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The genomic neighborhood of a gene influences its activity, a behavior that is attributable in part to domain-scale regula-

tion. Previous genomic studies have identified many types of regulatory domains. However, due to the difficulty of inte-

grating genomics data sets, the relationships among these domain types are poorly understood. Semi-automated genome

annotation (SAGA) algorithms facilitate human interpretation of heterogeneous collections of genomics data by simulta-

neously partitioning the human genome and assigning labels to the resulting genomic segments. However, existing SAGA

methods cannot integrate inherently pairwise chromatin conformation data. We developed a new computational method,

called graph-based regularization (GBR), for expressing a pairwise prior that encourages certain pairs of genomic loci to receive

the same label in a genome annotation. We used GBR to exploit chromatin conformation information during genome an-

notation by encouraging positions that are close in 3D to occupy the same type of domain. Using this approach, we pro-

duced a model of chromatin domains in eight human cell types, thereby revealing the relationships among known domain

types. Through this model, we identified clusters of tightly regulated genes expressed in only a small number of cell types,

which we term “specific expression domains.” We found that domain boundaries marked by promoters and CTCF motifs

are consistent between cell types even when domain activity changes. Finally, we showed that GBR can be used to transfer

information from well-studied cell types to less well-characterized cell types during genome annotation, making it possible

to produce high-quality annotations of the hundreds of cell types with limited available data.

[Supplemental material is available for this article.]

Although the mechanism of regulation of a gene by a promoter
directly upstream of its transcription start site is well understood,
this type of local regulation does not explain the large effect of ge-
nomic neighborhood on gene regulation. The neighborhood ef-
fect is in part the consequence of domain-scale regulation, in
which regions of hundreds or thousands of kilobases known as do-
mains are regulated as a unit (Chakalova et al. 2005; Akhtar et al.
2013; Bickmore and van Steensel 2013). Current understanding
of domain-scale regulation is based on a number of domain types,
each defined based on a different type of data, such as histone
modificationChIP-seq, replication timing, ormeasures of chroma-
tin conformation. However, as a result of the difficulty of integrat-
ing genomics data sets, the relationships among these domain
types are poorly understood. Therefore, a principled method for
jointly modeling all available types of data is needed to improve
our understanding of domain-scale regulation.

A class of methods we term semi-automated genome annota-
tion (SAGA) algorithms is widely used to jointly model diverse ge-

nomics data sets. These algorithms take as input a collection of
genomics data sets and simultaneously partition the genome
and label each segment with an integer such that positions with
the same label have similar patterns of activity. These algorithms
are “semi-automated” because a human performs a functional in-
terpretation of the labels after the annotation process. Examples of
SAGA algorithms include HMMSeg (Day et al. 2007), ChromHMM
(Ernst and Kellis 2010), Segway (Hoffman et al. 2012), and others
(Thurman et al. 2007; Lian et al. 2008; Filion et al. 2010). These ge-
nome annotation algorithms have had great success in interpret-
ing genomics data and have been shown to recapitulate known
functional elements including genes, promoters, and enhancers.

However, existing SAGA methods cannot model chromatin
conformation information. The 3D arrangement of chromatin in
the nucleus plays a central role in gene regulation, chromatin state
and replication timing (Misteli 2007; Dekker 2008; Ryba et al.
2010; Dixon et al. 2012). Chromatin architecture can be
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investigated using chromatin conformation capture (3C) assays,
including the genome-wide conformation capture assay, Hi-C. A
Hi-C experiment outputs a matrix of contact counts, where the
contact frequency of a pair of positions is inversely proportional
to the positions’ 3D distance in the nucleus (Lieberman-Aiden
et al. 2009; Ay et al. 2014b). Existing SAGA methods can incorpo-
rate any data set that can be represented as a vector defined linearly
across the genome, but they cannot incorporate inherently pair-
wise Hi-C data without resorting to simplifying transformations
such as principal component analysis.

We present a method for integrating chromatin architecture
information into a genome annotation method. Motivated by
the observation that pairs of loci close in 3D tend to occupy the
same type of domain, we encourage these pairs to be assigned
the same label in a genome annotation through a pairwise prior.
We developed a novel computational method, called graph-based
regularization (GBR), which performs inference in the presence of
such a pairwise prior, and we extended the existing SAGA algo-
rithm Segway (Hoffman et al. 2012) to implement this method.

GBR can also be used for the seemingly unrelated task of
transferring information fromwell-studied cell types for the anno-
tation of cell types with limited available data. Consortia such as
ENCODE have characterized a small set of cell types in great detail
using hundreds of genomics assays. However, due to the high cost
of genomics experiments, it is feasible to perform only a few assays
on any additional cell type of interest. For example, ENCODE and
Roadmap Epigenomics Consortia have each performed two to 10
experiments in more than 100 cell types, and it is common for
an individual laboratory to perform a small number of experi-
ments on a particular cell type or perturbation of interest. In
such settings, it is crucial to leverage information garnered from
well-studied cell types to allow accurate annotation of other cell
types using just a few experiments. We transfer information
from well-studied cell types with GBR by using the pairwise prior
that loci that were assigned the same label in many well-studied
cell types should be more likely to receive the same label in a cell
type of interest. Therefore, GBR makes it possible to produce
high-quality annotations of the hundreds of cell types with limit-
ed available data.

Results

Chromatin domains colocalize with domains of similar activity

Previous research has shown that large chromatin domains
(∼1 Mb) tend to colocalize with domains of similar activity in 3D
(Lieberman-Aiden et al. 2009; Ryba et al. 2010). To further explore
this trend, we compared the 1D genomics data at pairs of statisti-
cally significantly interacting loci (Supplemental Fig. 1). As expect-
ed, we found that chromatin signalswere highly consistent at pairs
of positions nearby in 3D. First, histone modification and replica-
tion signal values at pairs of significantly interacting loci are more
highly correlated than for a rotational permutation control, which
controls for the 1D pattern of the signal (Supplemental Fig. 1A).
Second, Segway labels generatedwithout usingGBR from an anno-
tation of the genome were assigned the same label much more of-
ten than a rotational permutation control (Supplemental Fig. 1B).
Note that this pattern is in stark contrast to small elements (∼100
base pairs [bp]) such as promoters and enhancers, which do not, in
general, cluster with elements of the same type. These observa-
tions suggest that chromatin conformation data might best be in-
corporated using a pairwise prior stating that a pair of positions

should be more likely to receive the same label if the positions
are close in 3D. Therefore, we sought to develop new methods
for leveraging chromatin conformation data using this colocaliza-
tion pattern.

