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 2 

ABSTRACT 1 

Transcription and translation are intertwined processes where mRNA isoforms are crucial 2 

intermediaries. However, methodological limitations in analyzing translation at the mRNA isoform 3 

level have left gaps in our understanding of critical biological processes. To address these gaps, 4 

we developed an integrated computational and experimental framework called long-read Ribo-5 

STAMP (LR-Ribo-STAMP) that capitalizes on advancements in long-read sequencing and RNA-6 

base editing-mediated technologies to simultaneously profile translation and transcription at both 7 

gene and mRNA isoform levels. We also developed the EditsC metric to quantify editing and 8 

leverage the single-molecule, full-length transcript information provided by long-read sequencing.  9 

Here, we report concordance between gene-level translation profiles obtained with long-read and 10 

short-read Ribo-STAMP. We show that LR-Ribo-STAMP successfully profiles translation of 11 

mRNA isoforms and links regulatory features, such as upstream open reading frames (uORFs), 12 

to translation measurements. We apply LR-Ribo-STAMP to discovering translational differences 13 

at both gene and isoform levels in a triple-negative breast cancer cell line under normoxia and 14 

hypoxia and find that LR-Ribo-STAMP effectively delineates orthogonal transcriptional and 15 

translation shifts between conditions. We also discover regulatory elements that distinguish 16 

translational differences at the isoform level. We highlight GRK6, where hypoxia is observed to 17 

increase expression and translation of a shorter mRNA isoform, giving rise to a truncated protein 18 

without the AGC Kinase domain. Overall, LR-Ribo-STAMP is an important advance in our 19 

repertoire of methods that measure mRNA translation with isoform sensitivity.  20 

 21 

INTRODUCTION 22 

Post-transcriptional processes such as alternative splicing and polyadenylation result in 23 

mRNA isoforms that differ in their coding and noncoding sequences, resulting in a diversity of 24 

abundance and localization of protein isoforms (Kornblihtt et al., 2013; Mitschka & Mayr, 2022).  25 

Long-read sequencing has enabled the examination of full-length transcriptomes at single-26 
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molecule resolution (Foord et al., 2023). However, commonly used methods that probe mRNA 27 

translation, such as ribosome footprinting (Ribo-seq) (Ingolia et al., 2009) and polysome profiling, 28 

are incompatible with long-read sequencing due to fragmentation and high input material 29 

requirements, respectively. Both approaches also require the separate generation of mRNA-seq 30 

libraries in parallel with ribosome-protected fragments (in Ribo-seq) or polysome-fractionated 31 

mRNAs (in polysome profiling) to compute translation efficiency (TE). While computational 32 

attempts have been proposed to better understand the components that affect translation (Cui et 33 

al., 2019; Gunawardana & Niranjan, 2013; Li et al., 2019; Quattrone & Dassi, 2019; Reixachs-34 

Solé et al., 2020), these approaches still reflect the limitations of the methods above. Transcript 35 

Isoforms in Polysome sequencing (TrIP-seq) (Floor & Doudna, 2016) and fractionation and high 36 

throughput RNA sequencing (Frac-seq) (Sterne-Weiler et al., 2013) have been used to quantify 37 

isoform-level translation by coupling polysome association with short-read sequencing. However, 38 

using short reads to quantify isoforms is challenging due to ambiguities in mapping reads to 39 

specific isoforms, particularly in regions with high sequence similarity. Consequently, most studies 40 

of mRNA translation have focused only on gene level differences.  41 

Recently developed technologies that fuse RNA base editors (rBEs) to full-length proteins 42 

have been used to effectively identify regions of protein-RNA interactions with compatibility with 43 

long-read sequencing and minimal input (Brannan et al., 2021; Flamand et al., 2022; Lin et al., 44 

2023). The Surveying targets by APOBEC1 mediated profiling (STAMP) methodology first 45 

introduced the Ribo-STAMP concept to simultaneously measure gene-level mRNA levels and 46 

ribosome association by fusing ribosomal subunit proteins to cytosine deaminase enzyme 47 

APOBEC1 (Brannan et al., 2021). Ribo-STAMP was combined with short-read sequencing and 48 

single-cell capture approaches to successfully measure translatomes at the gene-level.   49 

In this study, we develop an integrated computational and experimental framework to 50 

couple Ribo-STAMP with long-read sequencing to provide simultaneous transcription and 51 

translation measurement at mRNA isoform resolution in a single preparative step. We 52 
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demonstrate that we can profile transcription and translation in a scalable manner at both gene 53 

and isoform levels in unperturbed cells. In addition, we show that long-read Ribo-STAMP (LR-54 

Ribo-STAMP) is an effective tool for distinguishing transcriptional and translational changes and 55 

regulatory rules, such as in a cellular model of triple-negative breast cancer (MDA-MB-231) under 56 

hypoxic conditions.  57 

RESULTS 58 

Long-read Ribo-STAMP Experimental and Computational Overview 59 

LR-Ribo-STAMP combines Ribo-STAMP technology with long-read sequencing platforms 60 

to enable translation profiling and quantification at both gene and isoform levels. Here, ribosomal 61 

protein S2 (RPS2) is fused to APOBEC1, an RNA editing enzyme that catalyzes C-to-U editing 62 

on RNA transcripts, to enable simultaneous measurements of mRNA translation and mRNA levels 63 

