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Microbial growth curves are used to study differential effects of media, genetics, and stress on microbial population growth.

Consequently, many modeling frameworks exist to capture microbial population growth measurements. However, current

models are designed to quantify growth under conditions for which growth has a specific functional form. Extensions to

these models are required to quantify the effects of perturbations, which often exhibit nonstandard growth curves.

Rather than assume specific functional forms for experimental perturbations, we developed a general and robust model

of microbial population growth curves using Gaussian process (GP) regression. GP regression modeling of high-resolution

time-series growth data enables accurate quantification of population growth and allows explicit control of effects from oth-

er covariates such as genetic background. This framework substantially outperforms commonly used microbial population

growth models, particularly when modeling growth data from environmentally stressed populations. We apply the GP

growth model and develop statistical tests to quantify the differential effects of environmental perturbations on microbial

growth across a large compendium of genotypes in archaea and yeast. This method accurately identifies known transcrip-

tional regulators and implicates novel regulators of growth under standard and stress conditions in the model archaeal or-

ganism Halobacterium salinarum. For yeast, our method correctly identifies known phenotypes for a diversity of genetic

backgrounds under cyclohexamide stress and also detects previously unidentified oxidative stress sensitivity across a subset

of strains. Together, these results demonstrate that the GP models are interpretable, recapitulating biological knowledge of

growth response while providing new insights into the relevant parameters affecting microbial population growth.

[Supplemental material is available for this article.]

Quantification andpredictionofmicrobial growth is a central chal-
lenge relevant to industrial production of value-added chemicals,
food safety, and microbe–environment interactions (McKellar
and Lu 2003; Ross and Dalgaard 2003; Nichols et al. 2011; Lewis
et al. 2012). Parametric models of microbial population growth as-
sume a sigmoid growth function with three characteristic growth
phases captured by three parameters: lag phase time (lag phase; λ),
during which no growth occurs; maximum growth rate during loga-
rithmic growth (log phase; μmax), a phase of rapid growth; and
asymptotic carrying capacity (stationary phase;A), reachedwhennu-
trients are exhausted in stationary phase (Monod 1949; Zwietering
et al. 1990; Baranyi and Roberts 1995; Egli 2009). Another quanti-
fication of growth is the area under the growth curve (AUC), also
known as growth potential (Todor et al. 2014).

Microbial populations encounter shifts away from optimum
growth conditions in their environment that require adaptation
in order to survive. These shifts, generally referred to as stress con-
ditions, include reactive oxygen species (ROS) accumulation, tem-
perature variation, and osmotic fluctuation. These conditions
chemically damage or denature macromolecules such as proteins,
nucleic acids, and lipids, compromising cellular viability (Imlay
2003; Kühn and Klipp 2012; Verghese et al. 2012). During stress re-
sponse, the cell state changes from a growth-centric to a survival-
centric configuration inwhich the transcriptional and translation-
al programs are redirected to regulate alternative pathways that re-

pair damage and restore homeostasis (Lu et al. 2009). When stress
is severe, the repair program becomes overwhelmed. In this case,
the population growth rate observed by optical density (OD) de-
creases, plateaus, and may even become negative upon cell lysis.

Existing methods used to model and predict microbial popu-
lation growth from time-series measurements are parametric func-
tions known as primary or secondary models (McKellar and Lu 2003;
Ross andDalgaard 2003; Peleg andCorradini 2011). Primarymodels
are used to fit data from a population growing on a singlemain nu-
trient source (e.g., sugar carbon source) and often assume a sig-
moid growth function. This functional assumption leads to
inaccurate fits for growth data that do not have a characteristic sig-
moid growth function (Sekse et al. 2012; Palacios et al. 2014).
Secondary models were developed to incorporate additional param-
eters affecting growth and to capture stress effects (Peleg and
Corradini 2011). The significance of differential growth across
conditions can be quantified through statistical hypothesis testing
(Gommers et al. 1988). However, incorporating condition-specific
deviations to the sigmoidal growth function requires a priori
knowledge of how stress perturbations affect growth. For example,
a common assumption is that population growth rate follows an
Arrhenius equation in response to temperature changes (Barsa
et al. 2012). As an alternative to parametric models of population
growth, nonparametric models have been developed (di Sciascio
andAmicarelli 2008;Cao et al. 2010; Palacios et al. 2014); however,
many of these models still depend upon parametric primary
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models, parameters that require knowledge of the biological re-
sponse to growth perturbations, or complicated fitting procedures
of the nonparametric model, such as optimization of neural net-
work weights (Palacios et al. 2014). Current models of microbial
growth are therefore limited in their general application to novel
microbial growth phenotypes.

Across all domains of life, stress response mechanisms at the
level of gene transcription have been identified that regulate cellu-
lar protection and repair (Gasch et al. 2000; Bonneau et al. 2007;
Fiebig et al. 2015). These regulatory programs are induced in
response to stress conditions and protect cells exposed to one
type of stress against other stressors (Jenkins et al. 1988; Lu et al.
2009). Conversely, cells also induce stress-specific responses
to aid survival for a particular condition (Stephen et al. 1995;
Zuber 2009). The hypersaline-adapted, or halophilic, archaeon
Halobacterium salinarum is a model organism uniquely suited to
study microbial stress response because it survives extremely high
levels of ultraviolet (UV), ROS, heat shock, and other stressors in
its desert salt lake niche (Ng et al. 2000; Oren 2008). As such,H. sal-
inarumhasbeenextensively studiedasamodel systemfor transcrip-
tion regulatory network architecture and function in response to
stress (Schmid et al. 2009, 2011; Todor et al. 2013, 2014; Tonner
et al. 2015). A gene regulatory network inferred from transcrip-
tomic data predicts that over 70 transcription factors (TFs)may reg-
ulate genes whose products adjust physiology and repair damage
incurred by stress (Bonneau et al. 2007; Brooks et al. 2014).
Network predictions have been used to characterize the full set of
TF target genes and physiological roles of TFs that control the re-
sponse to oxidative stress through RosR and AsnC (Sharma et al.
2012; Plaisier et al. 2014; Tonner et al. 2015), nutrient availability
through TrmB (Schmid et al. 2009; Todor et al. 2013, 2014), metals
through SirR (Kaur et al. 2006), iron homeostasis through Idr1 and
Idr2 (Schmidet al. 2011), and copper response throughVNG1179C
(Kaur et al. 2006; Plaisier et al. 2014). Despite this knowledge, the
cellular regulators of growth that respond to environmental pertur-
bation remainunderstudied inH. salinarum andother archaeal spe-
cies. In particular, the phenotypic impact of mutations to known
TFs under alternate stress conditions—and the downstream effect
of those mutations on the function of the global regulatory net-
work—remains unclear for H. salinarum (Brooks et al. 2014) and
manyotherunderstudiedmicroorganisms (Yoonet al. 2011,2013).