GBR expresses a pairwise prior in a SAGA method

Existing SAGA algorithms use dynamic programming algorithms
to perform inference in a chain-structured Bayesian network
such as a hidden Markov model. Dynamic programming algo-
rithms such as the forward-backward algorithm can be used to per-
form inference efficiently in models with chain-structured
dependencies; however, applying these methods in the presence
of a pairwise prior that connects arbitrary pairs of positions results
in inference costs that grow exponentially in the number of geno-
mic positions. Therefore, these methods cannot be applied to ge-
nome annotation problems with millions or billions of variables.
We propose a novel convex optimization framework that allows
for efficient inference in this case.

The method takes as input a set of genomics data sets and
weighted graphs over the genomic positions, where a large weight
on a given pair of positions indicates that we have a strong prior
belief that this pair should receive the same label. It outputs a prob-
ability distribution over the integer labels at each position. The
method encourages pairs of positions connected by edges in the
graph to be assigned the same label by minimizing a measure of
dissimilarity between their output probability distributions called
the Kullback-Leibler (KL) divergence.

We call this strategy of using a graph to incorporate a pairwise
prior graph-based regularization (GBR) (Methods). Note that in
this article we use the word “prior” in the nontechnical sense of
“prior information,” not in the sense of a prior distribution for a
Bayesianmodel.We have developed an efficient, novel alternating
minimization algorithm that optimizes this objective (Supple-
mental Note 1). Using synthetic data, we determined that GBR
outperforms alternativemethods based on approximate inference,
as well as existing methods for GBR (Supplemental Note 2). We
then extended the SAGA method Segway to implement this algo-
rithm (Supplemental Note 3; Hoffman et al. 2012).

Using GBR to integrate 3D structure information improves

prediction of replication and topological domains

We used GBR to integrate chromatin conformation information
using the pairwise prior that positions close in 3D should be
more likely to be identified as the same domain type (Fig. 1A).
To do this, we construct a GBR graph that connects each pair of po-
sitions with weight proportional to our statistical confidence that
the positions physically interact (Methods; Ay et al. 2014a). This
measure of statistical confidence controls for the bias of Hi-C for
positions close in 1D, as well as biases for sequence features such
as GC content and restriction site density.

Incorporating Hi-C data using GBR has the effect of both
aligning domains to regions of self-interacting chromatin and
helping to determine the label of each segment. We evaluated
the first effect, as a sanity check, by computing the accuracy
with which our annotation predicts self-interacting regions of
chromatin of size ∼1 Mb called topological domains (Dixon
et al. 2012; Filippova et al. 2014). We evaluated the second effect
by comparing to replication time, which is highly correlated
with gene expression and chromatin state and therefore is a
good proxy for domain type. In order to evaluate our performance
in a variety of conditions, we ran Segway augmented with GBR
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separately once for each of the 29 histone modification sets avail-
able in IMR90, in each case using as input a single histone modifi-
cation data set and a GBR graph based on IMR90 Hi-C data. We
found that the annotation’s ability to identify both topological do-
mains (P < 10−16, t-test) and replication time (P < 10−16, t-test) was
greatly improved by using GBR (Fig. 1B,C). To evaluate the degree
towhich an annotationmatches topological domains,we comput-
ed, for each topological domain, the fraction of positions in the to-
pological domain receiving the same label, controlling for the
length and label distribution by comparing to a circularly permut-
ed annotation (Methods). We measure the degree to which an an-
notation predicts replication time by the variance in replication
timing explained by the annotation (Methods). The improvement
from adding Hi-C with GBR was greater than the improvement
achieved by instead adding another histone modification data
set, for 26/30 and 27/30 histonemodification data sets for topolog-
ical domains and replication time, respectively. Furthermore, this
improvement was consistent for a large range of hyperparameters
(several orders of magnitude around optimal) (Fig. 1B,C). These re-
sults demonstrate that incorporating Hi-C data using GBR greatly
improves the quality of the resulting annotation, and moreover
that Hi-C is more informative for determining domain identity
than most other data types.

Joint domain annotation of chromatin state and chromatin

conformation captures previously described domain types

Having verified the utility of GBR for incorporating Hi-C data, we
next sought to investigate domain-scale genome regulation using

this method. Current understanding of domain-scale regulation is
based on a number of domain types (seven, by our count), each de-
fined based on a different type of data, such as histone modifica-
tion, replication timing, or 3C-based assays (Table 1). For
example, ChIP-seq on the histonemodificationH3K27me3 has re-
vealed repressive domains known as facultative heterochromatin
(Pauler et al. 2009; Morey and Helin 2010), and 3C-based assays
have revealed regions of self-interacting chromatin known as topo-
logical domains (Dixon et al. 2012; Filippova et al. 2014). Because
all of these domain types are defined using different types of data,
until now it has been difficult to understand the relationships
among these domain types. GBR provides a principled method
for integrating all types of data into a unified annotation of do-
mains.We therefore used SegwaywithGBR to create such a unified
annotation in order to understand what types of domains exist
and their interrelationships.

We annotated the cell type IMR90 using all 30 signal data sets
we had available in IMR90 and a GBR graph derived from IMR90
Hi-C data, resulting in an annotation with a median segment
length of 0.4 Mb (Methods; Fig. 2A–C; Supplemental Tables 1,2).
Including Hi-C into this annotation using GBR changed the label
of 6% of positions relative to an annotation without GBR, mean-
ing Hi-C has a slightly larger influence than the 1/31 = 3% differ-
ence one would expect from adding one additional data set
(Supplemental Fig. 2). Because determining the optimal number
of labels for an annotation remains an open problem, we specified
a somewhat larger number of labels than we expected to be sup-
ported in the data (eight) and then manually merged labels that
we deemed to be redundant.

