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Stampy: A statistical algorithm for sensitive and fast
mapping of Illumina sequence reads
Gerton Lunter1 and Martin Goodson
Wellcome Trust Centre for Human Genetics, Oxford OX3 7BN, United Kingdom

High-volume sequencing of DNA and RNA is now within reach of any research laboratory and is quickly becoming
established as a key research tool. In many workflows, each of the short sequences (‘‘reads’’) resulting from a sequencing
run are first ‘‘mapped’’ (aligned) to a reference sequence to infer the read from which the genomic location derived,
a challenging task because of the high data volumes and often large genomes. Existing read mapping software excel in either
speed (e.g., BWA, Bowtie, ELAND) or sensitivity (e.g., Novoalign), but not in both. In addition, performance often de-
teriorates in the presence of sequence variation, particularly so for short insertions and deletions (indels). Here, we present
a read mapper, Stampy, which uses a hybrid mapping algorithm and a detailed statistical model to achieve both speed and
sensitivity, particularly when reads include sequence variation. This results in a higher useable sequence yield and im-
proved accuracy compared to that of existing software.

[Supplemental material is available for this article. Stampy is available at http://www.well.ox.ac.uk/project-stampy.]

With ever increasing throughput of next-generation sequencing

machines (Metzker 2010), time- and memory-efficient algorithms

need no justification. However, sequence error rates are low, so

why is sensitivity important? One answer is that reduced sensi-

tivity in the presence of variation leads to undesired mapping

biases, particularly for reads from regions of higher divergence and

for reads containing indels. Similarly, improved sensitivity may

enable analyses that are otherwise impossible, for example, to an-

alyze samples that are divergent from available reference genomes

or to help identify unknown splice donor and acceptor sites in

mRNA-seq experiments (Wang et al. 2009). Finally, in any experi-

ment, a fraction of reads will exhibit elevated error rates, and being

able to reliably include data from these reads improves the power of

downstream analyses and reduces the total cost of sequencing.

The read mapping algorithms underlying existing mappers

largely come in two varieties. One category is hash-based, hashing

either reads (MAQ [Li et al. 2008], ELAND [Cox 2007]) or the ref-

erence genome (Novoalign [www.novocraft.com], Mosaik [Quinlan

et al. 2008]). A second category is based on the Burrows-Wheeler

transform and associated data structures, which support fast

retrieval of long inexact string matches. Mappers that use the

Burrows-Wheeler transform (BWA [Li and Durbin 2009], SOAP2

[Li et al. 2009], Bowtie [Langmead et al. 2009]) are very fast but

tend to be less sensitive than are the best hash-based mappers.

To achieve good sensitivity, Stampy also uses a hash table,

representing the location of selected 15-mers in the reference ge-

nome. The hash table uses a novel data structure, which results in

improved search times compared with those of standard imple-

mentations and in the efficient use of the available memory. The

algorithm first identifies candidate mapping locations for each

read using the hash. Specifically, the hash is searched for every

overlapping 15-mer in the read, as well as their neighbors at one

mismatch removed. For a 36-bp read, for example, this results in

1012 (22 3 46) search operations. The candidate mapping loca-

tions are filtered for sufficient sequence similarity to the read, and

then an attempt is made to align the read to the reference at each

qualifying location. A fast gapped aligner is used, which respects

quality scores and considers short indels of up to 15 bp. Next, for

a mate pair, the results of its alignment are considered. Finally,

candidate reads or read pairs are realigned using a full probabilistic

aligner that considers indels up to, by default, 30 bp. Full details of

the algorithm are provided in the online Supplemental material.

The resulting algorithm is sensitive and about as fast as MAQ

(Supplemental Table S2). To achieve higher throughput, Stampy is

recommended to be used in a hybrid mode, in which BWA is used

to map the majority of reads that have a close representative in

the reference. This results in a significant improvement in speed

(Table 1; Supplemental Table S2), with no reduction in sensitivity.

In fact, because of their fundamentally different algorithms, BWA

and Stampy have somewhat complementary strengths; a particu-

lar strength of BWA, resulting from the use of the Burrows-Wheeler

data structure, is in mapping highly repetitive reads that include

sequence variation. Using BWA as a first stage allows Stampy to

combine the advantages of BWA and its own algorithm, resulting in

a further improvement in sensitivity and accuracy (data not shown).