Here, we develop a Gaussian process (GP) regressionmodel of
microbial growth to overcome the limitations of parametric
growth modeling. GPs are distributions on arbitrary functions,
where any finite number of observations of the function are dis-
tributed as amultivariate normal (MVN) in a computationally trac-
table framework (Rasmussen and Williams 2006). Because GP

regression fits an arbitrary functional form, it is able to model
growth curves that deviate from a sigmoid form. We compare
our model with several primary parametric models and establish
the ability of GP regression to accurately model growth curves
from H. salinarum under standard and stress treatments across ge-
netic backgrounds.We show that the fitted GPmodel recovers bio-
logically interpretable measures of microbial growth. We develop
statistical tests of differential growth response between two exper-
iments via data likelihoods computed from the fittedGP regression
model. We call this model and testing framework Bayesian Growth
Rate Effect Analysis and Test (B-GREAT). To demonstrate the general
utility of B-GREAT, we applied it to yeast population growth data
under diverse stress conditions and genetic backgrounds (Liti
et al. 2009). In both H. salinarum and yeast applications, B-
GREAT recapitulates known differential growth phenotypes and
enables discovery of novel phenotypes.

Results

Wedeveloped aGP regressionmodel to capture population growth
data and applied thismodel to data fromsevenH. salinarumTFmu-
tants (Table 1). The growth of these strains was compared to the
Δura3parent strain fromwhich themutantswerederivedunderop-
timum nutrient conditions (referred to as “standard conditions”)
and chronic oxidative stress (see Methods). OD, which quantifies
cell density, was measured using a high-throughput plate reader
(Fig. 1; Supplemental Fig. S1). Population growth phenotypes
weremeasured in aminimumof 12 samples per mutant per condi-
tion, sampled every 30 min over 48 h for a total of 12,720 data
points (Supplemental Table S1). Chronic oxidative stress was in-
ducedby the additionof 0.333mMparaquat (PQ)when the culture
was inoculated. The growth rate of these TF strains under standard
conditions during log phase has been tested previously (Kaur et al.
2006; Schmid et al. 2009, 2011; Sharma et al. 2012; Plaisier et al.
2014), but only the growth rates of TF knockout mutants ΔasnC,
ΔtrmB, and ΔrosR have been tested under PQ conditions (Table 1;
Schmid et al. 2009; Sharma et al. 2012; Plaisier et al. 2014).

GP regression model of microbial population growth

In order to model the diverse growth phenotypes observed under
both standard and oxidative stress conditions, a probabilistic
model of population growth was constructed using GP regres-
sion (Fig. 1; Supplemental Fig. S1). GP regression is a Bayesiannon-
parametric model that describes the distribution over a function
f(x), of which any finite number of observations {x, f(x)} have a
MVN distribution (see Methods) (Rasmussen and Williams

Table 1. Strains used in this study and their known phenotypes and functions

Strain
name Genotype

Standard
growth

Paraquat
exposure Pathways regulated Reference

Δura3 Parent strain n/a n/a n/a Peck et al. (2000)
ΔtrmB Δura3 ΔtrmB Slow growth none Metabolism Schmid et al. (2009); Todor et al. (2013, 2014)
ΔrosR Δura3 ΔrosR None Slow growth Oxidative stress repair Sharma et al. (2012); Tonner et al. (2015)
Δidr1 Δura3 Δidr1 None Not measured Iron homeostasis Schmid et al. (2011)
Δidr2 Δura3 Δidr2 None Not measured Iron homeostasis Schmid et al. (2011)
ΔsirR Δura3 ΔsirR None Not measured Manganese uptake Kaur et al. (2006)
ΔVNG1179C Δura3 ΔVNG1179C None Not measured Copper uptake Kaur et al. (2006)
ΔasnC Δura3 ΔasnC Slow growth Slow growth Oxidative stress repair Plaisier et al. (2014)

All phenotypes were previously quantified only in log phase. Yeast strains analyzed are as previously described (Liti et al. 2009).
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2006). The GPmodel is described by its priormean and covariance
functions (μ(x) and κ(x,x′), respectively). In this study, prior mean
μ(x) was set to zero, as is standard (Rasmussen andWilliams 2006).
The kernel function was set to a radial basis function (RBF), κ(x,x′),
defining the covariance matrix of this MVN distribution.

GP regression places a prior on all arbitrary functions map-
ping time to OD, where the kernel function and parameterization
encourage a specific smoothness of the function. Independent and
identically distributed (IID) Gaussian noise with mean zero and
variance σ2 is assumed in each function observation y = f(x) +
N(0,σ2). Estimating the parameters of aGP regressionmodel onmi-
crobial growth data is performed by maximizing the data likeli-
hood with respect to the kernel function parameters (Rasmussen
and Williams 2006). We refer to our model (and associated tests,
described below) as Bayesian Growth Rate Effect Analysis and Test
(B-GREAT).

Evaluating kernel function choice

for GP growth modeling

In order to ensure that our choice of RBF kernel function accurately
represented the data, we tested the use of Matérn and linear kernel
functions compared with the RBF kernel function. Matérn kernels
are stationary, like RBF kernels, and model the covariance of data
points as a function of their distance in x. Linear kernels are of
the form k(x, y) = ∑p

i=1 sixiyi, and the covariance increases with
the magnitude of the covariates (Rasmussen and Williams 2006).
The GPmodel with each of the three kernels was used to fit growth
data for the Δura3 parent strain under standard conditions. Model
fits were assessed by the Bayesian information criterion (BIC)
(Neath and Cavanaugh 2012). GPs with Matérn and RBF kernels
have lower BIC scores than those with linear kernels, indicating
that GP models with these kernels are more likely than those

Figure 1. Gaussian process (GP) regression outperforms primary growth models. (A) Comparison of GP regression and primary growth models
(Gompertz, population logistic, Schnute, and Richards) on microbial growth data under standard conditions. (B) Logarithm of mean squared error
(MSE) for primary growth models compared with GP regression on microbial population growth under standard conditions. Bars with an asterisk indicate
a significant difference between GP MSE and primary growth model MSE as determined by a one-sided t-test. P-values of the significance are indicated
above the bars. (C) Comparison of GP regression and primary growth models on microbial growth data under oxidative stress. (D) Logarithm of MSE
for primary growth models compared with GP regression on microbial population growth under oxidative stress. Bars with asterisks as in B. (E,F)
Measure of MSE as a function of the number of replicates (E) and of time points (F ) for GP regression. Solid lines represent mean MSE, and shaded regions
represent empirical 90% confidence regions calculated from three random samplings of data at each number of replicates or time points.
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with a linear kernel (Supplemental Fig. S2; Neath and Cavanaugh
2012). From this, we conclude that our use of RBF kernel functions
is sufficient for these data.

B-GREAT outperforms primary growth models

B-GREAT was used to fit time-series growth data fromH. salinarum
Δura3parent strain populations under both standard and oxidative
stress conditions. In order to benchmark GP regression as a model
ofmicrobial population growth,GP prediction error was compared
to those from four primary growth models: Gompertz (Zwietering
et al. 1990), population logistic regression (Zwietering et al.
1990), Schnute (1981), and Richards (1959; see Methods). All of
these primary growth models depend on parameters λ and μmax,
corresponding to lag time andmaximum growth rate, respectively
(Zwietering et al. 1990; Baranyi and Roberts 1995), of a sigmoidal
growth curve. The Gompertz, logistic regression, and Richards
models also include a parameter for carrying capacity (A). Both
the Richards and Schnute models include parameters that modify
the sigmoidal shape of the growth curve but do not have direct
biological interpretations (Zwietering et al. 1990). The computa-
tional time to estimate classical growth parameters was some-
what smaller for primary growth models than for GP regression,
but the difference in time is negligible to the researcher (Supple-
mental Fig. S3).