A
B

C
D

A B C D

Chromatin 3D 
structure

A

B

C

D

A B C D

Hi-C contact 
matrixGBR

graph

Signal
tracks

Hi-C

0.00

0.01

0.02

0.03

1e 01 1e+01 1e+03
Graph weight

A
ve

ra
ge

 r
el

at
iv

e
to

po
lo

gi
ca

l d
om

ai
n 

ag
re

em
en

t

Optimization
hyperparameter
(lambda_R1)

0.01

0.1

1

10

0.00

0.02

0.04

0.06

1e 02 1e+02 1e+06 1e+10
Graph weight

A
ve

ra
ge

 r
el

at
iv

e 
st

de
v 

ex
pl

ai
ne

d

Optimization
hyperparameter
(lambda_R1)

0.001

0.01

0.1

1

10

100

1000

A

B C

Graph weight
0.1 100.1 1000

Graph weight
0.01 100 1e6 1e10

A
ve

ra
ge

 r
el

at
iv

e 
to

po
lo

gi
ca

l d
om

ai
n 

ag
re

em
en

t

A
ve

ra
ge

 r
el

at
iv

e 
st

de
v 

ex
pl

ai
ne

d

Figure 1. (A) Strategy for incorporating Hi-C data using GBR. (B) Effect of GBR hyperparameters on topological domain agreement. The x-axis indicates
the value of the graphweight hyperparameter λG. The y-axis indicates the average over 10 annotations (one for each input histonemodification data set) of
the fraction improvement in topological domain label agreement by adding GBR over Segway without GBR. (C) Same as B, but y-axis indicates improve-
ment in replication timing standard deviation explained, and average is over 29 annotations. Annotations used four labels, 10-kb resolution.
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We compared our annotation to eight types of features (Table
2). On the basis of these analyses, we merged labels that appeared
redundant and assigned names to each integer label (or group of
labels) that best matched our interpretation of their function.
This procedure yielded five types of domains: (1) broad expression
(BRD), (2) specific expression (SPC), (3) facultative heterochroma-
tin (FAC), (4) constitutive heterochromatin (CON), and (5) quies-
cent (QUI). We describe the analyses that led us to these names
in the following sections.

In order to understand how domains change state between
cell types, we additionally annotated eight cell types using
12 data sets present in all eight types and aGBR graph representing
common 3D contacts generated by combining the IMR90 and
H1-hESC Hi-C data sets (Methods; Supplemental Table 2). This
strategy of combining Hi-C data sets is motivated by the consisten-
cy of Hi-C across cell types (Supplemental Fig. 3). Again, we used
eight labels and merged redundant labels, to which we assigned
the same five names. We investigated the properties of these five
domain types.

Repressive domains are divided into constitutive, facultative

and quiescent heterochromatin

Previous studies have reported two types of repressive domains.
The first type, best known as “constitutive heterochromatin” but
sometimes referred to simply as “heterochromatin,” is regulated
by the HP1 complex and associated with the histone modification
H3K9me3 (Lachner et al. 2003). Constitutive heterochromatin is
thought to repress permanently silent regions such as centromeres
and telomeres. As expected, one output domain type “CON” ex-
hibits all the known properties of constitutive heterochromatin.
CON domains are associated with H3K9me3 (Fig. 2A,D), are ex-
tremely depleted for genes (Fig. 3A), are associated with low GC
content and lack of evolutionary conservation (Fig. 3D,E), appear
within the Hi-C eigenvector closed compartment (Fig. 3F; Meth-
ods), and cover regions that are constitutively late replicating in
all cell types (Fig. 3G). CON domains are depleted both for tran-
scription factor motifs and for transcription factor binding at mo-
tifs (Fig. 3H,I).

The second known type of repressive domain is best known as
“facultative heterochromatin” but is also sometimes referred to
as BLOCs or Polycomb-repressed chromatin (Pauler et al. 2009;

Morey and Helin 2010). Facultative heterochromatin is regulated
by the Polycomb complex and is associated with the histonemod-
ificationH3K27me3. Facultative heterochromatin is thought to re-
press tissue-specific genes in cells where they are inactive. As
expected, the output domain type “FAC” has all the known prop-
erties of facultative heterochromatin. FAC domains are marked by
H3K27me3 (Fig. 2A,D), and they are enriched for genes (Fig. 3A),
GC content (Fig. 3D), and conservation (Fig. 3E), but strongly de-
pleted for gene expression relative to an average across cell types
(Fig. 3B), indicating that FAC domains have a direct repressive ef-
fect. FAC domains are mixed between the open and closed com-
partments, indicating that facultative repression is independent
of compartment-driven repression (Fig. 3F). However, FAC do-
mains are almost completely absent from the annotation of the
embryonic stem cell line H1-hESC, consistent with previous obser-
vations that H3K27me3 does not form domains in embryonic
stem cells but rather occurs only at so-called poised or bivalent pro-
moters (Supplemental Fig. 4; Bernstein et al. 2006).

Other semi-automated genome annotation analyses have re-
ported a third type of repressive domain, characterized by a lack of
signal from any mark, termed “quiescent domains” (Ernst and
Kellis 2010; Filion et al. 2010; Hoffman et al. 2012; Julienne
et al. 2013). We identified this domain type as the QUI label
(Fig. 2A). Note that Segway marginalizes over missing data rather
than setting the values to zero (Supplemental Note 3), so the
QUI label is not simply an artifact of unmappable regions. QUI do-
mains are highly depleted for genes (Fig. 3A) and occur in the
closed compartment (Fig. 3F). QUI domains are depleted for tran-
scription factor motifs but, unlike FAC and CON domains, are not
depleted for transcription factor binding at motifs, indicating that
QUI chromatin does not have a direct repressive effect (Fig. 3H,I).
The mechanism behind the activity of QUI domains is unknown,
but these results are consistent with a model in which QUI do-
mains lack any activating signals but are not directly repressed.

Active domains are divided between broad

and specific gene expression

Previous studies of human domains have focused on various types
of repressive domains but have assigned all active chromatin to
one domain category (Pauler et al. 2009; Wen et al. 2009; Julienne
et al. 2013). However, studies in other organisms have reported

Table 1. Known types of domains

Name Label(s) Typical length Relevant data types References

Topological All 0.8 Mb Hi-C Dixon et al. (2012); Filippova et al. (2014)
Open compartment/early

replicating
BRD, SPC, FAC 10 Mb Hi-C, Repli-(chip/seq) Lieberman-Aiden et al. (2009); Ryba et al.

(2010)
Closed compartment/late

replicating
QUI, CON, FAC 10 Mb Hi-C, Repli-(chip/seq) Lieberman-Aiden et al. (2009); Ryba et al.

(2010)
Quiescent QUI 0.5 Mb None Ernst and Kellis (2010); Hoffman et al.

