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Copy number variation (CNV) in the genome is a complex phenomenon, and not completely understood. We have
developed a method, CNVnator, for CNV discovery and genotyping from read-depth (RD) analysis of personal genome
sequencing. Our method is based on combining the established mean-shift approach with additional refinements (mul-
tiple-bandwidth partitioning and GC correction) to broaden the range of discovered CNVs. We calibrated CNVnator
using the extensive validation performed by the 1000 Genomes Project. Because of this, we could use CNVnator for CNV
discovery and genotyping in a population and characterization of atypical CNVs, such as de novo and multi-allelic events.
Overall, for CNVs accessible by RD, CNVnator has high sensitivity (86%–96%), low false-discovery rate (3%–20%), high
genotyping accuracy (93%–95%), and high resolution in breakpoint discovery (<200 bp in 90% of cases with high
sequencing coverage). Furthermore, CNVnator is complementary in a straightforward way to split-read and read-pair
approaches: It misses CNVs created by retrotransposable elements, but more than half of the validated CNVs that it
identifies are not detected by split-read or read-pair. By genotyping CNVs in the CEPH, Yoruba, and Chinese-Japanese
populations, we estimated that at least 11% of all CNV loci involve complex, multi-allelic events, a considerably higher
estimate than reported earlier. Moreover, among these events, we observed cases with allele distribution strongly de-
viating from Hardy-Weinberg equilibrium, possibly implying selection on certain complex loci. Finally, by combining
discovery and genotyping, we identified six potential de novo CNVs in two family trios.

[Supplemental material is available for this article.]

Genomic structural variations (SVs), including copy number (CN)

variations (CNVs), are believed to contribute significantly to vari-

ations between human individuals and may have as large an effect

on human phenotype as do SNPs (Feuk et al. 2006; Sharp et al.

2006). Originally, CNVs were detected from the analysis of SNP

and CGH array data (Carter 2007), and this is still a cost-effective

method for CNV discovery and genotyping (Conrad et al. 2009).

However, new sequencing-based approaches such as clone-based

sequencing (Kidd et al. 2008), paired-end mapping (Korbel et al.

2007, 2009), split-read (SR) mapping (Mills et al. 2006), read-depth

(RD) analysis (Bentley et al. 2008; Campbell et al. 2008; Alkan

et al. 2009; Chiang et al. 2009; Yoon et al. 2009), and integrative

methods (Medvedev et al. 2010) offer a valuable alternative as

they enable the discovery of more CNVs of all types (inversions

and translocations that are not seen by CGH) and sizes (in-

cluding indels). The great advantage of sequencing-based ap-

proaches is that, as shown below, they complement each other

and can all be applied to one set of sequencing data (for example,

whole-genome paired-end sequencing by Illumina) to yield a

comprehensive map of genomic variations, including SNPs.

Here we present a novel method, CNVnator, to detect CNVs

from a statistical analysis of mapping density, i.e., RD, of short

reads from next-generation sequencing platforms. Previous ap-

proaches using RD were limited to only unique regions of the ge-

nome (Bentley et al. 2008; Campbell et al. 2008; Chiang et al.

2009), discovered only large CNVs with poor breakpoint resolu-

tion (Bentley et al. 2008; Campbell et al. 2008; Alkan et al. 2009;

Chiang et al. 2009), or could not perform genotyping (Yoon et al.

2009). CNVnator is able to discover CNVs in a vast range of sizes,

from a few hundred bases to megabases in length, in the whole

genome. By using data from the 1000 Genomes Project (Durbin

et al. 2010), we have experimentally verified CNVnator’s ability for

sensitive, specific, and precise CNV discovery and genotyping, as

well as demonstrated its ability for de novo CNV detection.

Results

Partitioning of the RD signal with the mean-shift approach

For the calculation of the RD signal, CNVnator divides the whole

genome into nonoverlapping bins of equal size and uses the count

of mapped reads within each bin as the RD signal. It then parti-

tions the generated signal into segments with presumably dif-

ferent underlying CNs. Putative CNVs are predicted by applying

statistical significance tests to the segments. All details about the

method are given in the Methods section, and here we stress its

key features. Partitioning is based on a mean-shift technique

originally developed in computer science for image processing

(Wand and Jones 1995; Comaniciu and Meer 2002) and applied

previously to the analysis of CGH data (Wang et al. 2009).
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Although it is similar to the analysis of the CGH signal, the analysis

of the RD signal has different challenges. In contrast to the CGH

signal, in which the locations and intensities of each probe are

fixed, for the RD signal, each location can be calculated differently

by varying the bin size used to count mapped reads. We have

performed a sensitivity analysis to determine an optimal bin size

for RD analysis (see Supplemental material). Another factor af-

fecting CNV discovery is the choice of bandwidth for signal par-

titioning using the mean-shift approach. We developed and ap-

plied a novel multiple bandwidth partitioning strategy, which

allowed us to detect CNVs across a vast range of sizes, from a few

hundred to mega bases in length. Furthermore, the method for RD

analysis should be fast. At a sequencing depth of 43, which is not

very deep, the method should be applicable to roughly 10 million

data points (assuming bins of 300 bp) and 1000 individuals, as, for

example, in the 1000 Genomes Project. The efficient implemen-

tation of CNVnator allowed us (given mapped reads) to perform

whole-genome analysis within a few hours on a single 2.5-GHz

Intel Core 2 Duo CPU.

As a first step to assess the performance of our method, we

analyzed the partitioning of the entire genome from a statistical

point of view using data from the 1000 Genomes Project for one

individual (NA12878, the child in the CEPH trio). A distribution of

the average RD signal for calculated segments was nonuniform and

shows clear differentiation between CN-neutral regions and het-

erozygous deletions and duplications of one haplotype (Fig. 1A).