To test model accuracy of GP regression against primary
growth models, data were randomly split into training and test
sets including 80% and 20% of the data,
respectively.Wecalculatedmeansquared
error (MSE) between test data and model
prediction given training data for each
model under both standard conditions
and oxidative stress. The fit to the data
from all models was qualitatively (Fig.
1A) and quantitatively (Fig. 1B) accurate
under standard conditions. However,
chronic oxidative stress modified the
growth trajectory ofH. salinarum popula-
tions such that thedatadeviated frompri-
mary model assumptions (Fig. 1C), and
MSE increased by an order of magnitude
across all methods besides GP regression
(Fig. 1D). GP regression MSE under both
standard and stress conditionswas signif-
icantly lower thanMSE foreachof thepri-
mary models (one-sided t-test, P≤ 10−5)
(Fig. 1B,D). Unlike primary models, the
difference in MSE between the standard
and stress conditions for GP regression
was only 2.6% (one-sided t-test, P =
0.90). This shows that B-GREAT models
growth data from populations grown un-
der standard and stress conditions with
equivalent accuracy.

We next tested the accuracy of GP
regression as a function of sampling den-
sity, both in the number of observed time
points and the number of experimental
replicates. We found that GP regression
accuracy, measured using MSE, was rela-
tively stable as sampling density decreas-
es, and error did not increase until fewer

than 12 replicates or eight time points were used for training (Fig.
1E,F). The maximum difference in MSE as a function of replicate
number was 10.5%, while the maximum error as a function of
time points was nearly five times higher with eight time points
than with the original 96 time points. The increase in error as a
function of a decrease in replicate number was gradual, while the
error as a function of time points had a sharp inflection point
when fewer than eight time points were used. Generally speaking,
these error estimates are useful to guide experimental design for
time-series growth data.

GP regression recovers parameters of primary growth models

To enable a biological interpretation of GP growth curves and a
quantitative comparison with primary parametric model output,
growth parameters of primary models—A, μmax, and AUC—were
extracted from fitted GP models (see Methods). GP estimates of
these parameters under standard growth conditions for the
Δura3 parent strain were well correlated with those from
Gompertz regression (r2 = 0.903 for μmax and r2 = 0.947 for A, P≤
10−5, Pearson correlation) (Fig. 2A,B). Estimates of A from
Gompertz regression were slightly higher than those from GP re-
gression for a subset of samples (Fig. 2B; Supplemental Fig. S4A).
Conversely, estimates of μmax from GP were higher than those
from Gompertz for three growth curves due to instrument noise
in the first few time points (Supplemental Fig. S4B). Despite these
exceptions, the correlation in parameters was high across models.

Figure 2. Growth parameters estimated using GP regression. (A,B) Correlation of parameter estimates
of μmax (A) and carrying capacity A (B) between Gompertz and GP regression. Dotted line represents the
line y = x. (C) Posterior representations of growth parameters μmax, carrying capacity, and AUC are shown
for each strain under standard conditions (blue) and oxidative stress (red). Points represent posterior
mean; error bars, 95% credible regions.
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GP regression estimates ofA, μmax, and AUC for the Δura3 par-
ent strain were then compared with parameter estimates from sev-
en TF deletion strains under both standard and oxidative stress
conditions. According to these parameters, some mutant strains
differed from the Δura3 parent under standard conditions, while
others differed under oxidative stress. For example, μmax for the
ΔtrmB strain, a known nutrient responsive regulator, was lower
than μmax for the Δura3 strain under standard conditions as expect-
ed from previous studies (Schmid et al. 2009; Todor et al. 2013,
2014). Estimates of A and AUC for the ΔrosR strain were lower
than A and AUC for the other strains. We found significant differ-
ences for one or more parameters estimated from the Gompertz
model between Δura3 and TF mutant strains, except for ΔasnC un-
der PQ stress (t-test, P≤ 0.01; family-wise error rate [FWER]≤ 0.25)
(Supplemental Figs. S5, S6; Supplemental Table S2). Under both
standard and oxidative stress conditions, all strains were consid-
ered significant for at least one growth parameter (Supplemental
Figs. S5, S6). For A, ΔsirR was the only
strain that was not significant under
both conditions (Supplemental Figs. S5,
S6). These results demonstrate that
growth parameters estimated from GP
models are biologically relevant and
comparable to those estimated using pri-
mary models under standard conditions.
GP has the added benefit of estimating
these parameters accurately for stress
conditions, although the biological in-
terpretation may differ from parameters
estimated for standard conditions.

B-GREAT identifies known and novel

differential growth phenotypes under

standard conditions

We next sought to identify differential
growth phenotypes of TF mutants versus
the Δura3 parent strain under standard
conditions. Testing for differences in
growth phenotypes across strains using
classical growth model parameters was
difficult: (1) A separate test was conduct-
ed for each parameter; (2) comparing
variation between multiple parameters
was not straightforward because of dif-
ferences in magnitude (Fig. 2C); and (3)
t-tests of classical growth parameters
were overly sensitive, calling nearly all
strains significant for multiple parame-
ters across conditions (Supplemental
Figs. S5, S6). To overcome these limita-
tions, we developed a statistical test us-
ing Bayes factors (BFs) based on our GP
regressionmodel. B-GREATwas designed
to capture differences across the entire
time series, irrespective of themagnitude
and shape of the deviation. Specifically,
B-GREAT compares the data likelihood
under two models, the null and alterna-
tive models. For the sake of efficiency,
point estimates of the GP regression
hyperparameters are computed instead

of integrating over their uncertainty, making our BF estimates ap-
proximate (Kass and Raftery 1995; Stephens and Balding 2009).
For the null model, H0, we used f (time), which indicates that
the population growth under the condition of interest is the
same between parent and mutant strain. For the alternative mod-
el, HA, we used OD(time, strain) = f(time, strain), which represents
the function of the OD at a given time and for a specific strain,
where a strain value of zero or one indicates parent strain or mu-
tant strain, respectively. The covariate strain was added to the
model by extending the RBF kernel of the GP to an additional in-
put dimension (Rasmussen and Williams 2006). The alternative
model assumes that a given mutant population has a different
growth response phenotype than the parent strain while sharing
some characteristic shape through the time covariate (Fig. 3A).
Typically, larger BFs indicate evidence for the alternative hypoth-
esis, suggesting differential growth across the covariate (Kass and
Raftery 1995).

Figure 3. H. salinarum mutants with significant growth phenotypes under standard conditions. (A)
Population growth data and GP model fit of H. salinarum parent strain Δura3 (top) and ΔtrmB (bottom)
under standard growth. Light gray curves represent growth samples of each strain in different wells.
Solid black lines and shaded gray regions indicate mean and 95% credible region of the GP model fit
to the growth data, respectively. A single GPmodel was fit (equation 16) and separate growth predictions
made for Δura3 and ΔtrmB (seeMethods). (B) Bayes factors (BFs) for eachmutant strain are shown as blue
bars. Permuted BF scores representing an FDR ≤ 20% is indicated by the green line. Strainswith a BF score
with FDR≤ 20% are in red italics. (C) The difference in growth level between ΔtrmB and Δura3 using the
prediction of growth from the GPmodel. The solid line indicatesmean difference, and the shaded region
is the 95% credible region. Regionswhere the 95% credible region does not include zero suggest that the
growth between the two strains is different at that time point with high probability. (D) Predicted differ-
ence between mutant and parent strain population growth using posterior function distributions as in
the previous panel. Red and blue regions indicate a >95% probability that themutant population growth
is either higher or lower than the parent strain, respectively. Strains with ODΔ 95% credible region not
including zero at any time point are in red italics.

