∫
Jω

p1−ε
ωj dj = Jω

∫
E

[(
ε

ε− 1
c

)1−ε
|q

]
dQ (q)

=

(
ε

ε− 1

)1−ε
π̄
χ− 1

β π̄βω

∫
E
[
c1−ε|q

]
dQ (q)
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where we used Jω = π̄
χ− 1

β π̄βω. Differentiating yields

(1− ε) d ln p1−ε
ω

d ln δω
= β

d ln π̄ω
d ln δω

+
d ln

∫
E
[
c1−ε|q

]
dQ (q)

d ln δω

=

β ∫ dπ̄ω(Aωδωqε−1)
d lnAωδω

dQ (q)∫
π̄ω (q) dQ (q)

+

∫ dE[c1−ε|q]
d lnAωδω

dQ (q)∫
E [c1−ε|q] dQ (q)

 d lnAωδω
d ln δω

Let X denote the term in brackets, with X > 0. Since

d lnAωδω
d ln δω

= 1 + (ε− η)
d ln pω
d ln δω

= 1− ε− η
ε− 1

[
X
d lnAωδω
d ln δω

]
Solving for d lnAωδω

d ln δω
gives

d lnAωδω
d ln δω

=
1

1 + ε−η
ε−1X

> 0

Some simple consequences are

d ln pω
d ln δω

= − X

ε− 1

d lnAωδω
d ln δω

< 0

d ln Jω
d ln δω

= β
d ln π̄ω
d lnAωδω

d lnAωδω
d ln δω

> 0

d ln c̄ω
d ln δω

=

∫
E
[
c−ζ |q

] d lnE[c−ζ |q]
d lnAωδω

dQ (q)∫
E [c−ζ |q] dQ (q)

d lnAω
d ln δω

> 0

where the last line follows the same logic as showing that
d ln

∫
E[c1−ε|q]dQ(q)

d lnAωδω
> 0. Finally, the fraction

of firms in ω born with productivity q is that use a supplier in industry ω−1 is Oω(q)
1−Oω(q) =

h1m1c̄
−ζ
ω−1

hα2m
α
2 c̄
−αζ
ω−2

.

Differentiating yields

d ln Oω(q)
1−Oω(q)

d ln δω
=
d lnh1

d ln δω
− d lnh2

d ln δω
=

1
γ −

α
γ+1−α

1 +
[
Oω (q) 1

γ + (1−Oω (q)) α
γ+1−α

] (
1− α ε−1

ζ

) d lnAωδω
d ln δω

> 0

Since this is true for each q, it must be true for the industry as a whole.

D.1.3 Upstream Demand Shock

In this section we study the impact on industry ω of a shock to δω−1. We know from above that

an increase in δω−1 raises reduces c̄ω−1. It has no impact on c̄ω−2. It will, however have an impact

on Aω because firms in ω respond to the change in expected input cost.

Using the envelope theorem, we have

π̄ω (q) = max
h1,h2

Aωδωq
ε−1
[
h1m1c̄

−ζ
ω−1 + hα2m

α
2 c̄
−αζ
ω−2

]α ε−1
ζ − k

1 + γ
h1+γ

1 − k

1 + γ
h1+γ

2
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dπ̄ω (q)

d ln c̄−ζω−1

= Aωδωq
ε−1
[
h1m1c̄

−ζ
ω−1 + hα2m

α
2 c̄
−αζ
ω−2

]α ε−1
ζ d lnAω

d ln c̄−ζω−1

+Aωδωq
ε−1
[
h1m1c̄

−ζ
ω−1 + hα2m

α
2 c̄
−αζ
ω−2

]α ε−1
ζ
−1
α
ε− 1

ζ
h1m1c̄

−ζ
ω−1

= Aωδωq
ε−1
[
h1m1c̄

−ζ
ω−1 + hα2m

α
2 c̄
−αζ
ω−2

]α ε−1
ζ

{
d lnAω

d ln c̄−ζω−1

+ α
ε− 1

ζ
Oω (q)

}

Let λ =
∫
πgrossω (q)dQ(q)∫
π̄ω(q)dQ(q)

> 1 be the ratio of gross profit (without subtracting search costs) to net

profit (subtracting search costs), and for any quantity x (q), let let x̄ =
∫
πgrossω (q)x(q)dQ(q)∫
πgrossω (q)dQ(q)

be the

gross-profit-weighted average. With this we can derive an expression for how profit changes with

upstream characteristics.

d ln π̄ω

d ln c̄−ζω−1

=

∫ dπ̄ω(q)

d ln c̄−ζω−1

dQω (q)

π̄ω
= λ

(
d lnAω

d ln c̄−ζω−1

+ α
ε− 1

ζ
Ōω

)

Next, we derive expressions for how d lnAω
d ln c̄−ζω−1

changes. Define

Y (q) ≡
[
h1m1c̄

−ζ
ω−1 + hα2m

α
2 c̄
−αζ
ω−2

]α ε−1
ζ

Σ0 (q) ≡ 1

1 +
(

1− α ε−1
ζ

) [
Oω (q) 1

γ + (1−Oω (q)) α
γ+1−α

]
Σ1 (q) ≡ Oω (q)

1 +
(

1− α ε−1
ζ

) [
Oω (q) 1

γ + (1−Oω (q)) α
γ+1−α

] .
The FOCs for h1 and h2 can be expressed as

khγ1 = Aωδωq
ε−1Y

−
1−αε−1

ζ

α ε−1
ζ α

ε− 1

ζ
m1c̄

−ζ
ω−1

khγ2 = Aωδωq
ε−1Y

−
1−αε−1

ζ

α ε−1
ζ α2 ε− 1

ζ
hα−1

2 mα
2 c̄
−αζ
ω−2

Differentiating yields

γ
d lnh1 (q)

d ln c̄−ζω−1

=
d lnAω

d ln c̄−ζω−1

−
1− α ε−1

ζ

α ε−1
ζ

d lnY

d ln c̄−ζω−1

+ 1

(γ + 1− α)
d lnh2 (q)

d ln c̄−ζω−1

=
d lnAω

d ln c̄−ζω−1

−
1− α ε−1

ζ

α ε−1
ζ

d lnY

d ln c̄−ζω−1
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and

d lnY (q)

d ln c̄−ζω−1

= α
ε− 1

ζ

[
Oω (q)

(
d lnh1 (q)

d ln c̄−ζω−1

+ 1

)
+ (1−Oω (q))

d lnh2 (q)

d ln c̄−ζω−1

]

= α
ε− 1

ζ

 Oω (q)

(
1
γ

(
d lnAω
d ln c̄−ζω−1

−
1−α ε−1

ζ

α ε−1
ζ

d lnY

d ln c̄−ζω−1

+ 1

)
+ 1

)
+ (1−Oω (q)) 1

γ+1−α

(
d lnAω
d ln c̄−ζω−1

−
1−α ε−1

ζ

α ε−1
ζ

d lnY

d ln c̄−ζω−1

)


Solving for d lnY

d ln c̄−ζω−1

gives

d lnY (q)

d ln c̄−ζω−1

= α
ε− 1

ζ

[
Oω (q) 1

γ + (1−Oω (q)) 1
γ+1−α

]
d lnAω
d ln c̄−ζω−1

+
(

1
γ + 1

)
Oω (q)

1 +
(

1− α ε−1
ζ

) [
Oω (q) 1

γ + (1−Oω (q)) 1
γ+1−α

]
= α

ε− 1

ζ

[
1− Σ0

1− α ε−1
ζ

d lnAω

d ln c̄−ζω−1

+

(
1

γ
+ 1

)
Σ1

]

We next study the impact of c̄ω−1 on
∫
E
[
c1−ε|q

]
dQ (q). Note that E

[
c1−ε|q

]
= Γ

(
1− α ε−1

ζ

)
qε−1Y (q).

Differentiating yields

d lnE
[
c1−ε|q

]
d ln c̄−ζω−1

=
d lnY (q)

d ln c̄−ζω−1

= α
ε− 1

ζ

[
1− Σ0

1− α ε−1
ζ

d lnAω

d ln c̄−ζω−1

+

(
1

γ
+ 1

)
Σ1

]

As a result, integrating yields

d ln
∫
E
[
c1−ε|q

]
dQ (q)

d ln c̄−ζω−1

= α
ε− 1

ζ

[
1− Σ̄0

1− α ε−1
ζ

d lnAω

d ln c̄−ζω−1

+

(
1

γ
+ 1

)
Σ̄1

]

With these, we can derive an expression for the change in the household’s price index for industry

ω. This price index satisfies

p1−ε
ω =

∫
Jω

p1−ε
ωj dj = Jω

∫
E

[(
ε

ε− 1
c

)1−ε
|q

]
dQ (q)

=

(
ε

ε− 1

)1−ε
π̄
χ− 1

β π̄βω

∫
E
[
c1−ε|q

]
dQ (q)

where we used Jω = π̄
χ− 1

β π̄βω. Differentiating yields

(1− ε) d ln p1−ε
ω

d ln c̄−ζω−1

= β
d ln π̄ω

d ln c̄−ζω−1

+
d ln

∫
E
[
c1−ε|q

]
dQ (q)

d ln c̄−ζω−1

= βλ

(
d lnAω

d ln c̄−ζω−1

+ α
ε− 1

ζ
Ōω

)
+ α

ε− 1

ζ

[
1− Σ̄0

1− α ε−1
ζ

d lnAω

d ln c̄−ζω−1

+

(
1

γ
+ 1

)
Σ̄1

]
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Finally, since d lnAω
d ln c̄−ζω