Note that not all partitioned regions with abnormal RD are called

as CNVs by the statistical significance test. Therefore, the area

under each peak is not representative of the corresponding fraction

of CNVs. Further, either neighboring segments have similar aver-

age RD signals (peak around zero in Fig. 1B) or their average signal

difference is circa half of the genomic average RD signal (second

peak in Fig. 1B). Remarkably, changes in average RD signal at two

neighboring segment boundaries cluster, and these clusters can be

explained by partitioning that includes deletions and duplications

(see Fig. 1C,D). Of particular concern are segments with almost the

same average RD signal. These include those segments contribut-

ing to the peak around zero in Fig. 1B and cluster 3 in Fig. 1D. We

Figure 1. Statistics on partitioning the RD signal for a child in a CEPH trio (NA12878) using 100-bp bins and standard parameters (see Methods). (A)
Average RD signal distribution in produced segments. The distribution has three clear peaks: around the genomic RD average (no CNVs), half of that
(heterozygous deletion), and one and one-half of that (duplication of one haplotype). The average genomic RD signal is ; 77 reads. Not all partitioned
regions with abnormal RD are called CNVs by the statistical significance test. Therefore, the area under each peak is not representative of the corresponding
fraction of CNVs. (B) Distribution of the average RD signal difference for neighboring segments. The distribution is for the absolute value of the difference
and shows that either produced segments have similar average signals (peak around zero) or their average signals are approximately half of the genomic
average RD signal (second peak), indicating deletion/duplication of one haplotype. (C ) Example of partitioning clarifying clusters in D. (D) Distribution of
the average RD signal difference at the left and right boundary for each segment. The distribution has several clear clusters. Clusters originate due to
various combinations of segments with different RD signals. Clusters 8 and 9 represent cases of enclosed events, such as duplication of a region within
duplication.
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found that these segments are almost

exclusively CN neutral (see Methods; Sup-

plemental Fig. S1) and represent variations

in average RD due to partitioning with

small (relative to their size) bandwidth.

Therefore, this analysis suggests proper

partitioning of the entire genome into

segments of different CNs.

Understanding and filtering CNV calls

Calling a CNV in particular regions is

confounded by the presence of the same

(or very similar) copies of that region in

the reference genome. The RD signal for

a CNV in these regions is effectively

smeared (due to random placement of

nonuniquely mapped reads) over all cop-

ies and may be undetectable (e.g., retro-

transposons) or give rise to multiple CNV

calls at the location of each copy (e.g.,

segmental duplications). To get more in-

tuition on the latter case, consider the

situation in which the reference genome

has two almost identical segmental du-

plications A and B, but only region A is

present in the studied sample. Because

of diploidy, the studied sample will have

A twice (i.e., AA), while the monoploid

reference genome will have each region

once (i.e., AB). Reads that originate from A in the sample will dis-

tribute equally between A and B in the reference, generating half of

the average RD (i.e., CN = 1). Consequently, A and B will be

identified as deletions. Moreover, the location of the variation is

uncertain (it could either be A or B), and this could mislead vali-

dation (e.g., by PCR), bias CNV concordance estimation between

samples, and cause confusion during downstream analysis. Thus,

we developed a procedure to flag (but not eliminate) such potential

calls, the q0 filter.

Each mapped read (pair of reads) has an associated mapping

quality, which is a measure of the confidence that a read actually

comes from the position to which it is aligned (Li et al. 2008a).

The larger the value, the greater is the confidence. When a read

(pair of reads) can map to two or more locations, then one is

randomly chosen. In such cases, the associated mapping quality

is zero, hence the name q0 filter. We found that the distribution of

the fraction of q0 reads in the called CNV regions segregates

around 0 and 100% (see Supplemental Fig. S2). Thus, we consider

the CNV region redundant if the fraction of q0 reads in the called

CNV regions is >50%. Below we analyze both filtered and un-

filtered calls.

Sensitive and precise CNV discovery in trios

We have applied CNVnator to the analysis of the deeply sequenced

(>203) CEPH and Yoruba trios that were sequenced as a part of the

1000 Genomes Project. Each trio consisted of three individuals/

samples: father, mother, and daughter sequenced with paired reads

by the Illumina platform (see Table 1). In general, trio analysis is

useful in allowing testing for result reproducibility, i.e., all variants

in the child should also be found in the parents, and also there

must be more shared variants between the child and one of its

parents than between parents. For uniformity, we used 100-bp bins

to calculate the RD signal for all individuals. Three to five thousand

CNV calls were produced for each individual, ranging in size from

200–1,590,400 bp (see Supplemental Fig. S3). From the statistics,

one would expect that deeper sequencing would allow for more

sensitive and precise CNV detection. Indeed, we observed that the

overall strength to discover CNVs, measured as the ratio of the

mean to sigma of the Gaussian fit of the RD distribution, correlates

with sequencing coverage. However, the uniformity of coverage

across the genome is also of extreme importance. The genome of

the Yoruba child is sequenced at the highest depth; however, these

data allow for the least strength in CNV detection due to the large

variance of the RD signal (see Supplemental Fig. S4). In fact, the

number of CNV calls made for this person is the smallest of all the

data sets.

We have intersected calls that are >1 kb (these events are

detected at maximum sensitivity) from the whole genome ex-

cluding the X and Y chromosomes, and consider two calls con-

cordant if they have >50% reciprocal overlap. For the CEPH trio, as

expected, there are more concordant calls between each parent

and the child than between parents. For the Yoruba trio, there is

one exception, the call concordance between parents is better than

that between mother and child. However, this can be explained by

the poorer data quality for the child resulting in an overall smaller

number of calls and an overall higher FDR (see below). Addition-

ally, the majority of the CNV calls in children, i.e., 66% for the

CEPH child and 70% for the Yoruba child, is concordant with CNV

calls from either parent, again in agreement with the expectation.