To map against a mammalian-size genome, Stampy requires

2.7 Gb of memory shared between multiple instances running on

a single node. An additional 3 Gb per instance is required to run

BWA. Smaller genomes require proportionally less memory.

Downstream analyses depend on accurate estimates of the

reliability of read mapping. Stampy uses an approximate Bayesian

model to estimate the ‘‘mapping quality,’’ the probability that a

read, or read pair, is mapped incorrectly. The use of probabilistic

models, rather than thresholds, is the main reason for Stampy’s

improved sensitivity and also allows a consistent treatment of read

pairs spanning large indels and structural variation. The model con-

siders three scenarios: (1) that the correct candidate locus was not

considered due to an excess of errors or variants in the read; (2) that

the best-matching location is incorrect despite the correct locus

having been considered, either because an exact repeat was chosen

or because read errors cause a near-repeat to match better; and (3)

that the original sequence is not represented in the reference. The

likelihood of a read pair (r1,r2) mapping to loci (x0,y0 ) is modeled as
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L r1; r2; x
0; y0

� �
= Prðr1jx0ÞPrðr2jy0ÞPdðy0 � x0Þ Puðx0Þ;

where we have ignored strandedness for simplicity; here Pr is the

alignment likelihood and includes priors on read errors, single

nucleotide polymorphisms (SNPs), and indel polymorphisms; Pd

models the insert size distribution and includes a prior on the oc-

currence of large indels and other structural variants leading to

anomalous inferred insert sizes; and Pu is the uniform distribution

over the genome. The posterior probability that an incorrect locus

was inferred is

1� Pðx0; y0jr1; r2Þ= 1� Lðr1; r2; x
0; y0Þ

+ðx;yÞ2C Lðr1; r2; x; yÞ
3

+ðx;yÞ2C Lðr1; r2; x; yÞ
+ðx;yÞ2V

Lðr1; r2; x; yÞ
;

where C is the set of candidate positions, and V denotes all pairs of

genomic coordinates. The last factor cannot be calculated efficiently

but is likely to be close to 1 or 0, depending on whether the true

locus is in C. We may therefore replace it by the probability that the

true candidate was not considered, which we estimate from the

nucleotide quality scores. Finally, to identify cases where a read se-

quence is not represented in the reference, a likelihood ratio test

assesses whether the inferred sequence similarity is sufficiently un-

likely to have occurred randomly, assuming a random reference se-

quence. The resulting P-value is used to cap the posterior. In addi-

tion, if P is too high, the mapping is not reported. Although the

random sequence model is rather approximate, this process removes

a large majority of erroneous maps, with a small effect on sensitivity

(data now shown). For details, see the online Supplemental material.

Results
To test the performance of Stampy, we first simulated reads from

the human genome reference and inserted errors following the

empirical error distribution in sequence data taken from the 1000

Genomes Project (The 1000 Genomes Project Consortium 2010).

To these we added mutations according to a variety of schemes and

annotated the reads with their place of origin and mutational

content. These data sets were used to compare the performance of

Stampy with four of the more widely used read mappers that gen-

erate mapping quality scores: BWA, MAQ, ELAND, and Novoalign

(see Supplemental material, section 2).

The bulk of sequence reads of a human sample contains an

approximate 0.1% fraction of SNP variants. Depending on the read

length and paired-end status, on this data set the recall rate of

Stampy ranges from 82%–96%, similar to Novoalign and MAQ

(87%–97% and 84%–92%) and somewhat better than BWA and

ELAND (70%–87% and 70%–77%) (Fig. 1; Supplemental Table S3).

To investigate the balance between sensitivity and specificity, we

computed receiver operating characteristic (ROC) curves by thresh-

olding on the reported mapping quality, which show a broadly

similar picture (Supplemental Fig. S2).

We also assessed mapping quality calibration, which SNP and

indel callers depend on to produce well-calibrated likelihoods and

posterior scores and which is only partially addressed by ROC

curves. ELAND and Novoalign are systematically over- and under-

confident, while on this data set Stampy, BWA, and MAQ produce

well-calibrated mapping qualities for both long and short reads

and both single and paired-end reads (Supplemental Fig. S5).

