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Pooled-DNA sequencing strategies enable fast, accurate, and cost-effect detection of rare variants, but current approaches
are not able to accurately identify short insertions and deletions (indels), despite their pivotal role in genetic disease.
Furthermore, the sensitivity and specificity of these methods depend on arbitrary, user-selected significance thresholds,
whose optimal values change from experiment to experiment. Here, we present a combined experimental and compu-
tational strategy that combines a synthetically engineered DNA library inserted in each run and a new computational
approach named SPLINTER that detects and quantifies short indels and substitutions in large pools. SPLINTER integrates
information from the synthetic library to select the optimal significance thresholds for every experiment. We show that
SPLINTER detects indels (up to 4 bp) and substitutions in large pools with high sensitivity and specificity, accurately
quantifies variant frequency (r = 0.999), and compares favorably with existing algorithms for the analysis of pooled
sequencing data. We applied our approach to analyze a cohort of 1152 individuals, identifying 48 variants and validating 14
of 14 (100%) predictions by individual genotyping. Thus, our strategy provides a novel and sensitive method that will
speed the discovery of novel disease-causing rare variants.

[Supplemental material is available online at www.genome.org. Sequencing data is available at http://cgs.wustl.edu/
~fvallania/4_splinter_2010/5_splinter_webpage/SPLINTER_supporting_material.html. Novel SNP data have been sub-
mitted to the NCBI dbSNP (http://www.ncbi.nlm.nih.gov/snp) under accession nos. rs113740468, rs78985299, and
rs113225202. SPLINTER is available at http://www.ibridgenetwork.org/wustl/splinter.]

Understanding the genetic basis of common diseases is an impor-

tant step toward the goal of personalized medicine (Ng et al. 2008).

At present, two distinct hypotheses are under debate (Goldstein

2009; Manolio et al. 2009). The common variant, common disease

(CVCD) hypothesis states that disease-causing alleles are common

in the human population (frequency > 5%) (Reich and Lander

2001). In contrast, the rare variant, common disease (RVCD) hy-

pothesis posits that multiple disease-causing alleles, which in-

dividually occur at low frequencies (<<1%), cumulatively explain

a large portion of disease susceptibility (Cohen et al. 2004; Ji et al.

2008). Recent evidence favors the RVCD hypothesis, as common

variants have failed to explain many complex traits (Manolio et al.

2009), while rare genetic variants have been successfully associated

with HDL levels (Cohen et al. 2004), blood pressure ( Ji et al. 2008),

obesity (Ahituv et al. 2007), and colorectal cancer (Fearnhead et al.

2004, 2005).

Due to their low frequencies, identifying rare, disease-associated

variants requires genotyping large cohorts in order to reach the

appropriate statistical power (e.g., 5000 individuals are required to

detect mutations present at 0.1% in the population with a proba-

bility of 96%). ‘‘Collapsing’’ methods in which rare variants are

grouped together before association with disease have been shown

to improve statistical power (Li and Leal 2008), but analysis of

large cohorts is still required. One recent strategy for genotyping

large cohorts consists of pooled-sample sequencing, where indi-

vidual samples are pooled prior to analysis on a next-generation

sequencing platform (Van Tassel et al. 2008; Druley et al. 2009;

Erlich et al. 2009; Koboldt et al. 2009; Prabhu and Pe’er 2009).

By leveraging the massively parallel output of second-generation

DNA sequencing, pooled-sample sequencing allows fast and ac-

curate detection of rare variants in thousands of samples at a

fraction of time and cost of traditional methods. Individual sample

identities can be recovered using a combinatorial pooling strategy

(such as DNA Sudoku) (Erlich et al. 2009).

Despite the promise of this method for studying rare genetic

variants, current computational approaches pose a bottleneck be-

cause they are focused either on single individual genotyping (Li

et al. 2008) or on the detection of common variants in small-sized

pools (Koboldt et al. 2009). Our previously developed SNPseeker

algorithm allows the detection of single nucleotide substitutions

in large pooled samples (Druley et al. 2009), but still fails to address

two important key challenges in rare variant detection.

First, presently no algorithm has been able to detect indels in

pools larger than 42 individuals without the presence of many

false-positives (;40%) (Koboldt et al. 2009), despite the fact that

they account for one-quarter of the known mutations implicated

in Mendelian diseases (Ng et al. 2008; Stenson et al. 2009). In

particular, short indels represent the most common type of this

class of variation (Ng et al. 2008) and have been reported to oc-

cur as rare germline variants associated with genetic diseases such

as breast and ovarian cancer (King et al. 2003). Efforts to detect

disease-associated genetic variants will therefore greatly benefit

from the ability to accurately detect rare short indels.