Validation of calls within the 1000 Genomes Project using

CGH arrays with 42 million probes estimated a false-discovery rate

(FDR) of ;13% for the CEPH trio and ;24% for the Yoruba trio (for

q0-filtered calls). This validation using CGH arrays is comparative

Table 1. Statistics of CNVnator predicted deletions for deeply sequenced trios

CEPH trio Yoruba trio

M F C M F C

Coverage by mapped reads ;243 ;283 ;283 ;203 ;263 ;323

Bin size 100 100 100 100 100 100
Strength for CNV discovery 4.8 4.7 5.2 4.0 4.4 3.9
Strength for CNV discovery

(after GC correction)
5.4 5.3 5.8 4.6 5.0 4.9

No. of all calls 3678 3615 5656 3298 4988 2981
No. of q0-filtered calls 2352 2223 4100 1958 3673 1968
No. of q0-filtered calls, >1 kb

and excluding chromosomes
X and Y

738 737 1048 989 1489 1032

Concordant with M — 343 471 — 433 415
Concordant with F 343 — 488 433 — 557
Concordant with C 471 488 — 415 557 —
Concordant with M or F — — 687 — — 720

FDR for all calls 19% 16% 19% 22% 26% 19%
FDR for q0-filtered calls 13% 8% 18% 24% 29% 19%
FDR corrected for reference

individual bias in CGH
6% 3% 12% 17% 20% 13%

Proportion of calls with
incorrect breakpoints

9% 8% 9% (6%) 7% 9% 7% (4%)

Estimated sensitivity 96% (90%) 86% (83%)

Calls overlapping with gaps in the reference genome are excluded from consideration. Two calls are
concordant if they have >50% reciprocal overlap. The experimental FDR estimate for the CEPH child
was done for calls generated with 50-bp binning. Numbers in parentheses are obtained from data self-
consistency check, i.e., indirect estimation. Indirect estimation of sensitivity was calculated using
Equation 5 in the Supplemental material. Sensitivity is measured with respect to RD-accessible CNVs
(see definition in the Supplemental material).
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in nature, where probe intensities in one individual (the studied

one) are compared with the probe intensities in the reference

individual (NA10851). Therefore, validation is biased in the CN

variable (with respect to the reference genome) regions of NA10851

(Park et al. 2010). When corrected for this bias (see Supplemental

material), the FDR became ;7% and ;16% accordingly; i.e., refer-

ence individual bias was ;45% for CEPH and ;33% for the Yoruba

trios. This result matches the expectation that the bias is larger for

the CEPH trio, as the array reference individual (NA10851) is also

CEPH.

Imperfect call concordance is due to the following three rea-

sons: (1) false positives in CNV calling, (2) false negatives in CNV

calling, and (3) an error in CNV breakpoints (i.e., when there is

a call in the CNV region, but its breakpoints do not match up) (see

Supplemental Fig. S5). The false-positive rate can be obtained from

validation experiments, and the other two quantities can be di-

rectly estimated from comparison with known CNVs, e.g., dis-

covered by analysis of CGH arrays (Conrad et al. 2009). A priori, it

is not obvious that direct estimation can be trusted due to possible

different and unknown ascertainment biases of RD analysis and

CGH experiments. Therefore, we additionally performed indirect

estimations by comparing call consistency in parents and child (a

data self-consistency check). We have developed a mathematical

model to perform such indirect estimations (see Supplemental

material). In short, rules of inheritance allow relating the number

of concordant calls for a child and his/her parents with the number

of concordant calls between parents and the number of calls in

each parent. That leads to excluding the unknown number of

CNVs for each trio member from the derivation and relating sen-

sitivity of CNV calling to FDR and the proportion of calls with

incorrect breakpoints in a set of equations. For a more intuitive

understanding, consider an arbitrary triangle. The sum of all its

angles is 180°, independent of the length of its sides. Therefore, if

two angles are known, the third can be deduced. Similarly, the

sensitivity, FDR, and breakpoint precision in CNV calling can be

related (like angles) to the measured call concordance without

knowing the number of CNVs (i.e., side lengths in a triangle) for

each trio member. By using this model, the sensitivity of CNV

discovery can be estimated if the other two values are known.

First, as mentioned above, the fraction of calls with incorrect

breakpoints can be estimated directly by comparison with array

CGH (aCGH) calls (see Supplemental material). Alternatively, it

can be measured indirectly as the fraction of calls in the child that

overlaps by at least 1 bp with any call from either parent but is not

concordant with any call. Next, using Equation 5 from the Sup-

plement, we indirectly estimated the average sensitivity of CNV

discovery (see Supplemental Table S1; numbers in parenthesis in

Table 1). The numbers for both quantities, from direct and indirect

estimation, agree reasonably well, suggesting that our model cor-

rectly describes the CNV inheritance and the process of their dis-

covery. Lower estimation of the sensitivity by indirect measure

may imply an ascertainment bias of the CGH array (i.e., bias to-

ward events that are easier to discover) or inaccuracy of some as-

sumptions (i.e., of equal sensitivity) when deriving Equation 5 in

the Supplement. Additionally, we performed data-driven simula-

tion for male individuals in each trio and observed similar sensi-

tivity (see Supplemental Fig. S6). Finally, we visually inspected (see

Supplemental Table S2) deletions predicted by Conrad but not

found by CNVnator in a CEPH child (total of 35 regions). In 11

(32%) cases, CNVnator did not partition a region correctly or did not

call it as a CNV. For the remaining 24 (78%) cases, no deviation of the

RD signal from the genomic average was observed. Since read map-

ping in these regions is mostly reliable (only four regions do not pass

q0 filter), we concluded that most of them are not CNVs and discor-

dance between CGH and RD experiments can be explained by false

CNV discovery and genotyping, ;15%, in CGH (Conrad et al. 2009).

Overall, CNVnator demonstrates a high sensitivity of CNV discovery,

low FDR, and a low rate of incorrect breakpoint assignment.

Discovering duplications (compared to deletions) by the mean

of the RD represents a greater discovery challenge for several rea-

sons. First, mismapping in repeats can look like a duplication. Sec-

ond, reads that originate from genomic regions that are not in the

reference (i.e., gaps) will map to the homologous regions, e.g.,

centromeres, telomeres, and gap adjacent regions, producing a

larger than normal RD signal. This produces an abnormally high

RD signal (see Supplemental Fig. S7) that does not necessarily

represent a true duplication but rather the effect of an ‘‘unknown

reference.’’ Indeed, we see ;50% of duplications found by

CNVnator are located within 1 Mb from gaps in the reference ge-

nome. Last, duplicated regions have a larger RD signal and also

larger signal variance. Consequently, we observed a lower sensitivity

of ;85% for duplication discovery (see Supplemental Table S3).

