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What we want from ML
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The agent alignment problem

How can we create agents that behave
in accordance with the user's intentions?
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“Preference payload” questions

e Whose preferences should
the agent be aligned to?

e How should preferences of
different users be
aggregated?

e How should they traded off
against each other?

e When should the agent be
disobedient?
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“Preference payload” questions

e Whose preferences should

When should the agent be
disobedient?

These questions are important.

We're not discussing these
questions here.

We're only considering the
technical problem of aligning
one agent to one user.
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Desiderata

Image sources:
https://www.porttechnology.org/
https://realanimetraining.com/
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Assumption 1

Rather than formally specifying user intentions,
we can instead learn these intentions
to a sufficiently high accuracy.

Q) DeepMind @janleike



Assumption 2

For many tasks, evaluation of outcomes
is easier than producing the correct behavior.

) DeepMind @janleike



101

than behav

ion is easier

Evaluat

@janleike

) DeepMind



Reward modeling

Reward model
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Reward modeling
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Some tasks are hard to evaluate

Reward model
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Evaluation assistance tasks

e Well-written

e Novel

e EXxperiments correct
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Evaluation assistance tasks

e Well-written @

e Novel
e EXxperiments correct @
e Proofs correct @
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Evaluation assistance tasks
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Recursive reward modelin

Reward model
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Recursive reward modelin
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Challenges

Amount of feedback

Feedback distribution

Reward hacking

Unacceptable outcomes

Reward-result gap
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Challenges

Amount of feedback

Feedback distribution

Reward hacking

Unacceptable outcomes

Reward-result gap
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Challenges

Online feedback

Amount of feedback

Off-policy feedback
Leveraging existing data
Hierarchical feedback

Natural language

Model-based RL

Reward hacking

Side-constraints

Unacceptable outcomes *'-‘\‘\\\
\ N

N\

Adversarial training

Uncertainty estimates

Reward-result gap

Inductive bias
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Establishing trust

Design choices
Testing

Interpretability

Formal verification
Theoretical guarantees

Safety certificates
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Thanks! :)

Blog post: https://goo.gl/azGMtA

Paper:
https://arxiv.org/abs/1811.07871
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Scalable agent alignment via reward modeling:
a research direction
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Abstract
One obstacle to applyi learning algon to real-world problems
is the lack of suitable reward i Designing such reward ions is difficult

in part because the user only has an implicit und: ding of the task obj

This gives rise to the agent alignment problem: how do we create agents that behave
in d: with the user's i ions? We outline a high-level research direction
to solve the agent alignment problem centered around reward modeling: leaming a
reward function from interaction with the user and optimizing the leamed reward
function with reinforcement learning, We discuss the key challenges we expect
to face when scaling reward modeling to complex and general domains, concrete
approaches to mitigate these challenges, and ways to establish trust in the resulting
agents.

1 Introduction

Games are a useful benchmark for research because progress is casily measurable. Atari games
come with a score function that captures how well the agent is playing the game; board games or
competitive multiplayer games 1uch as Dota 2 and Starcraft I have a clear winner or loscr at the end

of the game. This helps us pirically which algorithmic and i

work best.

However, the ultimate goal of machine learning (ML) research is to go beyond games and i lmpmve
human lives. To achieve this we need ML to assist us in real-world domains, langmg sunple

tasks like ordering food or answering emails to complex tasks like software engineering or running a
business. Yet performance on these and other real-world tasks is not easily measurable, since they do
not come readily equipped with a reward function, Instead, the objective of the task is only indirectly
available through the intentions of the human user.

This requires walking a fine line. On the one hand, we want M1 to generate creative and brilliant
solutions like AlphaGo's Move 37 (Metz, 2016)—a move that no human would have recommended.
yet it completely turned the game in AlphaGo’s favor. On the other hand, we want to avoid degenerate
solutions that lead to undesired behavior like exploiting a bug in the environment simulator (Clark &
Amodei, 2016; L.ehman ct al., 2018). In order to differentiate between these two outcomes, our agent
needs to understand its user’s intentions, and robustly achieve these intentions with its behavior. We
frame this as the agent alignment probiem:

How can we create agenis that behave in accordance with the user’s intentions?
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