We next looked at indel mutations. The increasing read

length that Illumina sequencing machines are capable of produc-

ing means that a nonnegligible fraction of reads (e.g., 2% of 72-bp

paired-end reads in human) is expected to overlap with such mu-

tations. Besides their intrinsic interest, correctly dealing with

indels is important to avoid spurious SNP calls because of incorrect

alignments. We generated a set of reads, each of which containing

a single insertion or deletion of up to 30 bp, and computed recall

rates, ROC curves, and mapping quality calibration as before.

In all three criteria Stampy shows superior performance. Re-

call rates are high even for larger indels (e.g., 80%–95% of 72-bp

paired-end reads are mapped correctly; Fig. 2), and the ROC curve

shows that a good balance between sensitivity and specificity is

achievable (Fig. 3). Similar conclusions hold for shorter and single-

end reads (Supplemental Figs. S8, S9, S3). A good proportion of

reads overlapping the ends of very large insertions or deletions was

mapped to either breakpoint (Supplemental Fig. S1; Supplemental

Table S3), suggesting that Stampy may be helpful in identifying

structural variants, although the sequence context of such variants

are likely to be more complex than in our simulation. Mapping

quality calibration is a challenge for this data set, because the large

number of possible combinations of mapping loci and indels

cannot all be considered by the probabilistic model. Consequently,

the reported mapping quality is somewhat overconfident, partic-

ularly for single-end reads, something to keep in mind in down-

stream indel calling pipelines. Nevertheless, Stampy mapping

qualities are more consistent than are those of the other mappers

we tested (Supplemental Fig. S6), and in particular for paired-end

reads, mapping qualities are well calibrated. Combined with a

good sensitivity, this will allow indels to be inferred with confi-

dence if sufficient paired-end coverage is available.

With increasing read lengths, it becomes possible, in princi-

ple, to map short reads to a divergent reference. In relevant cases

Figure 1. Recall rates for four sets of 2 million simulated 72-bp paired-
end reads, mapped back to the human reference by five read mapping
algorithms. Reads included errors following an empirical distribution, as
well as additional simulated polymorphisms: 0.1% single nucleotide vari-
ants (snp0.001), two single nucleotide variants per read (snp2), and a single
large deletion or insertion per read pair (largedeletion and largeinsertion).
For details of the simulation procedure, see Supplemental material.

Table 1. CPU hours required for mapping a gigabase of 72-bp
sequence data by the five mappers considered here

Single-end (h/Gb) Paired-end (h/Gb)

BWA 3.2 3.4
Stampy 10.7 14.6
ELAND 20.7 19.4
MAQ 29.1 24.8
Novoalign 81.1 61.6

For 36-bp timings, see Supplemental Table S2.
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this may be an alternative to de novo assembly, which is chal-

lenging particularly for large genomes with a high repetitive se-

quence content. The ability to map divergent reads is also impor-

tant to reduce mapping biases for reads containing SNP variation

and in order to deal with highly diverse haplotypes such as in the

mammalian major histocompatibility complex. Both Novoalign

and Stampy show good performance for longer paired-end reads;

for instance at 5% divergence, both programs were able to map

93% of the 72-bp paired-end reads to their correct locations (Fig. 4).

For these reads, mapping quality calibration is good, but it de-

teriorates for shorter and single reads, and long paired-end reads

are recommended for this application (Supplemental Figs. S7, S12).

Finally, we assessed the performance of read mappers on real

data. To address the lack of a ground truth, we mapped the paired-

end sequence as single reads and calculated the concordance as the

fraction of reads that was mapped to consistent locations (Li and

Durbin 2009). Although this procedure only assesses the single-

end mapping algorithms, it does so with reads containing the true

spectrum of polymorphisms, substitutions, and read errors. In ad-

dition, current paired-end mapping algorithms are built on top of

a single-end mapping stage, so the results are expected to be in-

dicative of paired-end mapping performance. To represent mildly

polymorphic whole-genome data, we used two human individuals

sequenced to 43 coverage in the 1000 Genomes Project (The 1000

Genomes Project Consortium 2010). We also included a data set

consisting of short reads from human mRNA transcript data,

which we mapped against the nuclear genome; this is relevant for

de novo transcript discovery and may also be regarded as testing

the ability of mappers to deal with large variation, with introns and

poly-A tails taking the roles of large deletions and large insertions,

respectively. Finally, to test mapping to a divergent reference, we

mapped 59 lanes of short reads (;283 coverage) from a sample of

Mus spretus (Algerian mouse) to the Mus musculus (C57BL/6J) ref-

erence (NCBI build 37); these subspecies are about 2% divergent

Figure 2. Recall rates for simulated 72-bp paired-end reads, one of which overlaps a single insertion (A) or deletion (B) of various lengths (horizontal
axes). For results for shorter and single-end reads, see Supplemental Figures S8 and S9. A read was required to overlap at least one correct base, but the
indel was not required to be correctly called; for indel call rates, see Supplemental Figures S10 and S11.