High resolution of breakpoints

Comparison of predicted deletion breakpoints by CNVnator with

those identified by SR analysis in the 1000 Genomes Project (Mills

2010), i.e., at base pair resolution, revealed excellent precision of

200 bp for 90% of the breakpoints predicted by CNVnator (see

Supplemental Fig. S8), which corresponds to the size of the two

bins in which a genome is partitioned. Given the approximate

CNV breakpoints, a local assembly of a haplotype bridging an SV

region could be accomplished (Huang et al. 1993; Leary et al. 2010;

Slade et al. 2010). Subsequently, alignment of the assembled contig

to the predicted CNV region can identify precise CNV breakpoints

(Abyzov and Gerstein 2010).

Naturally, precision in breakpoint location is a function of

bin size, which is also a lower theoretical limit on breakpoint res-

olution. CNVnator is very close to that limit. Also, note that the

choice of bin size is a function of coverage, read length, and data

quality. Thus, for constant read length and data quality, breakpoint

localization precision would increase with sequencing coverage.

Specifically, given the same data quality and read length, we ob-

served that the optimal bin size, and thus breakpoint resolution

accuracy, scales roughly inversely with the coverage, resulting in

;100-bp bins for 20–303 coverage, ;500-bp bins for 4–63 cov-

erage, and ;30-bp bins for ;1003 coverage. However, in the last

case, bin size is comparable to read length (;36 for the data used

in this study), and this can compromise breakpoint resolution due

to unreliable read mapping around CNV breakpoints.

Single-genome genotyping

We have developed a procedure for CNV genotyping, i.e., for

assigning CN to a given genomic region by calculating its RD signal

normalized to the genomic average for the region of the same

length:

RDnorm = RDregion = m
L

bin size

� �
c;

where RDregion is the RD signal for a given region of length L, m is the

mean of a Gaussian best fit to the distribution of the RD signal for

bins of a given size (see Supplemental Fig. S9), and c is a scaling

factor equal to 2 for all chromosomes except X and Y in male in-

dividuals, where c is equal to 1. Such normalization is prone to

CNVnator
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outliers, i.e., bins containing repeats with an abnormal amount of

mapped reads or bins in gaps of the reference genome where no

reads map. The RD signal for a region can be calculated by sum-

ming the RD signal in bins covering the region. Additionally, note

that one can use an arbitrary (not the same as for calculating

RDregion) bin size for normalization, although it should be suffi-

ciently large to allow for a reliable estimation of m.

The distribution of the normalized average RD signal in the

CNVnator-predicted regions is multimodal with two distinct peaks

corresponding to homo- and heterozygous deletions and a less

distinct cluster corresponding to duplications (see Fig. 2). Smeared

peaks for duplications are reflective of the larger variance for

the larger RD signal. We assigned a CN to a genomic region by

rounding off its normalized average RD signal to the nearest integer.

With this strategy, we obtained the same CN for 95% and 93% of

RD-accessible (see definition in Supplemental material) deletions as

CN genotyped by two array-based analyses (McCarroll et al. 2008;

Conrad et al. 2009). It is worth noting that RD achieves high ac-

curacy but still employs a smaller amount of information, i.e., se-

quencing from single individuals, while other approaches men-

tioned above genotype CNVs by analyzing probe intensities for

multiple (hundreds) individuals. We observed even higher concor-

dance of 98% in genotyping when comparing to the smaller but

experimentally measured and highly confident genotype set (27

regions) (see Supplemental material; Supplemental Table S4).

By using the same approach, we were able to genotype low CN

(CN of 3–4) duplications. Namely, we obtained the same CN for

48% and 84% of RD-accessible duplications in the same two sets.

The lower agreement between RD and array genotyping probably

reflects the fact that the discovery and genotyping of duplications

is generally a harder problem. Furthermore, the population geno-

typing approach using arrays can be misled in determining the ab-

solute CN as the range of log2 ratios for high-frequency duplications

is expected to overlap in the range of low frequency deletions, e.g.,

rare and de novo events (Conrad et al. 2010). In other words, du-

plications and rare deletions are easier to be misgenotyped when

using CGH.

We found that varying the cutoff for normalized RD signals to

assign CN, e.g., using 0.75 to differentiate homozygous deletions

from heterozygous ones, enables a better agreement with array

genotyping. However, the improvement is marginal, on the order

of 1%. We also applied our genotyping strategy to individuals se-

quenced with low coverage (1–63) using 1-kb bins to calculate

normalization. While overall concordance with CGH-based geno-

types (Conrad et al. 2009) was the same as for deeply sequenced

individuals, we noticed a few samples with low concordance that

can be explained by low coverage and problems with data quality.

Therefore, we excluded the following individuals from our sub-

sequent analysis: NA18532, NA19210, NA18555, NA18562,

NA12005, NA18486, NA12892, and NA18571.

Comparison with other approaches for CNV discovery

Other approaches and methods for CNV discovery from se-

quencing data, i.e., read-pair (RP) and SR, were employed on the

same data in the framework of the 1000 Genomes Project,

allowing their direct comparison (Mills 2010). Out of the RD-

based methods, CNVnator demonstrated the highest sensitivity,

the lowest FDR, and the most precise breakpoint resolution (see

Supplemental Table S5). Different approaches were also found to

be complementary and not directly comparable, a suggestion

made earlier (Yoon et al. 2009), with each approach uniquely dis-

covering ;30%–60% of the CNVs. In fact, >50% of the CNVs

found by CNVnator and validated by CGH array are not detected

by SR and RP approaches.

The effectiveness of each approach for CNV discovery is

a complex function of read length, sequencing coverage, and av-

erage span between read pairs. However, if applied to the same

data, read mapping is the key factor when evaluating the advan-

tage of a particular approach. For instance, if a repetitive/dupli-

cated region on either side flanks a CNV, then the CNV can be

missed by RP or SR approaches due to ambiguous mapping of

at least one read (or read end for SR), i.e., due to relying on the

independent mapping of each read/end. However, for RD analy-

sis, one can restrain reads to map in the

proper orientation within a certain dis-

tance defined by the average span be-

tween reads and thus effectively require

that only one read maps unambiguously.