Second, in order to accurately detect rare variants in a large

pooled sample, an optimal significance cutoff for the accurate

discrimination of true variants from false-positives must be cho-

sen. This parameter is, in practice, affected by sequencing error
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rates and average coverage, which have been shown to change for

every run (Druley et al. 2009). Failure to define an optimal cutoff

results in lower sensitivity and increased false-positive rates. Since

the rare variant hypothesis posits that individual disease-associ-

ated mutations will be extremely rare (but cumulatively common),

it is absolutely critical to be able to specifically discriminate, in

every experiment, a single heterozygous individual in a large co-

hort from the background noise. Until now this has not been re-

liably demonstrated.

To address these important challenges, we have developed

a novel experimental and computational strategy that combines a

synthetically engineered DNA library inserted in each run and a

new computational approach named SPLINTER (short indel pre-

diction by large deviation inference and nonlinear true frequency

estimation by recursion). This approach allows accurate detection

and quantification of short insertions, deletions, and substitutions

by integrating information from the synthetic DNA library to tune

SPLINTER and quantify specificity and sensitivity for every ex-

periment in order to accurately detect and quantify indels and

substitutions (Fig. 1; Supplemental Fig. 1).

SPLINTER requires the presence of two components: a neg-

ative control (1–2 kb of cloned plasmid DNA) used to generate a

run-specific error model, and a positive control consisting of

a synthetic DNA library simulating an artificial pool with muta-

tions engineered at a known position and frequency. We tested

SPLINTER on synthetically engineered pooled samples containing

different mutations at different frequencies in a variety of sequence-

context backgrounds, obtaining 100% sensitivity with no false-

positives in pools up to 500 individuals. SPLINTER was also able to

accurately quantify allele frequencies—predicted and observed al-

lele frequencies were correlated with a correlation of 0.999. We find

that SPLINTER significantly outperforms all of the other algorithms

for the analysis of pooled sequencing data by being the most sen-

sitive approach, while also returning almost no false-positives. We

then applied our strategy to multiple pooled samples, identifying

novel and already described sequence variants, all of which were

independently validated.

Results

Detection of rare insertions and deletions in synthetic libraries

For each experiment, we first pooled equimolar amounts of sample

DNA together with the controls and generated a DNA library to be

sequenced on the Illumina Genome Analyzer IIx sequencing

platform. We then mapped back the sequencing reads to their

reference and built a run-specific error model from the negative

control reads. Next, we optimized our cutoff parameters on the

positive control and then called SNPs and indels on our sample (see

Supplemental material). We first sought to determine the upper

Figure 1. Experimental and computational pipeline for detection of indels and substitutions in large pooled DNA samples: DNA samples from a se-
lected group of patients are individually pooled in a complex mixture to be used as a template for PCR amplification of selected genomic loci. The pool
PCR products are then combined in an equimolar mix containing a DNA fragment without variants (negative control) and a synthetic pool with engi-
neered mutations present at the lowest expected variant frequency present in the sample (positive control). The mix is then sequenced on Illumina
Genome Analyzer LIX, and sequencing reads are mapped back to the sample and the controls reference sequence by gapped alignment. The negative
control reads are used to generate a second-order error model to be used in the variant calling phase. The positive control allows determination of the
optimal cutoff for maximizing specificity and sensitivity of the analysis. SPLINTER will then be used to analyze the pooled sample, resulting in detection
and quantification of indels and substitutions present in the pool. The SPLINTER algorithm detects true segregated variants by comparing the frequency
vector of observed read bases to an expected frequency vector defined by the error model. If the observed vector is significantly different from the
expected vector, then SPLINTER will call that position a sequence variant. For each identified variant, SPLINTER will then perform maximum likelihood fit
in order to estimate its frequency in the pooled sample.
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limit of the number of samples that SPLINTER can analyze in

a pool. To do so, we generated three synthetic DNA libraries, each

containing 15 different indels and substitutions (Supplemental

Tables 1, 2; Supplemental material) introduced at frequencies of

0.005, 0.002, and 0.001, respectively (corresponding to cohorts of

100, 250, and 500 diploid individuals). We sequenced these li-

braries using the workflow shown in Figure 1. In each instance,

SPLINTER was able to correctly identify every variant (15/15 vari-

ants) without making false-positive calls (2254/2254 true-nega-

tives) (Fig. 3A, below; Supplemental Table 4). We concluded that

SPLINTER can accurately and reliably detect single heterozygous

mutations in pools of up to 500 individuals.