Tonner et al.

324 Genome Research
www.genome.org

 Cold Spring Harbor Laboratory Press on September 26, 2024 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.210286.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.210286.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.210286.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.210286.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.210286.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.210286.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.210286.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.210286.116/-/DC1
http://genome.cshlp.org/
http://www.cshlpress.com


In order to compute the statistical significance for our test of
differential growth,weused permutations to calibrate the false-dis-
covery rate (FDR) of our BFs (Stephens and Balding 2009). To do
this, we developed a permutation framework to quantify the distri-
bution of the test statistic under a null hypothesis (see Methods).
Specifically, across growth data for both parent andmutant strains,
the label of strain background was randomly permuted for each
time point. Values were permuted so as tomaintain the underlying
distribution of strain labels present in the original data. We per-
formed 100 permutations that represent an empirical null distribu-
tion for each BF test, and BF scores corresponding to FDR≤ 20%
were considered significant (Stephens and Balding 2009). By using
an estimate of the distribution of the test statistic under the null
hypothesis, we quantified the FDR for a given test statistic thresh-
old (Mangravite et al. 2013). We performed calibration via permu-
tation in lieu of using a test statistic that has an approximate χ2

distribution for more precise calibration at the cost of additional
computation (Fusi and Listgarten 2016).

BF scores calculated from B-GREAT fits on growth curves for
each mutant strain represent the overall effect of the strain back-
ground on population growth. B-GREAT found that five of the sev-
en TF mutants had significant BFs under standard growth
conditions, meaning that the mutant strain showed differential
growth compared with the parent strain (FDR≤ 20%), including
ΔasnC, ΔtrmB, ΔrosR, Δidr2, and Δidr1 (Fig. 3B). To gain further bi-
ological insight into the phenotypes of the five strains with differ-
ential growth, we developed a second metric, ODΔ, that quantifies
the difference in parent and mutant strain population growth at
each time point (see Methods, equation 20) (Supplemental Fig.
S7; Benavoli andMangili 2015). This difference is computed using
the posterior estimates of parent and mutant strain growth of the
fitted B-GREATmodel. As we are interested in differences in the ac-
tual growth of strain populations and not in differences arising
from noise in growth measurements, ODΔ is computed using pos-
terior estimates of the underlying growth function without local
Gaussian noise. Specifically, we computed the probability of the
mutant strain growth conditioning on the parent strain growth
at each observation time point according to theMVN distribution.
We thresholded this probability at 95% to quantify a growth differ-
ence between parent and mutant strain at each time point.

As in previous work (Schmid et al. 2009), ODΔ showed that
ΔtrmB grows more slowly than the Δura3 parent strain throughout
the time course (Fig. 3C,D). In contrast, Δidr1 and Δidr2 grow
more slowly than the parent strain during exponential phase but
reach higher cell densities during the latter portion of the growth
curve(Fig.3D).ΔrosRexhibits theoppositegrowthpattern.Thefifth
strain with a novel differential growth phenotype, ΔasnC, is im-
paired forgrowththroughout thetimecourse.Althoughthegrowth
of Δidr1, Δidr2,ΔrosR, and ΔasnC strains has been studied during log
phase under standard growth conditions previously (Schmid et al.
2011; Sharma et al. 2012; Plaisier et al. 2014), these represent novel
stationaryphase phenotypes. Taken together, these results demon-
strate that B-GREAT and the ODΔ metric provide a simple, biologi-
cally interpretable test of significance of differential growth that
captures the complexity of growth phenotypes.

Identification of differential growth phenotypes in response

to oxidative stress

We next used B-GREAT to quantify the change in population
growth of the TF mutants and Δura3 under chronic oxidative
stress. The previousmodel of growth, f (time, strain), was extended

to include an effect of PQ and an interaction term between strain
and PQ stress: f (time, strain, mM PQ, (mM PQ× strain)) (equation
17). Here, mM PQ∈ {0,1} represents the presence or absence of ox-
idative stress in the culture (Fig. 4A,B, green curves). The interac-
tion term mM PQ× strain∈ {0,1} is equal to one only for the
mutant strain under oxidative stress, and to zero otherwise, and
was included to test for differential growth of each mutant strain
specific to oxidative stress (Fig. 4B, purple and green curves). The
BF for this condition calculates the relative likelihood of the data
with or without the interaction term mM PQ× strain (alternative
and null models, respectively). This test statistic quantifies differ-
ential strain growth under oxidative stress while controlling for
differences in growth between parent and mutant strain under
standard conditions. The ODΔ test was computed as the difference
between mutant strain growth with or without the interaction
term mM PQ× strain (Fig. 4C).

This extended B-GREAT framework detected significantly re-
duced growth relative to the parent strain for ΔsirR during the later
stages of the time series under oxidative stress (ODΔ 95% CI; BF
FDR≤ 20%) (Fig. 4C–E). ΔsirRwas previously implicated in regulat-
ing genes involved in metal ion uptake (Kaur et al. 2006), but not
in oxidative stress. No other strains were determined to have a sig-
nificant growth impairment or improvement under PQ stress
when differences in strain growth under standard conditions
were controlled for in the model (Supplemental Fig. S8). These re-
sults indicate that it is straightforward to extend B-GREAT to con-
trol for known differential conditions to enable the discovery of
novel differential growth phenotypes for previously characterized
TF mutant strains.

Meta-analysis improves differential growth phenotype detection

The strain ΔrosR is a known oxidative stress regulator that has pre-
viously been shown to regulate oxidative stress under both PQ and
hydrogen peroxide exposure (Sharma et al. 2012; Tonner et al.
2015). Surprisingly, this strain did not exhibit a significant differ-
ential growth phenotype versus the parent strain under oxidative
stress in our study (Fig. 4D,E). In order to determine the source of
this discrepancy, we compared the growth data for ΔrosR generated
for this study to data from a previous study (Supplemental Fig. S9;
Sharma et al. 2012). We observed that Δura3 reached a higher cell
density in stationary phase than ΔrosR under standard conditions,
showing a significant BF score (FDR≤ 20%) in our study (Fig. 3B).
Thus, controlling for the differential growth of the strain under
standard conditions removed the differential stress condition phe-
notype. This difference during stationary phase under standard
conditions was observed but not quantified in the previous study
because only log phase was considered (Sharma et al. 2012).