In fact, it can be shown mathematically

that RD analysis can better ascertain a

CNV in segmental duplications, i.e., low

CN repeats, than can RP analysis (see

Supplemental material). On the other

hand, if a CNV is a repeat but flanking

sequences are not (e.g., retrotransposon),

then it is more likely to be found by RP

and missed by RD approaches. Indeed,

judging from the intersection with 58

deletions (known with breakpoint reso-

lution) for the CEPH child (Kidd et al.

2008), CNVnator mostly misses (see Sup-

plemental Table S4) CNVs consisting en-

tirely of a single retrotransposon (LINE,

SVA, or HERV-K). Additionally, simply be-

cause of its nature, RD analysis cannot

discover balanced (i.e., those not chang-

ing CN) SVs that can be found by RP- and

SR-based methods.

Figure 2. Distribution of normalized average RD signal for predicted CNVs (for a CEPH daughter) that
are >1 kb and pass the q0 filter. The normalization factor is the double (two copies of each chromosome)
of the genome-wide average RD signal. Two clear peaks (around 0 and 1) correspond to homozygous
and heterozygous deletions. Slight displacement of the second peak (;0.05) from a value of 1 is the
result of read over-mapping in those regions, when choosing a mapping location for nonuniquely
mapped reads (see Methods). Peaks for duplications are smeared, which reflects the larger variations in
the RD signal and, as a consequence, the greater challenge in detecting and genotyping duplications.
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Apart from that, CNVnator can discover and genotype both

deletions and duplications, while methods for deletion genotyp-

ing by RP and SR approaches are immature and perspectives for

duplication genotyping are unclear. Finally, RD genotyping can

be easily applied to low coverage data and still yield precise results

as we demonstrated above. From these arguments, we reason that

CNVnator is uniquely suited for analyses requiring CNV discov-

ery and comparison (except for retrotransposons) of CN across

few/several individuals or even an entire population, such as de

novo and multi-allelic CNV analysis.

Detecting atypical CNVs

The combination of discovery and genotyping techniques em-

ployed by CNVnator can be used to classify CNVs as atypical such

as de novo and multi-allelic. De novo CNVs can be found by

identifying child-specific CNVs, i.e., those not found in parents.

However, such de novo CNV candidates can also be explained by

multi-allelic loci (Fig. 3) having at least three different alleles, e.g.,

CN0, CN1, and CN2, in a population. By using sequencing data

for a population of 161 individuals in the 1000 Genome Project,

we estimated that the frequency of such CNVs is 11%–13% (see

Supplemental material). For putative multi-allelic loci, we ob-

served cases with an allele distribution deviating from Hardy-

Weinberg equilibrium, possibly implying strong selection on

certain complex loci (Fig. 4). For instance, genotype values for the

locus at chr5:17647201–17650200 (see Fig. 4C) range from 1.2

to 3.8, suggesting that alleles can have from zero to two copies of

the regions, i.e., CN0, CN1, and CN2. However, predominantly,

the locus has three copies, suggesting dominance of CN1 and

CN2 alleles in similar quantities in the population, i.e., balancing

selection.

To find de novo CNVs, we did the following: For each trio, we

genotyped across all members the q0-filtered CNV calls made for

the child. We selected putative de novo candidates that satisfied

the following criteria: (1) The normalized RD signal in the child is

less than 1.4 (more than 2.6 for duplications); and (2) the nor-

malized average RD signal in each parent is more than 1.6 (less

than 2.4 for duplications). Although 1.5 is the cutoff to discrimi-

nate between heterozygous deletions and the normal diploid state,

we note that genotyping estimation can be biased by ;0.05 (see

Fig. 2), and thus we made the cutoff more stringent by subtracting/

adding the double (0.1) of the value. In the same way we made

a more stringent cutoff to detect de novo duplications. This ap-

proach predicts 17 and six, with a total of 23, child-specific CNVs

for the CEPH and Yoruba trios, respectively. We gain additional

support for the predictions using a high probe density (;42 mil-

lion) CGH array with hybridization done for each trio member (see

Supplemental material). We found a total of 10 potential de novo

deletions: two from the CEPH trio and eight from the Yoruba trio.

We further inspected each one of them (Table 2).

Judging from genotyping in a population, four events are

likely to be multi-allelic loci. Two more are found at the immu-

noglobulin lambda locus and are thus likely to be somatic, as se-

quencing and array analysis was done on lymphoblastoid cell

lines. The remaining four are found in simple tandem repeats

(STRs) regions and may be false positives (due to a read mapping

problem for RD analysis and cross-hybridization for arrays) or

suggest a repeat extension (germline or somatic) in those regions.

Additional validation, e.g., by PCR, is required to reach a definitive

answer. Thus, no confident de novo CNVs other than at the

lambda locus were detected, but this may not be surprising as they

are thought to be found in only one of eight to 50 newborns

(Lupski 2007).

Discussion
We have developed and described a novel method, CNVnator, for

CNV discovery from statistical analysis of read mapping density,

i.e., read depth, that can be applied to single-end and paired-end

data from different sequencing platforms such as Illumina, SOLiD,

and Helicos (see also Supplemental material). It can also be ap-

plicable for CNV discovery at low sequencing coverage (see Sup-

plemental material). Extensive validation and comparison with

known CNVs revealed that CNVnator is a sensitive and specific

method of CNV discovery and genotyping with high fidelity

breakpoint localization. The software is freely available at http://

sv.gersteinlab.org/cnvnator and can be applied to various human

and nonhuman genomes (genome description is parsed from

SAM/BAM file header).

As we pointed out, RD analysis has limitations with respect

to detection of balanced CNVs and CNVs created by transposable

elements. However, we reasoned that this approach is still suited

for analyses requiring the comparison of CN across a few/several

individuals or even an entire population. The example of the for-

mer analysis is the discovery of de novo CNVs, while the latter one

is the identification of atypical, i.e., multi-allelic, CNVs. By using

CNVnator, we identified six potential de novo CNVs in two family

trios and provide an estimate that multi-allelic loci constitute at

least 11% of large CNVs. This estimate is considerably higher than

the 7% reported in a previous study (Conrad et al. 2009) using

CGH. However, note that Conrad et al. (2009) made clear their

difficulty in genotyping multi-allelic events. We, thus, can see their

result as being consistent with ours within the bounds of error.