Estimation of required sequencing coverage for optimal indel
and substitution detection

We next investigated how SPLINTER’s accuracy changed as

a function of average sequencing coverage. To do so, we sampled

the sequencing data obtained for each of the three previous li-

braries at different fractions (Supplemental material) and then

computed the accuracy of our predictions in the form of an area

under a receiver-operator curve (AUC), a commonly used metric of

accuracy ranging from 0.5 (random guessing) to 1 (100% sensi-

tivity and specificity). By plotting AUC as a function of average

sequencing coverage we found that accuracy increased with cov-

erage, with high-frequency variants requiring less coverage than

lower-frequency variants (Fig. 2A). By analyzing AUC as a function

of coverage per allele, we observed a clear overlap of the curves for

each pool, reaching AUC equal to 1 at ;30-fold average coverage

per haploid genome (Fig. 2B), indicating that accurate detection

can be achieved given enough coverage independently of pool

size.

Recent resequencing efforts show that indel detection re-

mains challenging, as their false-positive rate is 15-fold higher

than substitutions (Pleasance et al. 2010). Our initial data sug-

gested that indels can be detected as sensitively and accurately as

substitutions. To test this hypothesis, we generated five additional

DNA libraries with synthetic insertions, deletions, and substitu-

tions included at a wide range of frequencies (from one to 50

variants in 1000 total alleles) (Supplemental Tables 2, 4). We

achieved 100% sensitivity for all of the pools (9/9 indel variants

and 10/10 substitution variants) with specificities between 99.91%

and 100% (between 2263/2265 and 2259/2259 true-negatives).

We then plotted the relationship between AUC and coverage for

Figure 2. Relationship between variant detection accuracy and average sequencing coverage per base. (A) Accuracy expressed as AUC (area under the
curve) (y-axis) plotted as a function of average sequencing coverage per base (x-axis) for synthetic pools with variants present at frequencies 1/200, 1/500,
and 1/1000. (B) Same as in A, with average sequencing coverage per base per allele on the x-axis. (C–E ) AUC (y-axis) as a function of average sequencing
coverage per base (x-axis) for insertions (C ), deletions (D), and substitutions (E ). Variants are present at frequencies 1/1000, 5/1000, 10/1000, 15/1000,
and 50/1000.
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each set. Indels converged to AUC equal to 1 at a rate comparable

to substitutions independently of the frequency of the mutation

(Fig. 2A–C). Thus, we conclude that SPLINTER detects indels as

accurately and as sensitively as it does substitutions.

Since many deleterious indels are 4 bp or shorter (King et al.

2003; Ng et al. 2008), we wanted to determine whether SPLINTER

could accurately detect indels as large as 4 bp. We generated and

sequenced two synthetic pools containing eight and 10 4-bp indels

with frequencies ranging from 0.001 to 0.020 and from 0.025 to

0.045, respectively. SPLINTER achieved 100% sensitivity 10/10

variants and 100% specificity (2253/2253 true-negatives) for allele

frequencies between 0.025 and 0.045 and 100% sensitivity (8/8

variants) and 99.5% specificity (2243/2253 true-negatives) between

0.001 and 0.020 (Supplemental Tables 3, 4). These results suggest

that SPLINTER is sensitive and specific in detecting 4-bp indels.

Comparison of SPLINTER with other variant
discovery approaches

We next compared SPLINTER with existing tools for variant call-

ing. We used the synthetic DNA libraries previously described to

benchmark the sensitivity and positive predictive value of each

method. We compared SPLINTER with SNPseeker (Druley et al.

2009), MAQ (Li et al. 2008), SAMtools (Li et al. 2009), and VarScan

(Koboldt et al. 2009) for the detection of substitutions (Fig. 3A,B)

and with SAMtools and VarScan for the detection of indels (Fig.