To combine data from this study and from the previous study,
we built a hierarchical GP model of growth that corrects for differ-
ences arising between batches of experiments (see Methods)
(Hensman et al. 2013). Under this model, a shared growth func-
tion g(·) is estimated using a GP whose covariates match those in
equation 17. Then systematic variation between the two studies
was modeled as two GPs f1 and f2, whose means are given by the
shared growth function g(·). Under this design, g represents the
true growth phenotype of ΔrosR when corrected for study effects,
and f1 and f2 represent the growth phenotype with study-specific
effects included (Fig. 5A,B). From thismodel, we calculated the dif-
ference in ΔrosR growth with andwithout the (mMPQ× strain) in-
teraction term. Once the variation between studies was corrected
for, ODΔ indicates that ΔrosR has a significant growth defect under
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oxidative stress (Fig. 5C), and the significance of this defect is con-
firmed with the BF score (FDR≤ 20%) (Fig. 5D). This differential
phenotype is consistent with the known function of the RosR TF
as a genome-wide regulator of gene expression in response to oxi-
dative stress (Tonner et al. 2015). These results demonstrate that
this hierarchical model effectively combines cross-study data and
corrects for study-specific effects, recapitulating the knownpheno-
type of ΔrosR under PQ stress (Fig. 5C,D).

B-GREAT identifies significant growth phenotypes across strains

of yeast

To test the efficacy of B-GREAT as a general microbial population
growth model, we applied our method to a large compendium of
yeast growth profiles in which 96 domesticated and wild strains
of Saccharomyces cerevisiae and Saccharomyces paradoxus were
grown in various stress conditions (Liti et al. 2009). We used B-
GREAT to test for differential growth between the control strain,
BY4741, and all other strains under PQ stress and cycloheximide
stress (Supplemental Figs. S10 and S11, respectively). Under both
conditions, strains identified as having significant differential
growth (FDR≤ 20%) by B-GREATwere significantly overrepresent-
ed by S. paradoxus strains relative to S. cerevisiae (P≤ 0.05, hyper-
geometric test). While S. paradoxus strains make up a minority of
the strains in the data (37.5%), they constituted the majority of

the strains with differential growth in response to PQ (65%, P≤
2.3 × 10−7) and cycloheximide (79.3%, P≤ 1.8 × 10−9) (Fig. 6;
Supplemental Figs. S10, S11). The increased resistance of S. para-
doxus strains to cycloheximide relative to that of S. cerevisiae strains
had been previously detected (Liti et al. 2009). However, in our B-
GREAT analysis, we also detected significantly decreased resistance
of S. paradoxus to PQ, a novel finding.

The yeast strainwith the highest BF score, S. paradoxusG4650,
showed severely inhibited growth in response to PQ stress com-
pared with the BY4741 control (Fig. 6A–C). G4650 was isolated
from fossilized guano in Italy, with no previously reported sensi-
tivity to oxidative stress (Liti et al. 2009). When we extended the
analysis to all strains in the data set, we saw a trend for S. paradoxus
strains to grow poorly under PQ exposure compared with the
BY4741 control (Fig. 6D). Together, these results show that B-
GREAT recapitulates known biology and identifies newdifferential
phenotypes from previous studies on large collections of strains
with diverse genetic backgrounds.

Discussion

In this study, we developed B-GREAT, a general model of micro-
bial population growth using GP regression. B-GREAT overcomes
the limitations of primary parametric models and enables dis-
covery of novel growth phenotypes for genetically and

Figure 4. H. salinarum mutants with significant growth phenotypes under oxidative stress. (A,B) Example of population growth data from H. salinarum
for mutant strain Δura3 (A) and ΔsirR (B) under standard conditions (black) and chronic oxidative stress (green). Each curve represents a different sample
of an experimental condition. Gaussian process predictions for these conditions are shown as a solid line (mean) and shaded region (variance). The
purple line represents the growth prediction when the Strain ×mM PQ interaction term is zero. (C) Difference computed between the mutant growth
level with interaction term (Strain ×mM PQ = 1) and mutant growth without interaction (Strain ×mM PQ = 0); solid lines represent mean, and shaded
regions indicate 95% credible regions. (D) Functional difference and permuted BF scores for mutant strains in response to oxidative stress. Functional
difference is computed between mutant strain with and without an interaction term between mutant and stress condition. (E) BF score and permuted
BFs for each strain are shown, where blue bars and green line represent observed BF and FDR≤ 20% threshold, respectively. Strains with FDR≤ 20% are
in red italics.
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environmentally perturbed microbial populations. We showed
that B-GREAT is equivalently accurate under nonstandard condi-
tions (Fig. 1B); moreover, its model accuracy is resilient to de-
creases in observation sampling (Fig. 1E,F). GP regression can
recover growth statistics of log phase (μmax) and stationary phase
(carrying capacity, A), enabling direct comparison of these
variables to results from primary growth models (Fig. 2). Our
comparisons demonstrated that GP regression outperforms pri-
mary parametric growth models in capturing growth, both under
standard conditions and under nonstandard stress conditions
(Fig. 1).

In our results, we highlighted important properties of the B-
GREAT method for modeling microbial growth. GP models allow
the inference of smooth underlying growth functions through
the length-scale parameter, explicitly accounting for experimental
noise. This is in contrast to other recent models such as linear
spline fitting in generalized additive models (GAMs), which are

sensitive to technical variation (Sekse et al. 2012), or polynomial
splines in the grofit package, which require cross-validation to esti-
mate parameters (Kahm et al. 2010). Given the large proportion of
cellular machinery whose production correlates linearly with
growth rate (Pedersen et al. 1978; You et al. 2013), differentiating
general growth impairments from specific, stress-related impair-
ments is important for biological interpretation of model fits.
GP regression enables this process by easily incorporatingmultiple
dimensions through the addition of length-scale parameters for
each covariate, modeling and controlling for an arbitrary number
of covariates (Fig. 4). For example, the number of strains with dif-
ferential effects increases from one to five out of seven if the mM
PQ× strain interaction term is removed (Fig. 4D; Supplemental
Fig. S12), demonstrating the importance of this covariate.
Additionally, GP regression may be extended to model data in
which experimental variance is more complicated than simple in-
dependent Gaussian noise (Fig. 5; Shah et al. 2014).

Figure 5. B-GREAT model of ΔrosR growth in response to oxidative stress across multiple studies. (A,B) Δura3 (A) and ΔrosR (B) growth data under stan-
dard conditions (black) and oxidative stress (green). Individual samples from this study (left) and previously published data (center) (Sharma et al. 2012) are
shown as shaded lines. The B-GREAT model prediction for each condition is shown as solid line and shaded region for mean and 95% credible region,
respectively. The growth prediction for the underlying growth function estimated across studies is shown in the right column. (C) The difference between
ΔrosR and Δura3 growth for the underlying growth function corrected for batch effects, which shows an increased susceptibility of ΔrosR to oxidative stress
relative to the parent strain. (D) log(BF) compared with permuted scores from the null distribution. Blue bar and green line represent observed BF and
FDR ≤ 20% threshold, respectively.
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We showed in our results in H. salinarum that the B-GREAT
BFs andODΔmaybe used in combination to characterize differenc-
es in growth. In particular, BFs provide an overall metric of growth
phenotype significance, and ODΔ quantifies the difference be-
tween parent and mutant strain growth across the time course.
In general, we find that the use of BFs is a conservative method
of finding significantly different growth phenotypes relative to
ODΔ. For example, there is one case in which ODΔ is significant
but the BF is not (e.g., ΔVNG1179C ) (Fig. 3). As such, ODΔ and
BF tests provide two tiers of statistical confidence, providing a
stringent test to detect phenotypic differences while correcting
for variability in the data. By using BF and ODΔ together, an exper-
imental researcher can prioritize strains or conditions to pursue for
further study.