= (ε− η) d ln pω
d ln c̄−ζω

= − ε−η
ε−1 (1− ε) d ln pω

d ln c̄−ζω
, we have

d lnAω

d ln c̄−ζω
= −ε− η

ε− 1

{
βλ

(
d lnAω

d ln c̄−ζω−1

+ α
ε− 1

ζ
Ōω

)
+ α

ε− 1

ζ

[
1− Σ̄0

1− α ε−1
ζ

d lnAω

d ln c̄−ζω−1

+

(
1

γ
+ 1

)
Σ̄1

]}

Solving for d lnAω
d ln c̄−ζω

gives

d lnAω

d ln c̄−ζω
= −

α ε−1
ζ

(
βλŌω +

(
1
γ + 1

)
Σ̄1

)
ε−1
ε−η + βλ+

α ε−1
ζ

1−α ε−1
ζ

(
1− Σ̄0

) < 0

Claim 6 If η−1
ε−η ≥

1
γ then d lnAω

d ln vω−1
≥ −Ōωα ε−1

ζ and d ln π̄ω
d ln vω−1

> 0 and d ln Jω
d ln vω−1

> 0

Proof. First, we have that d ln Jω
d ln vω−1

= βλ

(
d lnAω
d ln c̄−ζω−1

+ α ε−1
ζ Ōω

)
. Under what conditions is the term

in d lnAω
d ln c̄−ζω−1

+ α ε−1
ζ Ōω positive? We have

d lnAω
d ln c̄−ζω−1

α ε−1
ζ Ōω

+ 1 = −
βλα ε−1

ζ Ōω + α ε−1
ζ

γ+1
γ Σ̄1

ε−1
ε−η + βλ+

α ε−1
ζ

1−α ε−1
ζ

(
1− Σ̄0

) 1

α ε−1
ζ Ōω

+ 1

= −
βλ+ γ+1

γ
Σ̄1

Ōω

ε−1
ε−η + βλ+

α ε−1
ζ

1−α ε−1
ζ

(
1− Σ̄0

) + 1

=

ε−1
ε−η +

α ε−1
ζ

1−α ε−1
ζ

(
1− Σ̄0

)
− γ+1

γ
Σ̄1

Ōω

ε−1
ε−η + βλ+

α ε−1
ζ

1−α ε−1
ζ

(
1− Σ̄0

)
We are looking for conditions under which the numerator is positive. Since Oω (q) is increasing in

q, and Σ0 (q) = 1

1+
(

1−α ε−1
ζ

)[
Oω(q) 1

γ
+(1−Oω(q)) α

γ+1−α

] is decreasing in q, we have that Σ̄0Ōω > Σ̄1, so

that the numerator is bounded below by

ε− 1

ε− η
+

α ε−1
ζ

1− α ε−1
ζ

(
1− Σ̄0

)
− γ + 1

γ
Σ̄0

The RHS is decreasing in Σ̄0, so since since Σ̄0 <
1

1+
(

1−α ε−1
ζ

)
α

γ+1−α

, the following condition guar-
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antees the numerator is positive

0 <
ε− 1

ε− η
+

α ε−1
ζ

1− α ε−1
ζ

1− 1

1 +
(

1− α ε−1
ζ

)
α

γ+1−α

− γ + 1

γ

1

1 +
(

1− α ε−1
ζ

)
α

γ+1−α

=
ε− 1

ε− η
+

α ε−1
ζ

α
γ+1−α −

γ+1
γ

1 +
(

1− α ε−1
ζ

)
α

γ+1−α

=
η − 1

ε− η
+ 1 +

α ε−1
ζ

α
γ+1−α −

γ+1
γ

1 +
(

1− α ε−1
ζ

)
α

γ+1−α

=
η − 1

ε− η
+

α
γ+1−α −

1
γ

1 +
(

1− α ε−1
ζ

)
α

γ+1−α

≤ η − 1

ε− η
−

1
γ −

α
γ+1−α

1 +
(

1− α ε−1
ζ

)
α

γ+1−α

or
η − 1

ε− η
≥

1
γ −

α
γ+1−α

1 +
(

1− α ε−1
ζ

)
α

γ+1−α

A simpler sufficient condition that guarantees this condition holds is

η − 1

ε− η
≥ 1

γ

Claim 7
d ln

Oω(q)
1−Oω(q)

d ln c̄−ζω−1

> 0.

Proof. Differentiating each side of Oω(q)
1−Oω(q) =

h1m1c̄
−ζ
ω−1

hα2m
α
2 c̄
−αζ
ω−2

gives

d ln Oω(q)
1−Oω(q)

d ln c̄−ζω−1

=
d lnh1 (q)

d ln c̄−ζω−1

+ 1− αd lnh2 (q)

d ln c̄−ζω−1

=
1

γ

(
d lnAω

d ln c̄−ζω−1

−
1− α ε−1

ζ

α ε−1
ζ

d lnY

d ln c̄−ζω−1

+ 1

)
+ 1− α

γ + 1− α

(
d lnAω

d ln c̄−ζω−1

−
1− α ε−1

ζ

α ε−1
ζ

d lnY

d ln c̄−ζω−1

)

=

(
1

γ
− α

γ + 1− α

)(
d lnAω

d ln c̄−ζω−1

−
(

1− αε− 1

ζ

)[
1− Σ0

1− α ε−1
ζ

d lnAω

d ln c̄−ζω−1

+

(
1

γ
+ 1

)
Σ1

])
+

(
1

γ
+ 1

)

=

(
1

γ
− α

γ + 1− α

)(
Σ0

d lnAω

d ln c̄−ζω−1

−
(

1− αε− 1

ζ

)(
1

γ
+ 1

)
Σ1

)
+

(
1

γ
+ 1

)

Since d lnAω
d ln c̄−ζω−1

< 0 and bounded below by −α ε−1
ζ , Σ0 (q) is decreasing in q and bounded above
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by 1

1+
(

1−α ε−1
ζ

)
α

γ+1−α

, and Σ1 (q) is increasing in q and bounded above by 1

1+
(

1−α ε−1
ζ

)
1
γ

. Together,

these give a lower bound of

Σ0
d lnAω

d ln c̄−ζω−1

−
(

1− αε− 1

ζ

)(
1

γ
+ 1

)
Σ1 ≥ Σ0

(
−αε− 1

ζ

)
−
(

1− αε− 1

ζ

)(
1

γ
+ 1

)
Σ1

= −
α ε−1

ζ +
(

1− α ε−1
ζ

)(
1
γ + 1

)
Oω (q)

1 +
(

1− α ε−1
ζ

) [
Oω (q) 1

γ + (1−Oω (q)) α
γ+1−α

]
= −

α ε−1
ζ +

(
1− α ε−1

ζ

)(
1
γ + 1

)
Oω (q)

1 +
(

1− α ε−1
ζ

)
α

γ+1−α +
(

1− α ε−1
ζ

)(
1
γ −

α
γ+1−α

)
Oω (q)

= −
α ε−1

ζ +
(

1− α ε−1
ζ

)(
1
γ + 1

)
Oω (q)

1 +
(

1− α ε−1
ζ

)
α

γ+1−α + 1−α
γ+1−α

(
1− α ε−1

ζ

)
γ+1
γ Oω (q)

= −
α ε−1

ζ +
(

1− α ε−1
ζ

)(
1
γ + 1

)
Oω (q)[

1 +
(

1− α ε−1
ζ

)
α

γ+1−α − α
ε−1
ζ

1−α
γ+1−α

]
+ 1−α

γ+1−α

[
α ε−1

ζ +
(

1− α ε−1
ζ

)
γ+1
γ Oω (q)

]
Since the first term of the denominator is positive, this is minimized when the fraction is maximized,

or Oω (q)→ 1. This gives the bound

Σ0
d lnAω

d ln c̄−ζω−1

−
(

1− αε− 1

ζ

)(
1

γ
+ 1

)
Σ1 ≥ −

α ε−1
ζ +

(
1− α ε−1

ζ

)(
1
γ + 1

)
1 +

(
1− α ε−1

ζ

)
1
γ

= −
1 +

(
1− α ε−1

ζ

)
1
γ

1 +
(

1− α ε−1
ζ

)
1
γ

= −1

Plugging this back in yields

d ln Oω(q)
1−Oω(q)

d ln c̄−ζω−1

≥
(

1

γ
− α

γ + 1− α

)
(−1) +

(
1

γ
+ 1

)
=

γ + 1

γ + 1− α
> 0

Claim 8 If γ is large enough, d ln c̄ω
d ln δω−1

< 0.