(Fig 1A).  64 

To identify and quantify Ribo-STAMP editing and infer translation levels at gene and 65 

mRNA isoform levels, we developed a sequencing platform-agnostic computational pipeline 66 

involving long read alignment and filtering, transcript quantification and read assignment to 67 

isoforms (Methods), identification and filtering of edited sites, and calculation of the ratio of edited 68 

to total cytosines across a gene or isoform’s exons (EditsC) (Fig 1B). We developed the EditsC 69 

metric to capitalize on the single-molecule, full-length transcript information provided by long-read 70 

sequencing, enabling the precise identification of all editable cytosines within individual RNA 71 

molecules and their associated isoforms. This is in contrast to short-read sequencing, which only 72 

provides a generalized view of editing events aggregated at the gene level, without the ability to 73 

differentiate between isoforms. While users can utilize the pipeline for unannotated isoforms, this 74 

report focuses on annotated isoforms. Although it can identify edits across transcripts, we 75 

concentrate on those within the coding sequence (CDS), as ribosomes predominantly interact 76 

with transcripts in this region.  77 
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A crucial aspect of the computational pipeline is distinguishing signal from background, 78 

where the background can result from single nucleotide polymorphisms (SNPs) and native RNA 79 

editing. Existing tools for RNA editing detection in long-read data enforce strict thresholding on 80 

editing fraction—the ratio of edited to total reads at a position (Z. Liu et al., 2023). To minimize 81 

signal loss, we adopted an alternative filtering method to accommodate the variable nature of 82 

Ribo-STAMP editing and the challenge of estimating edit fractions at low coverage sites where 83 

data is sparse. Our approach leverages a read threshold that only considers positions with greater 84 

than 20 reads (Supplemental Figure 1A) to ensure reliable edit detection and eliminates edited 85 

sites found across sample types and replicates, reasoning that they would be unlikely due to the 86 

transient nature of ribosome association with mRNA transcripts. Testing this hypothesis with 87 

PacBio long-read data obtained from HEK293T cells expressing Ribo-STAMP or APOBEC1-only 88 

constructs, we observed effective removal of overlapping signal found in Ribo-STAMP and 89 

APOBEC1-only controls, with most of the removed edited sites corresponding to annotated SNPs 90 

(Fig 1C, Supplemental Figure 1B). While our approach does not explicitly filter based on the 91 

fraction of reads edited at a site, edit fraction is visualized to illustrate that sites with a higher edit 92 

fraction—in line with SNP sites—are more likely to be removed by our methodology. Users can 93 

use an annotated SNP database to further filter edited sites. To ensure that the EditsC metric 94 

calculated after edit filtering is not biased by the number of cytosines in an isoform, we looked at 95 

the correlation between the average EditsC calculated at the isoform level for replicates of LR-96 

Ribo-STAMP and long-read APOBEC1-only and the number of cytosines in an isoform and found 97 

no correlation (Supplemental Figure 1C).   98 
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Figure 1: Experimental and computational methods for Long-read Ribo-STAMP. (A) 
Overview of the LR-Ribo-STAMP experimental system. RPS2 is fused to APOBEC1 to induce 
cytosine-to-uracil nucleotide edits proximal to ribosome-RNA interaction sites. More edits indicate 
higher translation and fewer edits indicate lower translation. (B) Overview of the LR-Ribo-STAMP 
computational pipeline. The input is unaligned long reads, which undergo alignment, read filtering, 
edit detection, edit filtering, and edit quantification. Edited sites are output as a BED file. (C) Edit 
filtering. An outline of edit filtering and delineation of LR-Ribo-STAMP (gold) from long-read 
APOBEC1-only (green) signal through filtering common sites and annotated SNPs represented 
as the relationship between edit fraction (edited reads/total number of reads) versus coverage at 
an edited site. Edited sites in the gray portion indicate sites having less than 20 reads filtered out. 

 
 
Long-Read Ribo-STAMP Profiles Gene-Level Translation in Unperturbed Cells 99 

Ribo-STAMP was initially developed and extensively benchmarked for short-read 100 

sequencing (on the Illumina HiSeq platform) to measure gene-level translation (Brannan et al., 101 

2021). To determine if LR-Ribo-STAMP could similarly quantify translation, we generated 102 

separate HEK293T cell lines stably integrated with doxycycline-inducible Ribo-STAMP and 103 
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APOBEC1-only expression vectors. Editing found in Ribo-STAMP samples represents ribosome 104 

association with transcripts, and those in APOBEC1-only samples represent the editing profile of 105 

the enzyme alone. We generated PacBio-compatible long-read cDNA sequencing libraries from 106 

these cell lines induced with doxycycline for 72 hours and sequenced three replicates each for 107 