(2012)
Constitutive

heterochromatin
CON 0.5 Mb H3K9me3 (ChIP-seq) Lachner et al. (2003)

Facultative heterochromatin FAC 0.5 Mb H3K27me3 (ChIP-seq) Pauler et al. (2009); Morey and Helin
(2010)

Lamina See text 0.6 Mb lamin B1 (DamID) Guelen et al. (2008); Wen et al. (2009)
Broad activity BRD 0.5 Mb Transcription (i.e.,

H3K36me3) (ChIP-seq)
Novel in human cells (see text)

Specific activity SPC 0.5 Mb Regulation (i.e.,
H3K27ac) (ChIP-seq)

Novel in human cells (see text)

Note that the lengths of domains depend greatly on the method used to define them.
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multiple types of active domains (Filion et al. 2010; Liu et al. 2011).
We therefore investigated whether our IMR90 annotation can be
used to identify types of human active domains.We found that ac-
tive domains in IMR90 can be split into BRD (“broad expression”)
domains, characterized by transcription-associated marks such as
H3K36me3, and SPC (“specific expression”) domains, character-
ized by regulatory marks such as H3K27ac. Both domain types
are highly enriched for genes (Fig. 3A). However, while genes in
BRD domains are mostly expressed across all cell types, a much
larger fraction of active genes in SPC domains is expressed only
in a small number of cell types (Fig. 3C). Furthermore, when a

gene is in a SPC domain, that gene is expressed at a much higher
level than that gene’s average across cell types, suggesting that
SPC domains are highly activating (Fig. 3B). In contrast, while
genes in BRD domains are highly expressed, this high expression
generally occurs consistently across cell types, indicating that
BRD domains do not necessarily directly promote expression
(Fig. 3B). Moreover, while both BRD and SPC domains are general-
ly early replicating in IMR90, regions covered by SPC domains typ-
ically switch replication time between cell types, while regions
covered by BRD domains are typically early replicating in all cell
types (Fig. 3G). These results suggest a model in which genes
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performing housekeeping functions such as DNA repair have
strong promoters but little other regulation, whereas genes specific
to a given tissue are regulated by a complex web of regulatory ele-
ments, allowing the genome to specify precise conditions under
which the gene is active.

To test this hypothesis, we computed the enrichment of Gene
Ontology (GO) terms for genes in BRD and SPC domains (Gene
Ontology Consortium 2000; Boyle et al. 2004). We found that
genes in BRD domains were enriched for housekeeping functions
such as cell cycle and DNA repair, while genes in SPC domains
were enriched for IMR90-specific developmental functions such
as vasculature development and stimulus response (Supplemental
Tables 3, 4; Supplemental Fig. 5). In order to avoid hindsight bias,
before looking at these GO term enrichments, we mixed the en-
riched terms with an equal number of decoy terms matched ac-
cording to the number of genes associated with each term, and
manually labeled which terms matched our hypothesized func-
tions for each domain (housekeeping for BRD, IMR90-specific for
SPC). We correctly identified 21/32 BRD enrichments (1/31 =
3%) and 54/64 SPC enrichments (P = 1.4 × 10−6). This demon-
strates that active regions can be divided into domains of broadly
expressed housekeeping genes and domains of specifically ex-
pressed developmental genes. To our knowledge, this is the first
time a split between domains of BRD and SPC has been reported
in human cells.

Lamina association is driven by a complex structure

of domains

Previouswork has shown that some repressive domains aremarked
with the histonemodification H3K9me2, associate with the factor
lamin B1, and localize to the nuclear lamina (Guelen et al. 2008;
Wen et al. 2009). We found that comparing lamina association
to domain annotations based on many data sets reveals a much
more complex interaction than does comparison to each mark in-
dividually (Fig. 4). As expected, repressive domains (QUI and FAC)
are enriched inside lamina-associating chromatin domains, while
active domains are depleted. However, this analysis also reveals
that CON domains are depleted immediately inside lamina-asso-
ciating domain boundaries while being comparatively enriched
at their centers. In contrast, FAC domains are highly enriched at
lamina-associating domain boundaries while being comparatively
depleted at their centers. In addition, while active domains (SPC
and BRD) are depleted inside lamina-associating domains, they
are highly enriched directly outside their boundaries. These obser-
vations suggest that lamina-associating domains form around a
core of repressed chromatin and spread until they hit a strong ac-
tive element.

Developmentally consistent domain boundaries are marked

by identifiable sequence elements

Previous research has shown that domain boundaries tend to be
consistent between cell types even when the state of the domain
changes. For example, when a region’s replication time is per-
turbed by leukemia, the boundaries of the resulting replication
domain tend to occur at the same positions as developmental rep-
lication timing domain boundaries (Ryba et al. 2012). However,
the cause of these consistent domain boundaries remains unclear.
We investigated the consistency of domain boundaries using our
domain annotations. As expected, domain boundaries frequently
occurred at consistent positions across cell types, even when the
domains’ state changed (Fig. 5A). To identify these consistent
domain boundaries, we combined all boundaries occurring in at
least one cell type and merged boundaries within 50 kb. We de-
fined groups of five or more boundaries as consistent (Methods;
Fig. 5B). As expected, these consistent boundaries are enriched
for replication domain boundaries, but many consistent domain
boundaries do not overlap a replication domain boundary
(Supplemental Fig. 6). We additionally found that consistent
domain boundaries are highly enriched for promoters and CTCF
motifs, suggesting that these elements may drive domain bound-
ary formation (Fig. 5C,D).

Using GBR to transfer information between cell types

improves accuracy of predicting functional elements

GBR can also be used for the seemingly unrelated task of transfer-
ring information fromwell-studied cell types for the annotation of
cell types with limited available data (Fig. 6A). Existing SAGA
methods work well on data from a single cell type, but integrating
information between cell types remains an open problem. Existing
methods for using data frommultiple cell types for genome anno-
tation fail to effectively address this problem (Supplemental Note
4). We propose a novel strategy for leveraging information from
well-studied cell types using the pairwise prior that if two positions
received the same label in many well-studied cell types, then they
should be more likely to receive the same label in the target cell
type (Fig. 6A). To express this pairwise prior, we first perform a
Segway annotation (without GBR) of each well-studied cell type
and create a GBR graph that connects each pair of positions with
weight proportional to the number of cell types in which the
pair receive the same label, placing higherweight on cell types sim-
ilar to the cell type of interest (Methods).We then use this graph in
combination with the data sets available in the target cell type to
produce an annotation of this cell type. Note that this GBR graph
represents an entirely different type of information from the

Table 2. Summary of learned domain types

Data type Figure QUI CON FAC BRD SPC

Median segment length 2C 0.6 Mb 1.4 Mb 0.4 Mb 0.6 Mb 0.2 Mb
Histone modifications 2A,D None H3K9me3 H3K27me3 Transcription

(i.e., H3K36me3)
Regulation (i.e., H3K27ac)

Replication timing 2A,D Switching late Constitutively late Mixed Constitutively early Switching early
GC content 3D Low Low High Mid High
Conservation 3E Conserved Nonconserved Conserved or

accelerated
Conserved Conserved

Hi-C eigenvalue compartment 3F Closed Closed Mixed Open Open
Gene density 3A Low Low High High High
Gene expression 3B N/A N/A Repressed Average Increased
Lamin 4 Core Core Boundaries Flanks Flanks
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graphs used to represent Hi-C data in the previous sections, despite
the fact that both types of data are represented as a graph.