Proof. Following the same logic as for the expression for
d ln

∫
E[c1−ε|q]dQ(q)

d ln c̄−ζω−1

, we have E
[
c−ζ |q

]
=

Γ (1− α) qζ
[
h1m1c̄

−ζ
ω−1 + hα2m

α
2 c̄
−αζ
ω−2

]α
, so that differentiating yields

d lnE
[
c−ζ |q

]
d ln c̄−ζω−1

= α

[
1− Σ0

1− α ε−1
ζ

d lnAω

d ln c̄−ζω−1

+

(
1

γ
+ 1

)
Σ1

]
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Integrating with across firms gives

d ln c̄−ζω

d ln c̄−ζω−1

=
d ln

∫
E
[
c−ζ |q

]
dQ (q)

d ln c̄−ζω−1

= α

[
1− Σ̄ζ

0

1− α ε−1
ζ

d lnAω

d ln c̄−ζω−1

+

(
1

γ
+ 1

)
Σ̄ζ

1

]

where we define the weighted average x̄ζ ≡ E[c−ζx]
E[c−ζ]

. Since limγ→∞ Σ̄ζ
1 = Ōζω and limγ→∞ Σ̄ζ

0 = 1,

taking the limit as γ →∞ gives

lim
γ→∞

1

α

d ln
∫
Cω (q)−ζ dQ (q)

d ln vω
≥ lim

γ→∞
Ōζω

Finally, we show that limγ→∞ Ō
ζ
ω > 0. The FOCs for h1 and h2 can be rearranged as

h1m1c̄
−ζ
ω−1 =

{
1

k
Aωδωq

ε−1O
1−α ε−1

ζ
ω α

ε− 1

ζ

} 1

1+γ−αε−1
ζ

(
m1c̄

−ζ
ω−1

) 1+γ

1+γ−αε−1
ζ

hα2m
α
2 c̄
−αζ
ω−2 =

{
1

k
Aωδωq

ε−1 (1−Oω)
1−α ε−1

ζ α2 ε− 1

ζ

} 1
1+γ
α −αε−1

ζ

(
mα

2 c̄
−αζ
ω−2

) 1+γ
α

1+γ
α −αε−1

ζ

Taking the limit of the ratio gives

lim
γ→∞

Oω (q)

1−Oω (q)
= lim

γ→∞

h1m1c̄
−ζ
ω−1

hα2m
α
2 c̄
−αζ
ω−2

= lim
γ→∞

{
1
kAωδωq

ε−1O
1−α ε−1

ζ α ε−1
ζ

} 1

1+γ−αε−1
ζ

(
m1c̄

−ζ
ω−1

) 1+γ

1+γ−αε−1
ζ

{
1
kAωδωq

ε−1 (1−O)
1−α ε−1

ζ α2 ε−1
ζ

} 1
1+γ
α −αε−1

ζ

(
mα

2 c̄
−αζ
ω−2

) 1+γ
α

1+γ
α −αε−1

ζ

=
m1c̄

−ζ
ω−1

mα
2 c̄
−αζ
ω−2

Since this is the same for all q, we have limγ→∞ Ō
ζ
ω =

m1c̄
−ζ
ω−1

m1c̄
−ζ
ω−1+mα2 c̄

−αζ
ω−2

> 0.

Claim 9 If η > 1 and γ is large enough, an increase in δω−1 leads to an increase in industry ω

sales

Proof. Since η > 1 and pω declines, so sales to household increases. Further, since c̄ω declines,

sales for intermediate use rise as well.

D.2 Proofs for Quantitative Model of Section 5

In this section, we prove the propositions in Section 5. Several of te results parallel proofs for the

simple model of Section 3. Nevertheless, we include the results here both for completeness and

because the notation is not always the same.

We first derive an expression for the effective cost of outsourcing each input. Let Fω(c) be the

distribution of unit cost among those in industry ω.

Lemma 4 If firm j exerts search effort hjω̂ to search for suppliers of input ω̂ ∈ Ω̂ω̃, then Pr
(
cojω̂ > c

)
=

e−hjω̂mω̃ω̂ c̄
−ζ
ω̂ cζ with c̄ω̂ =

(∫
c−ζdFω̂ (c)

)− 1
ζ .
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Proof. If firm j exerts search effort hjω̂, the arrival rate of potential suppliers of ω̂ with match-

specific productivity better than z is hω̂mω̃ω̂z
−ζ . Thus the probability that the firm’s best outside

supplier delivers cost greater than c is

Pr (coω̃ > c) = e−hω̂mω̃ω̂
∫ ∫

1{ csz ≤c}dFω̂(cs)ζz−ζ−1dz

= e−hω̂mω̃ω̂c
ζ
∫ ∫

1{ csu ≤1}dFω̂(cs)ζu−ζ−1du

= e−hω̂mω̃ω̂ c̄
−ζ
ω̂ cζ

where c̄ω̂ is defined to satisfy

c̄−ζω̂ ≡
∫ ∫

1
{cs
u
≤ 1
}
dFω̂ (cs) ζu

−ζ−1du

=

∫ ∫
1 {t ≤ 1} c−ζs dFω̂ (cs) ζt

ζ−1dt

=

∫
c−ζs dFω̂ (cs)

Lemma 5 Suppose that there are independent exponential random variables X1,...,Xn that with

Pr (Xi > x) = e−κix, and that b is a random variable with characteristic function E
[
ebit
]

=
Γ(1−it)

Γ(1−α1it)...Γ(1−αnit) . Suppose that α1, ..., αn are non-negative numbers such that α1 + ... + αn ≤ 1.

Then Y = e−bXα1
1 ...Xαn

n is an exponential random variable with countercumalutive distribution

Pr (Y > y) = e−κ
α1
1 ...καnn y

Proof. Note that E
[
X
αjit
j

]
=
∫∞

0 xαjitκje
−κjxdx = κ

−αjit
j

∫∞
0 uαjite−udu = κ

−αjit
j Γ (1 + αjit).

With this, we have that

E
[
Y it
]

= E

[(
e−bXα1

1 ...Xαn
n

)it]
= E

[
e−bit

]
E
[
Xα1it

1

]
...E

[
Xαnit
n

]
=

Γ (1 + it)

Γ (1 + α1it) ...Γ (1 + αnit)
κ−α1it

1 Γ (1 + α1it) ...κ
−αnit
1 Γ (1 + αnit)

=
1

(κα1
1 ...καnn )it

Γ (1 + it)

Suppose that Z is an exponential random variable with Pr (Z > z) = e−κ
α1
1 ...καnn z. Then the char-

acteristic function of logZ = E
[
Zit
]

= 1

(κα1
1 ...καnn )

itΓ (1 + it). Since there is a one-to one mapping

between distribution functions and characteristic functions, Y and Z have the same distribution.

Lemma 6 Suppose that there are independent Weibull variables M1, ...,Mn so that Pr (Mi > m) =

e−κim
ζ
, and that b is a random variable with characteristic function E

[
bit
]

= Γ(1−it)
Γ(1−α1it)...Γ(1−αnit) .
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Suppose that α1, ..., αn are non-negative numbers such that α1+...+αn ≤ 1. Then Y = e−b/ζMα1
1 ...Mαn

n

is an Weibull random variable with .

Pr (Y > y) = e−κ
α1
1 ...καnn yζ

Proof. If M is Weibull, X = M ζ is exponential, as Pr (X > x) = Pr
(
M ζ > x

)
= Pr

(
M > x1/ζ

)
=

e−κ1(x1/ζ)
ζ

= e−κ1x. Since Y ζ = e−b
(
M ζ

1

)α1

...
(
M ζ
n

)αn
= e−bXα1

1 ...Xαn
n , it follows that from the

previous lemma that Y ζ follows an exponential distribution with Pr
(
Y ζ > t

)
= e−κ

α1
1 ...καnn t, which

implies that

Pr (Y > y) = Pr
(
Y ζ > yζ

)
= e−κ

α1
1 ...καnn yζ

Lemma 7 Given search effort {hjω̃}ω̃∈Ω̂∞ω
, for any input ω̃, Pr

(
cijω̃ > c

)
= e−T

−ζ
jω̃ c

ζ

where {Tjω̂}ω̂∈Ω∞ω

satisfy the relationships

Tjω̃ = w−α
ω̃
l ζ
∏
ω̂∈Ω̂ω̃

(
hjω̂mω̃ω̂ c̄

−ζ
ω̂ + T−ζjω̂

)−αω̃ω̂
ζ

where we use the convention that Tjω̂ =∞ if in-house production of ω̂ is infeasible.