B-GREAT recapitulates known biology and discovers previ-
ously uncharacterized phenotypes. We confirmed the known
growth defect for ΔtrmB under standard conditions (Fig. 3B–D),
which results from its function as a master regulator of metabolic
pathways (Schmid et al. 2009; Todor et al. 2013, 2014, 2015). In
contrast, the ΔasnC oxidative stress phenotype observed previous-
ly (Plaisier et al. 2014) was not recapitulated here, likely because
the growth defect of this mutant under standard conditions ex-
plains the difference in growth during stress (Fig. 3C; Supplemen-
tal Fig. S8), which was not corrected for in the previous study
(Plaisier et al. 2014). Finally, we identified a previously undiscov-
ered relationship between ΔsirR and oxidative damage (Fig. 4).
SirR regulates metal uptake transporters at the level of transcrip-
tion (Kaur et al. 2006), repressing manganese uptake transporters
under replete conditions. This regulatory link between metal ho-
meostasis and oxidative stress is well-established in bacterial and

eukaryotic organisms (Imlay 2003) but
is only beginning to be appreciated in ar-
chaeal species (Zhu et al. 2013).

B-GREAT was next applied to popu-
lation growth data of diverse yeast spe-
cies under different stress conditions,
identifying a previously uncharacterized
difference between the growth of S. cere-
visiae and S. paradoxus in response to
PQ exposure (Supplemental Fig. S10).
Our results also recapitulate the known
resistance of S. paradoxus to cyclohexa-
mide (Supplemental Fig. S13; Liti et al.
2009). S. paradoxus harbors higher levels
of ROS (Deregowska et al. 2015), and
our results suggest that this may lead
to a higher susceptibility to oxidative
stress. Many other large-scale population
growth studies have been performed to
differentiate biological function through
population growth phenotypes in the
yeast community, and we anticipate
that future applications of B-GREAT will
highlight additional results from these
studies (Warringer et al. 2003; Fernan-
dez-Ricaud et al. 2005).

In future work, B-GREAT will be ap-
plied to many problems in testing func-
tional data for significant differential
responses to perturbation. Gene expres-
sion time-series studies could benefit
from this method, where each gene can

be tested for differential dynamic profiles between conditions of
interest (Bar-Joseph et al. 2012). Population genome-wide associa-
tion studies (GWAS) are also a potential application of thismethod
to detect the effect of different loci on function responses (Fusi and
Listgarten 2016). By adding new covariates, B-GREAT may also be
extended tomodel continuous effects such as dose response (Sekse
et al. 2012; Di Veroli et al. 2015; Twarog et al. 2016). By using a
time-dependent variance parameter rather than a stationary ker-
nel, B-GREAT may also be extended to model functional data in
which heterogeneity between samples is a function of time (Cao
et al. 2010). B-GREAT provides a strong foundation to perform
and extend the interpretable analysis of the large and growing
quantity of dynamic, functional biological data.

Methods

H. salinarum growth data

Growth of seven TF mutant strains for H. salinarum, each deleted
in-frame for a TF-encoding gene, and the isogenic Δura3 parent
strain was measured (Table 1). Details regarding construction of
these mutants were described in prior work (Kaur et al. 2006;
Schmid et al. 2009, 2011; Sharma et al. 2012; Plaisier et al.
2014). Cultures were inoculated into complete medium (CM;
250 NaCl, 20 g/L MgSO4 · 7H2O, 3 g/L sodium citrate, 2 g/L KCl,
10 g/L peptone), grown to stationary phase, and then diluted to
OD∼ 0.05 for growth analysis. OD at 600 nm of 200 independent
cultures was measured every 30 min for 48 h using a Bioscreen C
(Growth Curves USA). Growth of each strain under each ex-
perimental condition was measured in at least biological quadru-
plicate (from independent colonies) and technical triplicate

Figure 6. B-GREAT identifies significant growth phenotypes in yeast strains in response to paraquat. (A,
B) Control strain BY4741 (A) and Saccharomyces paradoxus strain G4650 (B) growth under standard con-
ditions (black) and under paraquat stress (green). Solid lines represent experimental data, and shaded
regions represent B-GREAT model predictions. Purple-shaded region represents 95% credible region
of B-GREAT prediction of G4650 in the absence of stress interaction (strain × stress = 0). (C ) log(BF)
(red line) and permuted log(BF)s (boxplot) of G4650 under paraquat stress according to B-GREAT.
(D) ODΔ scores of all yeast strains under paraquat exposure. Left column corresponds to S. cerevisiae
(white) or S. paradoxus (black) strains. Center column represents magnitude of calculated ODΔ over
time for each strain.
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(independent cultures from the same colony), for a total of 12
replicates. Standard and chronic oxidative stress conditions were
tested for all mutants. Standard conditions were defined as 42°C
with 225 r.p.m. shaking under ambient light in rich CM medium
(Yao and Facciotti 2011). Chronic oxidative stress was induced
with 0.333 mM PQ, a redox cycling drug that permeates the cell
membrane, that was added at the inoculation of the Bioscreen
experiment.

Prior to statistical analysis, OD data were log2 transformed
and scaled by the estimate of starting OD as follows. Data from
growth experiments were grouped by their strain and media com-
position (e.g., Δura3, standard growth). This corresponds to the 12
replicates comprising four biological replicates and three technical
replicates. Then OD measurements from the first 10 time points
within each group were fit with a polynomial regression of degree
five. The OD value at time = 0, as estimated by the polynomial re-
gression, was then subtracted from all data points in the group in
order to normalize the starting growth levels at zero for all
conditions.

H. salinarum data as input to B-GREAT

Input to theGPmodel corresponds tomeasurementsYt,c,r for a giv-
en time (1≤ t≤ T), condition (1≤ c≤C), and replicate (1≤ r≤ R).
For standard conditions, time points were taken at 4-h increments
across a 48-h experiment. This resulted in 12 observations from
each replicate. Additionally, growthmeasurements from both par-
ent strain and each mutant strain were included (C = 2). A total of
T × R ×C = 288 observations was used for training each GP model
under standard conditions. For oxidative stress, time points were
taken every 6 h, for a total of eight time points for each replicate.
The decrease in time samples used in the oxidative stress models
was necessary to incorporate the increase in conditions for both
standard and oxidative stress growth. Specifically, conditions in-
clude growth for both parent and mutant strain under both stan-
dard and oxidative stress conditions (C = 4). This corresponds to
a total of 384 observations for each GP model under oxidative
stress.

Yeast population growth data

Population growth data for 96 yeast strains were collected from a
previous study (Liti et al. 2009). One hundred eighty-six condi-
tions are represented in the data set covering various nutrient
and stress conditions. For each condition, aminimumof eight rep-
licates for the control strain, BY4741, were available and two repli-
cates of each yeast strain. Measurements were taken every 20 min
for 48 h, leading to 144 time points per replicate.