To demonstrate the efficacy of this approach, we evaluated
whether GBR improves an annotation’s ability to predict enhanc-
ers and insulators. We simulated the case where the lymphoblas-
toid cell type GM12878 has only eight histone modifications
available, a panel of data types similar to that assayed by the Road-
map Epigenomics Consortium on hundreds of human tissues
(Supplemental Note 2). Because there are enough well-studied
cell types to ensure that at least one reference is reasonably closely
related to any cell type of interest, we used the related leukemia cell
type K562 as reference. We annotated GM12878 using these eight
histone modifications and a GBR graph derived from an annota-

tion of K562 (Methods). Incorporating information from K562
this way greatly improved the accuracywithwhich the annotation
detected enhancers and insulators (Fig. 6B,C). We evaluated the
performance with which the GM12878 annotation predicts a cer-
tain type of functional element by ordering the labels by their en-
richment for the element on a training set and evaluating the recall
as more labels are added (Methods). The GBR annotation detects
one-third of EP300 binding sites (a proxy for enhancers) (Visel
et al. 2009) by predicting just 25 kb as EP300-binding, while the
annotation produced without GBR predicts 43 kb before it detects
this many sites (Fig. 6B). Likewise, the GBR annotation detects
one-third of CTCF binding sites (a proxy for insulators) (Burgess-
Beusse et al. 2002) by predicting 124 kb, compared to 241 kb with-
outGBR (Fig. 6C). Because the algorithmwas not given any knowl-
edge of enhancers or insulators as input, it is reasonable to expect
that the annotations achieve similar performance at detecting oth-
er types of functional elements, for which we do not have gold
standard examples and therefore cannot evaluate against them.
These results demonstrate that GBR effectively leverages informa-
tion from a reference cell type and therefore provides a method for
producing high-quality annotations of the hundreds of cell types
with limited available data.

Discussion

We introduced graph-based regularization (GBR), a methodwhich
allows probabilistic models to integrate a pairwise prior while
maintaining efficient inference.We usedGBR tomodel chromatin
conformation data and thereby jointly model all available data
types for the study of chromatin domains. To our knowledge,

Figure 4. Enrichment of each domain type with respect to lamina-asso-
ciating domain boundaries. The x-axis indicates position with respect to
lamina-associating domains, with each domain stretched or shortened
to the median length of 0.8 Mb. The y-axis indicates label enrichment or
depletion [log(obs/expected)].
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this represents the first method for integrating chromatin confor-
mation information into SAGAmethods without resorting to sim-
plifying transformations. We showed that modeling Hi-C data
with GBR improved the annotation’s ability to predict replication
time and topological domains. In addition, becauseGBR is a gener-
al method, it will likely prove useful for other applications in-
volving dynamic Bayesian networks, such as methods for locating
genes or predicting copy number.

The ability to integrate Hi-C data into an annotation allowed
us to study the relationship between types of domains by inte-
grating all available data into a single annotation (Fig. 7A). This

analysis revealed a set of five domain types that encompass all
previously described domain types: (1) quiescent domains, which
lack any activity; (2) constitutive heterochromatin, which re-
presses permanently silent regions and is marked with the histone
modification H3K9me3; (3) facultative heterochromatin, which
represses cell-type-specific regions and is marked with the histone
modification H3K27me3; (4) broadly expressed domains, which
cover genes that are highly expressed in all cell types; and (5)
specifically expressed domains, which exhibit high regulatory
activity and cover genes that are expressed in a small number of
cell types.
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To our knowledge, domains of SPC have not been identified
previously in human cells. These domains are likely the result of
complex regulatory programs designed to precisely control the
condition and level of genes important for a certain cell state or
function. SPC domains are similar in some ways to dense clusters
of regulatory elements important for cell identity known as su-
per-enhancers (Lovén et al. 2013; Whyte et al. 2013). However,
there is only a small number of known super-enhancers (∼300),
and each is much smaller than a SPC domain (∼10 kb compared
to ∼200 kb). Therefore, SPC domains and super-enhancers may re-
sult from similar mechanisms, but on very different scales.
However, the mechanisms underlying of both types of regions
must be studied further in order to understand this relationship.

One likely mechanism of domain formation involves the
spreading of heterochromatin (Weiler and Wakimoto 1995; Tal-
bert and Henikoff 2006). Under this hypothesis, heterochromatin
nucleates at silencing elements such as telomeres, repeats, or re-
pressed promoters and sequentially assembles along chromatin.
Spreading heterochromatin has been demonstrated mechanisti-
cally in Saccharomyces and Drosophila and for the SIR, HP1, and
Polycomb complexes. While SIR is unique to yeast, HP1 and
Polycomb have orthologs in humans that drive constitutive and
facultative heterochromatin, respectively. Under the spreading hy-
pothesis, heterochromatin can be halted by the presence of a
strong active element. This halting mechanism is consistent
with the observation that active domains (especially SPC) are
strongly enriched directly outside of lamina-associating domains.

The consistencyof domainboundaries between cell types also
suggests a model in which core regions are regulated as a unit (Fig.
7B; Phillips and Corces 2009; Dixon et al. 2012). Under this hy-
pothesis, these units self-interact as topological domains and are
coregulated through availability of regulatory factors and elements
suchas enhancers. These coregulatedunits are thought tobedelim-
ited by localizing sequences, particularly CTCF sites. Under this
model, each of our annotated domains is actually composed of sev-
eral such neighboring coregulated regions with the same state.
Therefore, while profiling a small number of cell types has allowed
us to define a small number of consistent domain boundaries, pro-
filing more cell types may lead to a complete catalog of potential
boundary sites. We have described five domain types because this
model allowed us to concisely summarize domain regulation, but
we do not claim that this represents the “true” number of domain
types. It is likely thatnewdomain subtypeswill bediscovered in the
future, thus increasing the number of known domain types. In ad-
dition,methods that discover the optimalnumberof domain types
or that allowmixtures of domain types are an interesting direction
for future work. To our knowledge, all existing SAGA methods re-
quire either a fixed number of labels (Day et al. 2007; Thurman
et al. 2007; Lian et al. 2008; Ernst and Kellis 2010; Filion et al.
2010;Hoffmanet al. 2012)or ahyperparameter that indirectly con-
trols the number of labels (Ho et al. 2014). Amethod that allows for
“mixed” domain labels at a given process could potentially circum-
vent the manual merging process that we used to reduce an eight-
label model to a five-label one.