Proof. We proceed by induction. Consider first a terminal module. The cost of producing in

house is

ciω̃ =
1

Bω̃
wα

ω̃
l

∏
ω̂∈Ω̂ω̃

c
αω̃ω̂
ω̂

or
ciω̃
w

=
1

Bω̃

∏
ω̂∈Ω̂ω̃

(cω̂
w

)αω̃ω̂
Since the distribution of each cω̃

w is Weibull with Pr
(
cω̂
w > x

)
= e−w

ζhω̂mω̃ω̂c
−ζ
ω̂ xζ , the previous lemma

implies that
ciω̃
w is Weibull with

Pr

(
ciω̃
w
> x

)
= e
−
∏
ω̂∈Ω̂ω̃

(
wζmω̃ω̂c

−ζ
ω̂

)αω̃ω̂xζ

or

Pr
(
ciω̃ > c

)
= Pr

(
ciω̃
w
>

c

w

)
= e
−
∏
ω̂∈Ω̂ω̃

(
wζhω̂mω̃ω̂ c̄

−ζ
ω̂

)αω̃ω̂( cw )
ζ

= e
−w−α

ω̃
l ζ
∏
ω̂∈Ω̂ω̃

(
hω̂mω̃ω̂ c̄

−ζ
ω̂

)αω̃ω̂ cζ
= e−T

−ζ
ω̃ cζ

Suppose that for all modules with depth of D− 1, the Pr
(
ciω̂ > c

)
= e−T

−ζ
ω̂ cζ . Then since the cost

of the outsourcing the input is also Weibull, Pr (coω̂ > c) = e−hω̂mω̃ω̂ c̄
−ζ
ω̂ cζ , we have that the effective
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cost of input ω̂ follows a Weibull distribution

Pr (cω̂ > c) = Pr
(
ciω̂ > c

)
Pr (coω̂ > c) = e−T

−ζ
ω̂ cζe−hω̂mω̃ω̂ c̄

−ζ
ω̂ cζ = e

−
[
T−ζω̂ +hω̂mω̃ω̂ c̄

−ζ
ω̂

]
cζ

Again, since the distribution of each cω̃
w is Weibull with Pr

(
cω̂
w > x

)
= e

−wζ
[
T−ζω̂ +hω̂mω̃ω̂ c̄

−ζ
ω̂

]
xζ

, the

previous lemma implies that
ciω̃
w is Weibull with

Pr

(
ciω̃
w
> x

)
= e
−
∏
ω̂∈Ω̂ω̃

(
wζ
[
T−ζω̂ +hω̂mω̃ω̂ c̄

−ζ
ω̂

])αω̃ω̂xζ

or

Pr
(
ciω̃ > c

)
= Pr

(
ciω̃
w
>

c

w

)
= e
−
∏
ω̂∈Ω̂ω̃

(
wζ
[
T−ζω̂ +hω̂mω̃ω̂ c̄

−ζ
ω̂

])αω̃ω̂( cw )
ζ

= e
−w−α

ω̃
l ζ
∏αω̃ω̂
ω̂∈Ω̂ω̃

[
T−ζω̂ +hω̂mω̃ω̂ c̄

−ζ
ω̂

]αω̃ω̂ cζ
= e−T

−ζ
ω̃ cζ

Claim 10 Given search effort {hω}, the probability of outsourcing input i conditional on using it

in production is

hω̃mω̃ω̂ c̄
−ζ
ω̂

hω̃mω̃ω̂ c̄
−ζ
ω̂ + T−ζω̃

This is independent of the firm’s cost or of the probability of outsourcing other inputs.

Proof. This follows from usual math with Weibulls

Pr
(
coω̃ ≤ ciω̃|cω̃ = c

)
=

Pr
(
coω̃ ≤ ciω̃, cω̃ = c

)
Pr
(
coω̃ = c

)
=

Pr
(
coω̃ ≤ ciω̃, coω̃ = c

)
Pr
(
coω̃ = c

)
=

Pr
(
ciω̃ ≥ c, coω̃ = c

)
Pr
(
ciω̃ ≥ c, coω̃ = c

)
+ Pr

(
coω̃ ≥ c, ciω̃ = c

)
=

hω̃mω̃ω̂ c̄
−ζ
ω̂ ζcζ−1e−hω̃mω̃ω̂ c̄

−ζ
ω̂ cζe−T

−ζ
ω̃ cζ

Pr
(
coω̃ = c

)
=

hω̃mω̃ω̂ c̄
−ζ
ω̂

hω̃mω̃ω̂ c̄
−ζ
ω̂ + T−ζω̃

[
hω̃mω̃ω̂ c̄

−ζ
ω̂ + T−ζω̃

]
ζcζ−1e−hω̃mω̃ω̂ c̄

−ζ
ω̂ cζe−T

−ζ
ω̃ cζ

Pr
(
coω̃ = c

)
=

hω̃mω̃ω̂ c̄
−ζ
ω̂

hω̃mω̃ω̂ c̄
−ζ
ω̂ + T−ζω̃

Since this is true for all c, it follows that the choice of in-house or outsourcing is independent of

decision downstream from the input ω̃, and the same argument used for inputs upstream from

ω̃ implies that outsourcing decisions are independent. Finally, integrating givesPr
(
coω̃ ≤ ciω̃

)
=

E
[
Pr
(
coω̃ ≤ ciω̃|cω̃ = c

)]
=

hω̃mω̃ω̂ c̄
−ζ
ω̂

hω̃mω̃ω̂ c̄
−ζ
ω̂ +T−ζω̃

.
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We next turn to the firm’s expected profit

Claim 11 Given its productivity q and its search effort {hω̃}ω̃∈Ωoω
, a firm’s expected profit is

Aωq
ε−1T 1−ε

ω −
∑
ω̂∈Ω̂oω

wk
h1+γ
ω̂

1 + γ

where

Tω̃ =
∏
ω̂∈Ω̂ω̃

(
hω̂mω̃ω̂ c̄

−ζ
ω̂ + Tω̂

)αωω̂
, ∀ω̃ ∈ Ωi

ω

with the convention that Tω̂ = ∞ for inputs that for which in-house production is infeasible, i.e.,

ω̂ 6∈ Ωi
ω.

Proof. For a firm in industry ω with cost c, profit gross of search costs is 1
ε

(
ε
ε−1

)1−ε
upηpε−ηω c1−ε.

It is thus sufficient to show that E
[
c1−ε|q, {hω̃}ω̃∈Ω̂oω

]
= κqε−1T 1−ε

ω . Since c = 1
qw

αωl
∏
ω̂∈Ω̂ω

c
αωω̂
ω̂

and the cost of each input is independent conditional on search effort, we have

E

[( c
w

)1−ε
|q, {hω̃}ω̃∈Ω̂oω

]
= E

1

q

∏
ω̂∈Ω̂ω

(cω̂
w

)αωω̂1−ε

|q, {hω̃}ω̃∈Ω̂oω


= qε−1

∏
ω̂∈Ω̂ω

E

[(cω̂
w

)αωω̂(1−ε)
|q, {hω̃}ω̃∈Ω̂oω

]

Note that if X follows a Weibull distribution with Pr (X > x) = e−κx
ζ
, Then E

[(
x
w

)−r]
=

wr
∫
x−rκζxζ−1e−κx

ζ
dx = wrκ

r
ζ
∫
u
− r
ζ e−udu = wrΓ

(
1− r

ζ

)
κ
r
ζ . Thus we can express this as

E

[( c
w

)1−ε
|q, {hω̃}ω̃∈Ω̂oω

]
= qε−1w(1−αωl )(ε−1)

∏
ω̂∈Ω̂ω

Γ

(
1− αωω̂

ε− 1

ζ

)(
hω̂mωω̂ c̄

−ζ
ω̂ + T−ζω̂

)αωω̂ ε−1
ζ

=

w(1−αωl )(ε−1)
∏
ω̂∈Ω̂ω

Γ

(
1− αωω̂

ε− 1

ζ

) qε−1T 1−ε
ω

Therefore Aω = 1
ε

(
ε
ε−1

)1−ε
upηpε−ηω

{
w(1−αωl )(ε−1)∏

ω̂∈Ω̂ω
Γ
(

1− αωω̂
ε−1
ζ

)}
.

D.2.1 Optimal Search Effort

The firms problem can be expressed as a cost-minimization problem. let Kω (Tω) be the minimum

cost of delivering a cost distribution indexed by Tω. Then the firm’s problem can be expressed as

E
[
Π|q, {hω̂}ω̂∈Ω̂oω

]
= max

Tω
Aωq

ε−1T
1−ε
ζ

ω − wKω (Tω)
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where each cost function Kω can be expressed recursively

Kω (Tω) = min
{hω̂ ,Tω̂}ω̂∈Ω̂ω

∑
ω̂∈Ω̂ω

[
k

1 + γ
h1+γ
ω̂ +Kω̂ (Tω̂)

]

subject to

Tω ≤ w1−αωl
∏
ω̂∈Ωω

[
hω̂mωω̂ c̄

−ζ
ω̂ + T−ζω̂

]αωω̂
We now derive some properties of Kω. In doing so, it will be useful to define {κω, βω} iteratively

as follows.