An interesting question is the origin of multi-allelic loci. Since

loci with CN0, CN1, and CN2 alleles dominate, the chromosomal

crossover at homologous but not equivalent sequences seems to

be the most parsimonious explanation: Once two chromosomes

recombine, two new alleles, CN0 and CN2, are generated, both

of which propagate into the population. Generation of other al-

leles, i.e., CN3 or larger, may involve two or more chromosomal

crossovers.

In the case of tri-allelic loci implying only one crossover

event, one would not expect an equal proportion of CN0 and CN2

alleles in the population, as the proportion could be different al-

ready at the following (after the individual harboring crossover)

generation due to a limited number of offspring. Successive

crossover events at the loci can furthermore change allele fre-

quencies. Additionally or alternatively, allele frequencies can be
Figure 3. When analyzing family trios, multi-allelic loci can look like de
novo CNVs.
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shaped by natural selection, for which we saw evidence (Fig. 4).

Thus, one can expect that the frequencies of deletion and duplica-

tion alleles could be different, maybe even drastically; e.g., either

allele is extremely rare or missing. In light of this, it seems possible

that the analysis of a larger population, as, e.g., in the main phase of

the 1000 Genomes Project, will result in an even higher estimation

of the fraction of the multi-allelic loci due to discovering rare du-

plication/deletion in the loci of common deletion/duplication.

It was observed previously and shown here that the RD, RP,

and SR approaches are complementary. Rapid advances in se-

quencing technologies, i.e., decreasing cost of sequencing and

increasing read length, bring an important question of how RD

analysis is affected by the changing data. While careful analysis is

yet to be done, it is clear that at constant coverage, sequencing

with longer reads diminishes sensitivity to smaller CNVs as less

reads are generated. This can be partially compensated by the

better read mapping, which also enlarges the fraction of RD-ac-

cessible genome, i.e., where reads map unambiguously, potentially

bridging the disagreement in CNV discovery with RP and SR ap-

proaches. It is tempting to suggest increasing sequencing coverage

proportionally with the increase in read length as an optimal

strategy to strengthen RD analysis. However, with no SR map-

pings allowed (a widely adopted mapping strategy), longer reads

lengthen the uncertainty in mapping around CNV breakpoints,

with the uncertainty being proportional to the read length. In

other words, fundamentally breakpoint precision and, thus,

ability for precise discovery of small CNVs by RD analysis would

degrade with the increased read length, regardless of coverage.

Therefore, it seems likely that with lon-

ger reads and high coverage, RD analysis

will still need to be complemented by

other approaches for CNV discovery.

Methods

Read placement
Most short reads (even 30 nucleotides in
length) can be uniquely placed (Rozowsky
et al. 2009) onto the human genome.
However, read placement may be chal-
lenging for reads that originate from

Figure 4. Examples of multi-allelic loci. (A) Tri-allelic locus with CN0, CN1, and CN2 is at Hardy-Weinberg equilibrium. (B) Distribution of genotypes
across a population can be explained by hexa-allelic locus with CN0–CN5. (C ) Tri-allelic locus that is not at Hardy-Weinberg equilibrium, which may
indicate natural selection. In this case, the distribution of genotypes peaks around 3, with the likely explanation that an equal proportion of CN1 and CN2
alleles at this locus dominate the population. This, in turn, implies balancing selection.

Table 2. CGH supported set of de novo CNVs in CEPH and Yoruba children

Trio Region coordinates Conclusion

CEPH Chr1:244505301–244506400 STR region
Chr2:106448901–106451700 STR region
Chr4:2030001–2032400 Likely multi-allelic locus
Chr12:11396601–11423200 Same multi-allelic locus (see Fig. 4A)
Chr12:11427301–11436500
Chr12:131200501–131201000 STR region
Chr22:20999401–21300400 Somatic mutations at lambda locus
Chr22:21324701–21571900

Yoruba Chr6:32746501–32771700 Likely multi-allelic locus
Chr6:167117301–167118100 STR region
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repetitive regions or regions of segmental duplication. These reads
can be aligned to multiple locations in the genome with equal (or
almost equal) scores. One way of handling this is to simply exclude
such unmappable genomic regions from consideration (Chiang
et al. 2009), thus limiting the score of CNV discovery. Another,
more common approach (Li et al. 2008a,b; Langmead et al. 2009) is
to place a read to a random location out of many where a read
aligns with similar scores. We have adopted the latter one for sin-
gle-end sequencing data.

For paired-end data, where the sequenced reads are the ends
of the same DNA fragment, one can use extra information to im-
prove read placement. Namely, most of the time, except ends
spanning CNVs, ends should map in proper orientation within
a certain distance defined by the average span between ends. In
case of ambiguous end placements, using this extra information
allows us to discard unlikely read placements. If a pair of reads still
cannot be placed uniquely, then, as for single reads, one random
location is chosen. This strategy was used in the 1000 Genomes
Project for mapping paired-end reads with MAQ (Li et al. 2008a).

We used such a strategy, as opposed to using uniquely map-
ped reads, to get the uniform depth of coverage across genome (see
Supplemental Fig. S9) as it is essential for signal partitioning and
CNV calling. When used with uniquely mapped reads, CNVnator
calls for 10-fold more deletion and threefold less duplication, sug-
gesting that the results are unreliable.