Finally, we presented a method for transferring informa-
tion from well-studied cell types using GBR in order to improve
the quality and interpretability of annotations of cell types with
limited available data. This method enables a new strategy for un-
derstanding cell types, in which a small number of assays are per-
formed on each cell type of interest to determine the unique
characteristics of this cell type, and then Segway with GBR is
used to combine these data with the large body of available infor-

mation fromwell-studied cell types. Thismethodhas the addition-
al benefit of matching the label semantics of the target cell types
to the semantics of the reference annotations, which allows the la-
bel interpretation process to be performed automatically. Because
consortia such as ENCODE and Roadmap Epigenomics are already
analyzing a large number of cell types with a small number of
assays each, this strategy is immediately applicable. Determining
which assays are most informative as input to this strategy is an
interesting question for future work.

Methods

Histone modification, open chromatin, and replication

timing signal data

We acquired histone ChIP-seq, DNase-seq, and FAIRE-seq data for
A549, K562, H1-hESC, GM12878, HeLa-S3, HepG2, and HUVEC
from ENCODE and for IMR90 from Roadmap Epigenomics
(Bernstein et al. 2010; The ENCODE Project Consortium 2012).
We used a uniform signal-processing pipeline to generate a ge-
nome-wide vector for each data set, as described by Hoffman
et al. (2013). We also acquired Repli-seq data for IMR90 from
ENCODE and smoothed these data usingwavelet smoothing as de-
scribed by Thurman et al. (2007).We applied the inverse hyperbol-
ic sine transform a sinh(x) = ln(x+ ��������

x2 + 1
√ ) to all signal data. This

transform is similar to the log transform in that it depresses the
magnitude of extremely large values, but it is defined at zero and
amplifies the magnitude of small values less severely than the
log transform does. This transform has been shown to be impor-
tant for reducing the effect of large values in analysis of genomics
data sets (Johnson 1949; Hoffman et al. 2012).

We acquired transcription factor ChIP-seq data from
ENCODE. Peaks were called for each factor using MACS using an
IDR threshold of 0.05 (Zhang et al. 2008; Landt et al. 2012).

We acquired CAGE expression data for 33 cell types from
GENCODE (Harrow et al. 2012).

The full list of data sets used is available in Supplemental
Table 1.

Hi-C data

We used publicly available Hi-C data sets for two human cell lines
(IMR90 and H1-hESC) (Dixon et al. 2012). We processed raw
paired-end libraries with a pipeline that combines reads from
two replicates per cell line,maps these reads, extracts the read pairs
for which each endmaps uniquely, and removes potential PCR du-
plicates.We then partitioned the human genome into a collection
of nonoverlapping 10-kb windows and assigned each end of a read
pair to the nearest 10-kb window midpoint. This process yielded
a 303,641 × 303,641 whole-genome contact map. These contact
maps consisted of both intra- and interchromosomal contacts
and contained only ∼0.3%nonzero entries.We assigned statistical
confidence estimates to these contact counts using the method
Fit-Hi-C, which jointly models the random polymer looping effect
and technical biases (Ay et al. 2014a). First, we applied the bias
correction method ICE to the contact map to estimate a bias as-
sociated with each 10-kb locus, after eliminating all loci that
have <50% uniquely mappable bases (Imakaev et al. 2012).
Second, using these computed biases and raw contact maps as in-
put, we estimated a P-value of interaction for each pair of 10-kb
loci with nonzero contact counts (P-value was set to one for pairs
with zero contacts). We used a slightly modified version of
the original Fit-Hi-C algorithm, which handles inter- as well as
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intrachromosomal contacts and omits the refinement step for fast
computation. Because Fit-Hi-C normalizes for 1D genomic dis-
tance, the majority of significant contacts were at long distances
(Supplemental Fig. 7). Note that while the data sets we used have
insufficient coverage to identify many high-confidence contacts
at 10-kb resolution, Segway with GBR aggregates information
over ∼400 kb in order to make each domain call, so individual
high-confidence interactions are not necessary.

We computed the genome chromatin compartment using
eigenvalue decomposition on the normalized contact maps of
IMR90 and H1-ESC cell lines at 1-Mb resolution as described by
Lieberman-Aiden et al. (2009). For each chromosome, we cal-
culated the Pearson correlation between each pair of rows of the
intrachromosomal contact matrix and applied eigenvalue decom-
position to the correlation matrix. Similar to Lieberman-Aiden
et al. (2009), we used the second eigenvector in cases where the
first eigenvector values were either all positive or all negative to
define the compartments. We used average GC content to map
signs of eigenvectors to either open (higher GC content) or closed
chromatin compartments.

Graph-based regularization

In a SAGAmethod, we are given a set of vertices V that index a set
of n = |V| random variablesXV = {X1,…,Xn} and a probability distri-
bution parameterized by θ, pθ(XH,XO). Different SAGA methods
employ different distributions pθ. GBR could be applied to any
probabilistic model, but in this work we use the Segway model
(Supplemental Methods) because it can handle real-valued and
missing data, and it can use nongeometric segment length distri-
butions. We denote random variables with capital letters (e.g.,
XH) and instantiations of variables with lower-case letters [e.g.,
xH∈ domain(XH)].We use capitals to denote sets and lowercase let-
ters to denote values (e.g., Xh for h∈H).

Training the model involves a set of observed data �xO, where
a subset of variables O⊆V is observed and the remainder H =V/O
are hidden. The maximum likelihood training procedure optimiz-
es the objective

maximizeu J(u) W L(u) +R(u) (1)
where

L(u) W log pu(�xO) = log
∑
xH

pu(xH , �xO), (2)

where R(θ) is a regularizer that expresses prior knowledge about
the parameters. Many regularizers are used in practice, such as
the ℓ2 or ℓ1 norms, which encourage parameters to be small or
sparse, respectively.