βω =
∑

ω̂∈Ω̂leafω

αωω̂ +
∑

ω̂∈Ω̂non−leafω

βω̂α
ω
ω̂

κω =
∏

ω̂∈Ω̂leafω

((
mωω̂

( c̄ω̂
w

)−ζ)1+γ αωω̂
βω

)αωω̂
βω ∏

ω̂∈Ω̂non−leafω

(
κω̂
βω̂α

ω
ω̂

βω

)βω̂α
ω
ω̂

βω

Claim 12 Each Kω (·) is such that Kω (0) = 0, strictly decreasing, strictly convex, twice con-

tinuously differentiable, and the policy functions {hω̂ (·) , Tω̂ (·)}ω̂∈Ωω
are differentiable and strictly

monotonic, with d lnhω̂
d lnTω

>
d lnT−ζω̂
d lnTω

> 0, and d lnOω̂
d lnTω

. The elasticity of K ′ω (·) is bounded by ζ(1+γ)
βω

≤
K′′ω(Tω)Tω
−K′ω(Tω) − 1 ≤ ζ(1+γ)

1−αωl
. Finally

lim
Tω→0

Kω (Tω)T

ζ(1+γ)
1−αω

l
ω =

k

1 + γ

1

∏
ω̂∈Ω̂ω

((
mωω̂ c̄

−ζ
ω̂

)1+γ αωω̂
1−αρl

) αω
ω̂

1−αω
l

lim
Tω→∞

Kω (Tω)T
ζ(1+γ)
βω

ω =
k

1 + γ

1

κω

Proof. By induction. If there is no in-house option (i.e., a module of depth 1) then we have

Kω (Tω) = min
{hω̂}

∑
ω̂∈Ω̂ω

k

1 + γ
h1+γ
ω̂ subject to Tω ≥ wα

ω
l

∏
ω̂∈Ω̂ω

(
hω̂mωω̂ c̄

−ζ
ω̂

)−αωω̂
ζ

Letting λ be the multiplier, we have, the FOCs are

khγω̂ = wα
ω
l λ
αωω̂
ζ

1

hω̂
Tω

or

h1+γ
ω̂ =

αωω̂
ζ

wα
ω
l λTω
k
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Multiplying each side by
(
mωω̂ c̄

−ζ
ω̂

)1+γ
and combining across ω̂ gives

∏
ω̂∈Ωω

((
hω̂mωω̂ c̄

−ζ
ω̂

)1+γ
)αωω̂

ζ

=

(
wα

ω
l λ

k
Tω

) 1−αωl
ζ ∏

ω̂∈Ω̂ω

((
mωω̂ c̄

−ζ
ω̂

)1+γ αωω̂
ζ

)αωω̂
ζ

Using the constraint and rearranging, we have

(
Tω/w

αωl
)−(1+γ)

∏
ω̂∈Ω̂ω

((
mωω̂ c̄

−ζ
ω̂

)1+γ αωω̂
ζ

)αω
ω̂
ζ

=

(
wα

ω
l λ

k
Tω

) 1−αωl
ζ

We can then use these to derive an explicit expression for the cost function:

Kω (Tω) =
∑
ω̂∈Ω̂ω

k

1 + γ
h1+γ
ω̂ =

∑
ω̂∈Ω̂ω

k

1 + γ

αωω̂
ζ

wα
ω
l λTω
k

=
(1− αωl ) k

ζ (1 + γ)

wα
ω
l λTω
k

=

(1−αωl )k
ζ(1+γ)∏

ω̂∈Ω̂ω

((
mωω̂ c̄

−ζ
ω̂

)1+γ αωω̂
ζ

) αω
ω̂

1−αω
l

(
Tω

wα
ω
l

)− ζ(1+γ)
1−αω

l

=
k

1 + γ

1

∏
ω̂∈Ω̂ω

((
mωω̂ (c̄ω̂/w)−ζ

)1+γ αωω̂
1−αωl

) αω
ω̂

1−αω
l

(
Tω
w

)− ζ(1+γ)
1−αω

l

Suppose that the hypothesis is true for all depths less than D. The problem for a module at depth

D is

Kω (Tω) = min
{hω̂ ,Tω̂}

∑
ω̂∈Ωω

{
k

1 + γ
h1+γ
ω̂ +Kω̂ (Tω̂)

}
subject to

Tω ≥ wα
ω
l

∏
ω̂∈Ω̂ω

(
hω̂mωω̂ c̄

−ζ
ω̂ + T−ζω̂

)−αωω̂
ζ

Let λ be the multplier, and define Oω̂ =
hω̂mωω̂ c̄

−ζ
ω̂

hω̂mωω̂ c̄
−ζ
ω̂ +T−ζω̂

. If input ω̂ is a leaf so that it cannot be

produced in-house, then FOC is

khγω̂ = wα
ω
l λTω

αωω̂
ζhω̂

Otherwise, the FOCs are

hω̂ : khγω̂ = wα
ω
l λOω̂Tω

αωω̂
ζhω̂

Tω̂ : K ′ω̂ (Tω̂) = −wαωl λ (1−Oω̂)Tω
αωω̂
Tω̂
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These along with the constraint define the policy functions and the Lagrange multiplier. The

implicit function theorem implies that the Lagrange multiplier is differentiable with repect to

Tω. Differentiating the FOCs with respect to T−ζω and noting that d lnOω̂ = (1−Oω̂) d lnhω̂ −
(1−Oω̂) d lnT−ζω̂ gives

(1 + γ)
d lnhω̂

d lnT−ζω
=

d lnλTω

d lnT−ζω
+ (1−Oω̂)

d lnhω̂

d lnT−ζω
− (1−Oω̂)

d lnT−ζω̂

d lnT−ζω
(3)

−1

ζ

(
K ′′ω̂ (Tω̂)Tω̂
K ′ω̂ (Tω̂)

+ 1

)
d lnT−ζω̂

d lnT−ζω
=

d lnλTω

d lnT−ζω
−Oω̂

d lnhω̂

d lnT−ζω
+Oω̂

d lnT−ζω̂

d lnT−ζω
(4)

We can use these two expressions to solve for d lnhω̂
d lnTω

and
d lnT−ζω̂
d lnT−ζω

in terms of d lnλTω
d lnT−ζω

for the nonleaf

nodes:

d lnhω̂

d lnT−ζω
=

1

γ +Oω̂ + rω̂ (1−Oω̂)

d lnλTω

d lnT−ζω

d lnT−ζω̂

d lnT−ζω
=

rω̂
γ +Oω̂ + rω̂ (1−Oω̂)

d lnλTω

d lnT−ζω

where we defined rω̂ ≡ − γ

1
ζ

(
K′′
ω̂(Tω̂)Tω̂
K′
ω̂(Tω̂)

+1

)
+1

.

To solve for d lnλTω
d lnT−ζω

, we differentiate the constraint to get

1 =
∑

ω̂∈Ω̂leafω

αωω̂
d lnhω̂

d lnT−ζω
+

∑
ω̂∈Ω̂non−leafω

αωω̂

{
Oω̂

d lnhω̂

d lnT−ζω
+ (1−Oω̂)

d lnT−ζω̂

d lnT−ζω

}

Using the expressions for d lnhω̂
d lnT−ζω

and
d lnT−ζω̂
d lnT−ζω

and solving for d lnλTω
d lnT−ζω

gives

d lnλTω

d lnT−ζω
=

 ∑
ω̂∈Ω̂leafω

αωω̂
1

γ + 1
+

∑
ω̂∈Ω̂non−leafω

αωω̂
Oω̂ + rω̂ (1−Oω̂)

γ +Oω̂ + rω̂ (1−Oω̂)


−1

The bounds on
K′′ω̂(Tω̂)Tω̂
−K′ω̂(Tω̂)

imply that rω is bounded inside the [0, 1] interval

0 <
γ

1+γ
βω̂
− 1
≤ rω̂ ≤

γ
1+γ

1−αω̂l
− 1

< 1 (5)

In particular, Since rω̂ is strictly smaller than 1 and larger than γ
1+γ
βω̂
−1

, we can bound d lnλTω
d lnT−ζω

above
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and below:

d lnλTω

d lnT−ζω
≤

∑
ω̂∈Ω̂ω

αωω̂
1

γ + 1


−1

=
1 + γ

1− αωl

d lnλTω

d lnT−ζω
≥

 ∑
ω̂∈Ω̂leafω

αωω̂
1

γ + 1
+

∑
ω̂∈Ω̂non−leafω

αωω̂
rω̂

γ + rω̂


−1

=
1 + γ

βω

where the last line used
rω̂

γ+rω̂
= βω̂

1+γ and the definition of βω.

Three consquences are that the changes in the policy functions are bounded away from 0:

d lnhω̂

d lnT−ζω
=

1

γ +Oω̂ + rω̂ (1−Oω̂)

d lnλTω

d lnT−ζω
≥ 1

γ + rω̂

∑
ω̂∈Ω̂ω

αωω̂
rω̂

γ + rω̂


−1

> 0

d lnT−ζω̂

d lnT−ζω
=

rω̂
γ +Oω̂ + rω̂ (1−Oω̂)

d lnλTω

d lnT−ζω
≥ rω̂
γ + rω̂

∑
ω̂∈Ω̂ω

αωω̂
rω̂

γ + rω̂


−1

> 0

d ln Oω̂
1−Oω̂

d lnT−ζω
=

d lnhω̂

d lnT−ζω
−
d lnT−ζω̂

d lnT−ζω
=

1− rω̂
γ +Oω̂ + rω̂ (1−Oω̂)

d lnλTω

d lnT−ζω

≥ 1− r̄ω̂
γ + rω̂

∑
ω̂∈Ω̂ω

αωω̂
rω̂

γ + rω̂


−1

> 0

In addition, since all of these derivatives are positive and bounded away from 0, we have the

following asymptotic properties.

lim
Tω→0

hω̂ (Tω) = ∞

lim
Tω→0

Tω̂ (Tω) = 0

lim
Tω→0

Oω̂ (Tω) = 1

lim
Tω→∞

hω̂ (Tω) = 0

lim
Tω→∞

Tω̂ (Tω) = ∞

lim
Tω→∞

Oω̂ (Tω) = 0

We next derive bounds on K′′ω(Tω)Tω
K′ω(Tω) . The envelope theorem implies that K ′ω (Tω) = −λω < 0,

so taking logs and differentiating gives

K ′′ω (Tω)Tω
K ′ω (Tω)