Figure 3. Receiver operator characteristics for 72-bp paired-end reads,
each of which overlaps a single insertion or deletion of 1–30 bp. For results
for shorter and single-end reads, see Supplemental Figure S3.

Figure 4. Recall rates for 72-bp paired-end reads at a range of di-
vergences to the human reference (horizontal axes; average number of
substitutions per site). For results for shorter and single-end reads, see
Supplemental Figure S12.

Lunter and Goodson

938 Genome Research
www.genome.org

 Cold Spring Harbor Laboratory Press on July 26, 2024 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


(Zhang et al. 2005). Because of available CPU resources, we focused

on a comparison between Stampy, MAQ, and BWA.

Consistent with the simulation results, in all four cases Stampy

finds the highest fraction of concordant reads. The difference is

most pronounced for the mRNA data (Stampy 79%, vs. MAQ 55%

and BWA 52%) and for the divergent M. spretus data set (Stampy

72%, MAQ 39%, BWA 45%) (Fig. 5). The level of concordance un-

derestimates the fraction of accurately mapped paired-end reads in

a practical setting, because both reads are counted as discordant if

either is mapped incorrectly; in addition, in paired-end mapping,

a fraction of reads can be rescued by using the mate as an anchor.

Finally, we looked at whether these algorithms show any bias

toward the reference allele in the presence of an indel. This may be

expected if algorithms have a lower sensitivity for reads over-

lapping indels. To do this, we identified sites in a human sample

(NA12878) where a heterozygous indel was called with high con-

fidence (see Supplemental material), recorded the number of reads

supporting the reference or the alternative allele, and plotted the

distribution of the allele ratio. All mappers show a bias toward the

reference allele. The effect is most noticeable in MAQ, while it is

weaker in BWA and weaker still in Stampy (Fig. 6). A reduced

mapping bias indicates that a higher proportion of reads con-

taining indels are mapped correctly. This should prevent false

negatives, and will help reduce errors in genotype calls.

Discussion
It is now straightforward to produce large quantities of DNA and

RNA sequence data. Making effective use of much of this data re-

quires the sensitive, accurate, and unbiased mapping of sequence

reads to a reference genome. By mapping a larger proportion of

reads to their correct location, particularly when reads contain

sequence variants, and reporting well-calibrated mapping quality

scores, Stampy will help to increase the efficacy of downstream

analyses in most standard workflows.

Methods
Broadly, the read mapper algorithm comprises the fast hash table
data structure and lookup algorithm, an SIMD-vectorized linear-
time Smith-Waterman aligner, an algorithm for generating paired-

end candidates, and a Bayesian error model. Full details are pro-
vided in section 1 of Supplemental material. Section 2 of that
document details the simulation experiment, and section 3 dis-
cusses the methods used for real-data comparisons.
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Figure 5. Pairwise concordance of independently mapped reads. The
data (two human samples from the 1000 Genomes Project (The 1000
Genomes Project Consortium 2010); a divergent mouse subspecies; and
human mRNA from an MCF-7 cell line; see text) were mapped to the
human or mouse reference genomes (both NCBI build 37) by considering
each read of a pair independently. Concordance was calculated as the
proportion of reads that mapped to within 500 bp (for genomic DNA) or
10,000 bp (for the mRNA data set) of its mate.

Figure 6. Reference bias at heterozygous indel sites. The plot shows the
cumulative distribution of the proportion of reads supporting the non-
reference allele in an individual (NA12878) sequenced to high coverage in
the 1000 Genomes Project (The 1000 Genomes Project Consortium
2010), and mapped using MAQ, BWA, and Stampy, across high-confi-
dence heterozygous indel sites (see Supplemental material). A left shift of
the curve indicates a bias toward the reference allele.
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