RD signal calculation and correction of GC-bias

The data used in this analysis were generated with the Illumina
sequencing platform (Bentley et al. 2008). Most of the reads were
36 bp in length. To calculate the RD signal, we have divided the
entire human genome into consecutive nonoverlapping bins of
equal size. We then calculated the RD signal for each bin as
a number of placed reads with centers within bin boundaries. As
in aCGH experiments (Marioni et al. 2007) and other studies in-
volving Illumina sequencing, we observed a correlation of RD
signal and GC content of the underlying genomic sequence (see
Supplemental Fig. S10). Similar to another study (Yoon et al. 2009),
we corrected this bias by utilizing the following equation:

RDi
corrected =

RDglobal

RDgc

RDi
raw;

where i is bin index, RDi
rawis raw RD signal for a bin, RDi

corrected

is corrected RD signal for the bin, RDglobal is average RD signal
over all bins, and RDgc is the average RD signal over all bins with
the same GC content as in the bin. Such correction effec-
tively eliminates correlation of RD signal with GC content (see
Supplemental Fig. S10).

Mean-shift technique

The partitioning procedure is based on an image processing tech-
nique (Wand and Jones 1995; Comaniciu and Meer 2002; Wang
et al. 2009) known as mean-shift theory. A diagram of the RD signal
across genome/chromosome (see Supplemental Fig. S2) can be
thought of as an image that needs to be processed with the aim of
identifying different genomic CN regions. Statistically, we can
formulate this problem as finding a probability distribution func-
tion (PDF) from the observed RD data, where the PDF itself is an
unknown mixture of many distributions corresponding to each of
the CN states. The density maxima in the distribution of in-
tensities are the modes of the PDF, where the gradient of the esti-
mated PDF are zeros. The mean-shift method presents an elegant
way to locate these density maxima without having to estimate
the density directly (Comaniciu and Meer 2002). The mean-shift

process is an iterative procedure that shifts each data point to these
density maxima along the mean-shift vector (see Supplemental
Fig. S12).

Figure 5 displays a schematic of how mean-shift procedure
works for RD data. First, determine a mean-shift vector direction
of each point (bin) by comparing its RD signal with neighboring
bins (see details below). The vector points in the direction of bins
with the most similar RD signal, thus effectively segmenting the
RD signal diagram into local modes of attraction. Second, segment
breakpoints are determined where two neighboring vectors have
opposite direction but do not point to each other. In this regard,
breakpoint determination is similar to the edge detection problem
in computer vision.

The mathematical derivation of kernel density estimation
theory was described elsewhere (Wand and Jones 1995; Comaniciu
and Meer 2002). Here we describe details specific to the analysis
of the RD signal. We represent each ith bin as a point in two-
dimensional space xi = (i,ri), where ri is the RD signal in the bin.
Then, assuming independence of the RD signal from the bin index
and using the Gaussian kernel, we get the estimation of density
function F (x) as

FðxiÞ= norm +
j 6¼i

e
� j�ið Þ2

2H2
b e
�

rj�rið Þ2
2H2

r ;

where j is the index of neighboring bins, Hb and Hr are the band-
widths for the bin index and RD signal accordingly, and norm is the
normalization factor. The mean-shift vector is a gradient of PDF
function and, thus, is also two-dimensional, i.e.,

=F =
@F
@i
@F
@r

0
@

1
A:

Figure 5. Schematics of mean-shift procedure. For each bin, i.e., data
point, the mean-shift vector points in the direction of bins with the most
similar RD signal. Segment breakpoints are determined where two neigh-
boring vectors have opposite directions but do not point to each other.
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However, the component of the gradient for the RD signal is not of
interest as the objective is to segment the genome rather than the
signal. We, therefore, derive equations to calculate the component
of gradient along the genome dimension only:

@F

@i
ðxiÞ= norm0 +

j 6¼i

ð j� iÞe
� j�ið Þ2

2H2
b e
� rj�rið Þ2

2H2
r ;

where norm9 is the normalization factor for the mean-shift vector.
norm9 is always positive and thus only affects the component
magnitude but not the direction. We are interested in the direction
of the vector only and omit calculations of norm9. Once the vector
is calculated for each bin, boundaries of genomic segments are
identified by finding consecutive pairs of bins with mean-shift
vectors switching direction from left to right (see Fig. 5). Then,
smoothing of the RD signal is performed by averaging signal values
within each segment.

Note, mean-shift technique does not require prior knowledge
of the number of segments or assumptions about probability dis-
tributions. This approach performs the discontinuity preserving
smoothing on the RD signal through kernel density estimation
and the mean-shift computation. The result is a set of regions with
different underlying CNs. It is important, however, to understand
that the mean-shift technique segments the RD signal locally, and
the statistical difference between different segments is significant
in the context of the neighborhood used for partitioning. When
scaled to the whole genome, such differences may not be sta-
tistically significant anymore. Therefore, calling of CNVs given a
partitioning map is a separate issue. The following section de-
scribes a partitioning algorithm with the mean-shift technique.
It is of general purpose and can, in principle, be applied to any
linear signal that needs to be partitioned into local segments. The
section after describes the procedure to call CNV given a parti-
tioning map.

Partitioning algorithm

An issue in applying the mean-shift technique to data analysis is
the choice of the value of the bandwidths. We set the bandwidth
for the RD signal, i.e., value of Hi

r , as

Hi
r =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RDi

RDglobal

s
Ho; if RDi

corrected >
RDglobal

4
or ð1Þ

Hi
r =

Ho

2
; if RDi

corrected <
RDglobal

4
;

where H o is an estimate (standard deviation) of global variation in
the RD signal obtained by the best fit of the Gaussian function to
RD distribution. The second line sets up a lower limit for the
bandwidth, because otherwise it could be zero. We have chosen
square root scaling of RD bandwidth with the RD signal assuming
the Poisson distribution for the signal. However, we observed that
RD distribution is overdispersed, consistent with another report
(Yoon et al. 2009), but is described well by a Gaussian function (see
Supplemental Fig. S9). The standard deviation of the sum of the
exact same Gaussians, e.g., two, three, or four copies of the same
haplotypes, scales as the square root with the number of summed
functions, i.e., with CN. Consequently, it scales as the square root
with the mean of the sum of the Gaussians, just like in Equation 1.
Therefore, the equation does not need to be revised, and we rely on
it in RD signal partitioning.