=
d lnλ

d lnTω
=
d lnλTω
d lnTω

− 1 = −ζ d lnλTω

d lnT−ζω
− 1
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This can be rearranged as
K ′′ω (Tω)Tω
−K ′ω (Tω)

− 1 = ζ
d lnλTω

d lnT−ζω

The bounds on d lnλTω
d lnT−ζω

give

ζ (1 + γ)

βω
≤ K ′′ω (Tω)Tω
−K ′ω (Tω)

− 1 ≤ ζ (1 + γ)

1− αωl

Finally, we turn to the asymptotic behavior of Kω. We first solve for limiting behavior of λTω

by rearranging the constraint

Tω = wα
ω
l

∏
ω̂∈Ω̂ω

(
hω̂mωω̂ c̄

−ζ
ω̂ + T−ζω̂

)−αωω̂
ζ

= wα
ω
l

∏
ω̂∈Ω̂leafω

(
hω̂mωω̂ c̄

−ζ
ω̂

)−αωω̂
ζ

∏
ω̂∈Ω̂non−leafω

(
hω̂mωω̂ c̄

−ζ
ω̂ + T−ζω̂

)−αωω̂
ζ

= wα
ω
l

∏
ω̂∈Ω̂ω

(
hω̂mωω̂ c̄

−ζ
ω̂

)−αωω̂
ζ

∏
ω̂∈Ω̂non−leafω

(
1 +

T−ζω̂

hω̂mωω̂ c̄
−ζ
ω̂

)−αωω̂
ζ

= wα
ω
l

∏
ω̂∈Ω̂ω

(
hω̂mωω̂ c̄

−ζ
ω̂

)−αωω̂
ζ

∏
ω̂∈Ω̂non−leafω

(
1

Oω̂

)−αωω̂
ζ

The FOCs for hω̂ imply

∏
ω̂∈Ω̂ω

(
hω̂mωω̂ c̄

−ζ
ω̂

)−αωω̂
ζ

=
∏
ω̂∈Ω̂ω

((
wα

ω
l λTω
k

αωω̂
ζ

) 1
1+γ

mωω̂ c̄
−ζ
ω̂

)−αωω̂
ζ ∏
ω̂∈Ω̂non−leafω

(
(Oω̂)

1
1+γ

)−αωω̂
ζ

=

(
wα

ω
l λTω
k

)− 1−αωl
(1+γ)ζ ∏

ω̂∈Ω̂ω

(
αωω̂
ζ

(
mωω̂ c̄

−ζ
ω̂

)1+γ
)− αωω̂

(1+γ)ζ ∏
ω̂∈Ω̂non−leafω

O
− αωω̂
ζ(1+γ)

ω̂

Plugging this in gives

Tω =

(
wα

ω
l λTω
k

)− 1−αωl
(1+γ)ζ

wα
ω
l

∏
ω̂∈Ω̂ω

(
αωω̂
ζ

(
mωω̂ c̄

−ζ
ω̂

)1+γ
)− αωω̂

(1+γ)ζ ∏
ω̂∈Ω̂non−leafω

O
γ

1+γ

αωω̂
ζ

ω̂

Tω =

(
wα

ω
l λTω
k

)− 1−αωl
(1+γ)ζ

w
∏
ω̂∈Ω̂ω

(
αωω̂
ζ

(
mωω̂

( c̄ω̂
w

)−ζ)1+γ
)− αωω̂

(1+γ)ζ ∏
ω̂∈Ω̂non−leafω

O
γ

1+γ

αωω̂
ζ

ω̂
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Rearranging and taking the limit and using limTω→0 Oω̂ = 1 gives

lim
Tω→0

wα
ω
l λTω
k

(
Tω
w

) ζ(1+γ)
1−αω

l
= lim

Tω→0

1

wα
ω
l


∏
ω̂∈Ω̂ω

(
αωω̂
ζ

(
mωω̂

( c̄ω̂
w

)−ζ)1+γ
)− αωω̂

ζ(1+γ) ∏
ω̂∈Ω̂ω

O
αωω̂
ζ

γ
1+γ

ω̂


ζ(1+γ)
1−αω

l

=


∏
ω̂∈Ω̂ω

(
αωω̂
ζ

(
mωω̂

( c̄ω̂
w

)−ζ)1+γ
) αωω̂

1−αω
l


−1

We next use the objective function

Kω (Tω) =
∑

ω̂∈Ω̂leafω

k

1 + γ
h1+γ
ω̂ +

∑
ω̂∈Ω̂non−leafω

{
k

1 + γ
h1+γ
ω̂ +Kω̂ (Tω̂)

}

=
∑

ω̂∈Ω̂leafω

k

1 + γ
h1+γ
ω̂ +

∑
ω̂∈Ω̂non−leafω

k

1 + γ
h1+γ
ω̂

(
1 +

Kω̂ (Tω̂)
k

1+γh
1+γ
ω̂

)

Using the FOCs for hω and rearranging gives

Kω (Tω) =
∑

ω̂∈Ω̂leafω

wα
ω
l λTω

αωω̂
ζ

1 + γ
+

∑
ω̂∈Ω̂non−leafω

wα
ω
l λOω̂Tω

αωω̂
ζ

1 + γ

(
1 +

Kω̂ (Tω̂)
k

1+γh
1+γ
ω̂

)

=
k

1 + γ

wα
ω
l λTω
k

 ∑
ω̂∈Ω̂leafω

αωω̂
ζ

+
∑

ω̂∈Ω̂non−leafω

αωω̂
ζ
Oω̂

(
1 +

Kω̂ (Tω̂)
k

1+γh
1+γ
ω̂

)
Note that since Kω̂(Tω̂)

h1+γ
ω̂

= Kω̂ (Tω̂)T

ζ(1+γ)
1−αω

l
ω

(
T−ζω
hω̂

)1+γ
T
ζ(1+γ)

(
1− 1

1−αω
l

)
ω , taking the limit gives limTω→0

Kω̂(Tω̂)

h1+γ
ω̂

=

0. As result, multiplying through by
(
Tω
w

) ζ(1+γ)
1−αω

l and taking the limit yields

lim
Tω→0

Kω (Tω)

(
Tω
w

) ζ(1+γ)
1−αω

l
=

k

1 + γ
lim
Tω→0

(Tω
w

) ζ(1+γ)
1−αω

l wα
ω
l λTω
k

 ∑
ω̂∈Ω̂leafω

αωω̂
ζ

+
∑
ω̂∈Ω̂ω

αωω̂
ζ

lim
Tω→0

Oω̂

(
1 +

Kω̂ (Tω̂)
k

1+γh
1+γ
ω̂

)
=

k

1 + γ

∑
ω̂∈Ω̂ω

αωω̂
ζ∏ω̂∈Ω̂ω

(
αωω̂
ζ

(
mωω̂

(
c̄ω̂
w

)−ζ)1+γ
) αω

ω̂
1−αω

l


=

k

1 + γ

1

∏
ω̂∈Ω̂ω

(
αωω̂

1−αωl

(
mωω̂

(
c̄ω̂
w

)−ζ)1+γ
) αω

ω̂
1−αω

l

We next turn to the limit as Tω → 0 and take a similar approach
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Suppose that limTω̂→∞ Kω̂ (Tω̂)T
ζ(1+γ)
βω̂

ω̂ → k
1+γ

1
κω̂

. Then limTω̂→0
K′ω̂(Tω̂)Tω̂
Kω̂(Tω̂) = − ζ(1+γ)

βω̂
and

lim
Tω̂→∞

K ′ω̂ (Tω̂)T
ζ(1+γ)
βω̂

+1

ω̂ = lim
Tω̂→∞

K ′ω̂ (Tω̂)Tω̂
Kω̂ (Tω̂)

Kω̂ (Tω̂)T
ζ(1+γ)
βω̂

ω̂ =

(
−ζ (1 + γ)

βω̂

)(
k

1 + γ

1

κω̂

)
= − ζ

βω̂
k

1

κω̂

The FOCs give

Tω = wα
ω
l

∏
ω̂∈Ω̂ω

(
hω̂mωω̂ c̄

−ζ
ω̂ + T−ζω̂

)−αωω̂
ζ

= wα
ω
l

∏
ω̂∈Ω̂leafω

(
hω̂mωω̂ c̄

−ζ
ω̂

)−αωω̂
ζ

∏
ω̂∈Ω̂non−leafω

(
hω̂mωω̂ c̄

−ζ
ω̂ + T−ζω̂

)−αωω̂
ζ

= wα
ω
l

∏
ω̂∈Ω̂leafω

(
hω̂mωω̂ c̄

−ζ
ω̂

)−αωω̂
ζ

∏
ω̂∈Ω̂non−leafω

T
αωω̂
ω̂

∏
ω̂∈Ω̂non−leafω

(
hω̂mωω̂ c̄

−ζ
ω̂

T−ζω̂
+ 1

)−αωω̂
ζ

= wα
ω
l

∏
ω̂∈Ω̂leafω

(
hω̂mωω̂ c̄

−ζ
ω̂

)−αωω̂
ζ

∏
ω̂∈Ω̂non−leafω

T
αωω̂
ω̂

∏
ω̂∈Ω̂non−leafω

(1−Oω̂)
αωω̂
ζ

Plug in the FOCs to get

Tω = wα
ω
l

∏
ω̂∈Ω̂leafω

((
wα

ω
l λTω
k

αωω̂
ζ

) 1
1+γ

mωω̂ c̄
−ζ
ω̂

)−αωω̂
ζ ∏
ω̂∈Ω̂non−leafω

wαωl λ (1−Oω̂)Tωα
ω
ω̂

−K ′ω̂ (Tω̂)T
ζ(1+γ)
βω̂

+1

ω̂


− βω̂α

ω
ω̂

ζ(1+γ) ∏
ω̂∈Ω̂non−leafω

(1−Oω̂)
αωω̂
ζ

Tω
w

=

(
wα

ω
l λTω
k

)− βω
ζ(1+γ) ∏

ω̂∈Ω̂leafω

(
αωω̂
ζ

(
mωω̂

( c̄ω̂
w

)−ζ)1+γ
)− αωω̂

ζ(1+γ) ∏
ω̂∈Ω̂non−leafω

(
−K ′ω̂ (Tω̂)T ζβω̂+1

ω̂

kαωω̂

) βω̂α
ω
ω̂

ζ(1+γ) ∏
ω̂∈Ω̂non−leafω

(1−Oω̂)
αωω̂
ζ

(
1− βω̂

1+γ

)