3C,D). For each data set analyzed, SPLINTER significantly out-

performed every other approach. In all of the synthetic libraries

containing substitutions, SPLINTER detected all of the synthetic

variants with no false-positives, thus achieving a 100% sensitivity

and specificity. SNPseeker also achieved perfect accuracy in the

pool simulating 100 individuals, but had a 20% positive predictive

value in the libraries simulating 250 and 500 individuals, and had

only an 80% sensitivity in the 500 individual library. The other

approaches detected variants with substantially lower sensitivity

and positive predictive values in all libraries. For each indel set,

SPLINTER returned all of the true variants with no false-positives,

except for the indel 1 set and the 4-bp 1 set (;30% and ;50%

positive predictive values, respectively). In comparison, every other

approach resulted in false-positive rates greater than 80%, while

achieving low sensitivity, with the exception of the second 4-bp

set. We also compared SPLINTER with a recently published new

algorithm for pooled DNA variant detection called CRISP (Vikas

2010) for both substitution and indel detection (Supplemental Fig.

2). SPLINTER outperformed CRISP in both sensitivity (at most 40%

increment) and positive predictive value (at most 80% increment).

In order to distinguish whether the improved accuracy in

variant finding originated from improved alignments or improved

variant calling, we also compared the performance of SPLINTER

using our alignment algorithm versus using reads aligned with

Figure 3. Comparison between SPLINTER and other variant calling algorithms: Substitutions (A,B) and indels (C,D) were analyzed independently. For
each approach, performance was evaluated by assessing sensitivity (fraction of true-positive hits divided by total positives in the set) and positive predictive
value (fraction of true-positive hits divided by total hits).
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Novoalign (http://www.novocraft.com). Both aligners resulted in

a comparable performance in finding true variants (Supplemental

Fig. 3), although our aligner showed small increases in sensitivity

and positive predictive value in several of the analyzed pools. This

result suggests that improved variant calling accuracy mostly

depended on the variant calling algorithm and not the underlying

aligner. Taken together, there results demonstrate that SPLINTER

outperforms other approaches at detecting single nucleotide sub-

stitutions and indels in large pools.

Estimation of the frequency of rare insertions and deletions
in synthetic libraries

Having established that SPLINTER could detect rare variants in

pooled samples, we next examined whether SPLINTER could also

accurately determine the frequencies of the identified variants. We

compared estimated and expected indel frequencies from all of our

libraries (frequency range 0.001 ; 0.050) and found a very high

correlation (r = 0.969, P < 2.2 3 10�16; Fig. 4A), indicating that

SPLINTER was able to accurately estimate allele frequencies. We

next sought to better understand the causes of the observed errors

in our allele frequency estimates. Allele quantification can be af-

fected by pipetting errors during DNA pooling and by preferential

amplification of specific alleles in the pooled PCR. To distinguish

between these two sources of error, we constructed all of our

plasmids so that each contained two mutations spaced far enough

apart to be analyzed independently (i.e., with no overlapping

reads). If pipetting error and amplification bias are the major

sources of error in allele quantification, then the estimated allele

frequencies of mutations on the same plasmid will be highly cor-

related. This was indeed the case. Frequency estimates for muta-

tions within the same molecule were very highly correlated (r =

0.995, P < 2.2 3 10�16; Fig. 4C), indicating that most of the noise

in variant quantification was due to experimental error. We simi-

larly observed very high correlations with substitutions (fre-

quency correlation r = 0.956, P < 2.2 3 10�16; pair correlation r =

0.993, P < 2.2 3 10�16; Fig. 4D) and 4-bp indels (frequency corre-

lation r = 0.962, P = 1.501 3 10�11; pair correlation r = 0.939, P =

5.599 3 10�5) (Supplemental Fig. 4). Based on these results, we

reasoned that robotic pooling of samples might improve allelic

quantification. Therefore, we robotically pooled and sequenced a

large cohort of 974 people previously analyzed in a GWA study (see

Methods). As expected, we observed an almost perfect correlation

(r = 0.999, P < 2.2 3 10�16; Fig. 4E) between the GWA frequencies

and the frequencies estimated by SPLINTER, indicating that in-

accurate pipetting was indeed a primary source of error.

Figure 4. Precise quantification of rare genetic variants in synthetic and real samples. (A,B) Correlation between variant frequency measured by
SPLINTER (y-axis) and expected variant frequency (x-axis) from eight synthetic pools for indels (A) and substitutions (B). (C,D) Pair correlation between
mutation pairs present in the same DNA molecule for indels (C ) and substitutions (D). (E) Correlation between variant frequency measured from GWA
study (x-axis) and SPLINTER estimated frequency (y-axis).