GP regression of microbial population growth data

GP regression is a probability distribution on arbitrary functions
mapping x to f(x) (Rasmussen andWilliams 2006). When observa-
tions of f (x) are distorted with IID Gaussian noise, multiple obser-
vations of the function are distributed as a multivariate Gaussian

y(x) � N(m(x),S). (1)
In our application, x represents time and y(x) = log OD(x) repre-
sents the log-transformed ODmeasurement at time t. A GP model
requires specification of a mean function μ(x) and kernel function
Σi,j = κ(xi,xj), which defines the positive definite covariance matrix
Σ. In this work, the mean function was set to zero across inputs,
μ(x) = 0, as is standard (Rasmussen and Williams 2006). For the
kernel, we used a RBF with time point–specific independent

Gaussian noise:

k(xi, xj) = s2
RBF · exp

−||xi − xj||2
ℓ2

( )
+ s2

nugget · dxi=xj . (2)

Here, xi and xj are two time points; s2
RBF is the RBF variance param-

eter; s2
nugget is the Gaussian variance at a single time point t (called

the nugget); dxi=xj is an indicator function, which is equal to one
when xi = xj and to zero otherwise; and ℓ is the RBF length scale
parameter, which dictates the smoothness of the function f (x)
through the GP distribution. Kernel function parameters
u = {s2

RBF,s
2
nugget, ℓ} were optimized by maximizing the likelihood

of the data marginalized over the latent function f (x) with respect
to each parameter (Rasmussen and Williams 2006). All GP regres-
sion models were built and optimized using the GPy package (ver-
sion 0.8.8) for Python (http://github.com/SheffieldML/GPy).

Other kernels tested

Two other kernels were tested for comparison to RBF kernels, the
Matérn and linear kernels. Matérn kernels are defined as

k(r) = s2(1+
��
3

√
r) exp(−

��
3

√
r) where r =

�����������
(xi − xj)2

ℓ2

√
. (3)

Linear kernels are defined as

k(xi, xj) = s2
i xixj. (4)

Model fit for each kernel was assessedwith the data likelihood
of the optimized GP model and also using the BIC (Neath and
Cavanaugh 2012). BIC is calculated as

− 2× log(L) + k× log(n), (5)
where L is the likelihood of the data, k is the number of hyperpara-
meters for each kernel, and n is the number of data points.

GP growth curve metrics

The growth curvemetrics μmax and carrying capacity Awere calcu-
lated from themaximum a posteriori (MAP) estimates of either log
(OD) or (d/dx)log(OD) for carrying capacity and μmax, respectively.
MAP estimates of log(OD) are given by themodel in equation 1, by
taking theMAP growth level using the fittedmodel. In order to cal-
culate a MAP estimate of (d/dx)log(OD), we estimate (d/dx)log(OD)
using GP regression. The RBF kernel is infinitely differentiable, so
derivative observations of a GP regression model are also distribu-
ted as a GP as follows (Solak et al. 2003):

d
dx

log(OD) � GP
d
dx

m,
d
dx

S

( )
, (6)

where

d
dx

m = 0 (7)

and

d
dx

k(xi, xj) = 2 · s2
RBF

ℓ
× 1− 2 · (xi − xj)2

ℓ

( )

· exp −||xi − xj||2
ℓ

( )
. (8)

TheGPmodel of (d/dx)log(OD)was used to calculate theMAP
estimate of (d/dx)log(OD) as an estimate of μmax.

The estimate of AUCwas calculated as ametric of the log(OD)
distribution as a function of time t. The posterior distribution of
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OD measurements over time is predicted as a MVN, log(OD)(t)∼
N(μ(t)),Σ(t,t′)). Predictions were made at 50 evenly spaced time
points during the growth curve, and the linear transformation
was made of log(OD)(t) on the vector a = {Δt,Δt,…}, where Δt is
the space between predicted time points. This linear transforma-
tion is then an approximation of the AUC for the condition,
with a normal distribution AUC∼N(a·μ,aΣaT) (Todor et al. 2014).

Primary growth models

We compared the predictions from the fitted GP regression model
to predictions from four primary growth curve models: Gompertz,
population logistic, Schnute, and Richards regression (Zwieter-
ing et al. 1990). All model parameters were optimized with the
curve_fit function of the scipy Python package, which esti-
mates function parameters using damped least squares (Millman
and Aivazis 2011). Input data were randomly divided into training
(80%) and test (20%) sets for each of the 721 total growth curves in
thedata set. TheMSEof eachmodel fitwith respect to the 20%held
out test data was calculated as the difference between prediction
and test data frommodels estimated using the training data:

MSE(y,m) = 1
T

∑T

t=1
(yt −mt )2,

whereytandmt correspondto rawdata andmodelpredictionsat the
tth time point, respectively. Model predictionmt was the posterior
mean of the fitted GP, and primary growthmodel predictions were
taken from the growth level predicted by the estimated parameters.
By use of a one-sided sample t-test, MSE for GP regression fit was
compared separately to each of Gompertz, population logistic,
Schnute, and Richards regression fits. These primary models were
selected to compare against the most widely used primary models
in modeling microbial population growth (McKellar and Lu
2003). Additionally, the models chosen have been shown to be re-
latedtooneanotherthroughspecificconstraintsonparameters.For
example, Gompertz regression can be recovered from the Schnute
model with parameters a > 0 and b = 0 (Zwietering et al. 1990).
Therefore,wecanobserve the improvementofprimarymodelaccu-
racy as we add additional parameters.

Gompertz regression

y(t) = A · exp − exp
mmax · e

A
(l− t) + 1

[ ][ ]
, (9)

whereA is the carrying capacity, μmax is themaximumgrowth rate,
and λ is lag time (Zwietering et al. 1990).

Population logistic regression

y(t) = A · 1+ exp
4 · mmax

A
(l− t) + 2

( )[ ]−1

, (10)

whereA is the carrying capacity, μmax is themaximumgrowth rate,
and λ is lag time. (Zwietering et al. 1990).

Schnute model

y(t) = mmax ·
1− b
a

· 1− b · exp(a · l+ 1− b− a · t)
1− b

[ ]1/b
, (11)

where μmax is the maximum growth rate, λ is lag time, and a, and b
are parameters that affect the growth curve shape but do not have
direct biological interpretation (Zwietering et al. 1990).

Richards model

y(t)=A · 1+v ·exp(1+v) ·exp mmax

A
· (1+v) · 1+1

v

( )
· (l− t)

( )[ ]−1/v

,

(12)
whereA is the carrying capacity, μmax is themaximumgrowth rate,
λ is lag time, and v is a parameter that affects the growth curve
shape but does not have direct biological interpretation
(Zwietering et al. 1990).

Testing for significant parameter differences in classical models

Growth parameters μmax and carrying capacity were tested under
standard condition and oxidative stress by taking the correspond-
ing parameter estimates for Δura3 and each mutant strain and
computing a t-test for significant differences between the two pop-
ulations of parameter estimates.

Testing for differential growth using BFs

We developed an approximate BF test statistic to quantify possible
differences between a pair of growth conditions BFstrain (Kass and
Raftery 1995; Stephens and Balding 2009). BFs were calculated as
the ratio of data likelihoods between an alternative model (Ha)
and a null model (H0):

BF = p(Y|Ha)
p(Y|H0) . (13)

Larger values of the BF indicate a higher relative likelihood under
the alternative model and provide evidence for the alternative
model representing the data better than the null model.