Rearranging and taking the limit gives

lim
Tω→∞

wα
ω
l λTω
k

(
Tω
w

) ζ(1+γ)
βω

= lim
Tω→∞

{∏
ω̂∈Ω̂non−leafω

(1−Oω̂)
αωω̂
ζ

(
1− βω̂

1+γ

)} ζ(1+γ)
βω

{∏
ω̂∈Ω̂leafω

(
αωω̂
ζ

(
mωω̂

(
c̄ω̂
w

)−ζ)1+γ
)αωω̂∏

ω̂∈Ω̂non−leafω

(
kαωω̂

−K′ω̂(Tω̂)T
ζβω̂+1

ω̂

)βω̂αωω̂} 1
βω

=


∏

ω̂∈Ω̂leafω

(
αωω̂
ζ

(
mωω̂

( c̄ω̂
w

)−ζ)1+γ
)αωω̂

βω ∏
ω̂∈Ω̂non−leafω

(
αωω̂
ζ
βω̂

1
κω̂

)βω̂α
ω
ω̂

βω


−1

= ζ


∏

ω̂∈Ω̂leafω

(
αωω̂

(
mωω̂

( c̄ω̂
w

)−ζ)1+γ
)αωω̂

βω ∏
ω̂∈Ω̂non−leafω

(κω̂βω̂α
ω
ω̂)

βω̂α
ω
ω̂

βω


−1
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We rearrange the value of the objective function Kω

Kω (Tω) =
∑

ω̂∈Ω̂leafω

k

1 + γ
h1+γ
ω̂ +

∑
ω̂∈Ω̂non−leafω

{
k

1 + γ
h1+γ
ω̂ +Kω̂ (Tω̂)

}

=
∑

ω̂∈Ω̂leafω

k

1 + γ
h1+γ
ω̂ +

∑
ω̂∈Ω̂non−leafω

{
k

1 + γ
h1+γ
ω̂ +

Kω̂

−K ′ω̂ (Tω̂)Tω̂

(
−K ′ω̂ (Tω̂)Tω̂

)}

Usign the FOCs, this is

Kω (Tω) =
∑

ω̂∈Ω̂leafω

k

1 + γ

wα
ω
l λTω
k

αωω̂
ζ

+
∑

ω̂∈Ω̂non−leafω

{
k

1 + γ

wα
ω
l λTω
k

Oω̂
αωω̂
ζ

+
Kω̂

−K ′ω̂ (Tω̂)Tω̂

(
wα

ω
l λ (1−Oω̂)Tωα

ω
ω̂

)}

=
k

1 + γ

wα
ω
l λTω
k

 ∑
ω̂∈Ω̂leafω

αωω̂
ζ

+
∑

ω̂∈Ω̂non−leafω

αωω̂
ζ

{
Oω̂ + ζ (1 + γ)

Kω̂ (Tω̂)

−K ′ω̂ (Tω̂)Tω̂
(1−Oω̂)

}
Multiplying through by (Tω/w)

ζ(1+γ)
βω and taking the limit gives

lim
Tω→∞

Kω (Tω)

(
Tω
w

) ζ(1+γ)
βω

=
k

1 + γ
lim

Tω→∞

wα
ω
l λTω
k

(
Tω
w

) ζ(1+γ)
βω

lim
Tω→∞

 ∑
ω̂∈Ω̂leafω

αωω̂
ζ

+
∑

ω̂∈Ω̂non−leafω

αωω̂
ζ

{
Oω̂ + ζ (1 + γ)

Kω̂ (Tω̂)

−K ′ω̂ (Tω̂)Tω̂
(1−Oω̂)

}
=

k

1 + γ

∑
ω̂∈Ω̂leafω

αωω̂ +
∑

ω̂∈Ω̂non−leafω
αωω̂βω̂∏

ω̂∈Ω̂leafω

(
αωω̂

(
mωω̂

(
c̄ω̂
w

)−ζ)1+γ
)αω

ω̂
βω ∏

ω̂∈Ω̂non−leafω

(
κω̂βω̂α

ω
ω̂

)βω̂αωω̂
βω

=
k

1 + γ

1

κω

E Notes about Characteristic Function

In this section we prove the existence of an infinitely divisible random with characteristic function
Γ(1−it)∏
j Γ(1−αjit) for any α1, ..., αJ such that αj > 0 and

∑
j αj ≤ 1. The proof builds on Shanbhag,

Pestana and Sreehari (1977) who showed the existence of a closely related random variable.32

32Shanbhag, Pestana and Sreehari (1977) show the existence of a random variable with characteristic function V

such that E
[
e−θV

]
=

Γ(1+θ β
α )

Γ(1+θ)Γ(1+θβ)
for β ≥ α

1−α and Re θ > −α/β. One can use this result to show the existence of
our random variable. To see this, their result implies the existence of a random variable with characteristic function

Γ(1−it)
Γ(1−pit)Γ(1−(1−p)it) for any p ∈ (0, 1) by using θ = −i(1 − p), α = p, and β = p

1−p . Next, letting ᾱj =
∑j

j̃=1
αj̃ , we

can decompose the characteristic function into a product.

Γ (1− it)
Γ (1− α1it) ...Γ (1− αnit)

=
Γ (1− ᾱ2it)

Γ (1− α1it) Γ (1− α2it)

Γ (1− ᾱ3it)

Γ (1− ᾱ2it) Γ (1− α3it)
...

Γ (1− it)
Γ (1− ᾱnit)
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Lemma 8 (Malmsten’s formula): If Re (z) > 0, then

log Γ (z) =

∫ ∞
0

{
e−t (z − 1) +

e−tz − e−t

1− e−t

}
dt

t

Proof. Start with Gauss’s expression for the digamma function ψ (z) ≡ Γ′(z)
Γ(z) when Re (z) > 0:

ψ (z) =
∫∞

0

{
e−t

t −
e−tz

1−e−t

}
dt and integrate from 1 to z

log Γ (z) =

∫ z

1
ψ (x) dx

=

∫ z

1

∫ ∞
0

{
e−t

t
− e−tx

1− e−t

}
dtdx

=

∫ ∞
0

∫ z

1

{
e−t

t
− e−tx

1− e−t

}
dxdt

=

∫ ∞
0

{
e−t

t
(z − 1) +

[
1

t

e−tz

1− e−t
− 1

t

e−t

1− e−t

]}
dt

=

∫ ∞
0

{
e−t (z − 1) +

e−tz − e−t

1− e−t

}
dt

t

Lemma 9 If α positive and real and Re(θ) > −α, then the following two identities hold:

log
Γ(α+ θ)

Γ(α)
= ψ (α) θ +

∫ 0

−∞

(
eθt − 1− θt

) eαt

|t| (1− et)
dt (6)

log
Γ(α+ θ)

Γ(α)
= [ψ (α) + bα] θ +

∫ 0

−∞

[
eθt − 1− θt

1 + t2

]
eαtdt

(1− et) |t|
(7)

where ψ (·) is the digamma function and bα ≡
∫∞

0
e−αs

1−e−s
s2

(1+s2)
ds is positive and bounded.