Dynamic programming algorithms such as the forward-back-
ward algorithm can be used to perform inference in SAGAmodels,
because all such existing models have dependencies in the form
of a chain. That is, the variables associated with position i de-
pend only on the variables associated with positions i− 1 and i +
1. Examples of such chain-structured models include hidden
Markov models and dynamic Bayesian networks. However, these
dynamic programming algorithms do not apply if a pairwise prior
is added to the model, since the prior may have an arbitrary struc-
ture. Several techniques have been proposed to handle models
with arbitrary structure (Supplemental Note 5). However, none
of these techniques are optimal for expressing a pairwise prior.

Therefore, we instead employ a novel strategy based on poste-
rior regularization (Ganchev et al. 2010) to integrate this prior. This

is done by introducing an auxiliary joint distribution q(XH), plac-
ing a regularizer on q(XH), and encouraging q to be similar to pθ
through a KL divergence penalty. The regularizer is

RPR(u) W maxqRPR(u, q) (3)
R′

PR(u, q) W −D(q(XH ) ‖ pu(XH |�xO)) + PR(q), (4)
where D(· ‖ ·) is the KL divergence

D( p(XH ) ‖ q(XH )) =
∑
xH

p(xH ) log( p(xH )/q(xH ))

and PR(q) is a posterior regularizer that expresses prior knowledge
about the posterior distribution. KL divergence measures the dis-
similarity of probability distributions, such that D( p ‖ q) is zero if
the distributions are identical and can be arbitrarily large if they
are not. Several posterior regularizers have been proposed in the
past, such as those that require posteriors to satisfy constraints in
expectation (Ganchev et al. 2010).

We propose a new type of posterior regularizer that expresses
a pairwise prior (Fig. 8). We are given a weighted, undirected regu-
larization graph over the hidden variables GR = (H, ER), where ER⊆
H ×H is a set of edges with non-negative similarity weights
w : ER � R+, such that a large w(u, v) indicates that we have a
strong belief that Xu and Xv should be similar. (We describe how
we generate this graph in the next two sections.) For a distribution
p(XH), let pMh (Xh) indicate the marginal distribution over Xh,
pMh (xh) =

∑
xH/h

p(xH ). Let λG be a hyperparameter controlling the

strength of regularization. The posterior regularizer is

PRGBR(q) W −lG
∑

(u,v)[ER

w(u, v)D(qMu (Xu) ‖ qMv (Xv)). (5)

Thus the full objective is

maximizeu,q

JGBR(u) W L(u)−D(q(XH )
‖ pu(XH |�xO))−lG

∑
(u,v)[ER

w(u, v)D(qMu (Xu) ‖ qMv (Xv)).
(6)

We term this strategy of adding graph-based penalties graph-based
regularization (GBR).

GBR optimization

We have developed a novel algorithm for efficiently optimizing
JGBR in q. This algorithm alternates between using a method for
probabilistic inference such as the forward-backward algorithm
and applying a message passing algorithm over the regularization
graph GR. In the inference step, the model receives evidence
from the message passing step in the form of a “virtual evidence”
distribution, rMh (Xh), over each variable h. These virtual evidence

Segment 
label (XH)

Signal  
tracks (XO)

dependence pairwise prior (w)

Figure 8. GBR model. Squares and circles denote discrete and continu-
ous random variables, respectively. Filled-in and unfilled shapes denote ob-
served and unobserved variables, respectively.
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distributions are used in conjunction with the original SAGA
model to compute a posterior distribution over the labels using
any algorithm for probabilistic inference on dynamic Bayesian
networks, such as belief propagation or the forward-backward
algorithm.

In themessage passing step, the algorithm updates rM tomin-
imize the KL penalties in the objective function JGBR. This message
passing step is itself performed using an alternating optimiza-
tion algorithm, which passes messages over the regularization
graph GR. This algorithm is similar to one originally developed
for the field of semi-supervised learning (Subramanya and Bilmes
2011).

The inference and message passing steps are iterated until
convergence. These two updates are linear in the number of vari-
ables (for chain-structured models, which include all existing
SAGA methods) and linear in the degree of the regularization
graph, respectively. The algorithm exhibits monotonic con-
vergence, similar to the EM algorithm. We derive the algorithm
for optimizing JGBR and prove its convergence in Supplemental
Note 1.

GBR graph for incorporating Hi-C data

When we are using GBR to incorporate Hi-C data, we are given a
matrix of contact P-values P [ Rn×n, generated from a matrix of
contact counts as described above. To remove noise and decrease
the degree of the graph, we removed all contacts with uncorrected
P-value P > 10−6 and multiplied the remaining P-values by 106,
similar to a Bonferroni correction. Note that due to the large num-
ber of hypotheses, performing a full Bonferroni correction would
result in very few contacts. Moreover, the graph weights allow
the algorithm to take into account the strength of each connec-
tion, so the choice of 106 was made for computational, not statis-
tical, reasons. We computed the weights as

w(i, j) W max(0,−loge( p(i, j)/106)). (7)
As with the graph for transferring information between cell types,
the multiplicative scale of the weights is arbitrary, since it is con-
trolled by the graph weight hyperparameter λG. We used only
intrachromosomal contacts for forming the GBR graph. To pro-
duce a GBR graph representing cell type–consistent chromatin
conformation used in the domain annotation of eight cell types,
we added the edge weights from the IMR90 and H1-hESC Hi-C
GBR graphs.

GBR graph for annotation of multiple cell types

When we are using GBR to transfer information about cell type A
to improve annotation of cell type B, we are given an annotation
aA1:n [ {1...k}n of cell type A, produced without GBR. We construct
a GBR graph from this annotation by connecting each pair of po-
sitions that received the same label in aA with an undirected edge
of weight 1. Note that the weight is arbitrary, since it is scaled by
the regularization parameter λG. To mitigate the problem of qua-
dratic growth in the degree of this graph,we randomly subsampled
this graph such that each node had an outgoing degree 17≈ loge-
(n). We chose this graph degree because a randomly subsampled
graph with n logen edges has the same connected components as
the full graph with high likelihood (Erdös and Rényi 1960), and
our experiments on synthetic data (not shown) showed that the
sparse graph performed similarly to a complete graph.