High-throughput discovery of rare indels

Genome Research 1715
www.genome.org

 Cold Spring Harbor Laboratory Press on September 2, 2024 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


High-throughput discovery of rare indels in large
patient cohorts

Finally, we applied SPLINTER to a large human cohort as a ‘‘real-

world’’ test of the algorithm. We sequenced 14 loci (2596 bp total)

in 1152 individuals, which were divided into nine pools (94–178

individuals per pool) (see Methods). For every sequenced pool, we

included a negative and positive control to tune SPLINTER. We

identified, on average, 19 variants per pool (for a total of 151 var-

iants, see Supplemental Table 6). To confirm SPLINTER’s accuracy,

we examined the overlap of our hits with variants listed in dbSNP.

We observed large overlapping fractions—between 68.5% and

100% of the identified variants in each pool could be found in

dbSNP (Supplemental Tables 5, 6). In all cases, statistical signifi-

cance was reached (Fisher’s exact test; Supplemental Table 5). We

selected 14 variants (three novel variants and 11 from dbSNP) from

the largest analyzed pool for independent validation by individual

genotyping using the Sequenom iPLEX platform. All 14 variants

were confirmed, resulting in 100% positive predictive value. Fur-

thermore, allele frequencies were highly correlated with those es-

timated by SPLINTER (r = 0.985, P = 5.958 3 10�9; Supplemental

Table 8; Supplemental Fig. 5). Together, these results demonstrate

the utility of the SPLINTER methodology for the rapid analysis of

large populations of individuals. All of the computational tools,

source codes, and the experimental datasets presented in this study

can be accessed at http://cgs.wustl.edu/;fvallania/4_splinter_

2010/5_splinter_webpage/SPLINTER_supporting_material.html.

Discussion
Rare genetic variation is likely to describe a substantial portion

of heterogeneity in common and complex diseases. Identifying

disease-associated rare variants requires the analysis of multiple

loci in large cohorts. We have shown that a novel experimental

design combined with SPLINTER can accurately identify genetic

variants in large pools, leading to several advantages over other

computational strategies.

First, we found that SPLINTER identified genetic variants with

high sensitivity and precision, whereas the other methods were

unable to detect a large fraction of the variation present in the

samples. We found that a sequencing coverage of ;303 per hap-

loid genome was required to detect mutations with high sensitivity

and specificity. In earlier work, we successfully analyzed pooled

samples using SNPseeker at lower sequencing coverage (;13.8-fold

per haploid genome) (Druley et al. 2009). However, in that study

most of the variants were present in many individuals in the pool,

suggesting that in order to detect singleton alleles with ;100%

confidence in a variety of different sequence contexts a higher

sequence coverage is required. This finding is confirmed by re-

cent resequencing studies of single cancer genomes, where near-

optimal accuracy of somatic SNP detection (3% false discovery

rate) was achieved at ;40-fold average haploid genome coverage

(Pleasance et al. 2010), and by the lower performance of SNPseeker

when compared with SPLINTER in detecting substitutions present

at one in a 1000 in both sensitivity and precision.

Second, our strategy incorporates a synthetic positive control

and a negative control, which allow estimation of sensitivity and

specificity for each experiment. This is important because run-to-

run variations in sequencing error rates can influence accuracy and

perturb the optimal P-value cutoffs. The inclusion of the control

DNA has a negligible impact on experiment cost. One single-end

sequencing lane (;30 million 36-bp-long reads per lane) can

provide enough coverage to analyze ;25 kb of genomic DNA in

500 patients, with the control sequences accounting for ;4% of

the total sequencing data.

Third, SPLINTER can accurately and sensitively detect indels

with a high sensitivity and accuracy. Detection of indels, even in

single genome resequencing studies, is indeed a challenging prob-

lem due to the difficulties in reducing the false-positive rate while

retaining good sensitivity (Pleasance et al. 2010). In addition, pre-

viously published approaches cannot detect indels (Li et al. 2008;

Druley et al. 2009), or can only be applied to small-sized cohorts

(42 people) (Koboldt et al. 2009). Together, these issues have lim-

ited the application of pooled DNA sequencing. We have shown

here that SPLINTER can accurately discriminate single indels in

pools as large as 500 individuals with high sensitivity and speci-

ficity. By comparison, the best performing algorithm achieved at

best an 80% false-positive rate.