Specifically, we designed three different BF test statistics to
measure differences in population growth across covariates.
Under standard conditions, we use BFstrain, in which the null mod-
elH0 assumes that growth is the same across the parent andmutant
strain; the alternative model Ha captures growth between the par-
ent and mutant strain separately. A high BF then suggests that the
growth phenotype is different across strains.We designed a second
test for differential growth in the presence of oxidative stress,
BFstress, where the alternative model included an interaction term
between genetic effect and oxidative stress. High BF scores under
this condition indicate that the mutant strain has a differential
growth phenotype relative to the parent strain under oxidative
stress. We designed a third test for differential growth across two
separate studies, BFstudy, which performs the same test as BFstress
but shares statistical strength across batches of growth measure-
ments using a hierarchical GP model.

A FDR for each BFwas calculated using an estimate of the null
BF distribution, representing BF scores when no significant growth
effect between the two conditions is observed. For a single growth
experiment, Y = {y1,y2,…yT} and corresponding time, genetic back-
ground, and other covariates X = {x1,x2,…xT}, each xt = {time,
strain,…}, were randomly assigned a value for strain that preserved
the original distribution of strain values inX. One hundred permu-
tations of the data indices following this design were constructed,
and a BF score was calculated for each permutation. The distribu-
tion of permuted BF scores was used as an estimate of the null dis-
tribution of the test statistic, and a BF score that exceeded 80% of
permuted scores (corresponding to FDR ≤20%) was selected as
significant.

More generally, FDR is calculated using permutations, for a
given BF threshold c, as follows:

FDR(c) = |BFperm . c|
|BFreal . c| , (14)
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which approximates the FDR, i.e., the number of false positives
over the total number of discoveries, for threshold c. In this case,
there is a single BFreal for 100 permuted BFs, so we multiplied the
BFreal count by 100 for this computation.

Differential mutant growth phenotypes

The effects of gene deletion on growth were modeled as experi-
mental effects by extending the input variable x, originally repre-
senting time, to include perturbations as additional covariates in
the GP regression model. The RBF kernel function was extended
to handle the additional covariates by using an automatic rele-
vance determination (ARD) prior to induce sparsity on the weight-
ed contribution of each of the K covariates (MacKay 1992; Tipping
2001; Rasmussen and Williams 2006; Neal 2012):

K(xi, xj) = s2 · exp
∑K
k=1

||xi,k − x j,k||
ℓk

( )
, (15)

where each ℓk is the length-scale for the kth covariate. These
length-scale parameters are then interpretable in terms of quanti-
fying the relative contribution of each of the k covariates. Genetic
background was incorporated into the model covariates as a
Boolean variable xstrain∈ {0,1}, where a value of zero indicates par-
ent strain and one indicates mutant strain. For standard growth
conditions, x has the form

x = {time, strain}, (16)
whereas the null model contains no strain information: x = {time}.
The BF then quantified the improvement in data likelihood of the
GP regression model, including the strain information versus
omitting strain information; whenmodeling strains separately im-
proved the data likelihood, this indicated that there was differen-
tial growth across strains.

Differential response to stress conditions across strains

Differential growth in response to PQ exposure was tested by ex-
tending the covariates to include two additional covariates. The
first covariate, mM PQ∈ {0,1}, represents the presence (1) and ab-
sence (0) of PQ stress. The second covariate, mM PQ× strain∈
{0,1} is an interaction term between mutant strain and stress con-
dition, computed bymultiplying the strain covariate with themM
PQ covariate. mM PQ× strain covariate was one only for growth
measurements made under oxidative stress for the mutant strain
andwas zero otherwise. The test for significant growth phenotypes
was thenmade usingmodels including or excluding themMPQ×
strain interaction term. Specifically, the input x for the PQ condi-
tion had the form

x = {time, strain, mM PQ, (mM PQ × strain)}. (17)

The null model, where there is no interaction between strain
and stress condition, corresponds to

x = {time, strain, mM PQ}. (18)

Modeling batch effects and testing for differential effects

across studies

Growth data for ΔrosR under standard conditions and oxidative
stress were collected both in this study and in a previous study
(Sharma et al. 2012). We modeled the joint growth data from
both studies with a hierarchical GP model (Hensman et al. 2013).

Under this model, the underlying growth function is modeled
with a GP: g(x)∼GP(μg,Kg). Different batch observations of this
function are drawn from a GP with mean equal to g(x): f (x)∼GP
(g(x),Kf).

Growth data for ΔrosR and the parent strain were modeled by
replicate functions f1 and f2, representing data from our study and
the previous study, respectively. The GP models for f1, f2, and g all
follow the design in equation 17. BF scores in both cases were cal-
culated as the difference in log likelihood for GP models account-
ing for strain variation interacting with oxidative stress (HA;
equation 17) and those that do not interact with oxidative stress
(H0; equation 18). The BF permutationwas performed as described
above.

Computing differences between population growth

across time series (ODΔ)

The difference between mutant and parent strain functions across
time points were defined by the variable ODΔ. The variable ODΔ is
the difference inmutant strain growth and parent strain growth at
each time point tk. ODΔ was calculated using the noiseless latent
mean function for population growth rather than the noisy
observations. In other words, we use the latent function f : log
(OD) = f(t) + ε, where f(t) is the smooth underlying growth func-
tion and ε represents random noise. ODΔ at a specific time point
tk is then the difference between the growth of the mutant strain
fm and the parent strain fp:

fm(tk) − fp(tk), (19)

where fm and fp are estimated from the posterior distribution of
the trained GP model. Finally, ODΔ also corrects for differences
between parent and mutant strain at the start of the experiment,
t0, by subtracting their respective growth levels at that time
point:

ODD(tk) = ( fm(tk) − fp(tk)) − ( fm(t0) − fp(t0)). (20)

The four variables needed to calculate ODΔ—i.e., fk = { fm(tk),
fm(t0), fp(tk), and fp(t0)}—are defined by a joint MVN distribution
predicted by the fitted GP:

fk = [ fm(tk), fm(t0), fp(tk), fp(t0)]T

� N([mm(tk),mm(t0),mp(tk),mp(t0)]T ,Sk).
(21)

ODΔ is then a linear transformation of these variables, ODΔ =
a·fk, where a is the column vector a = [1,−1,−1,1] (a:1 × 4).
Parameter ODΔ is then distributed as a univariate normal distribu-
tion, ODD � N(a · mk, aSkaT ) = N(m(ODD),s2(ODD)). Credible in-
tervals of ODΔ as defined by its normal distribution were
calculated to determinewhether ODΔ = 0 lies within the 95% cred-
ible region. If zero was not in this region, the difference between
parent and mutant strain was considered significant at this time
point.

Applying B-GREAT to yeast population growth data

Population growth data for 96 yeast strains under cycloheximide
exposure and PQ exposure were modeled using the stress interac-
tion test of B-GREAT (equation 17), where mM PQwas substituted
for mM cycloheximide where appropriate. The strain BY4741 was
used as the control strain, and growth in yeast extract peptone
dextrose (YPD)was used as the control growth condition. BF calcu-
lation and permutations of BF scores for each strain were per-
formed as described above.
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Testing for enrichment in significant strains

Significance for enrichment of S. paradoxus strains as having signif-
icant growth phenotypes was tested using a hypergeometric distri-
bution, using the hypergeom package from scipy.

Data access

All code and data from this study have been submitted to https
://github.com/ptonner/gp_growth_phenotype and are available
in the Supplemental Methods archive. Raw growth data for
H. salinarum used in this study are available in Supplemental
Table S1.
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