Proof. Malmsten’s formula can be rearranged, changing variables, to deliver

log Γ (z) =

∫ ∞
0

{
e−zu − e−u

1− e−u
+ (z − 1) e−u

}
du

u

=

∫ −∞
0

{
ezt − et

1− et
+ (z − 1) et

}
dt

t

=

∫ 0

−∞

{
ezt − et

1− et
+ (z − 1) et

}
dt

|t|

Since Re (α+ θ) > 0 and Re (α) > 0, we can apply Malmsten’s formula to both Γ(α+ θ) and Γ(α)

Let Xj be a random variable with characteristic function Γ(1−it)

Γ

(
1−

ᾱj−1
ᾱj

it

)
Γ

(
1−

αj
ᾱj
it

) . Similarly, let S be the random

variable with characteristic function Γ(1−it)
Γ(1−ᾱnit) (this is the log of a stable random variable). Then S+

∑n
j=2 ᾱjXj has

the characteristic function Γ(1−it)∏
j Γ(1−αjit)

.
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and simplify to get

log
Γα+ θ)

Γ(α)
=

∫ 0

−∞

{
e(α+θ)t − et

1− et
+ (α+ θ − 1) et

}
dt

|t|
−
∫ 0

−∞

{
eαt − et

1− et
+ (α− 1) et

}
dt

|t|

=

∫ 0

−∞

{
e(α+θ)t

1− et
− eαt

1− et
+ θet

}
dt

|t|

=

∫ 0

−∞

[
eθt − 1

] eαtdt

(1− et) |t|
+

∫ 0

−∞
θet

dt

|t|
(8)

To get (6) we subtract and add θt from the inner brackets of the first term and simplify to get

log
Γ (α+ θ)

Γ (α)
=

∫ 0

−∞

[
eθt − 1− θt

] eαtdt

(1− et) |t|
+

∫ 0

−∞
θt

eαtdt

(1− et) |t|
+

∫ 0

−∞
θet

dt

|t|

=

∫ 0

−∞

[
eθt − 1− θt

] eαtdt

(1− et) |t|
+ θ

∫ 0

−∞

(
t

|t|
eαt

(1− et)
+
et

|t|

)
dt

=

∫ 0

−∞

[
eθt − 1− θt

] eαtdt

(1− et) |t|
+ θ

∫ ∞
0

(
e−s

s
− e−αs

1− e−s

)
ds∫ 0

−∞

[
eθt − 1− θt

] eαtdt

(1− et) |t|
+ θψ (α)

where the last line uses Gauss’s expression for the Digamma function.

To get (7),we subtract and add θt
1+t2

from the inner brackets of the first term in 8 and simplify

to get

log
Γ (α+ θ)

Γ (α)
=

∫ 0

−∞

[
eθt − 1− θt

1 + t2

]
eαtdt

(1− et) |t|
+

∫ 0

−∞

θt

1 + t2
eαtdt

(1− et) |t|
+

∫ 0

−∞
θet

dt

|t|

=

∫ 0

−∞

[
eθt − 1− θt

1 + t2

]
eαtdt

(1− et) |t|
+ θ

∫ 0

−∞

(
t

1 + t2
eαt

(1− et) |t|
+
et

|t|

)
dt

The second integral can be expressed as∫ 0

−∞

(
t

1 + t2
eαt

(1− et) |t|
+
et

|t|

)
dt =

∫ ∞
0

(
e−s

s
− 1

1 + s2

e−αs

1− e−s

)
ds

=

∫ ∞
0

{
e−s

s
− e−αs

1− e−s

}
ds+

∫ ∞
0

{
e−αs

1− e−s
− e−αs

(1− e−s) (1 + s2)

}
ds

= ψ (α) + bα

bα is positive. To show that bα is bounded, we use 1
1+s2

≤ 1 and s
1−e−s ≤ 1 + s (the latter

follows from adding ses to each side of 0 ≤ es − (1 + s) to get ses ≤ (es − 1) + s (es − 1), or

s ≤ (1 + s) (1− e−s)). Together, these give

bα =

∫ ∞
0

e−αs

1− e−s
s2

1 + s2
ds =

∫ ∞
0

e−αss
s

1− e−s
1

1 + s2
ds ≤

∫ ∞
0

e−αss (1 + s) sds <∞
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Lemma 10 Let φr(x) = 1−xr
1−x , 0 < x < 1, r > 0. Then for fixed r ≤ 1, φr(x) is decreasing in x;

for r ≥ 1, φr(x) is increasing in x.

Proof. Consider first the case where r ≤ 1. We will use a Taylor expansion of f(t) = 1− (1− t)r

around t = 0 for t ∈ (0, 1). Noting that f ′(t) = r(1− t)r−1 and f (k)(t) = (1− t)r−kr
∏k−1
j=1(j − r),

k ≥ 2, the Taylor expansion is thus

f(t) = f(0) + f ′(0)t+

∞∑
k=2

f (k)(0)tk

k!
= 0 + rt+

∞∑
k=2

[
r
∏k−1
j=1(j − r)

]
tk

k!

Then, we have, for x ∈ (0, 1),

φr(x) =
1− xr

1− x
=
f(1− x)

1− x
= r +

∞∑
k=2

[
r
∏k−1
j=1 (j − r)

]
(1− x)k−1

k!
> 0

Second, for the case of r ≥ 1, we have φr (x) = 1−xr
1−x = 1

1−(xr)1/r

1−xr
= 1

φ1/r(x
r) . φ1/r (xr) is

decreasing because 1
r ≤ 1. Therefore φr (x) = φ1/r (xr)−1 is increasing.

Lemma 11 For every fixed α1,...,αJ such that αj > 0 and
∑

j αj ≤ 1 and x ∈ (0, 1). Then

1

x

 x

1− x
−
∑
j

x
1
αi

1− x
1
αi

 ≥ 0

Proof. Consider the case in which
∑

j αj = 1. The previous lemma implies that log
(

1−x1/αj

1−x

)
is

increasing, and hence
∑

j αj log
(

1−x1/αj

1−x

)
is increasing, for x ∈ (0, 1).

∑
j

αj log

(
1− x1/αj

1− x

)
= [− log (1− x)]−

∑
j

[
−αj log

(
1− x1/αj

)]
=

∫ x

0

1

u

 u

1− u
−
∑
j

u1/αj

1− u1/αj

 du

(because
[
− log[1−xw]

w

]
=
∫ x

0
uw−1

1−uw dx). Taking the derivative of each side gives

0 ≤ d

dx

∑
j

αj log

(
1− x1/αj

1− x

) =
1

x

(
x

1− x
−
∑
i

x1/αj

1− x1/αj

)

Next, if
∑

j αj < 1, then let α̃i = αi for i = 1, ..., J and α̃J+1 = 1−
∑

j αj , and apply the result

from the previous case to α̃1, ..., α̃J+1.
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Lemma 12 For any real and positive number α,

log Γ (1− αit) = −itcα +

∫ ∞
0

(
eitu − 1− uit

1 + u2

)
e−u/α

u (1− e−u)
du

with cα finite.

Proof. We begin by rearranging log Γ
(
θ
x + 1

)
in the case where x is real and positive Re (θ) > −x.

Using (6) and the change of variables s = t
x , and then using (6) again, we have

log Γ

(
θ

x
+ 1

)
= log

Γ
(
θ
x + 1

)
Γ (1)

= ψ (1) θ +

∫ 0

−∞

(
e
θ
x
t − 1− θ

x
t

)
et

|t| (1− et)
dt

= ψ (1) θ +

∫ 0

−∞

(
eθs − 1− θs

) exs

|s| (1− es)
ds

= ψ (1) θ − ψ (x) θ + ψ (x) θ +

∫ 0

−∞

(
eθs − 1− θs

) exs

|s| (1− es)
ds

= [ψ (1)− ψ (x)] θ +
Γ (θ + x)

Γ (x)

Then using (7) and then a change of variables u = −s, we have

log Γ

(
θ

x
+ 1

)
= [ψ (1)− ψ (x)] θ + [ψ (x) + bx] θ +

∫ 0

−∞

(
eθs − 1− θ s

1 + s2

)
exs

|s| (1− es)
ds

= [ψ (1) + bx] θ +

∫ ∞
0

(
e−θu − 1 + θ

u

1 + u2

)
e−xu

u (1− e−u)
du

The result follows from evaluating this expression for θ = −i and x = 1
α , and defining cα ≡

ψ(1) + b1/α.

Proposition 9 Fix α1, ..., αJ such that αj > 0 and
∑

j αj ≤ 1. There exists an infinitely divisible

random variable with characteristic function Γ(1−it)∏
j Γ(1−αjit) .

Proof. We show this by showing that such a characteristic function has a Levy-Canonical Repre-

sentation (see, for example, Lukacs (1960), Thm 5.5.2). Specifically, we can rearrange the function

as

log
Γ (1− it)∏
j Γ (1− αjit)

= log Γ (1− it)−
∑
j

log Γ

(
1− it

1/αj

)

= −it

c1 −
∑
j

c1/αj

+

∫ ∞
0

(
eitu − 1− it u

1 + u2

)
1

u

 e−u

1− e−u
−
∑
j

e
− 1
αj
u

1− e−u

 du
= −it

c1 −
∑
j

c1/αj

+

∫ ∞
0

(
eitu − 1− it u

1 + u2

)
dN(u)
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where N(x) is defined for x ≥ 0 as

N (x) ≡ −
∫ ∞
x

1

u

 e−u

1− e−u
−
∑
j

e
− 1
αj
u

1− e−u

 du .
To verify that this conforms to a Levy Canonical representation, we must verify that N satisfies

several conditions. First, N(x) is non-decreasing on (0,∞) because Lemma 11 guarantees that

N ′(x) ≥ 0. Second, limx→∞N(x) = 0. Finally,
∫ ε

0 u
2dN(u) <∞ for all ε > 0:∫ ε

0
u2dN(u) ≤

∫ ∞
0

u2dN(u)

=

∫ ∞
0

u

 e−u

1− e−u
−
∑
j

e
− 1
αj
u

1− e−u

 du
≤

∫ ∞
0

u
e−u

1− e−u
du

≤
∫ ∞

0
(1 + u)e−udu

= 2

where the last inequality uses u
1−e−u ≤ 1 + u as discussed in the proof of Lemma 9
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