Fourth, SPLINTER can accurately quantify the frequency of

the alleles present in the pool. Although high correlations between

real and estimated frequencies were observed, small discrepancies

may result in errors in variant association to a phenotype if the

variant is rare and the effect of the variant is high. Our pair cor-

relation analysis shows that the major source of errors in quanti-

fication does not come from SPLINTER, but rather from pipetting

errors in pool construction as indicated by the improved correla-

tions after robotic pipetting of the pools. This issue can, in fact, be

resolved by performing orthogonal validation of the samples,

which will be highly facilitated by the overall performance of

SPLINTER in detecting rare variants as opposed to other methods.

In contrast, the major source of error in array-based pooled DNA

analysis is array variation, being seven times higher than pool

construction variation (Macgregor 2007). This observation argues

that our approach shows even higher accuracy compared with

other experimental platforms.

Finally, our approach can be applied to any pooled cohort or

any heterogeneous sample of any size and can be easily scaled up to

whole-exome and whole-genome analysis. Given the presence of

a positive control to infer the optimal parameters, pooled samples

can accurately be analyzed without limitations on experimental

design or achieved coverage. In this study, we used PCR to amplify

the various genomic regions, but our strategy is also compatible with

solid and liquid-phase genomic capture approaches (Mamanova

et al. 2010).

We found that alignment errors decreased our ability to detect

large indels. This explains why SPLINTER performed slightly worse

in the analysis of the 4-bp indel libraries relative to the 1–2-bp

indel libraries. To detect the longer indels, it was necessary to allow

larger gaps in our read alignments, which increased the overall

alignment noise. We believe this was due to potential sequencing

artifacts or sample contaminants aligning back to the reference

sequence, thereby reducing the signal coming from true variants.

This limitation can be overcome with longer sequencing read

lengths, which should reduce the ambiguity in aligning reads while

allowing larger gaps (in this work, all sequencing reads were 36 bp

in length). Similarly, while whole-genome analysis may present

additional challenges due to increased sequence complexity, com-

pared with the analyzed synthetic controls we expect it to mostly

impact the read alignment step in the analysis pipeline, which can

be overcome by generating paired-end and/or longer sequencing

reads. In addition, with reduced error rate, fewer observations at

a given variant position will be needed to provide confidence in the

variant call. Nevertheless, our approach is the first one to accurately

call short indels in large pooled samples.
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One departure of our algorithm from other variant calling

programs is that SPLINTER does not incorporate quality scores in

any step of the analysis. We have found that our error model

captures essentially the same information that is contained in

quality scores (see Supplemental material; Druley et al. 2009 and so

including quality score information does not improve SPLINTER’s

performance. The high performance of our method compared with

others that use quality scores (Li et al. 2008; Koboldt et al. 2009)

suggests that this viewpoint is likely correct. Additionally, ana-

lyzing reads aligned with quality scores resulted in equal or lower

performance when compared with reads aligned using our aligner

(see Supplemental Fig. 5).

To obtain a complete understanding of the molecular causes

of common diseases, it is critical to be able to detect and analyze

rare variants (Van Tassel et al. 2008; Druley et al. 2009; Erlich et al.

2009; Koboldt et al. 2009; Prabhu and Pe’er 2009). Pooled DNA

sequencing is an important method for rare variant analysis, since

it enables the rapid and cost-effective analysis of thousand or tens

of thousands of individuals. SPLINTER will also be useful for ana-

lyzing samples that are naturally heterogeneous—e.g., for the de-

tection and quantification of rare somatic mutations in tumor

samples (Stingl and Caldas 2007). A second promising application

is detection of induced mutations in in vitro evolution experi-

ments (Barrick at al. 2009; Beaumont et al. 2009). Thus, we expect

SPLINTER will become a useful tool for the analysis of data gen-

erated by next-generation sequencing methods.