It is not obvious how to choose a bandwidth for the bin index
(i.e., Hb), as its meaning is the size of the genomic neighborhood
to calculate the mean-shift vector. Using large values will effec-
tively reduce sensitivity to detect small segments (see Supple-
mental Fig. S13). Using small values makes reconstruction of large

CNVs difficult as partitioning may represent local variation of the
RD signal and lead to fragmentation of large CNV regions into
smaller ones. Besides, at large bandwidth it is difficult to resolve
boundaries of colocalized CNVs. We, therefore, developed a novel
multistep partitioning strategy with a steady increase of Hb band-
width and temporarily excluding (‘‘freezing’’) from partitioning
those segments with the RD signal being significantly different
from the one in neighboring segments and the genomic average.
At each step, all segments get unfrozen and tested for the possi-
bility (given new partitioning) of being frozen again, allowing for
a dynamic region resegmentation as portioning of surrounding
regions changes. Partitioning starts and proceeds as described by
the following pseudocode and schematically displayed in Figure 6.

Set Hb to 2
While bandwidth is less then limit {

Exclude frozen segments from calculations
Do 3 times {

Partition by mean-shift with current bandwidth
Average RD signal within each segment

Replace RD values within each segment with the corresponding
average

}
Add frozen segments to partitioning
Unfreeze all frozen segments

Restore original RD values for all points
For each segment {

Calculate average and standard deviation of RD signal
If (segment mean RD is different from genomic average and

segment mean RD is different from neighboring segments)
freeze the segment

}
Increase bandwidth

}
Merge segments
Make CNV calls

Segment mean RD is different from genomic average if one-
sample t-test P-value is less than 0.05. Two segments have different
mean RDs if the two-sample t-test P-value corrected for multiple
hypotheses testing (see CNV calling) is less than 0.01 or means
deviate by at least 2HS

r , where the index s refers to the segment
being tested. The latter heuristic condition is applied only when
the segments are shorter than 15 bins, i.e., when e-values can be
insignificant due to limited statistics, which is typical when par-
titioning with small bandwidth. Thus, its primary purpose is to
improve sensitivity to small CNV discovery. The condition of 2Hi

r

represents a reasonable cutoff specifying that average RD signals in
segments are different by at least two standard deviations. The step
to increase the value of Hb is kept approximately proportional to
the value of Hb. Namely, the step is 1 for values up to 8, 2 up to 16, 4
up to 32, 8 up to 64, and 16 up to 128.

Signal merging

We typically stop iterating at Hb = 128, as the RD signal is reason-
ably smooth by that stage and has three clear peaks (see Supple-
mental Fig. S1): around average genomic RD (no CNVs), half of
that (heterozygous deletion), and one and a half of that (duplica-
tion of one haplotype). Further iterations are time-consuming, as
computational time is proportional to the value of Hb . We, there-
fore, merge adjacent segments with minimal difference in average
RD by greedy algorithm. Merging stops when the difference
is more than a quarter of the genomic average, i.e., half of the
difference between means of the RD signal corresponding to two
incremental CNs. This cutoff also approximates the bounds of the
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major peak in mean RD distribution for
partitioned segments (see Supplemental
Fig. S1). And indeed segment merging
mostly affects CN-neutral regions (major
peak in the figure). We therefore con-
cluded that refining partitioning by
merging neighboring segments is reason-
able. However, we stress that it may not
need to be applied if partitioning itera-
tions continued until very larger values
of Hb.

CNV calling

To call a CNV, we first select segments
with a mean RD signal deviating by at
least a quarter (half for chromosomes X
and Y in male individuals) from the ge-
nomic average RD signal. We have cho-
sen this cutoff following the same rea-
son as for segment merging (see above).
For each selected segment, we calculated
one-sample t-test P-value of whether the
mean of the RD signal within the seg-
ment has a value of genomic average, i.e.,

t =
RDglobal � RDsegment

ssegment

ffiffiffi
n
p

;

where n is the number of bins within the
segment, RDsegment is its average RD signal,
and ssegment is the signal standard de-
viation. P-values were corrected for mul-
tiple hypotheses testing assuming 99% of
the whole genome is CN neutral:

pcorrected = p
0:99 3 genome length

segment length
:

We first call regions with P-value by a t-test
less than 0.05. However, due to statistical
fluctuation in read mapping, long CNVs
may have regions looking CN neutral. To
avoid fragmentation of long CNVs into
multiple calls, we merge two calls and the
region in between if the means of the RD
signal within each call and the region are
the same (P-value >0.01) by a two-sample
t-test. In other words, we test for a new
hypothesis that the region between two
calls is a CNV. The P-values were also
corrected for multiple hypotheses testing
assuming that 1% of the reference ge-
nome is CN variable, i.e.,

pcorrected = p
0:01 3 genome length

call length + region length
:

Afterward, we extend our call set by calling
additional deletions (corrected P-value
<0.05) by performing a one-sided test that
all values of the RD signal within a seg-
ment are smaller than the maximum RD
signal within the segment, i.e.,

p = ðPðRD < maxðRDi
correctedÞ j

n
i = 1Þ

n Þ;

Figure 6. Cartoon demonstration of the adaptive procedure for an increase in bandwidth Hb. (A)
When the band is 2, then the largest contribution to mean-shift vector calculations, e.g., for the cyan
bin, comes from two neighboring bins. Following the partitioning, two bins within one segment get
‘‘frozen,’’ and bins within it are excluded from partitioning on the next step. New partitioning allows for
freezing of more bins that are skipped at the next step when bandwidth equals 4. (B) The deletion region
is clearly seen by the eye but could not be detected as a whole at a bandwidth of 2. Only a small portion
is detected as CNV and gets ‘‘frozen.’’ After new partitioning with a bandwidth of 3, the region is not
frozen anymore and is included for partitioning on the next step (bandwidth of 4), where the complete
region of deletion is detected.
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where P is the probability of the RD signal being found in the lower
tail of the Gaussian distribution with parameters estimated from
the best fit to genome wide RD distribution (see Supplemental Fig.
S9), and n is number of bins within the segment. Thus, we have
applied more stringent criteria to call for duplications, as those are
susceptible to the systematic read mapping bias caused by ‘‘un-
known reference’’ (see Results).
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