Circular permutation

As a null model for several experiments, we performed a circular
permutation of the genome along each chromosome arm as fol-
lows. We randomly choose a translation fraction θ∈ [0,1]. For
each coordinate i∈ {1…n} within a chromosome arm that spans
the range [a,b), we translate i to t(i), where

t(i) = mod(b−a)(i+ u(b− a)) + a. (8)
To circularly permute a genome feature, such as an annotation or a
Hi-C contactmap, we translate each element fromposition i to t(i).
Thus, when a circularly permuted feature is compared to an unper-
muted feature, all positional correspondence between permuted
and unpermuted features are removed, but each feature’s spatial
patterns are preserved. In each case, we performed this permuta-
tion 200 times and report the average over all permutations. If
the feature includes any centromere- or telomere-defined ele-
ments, we remove these as a preprocessing step.

Topological domain agreement

To evaluate the degree to which an annotation A matches a set of
topological domains, we computed the number cd,ℓ of bases by
which domain d is covered by label ℓ. We then computed
c∗d = maxℓcd,ℓ to be the number of bases covered by the highest-
coverage label for domain d, and divided c∗d by the length of d to
produce f ∗d , the fraction of d covered by its plurality label. The
agreement f ∗d takes its maximum value of one if the domain d is
covered by exactly one annotation label.We computed the raw ge-
nome-wide agreement

fraw = (1/|d|)
∑
d

f ∗d .

This raw genome-wide agreement fraw can be improved simply by
increasing the length of segments and decreasing the number of
labels. Therefore, we circularly permuted A to form Ap and used
this permuted annotation to compute f praw. Finally, we computed
the topological domain agreement a = fraw/f

p
raw as the ratio of

unpermuted and permuted raw agreements. This normalized
agreement is large when the annotation has small segments that
exactly match the topological domains and is small when the an-
notation’s segments are not correlated with topological domains.

Signal variance explained

To evaluate the similarity between a genome-wide signal vector
and a genome annotation, we use the following measure, which
we term the variance explained (VE).We are given a genome anno-
tation with k labels a1:n [ {1...k}n and a vector x1:n [ Rn. We com-
pute the signal mean over the positions assigned a given label ℓ as

mℓ W

∑n
i=1

1(ai = ℓ)xi
∑n
i=1

1(ai = ℓ)
for ℓ [ {1...k}. (9)

We define a predicted signal vector xpi = mai and compute the pre-
diction error as di = xi − xpi . We compute the residual standard
deviation of the signal vector as

s W stdev(d1:n) =
����������������������������
1
n

∑n
i=1

(di −mean(d1:n))2
√√√√ =

���������
1
n

∑n
i=1

d2i

√√√√ . (10)

The last equality holds because mean(d1:n) = 0 by construction.
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We define the VE for annotation a and signal vector x as
VE W stdev(d1:n) − stdev(x1:n). VE is bounded by the range
[0, stdev(x1:n)]. VE is a measure of the extent to which a genome-
wide signal data set and annotation are similar, where higher val-
ues indicate better agreement.

Genomic element prediction

We form a classifier for a set of genomic elements based on an an-
notation using the following strategy. We are given a genome
annotation with k labels a1:n [ {1...k}n and a set of positions
S # {1...n}, which represent some set of elements of interest such
as enhancers or CTCF binding sites. Define Aℓ = {i|ai = ℓ} to be
the positions annotated by label ℓ. To avoid biases caused by differ-
ing-size elements, we assume that each element occupies just 1 bp.
In the case of larger elements (such as MACS-called TF binding
sites, which are ∼200 bp), we define each element as the middle
base pair of the range.

For each label, we compute the predictive precision of label
ℓ as

precision(ℓ) = |S> Aℓ|
|Aℓ| for ℓ [ {1...k}. (11)

We rank the labels in decreasing order of their precision on a train-
ing set to get an order s1:k [ {1...k}k. Using this ordering, we form
k predictors,

Pj =
⋃j

i=1

Asi for j [ {1...k}.

The true positives and false positives of a predictor P are
TP(P) = P > S and FP(P) = P > ({1...n}/S), respectively. The predic-
tors are in order of decreasing stringency; that is, Pj−1 # Pj.

We can trace out the full sensitivity–specificity tradeoff (such
as for an ROC or PR curve) by interpolating between each succes-
sive pair of predictors. To interpolate between a pair of predictors
Pj and Pj+1, we form an interpolated predictor Pj,j+1,θ by sampling
each position i [ Pj/Pj−1 with probability θ∈ [0,1]. The expected
number of true positives and false positives of an interpolated pre-
dictor Pj,j+1,u can be shown to be

E[|TP(P j,j+1,u)|] = |TP(Pj)| + u|TP(Aj+1)| (12)
and

E[|FP(P j,j+1,u)|] = |FP(Pj)| + u|FP(Aj+1)|, (13)
respectively. We report our performance using a test set disjoint
from the training set used to order the labels.

Developmental replication domains

In order to evaluate the replication timing dynamics of different
types of domains, we used a four-label (constitutive early/late,
switching early/late) annotation of the human genome using
published replication timing data for 16 different human cell types
(gathered by V Dileep, F Ay, J Sima, WS Noble, and DM Gilbert,
unpubl.). This annotation first windowed replication timing data
into 40-kb bins and then determined for each window whether
it replicates early (RT value > 0.5) or late (RT value <−0.2) in all
cell types. Such windows with consistent timing profiles across
all cell types were labeled as “constitutively early” and “constitu-
tively late,” respectively. The remaining windows either were la-
beled as switching or were left unlabeled. Switching windows are
determined as those with an absolute value of replication timing

larger than 0.5 in all cell types but with an opposite sign than oth-
ers in at least one cell type. Switching windows that are early and
late replicating in IMR90 were labeled as switching early and
switching late, respectively.

Consistent domain boundaries

When we annotated domains in eight cell types, we found that
domain boundaries were shared between annotations much
more often than would be expected by chance. To identify devel-
opmentally consistent domain boundaries, we first formed a list of
all segment boundaries that occurred in at least one cell type. For
each boundary, we computed the number of cell types with
boundaries within 50 kb. We formed a set of representative by
greedily selecting the boundary with the most nearby boundaries
as a representative, removing all boundaries near the representa-
tive from the list, and repeating the process until no two boundar-
ies in the list werewithin 50 kb of one another.While this problem
is an instance of the NP-hard set cover problem, the greedy ap-
proach is guaranteed to result in a constant-factor approximation
of optimal (Nemhauser et al. 1978). This yielded a set of 13,906
boundary groups, each >50 kb from all other groups. We defined
the 2967 boundary groups composed of at least five boundaries
as consistent boundaries.

Data access

Domain annotations and code for Segway with GBR are available
as Supplemental Material and online at http://noble.gs.washing-
ton.edu/proj/gbr.
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