Methods

Preparation of the synthetic pools
Every synthetic pool library consists of a mixture of different oli-
gonucleotides, where one is referred to as the wild-type allele and
the others are mutants with respect to the wild type. We used the
consensus sequence of the 72-bp exon 9 from TP53 (RefSeq ac-
cession no. NM_000546) as the ‘‘wild-type’’ insert into a pGEM-T
Easy vector (Promega). We then designed a panel of different var-
iations of this consensus sequence (see Supplemental Tables 1–3)
containing single, double, and 4-bp indels, as well as single nu-
cleotide substitutions. These vectors could then be pooled such
that each mutation was present at different frequencies. Once
pooled, a single PCR reaction was performed using primers that
flanked the insertion site and generated a 335-bp amplicon. To
facilitate ligation into the vector, each oligonucleotide was ordered
with 59 phosphorylation and an overhanging 39 A from Integrated
DNA Technologies. Complimentary oligonucleotide pairs were
annealed as follows: 1 mL of sense and antisense oligonucleotide at
100 mM were mixed with 5 mL of 103 PCR buffer (Sigma-Aldrich)
and brought to a final volume of 50 mL. The annealing mix was
then warmed up to 95°C for 5 min, followed by 20 min at 25°C.
Each annealed sequence was then ligated into the pGEM-T Easy
Vector (Promega) according to the manufacturer’s protocol and
reagents. The final ligation product was then transformed into GC-
10 competent cells (GeneChoice) using standard cloning protocol.
Colonies were screened using ‘‘Blue/White’’ selection induced by
Xgal and IPTG, White colonies were picked and grown on Luria
broth agar with ampicillin for 12–16 h. Plasmid was then recovered
from the transformed bacteria suspension using Qiaprep Spin
Miniprep kit according to the manufacturer’s protocol (Qiagen).
Following insert validation by Sanger sequencing, plasmid pools
were prepared by pooling each plasmid at the appropriate number
of molecules in order to introduce the desired mutations at the
desired frequency with respect to the wild-type background. Each
pool was generated with a total number of 1011 plasmid molecules.

This was chosen in order to mimic the best conditions described
in the original pooled-DNA sequencing protocol11 to maximize
the number of molecules available for analysis, while keeping
fluid volumes tractable. Each pool was then PCR amplified using
primer sequences flanking the plasmid insertion site (see Supple-
mental Table 4). Each PCR reaction was performed as follows:
(1) 93°C for 2 min; (2) 93°C for 30 sec; (3) 56°C for 30 sec; (4) 65°C
for 2 min; (5) repeat steps 2–4 for 18 cycles; (6) 65°C for 10 min.
Each PCR mix contained 2.5 uL of 103 PfuUltra buffer, 10 mM
forward and reverse primers, 1 M betaine (Sigma-Aldrich/Fluka),
1.25 U PfuUltra DNA polymerase, and between 30 and 50 ng of
template DNA in a final volume of 25 uL. Each pool was then se-
quenced using a single lane of the Illumina Genome Analyzer II
platform.

DNA library preparation and sequencing for pooled samples

After PCR amplification of target loci, a second pool was created by
adding PCR products to the positive and negative controls for the
analyzed pooled sample. In order to generate uniform sequencing
coverage, every PCR product and control was pooled at the same
number of molecules (chosen to be at least 1011 molecules [;1 mg]
in order to have enough material for the sequencing library prep-
aration). Random ligation, sonication, and sequencing library
preparation were performed as previously described with a few
changes. DNA ligation was performed in a final volume of 50 mL.
Prior to sonication, ligation products were diluted 1:10 using
Qiagen PBI buffer from the QIAquick PCR Purification Kit (Qia-
gen). Fragmentation was then performed using the Bioruptor XL
sonicator (Diagenode). Samples were sonicated in parallel with the
following settings: 25 min of total sonication time, 40 sec of pulse
followed by 20 sec without pulse, high power pulse setting. This
resulted in each pool of large concatemers being randomly frag-
mented between 500 and 4000 bp (data not shown). Following
sonication, DNA samples were then purified via the QIAquick PCR
purification kit (Qiagen) and sequencing libraries were prepared
according to the standard protocol for genomic sample prepara-
tion by Illumina (Illumina). Each library was then sequenced on
a single lane of an Illumina Genome Analyzer II, generating 36-bp
read lengths.

Variant calling in pooled samples

For each pooled sample, reads were compressed in order to reduce
computational run-time and then aligned to their reference using
a dynamic programming algorithm (see Supplemental material).
Aligned reads were used to generate a run-specific error model from
the incorporated negative control. The aligned file and the error
model are then used by SPLINTER in input to detect the presence of
a sequence variant in the pool at any analyzed position. Optimal
detection of true variants was achieved by calibrating the P-value
cutoff used by SPLINTER with information generated from the
included positive control (see Supplemental material).
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