LR-Ribo-STAMP and long-read APOBEC1-only. A comparative analysis using long-read data 108 

revealed similar numbers of mapped reads across samples, but APOBEC1-only samples showed 109 

less editing than LR-Ribo-STAMP, leading to larger average EditsCs in LR-Ribo-STAMP across 110 

replicates (Supplemental Figure 1D-G).  111 

After filtering for genes having at least 20 reads for all replicates in LR-Ribo-STAMP and 112 

long-read APOBEC1-only samples, we quantified editing for 428 genes which contained 113 

adequate read counts and quantifiable editing and found enriched editing in LR-Ribo-STAMP over 114 

long-read APOBEC1-only samples (Fig 2A). Because the cells are unperturbed in both sample 115 

types, we expected the difference in signal to stem primarily from differences in editing levels 116 

rather than differential gene expression. Using principal component analysis (PCA), we observed 117 

distinct clustering of LR-Ribo-STAMP and long-read APOBEC1-only samples by EditsC as 118 

opposed to reads per kilobase per million (RPKM), calculated from the long reads, confirming 119 

editing levels to be the causative factor (Fig 2B).  120 

To assess the agreement between Ribo-STAMP data generated with long-read and short-121 

read sequencing, we compared our gene-level quantifications from LR-Ribo-STAMP (measured 122 

as EditsC) against short-read Ribo-STAMP (measured as edits per kilobase per million, or EPKM) 123 

quantified in our group’s earlier publication (Brannan et al., 2021). Pearson’s correlation was used 124 

to assess the agreement and we confirmed statistically significant and positive concordance 125 

between the two datasets (R=4.09 x 10-1, P=2.36 x 10-48) (Fig 2C). Furthermore, we explored the 126 

possibility that LR-Ribo-STAMP’s accumulation of ribosome association information over time 127 

might correlate to protein production levels, a connection not previously studied with short-read 128 

Ribo-STAMP data. Correlation between the gene-level quantification from long-read data and 129 
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previously published mass spectrometry data for steady-state HEK293T cells (Hegazi et al., 2022) 130 

showed a stronger positive correlation in LR-Ribo-STAMP samples (R=4.03 x 10-1, P=7.53 x 10-131 

14), relative to long-read APOBEC1-only, suggesting that LR-Ribo-STAMP is a useful proxy for 132 

protein abundance (Fig 2D, Supplemental Figure 1H).  133 

In addition to background signals stemming from SNPs and native RNA editing, RNA-134 

base editing-mediated technologies are susceptible to spurious editing and biases of the rBEs 135 

they fuse to (Medina-Munoz et al., 2024). While this background may be less of an issue when 136 

comparing editing of the same gene or isoform across conditions where relative changes are 137 

more discernable, they become more confounding when comparing editing between different 138 

genes and isoforms in unperturbed conditions. To address this background, we performed linear 139 

regression using EditsC calculated for LR-Ribo-STAMP and long-read APOBEC1-only samples 140 

to identify genes with the highest signal-to-background ratio. We found 141 genes after 141 

thresholding with a standard deviation threshold of 1 for residual values (Fig 2E).  Gene Ontology 142 

analysis showed that these genes had a higher association with RNA processing, translation, and 143 

cell cycle processes, as may be expected of proliferating cells in unperturbed conditions, unlike 144 

the top genes identified only by LR-Ribo-STAMP EditsC ranking (Fig 2F, Supplemental Figure 145 

1I). These results suggest that the linear model effectively identifies genes with strong signals. 146 

Overall, LR-Ribo-STAMP demonstrates positive substantial concordance with previously 147 

benchmarked short-read Ribo-STAMP data and can effectively profile gene-level translation 148 

quantification and potentially protein production in unperturbed cells.  149 
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Figure 2: Long-read Ribo-STAMP profiles translation at the gene level with good 
concordance with short-read data. (A) Signal detection (EditsC) across replicates of LR-Ribo-
STAMP and long-read APOBEC1-only samples at the gene level. (B) PCA plot showing clustering 
of LR-Ribo-STAMP (gold) and long-read APOBEC1-only (green) samples based on gene-level 
RPKM (gene expression, left) and EditsC (editing, right) metrics. (C) Spearman’s Rank correlation 
of LR-Ribo-STAMP EditsC computed from long-read sequencing data and Ribo-STAMP EPKM 
computed from short-read sequencing data. (D) Spearman’s Rank correlation of LR-Ribo-STAMP 
and Mass spectrometry data collected from unperturbed HEK293T cells. (E) Results from a linear 
model built using gene-level EditsC from LR-Ribo-STAMP and long-read APOBEC1-only. The 
results delineate genes with high signal (orange) over the background (pink). (F) Gene Ontology 
enrichment of genes with high signal as designated by the linear model, ranked by -log10(P value). 

 
Long-Read Ribo-STAMP Profiles mRNA Isoform Translation in Unperturbed Cells 150 
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As potentially the first technology for concurrent transcription and translation 151 

measurements, we assessed if LR-Ribo-STAMP can indeed profile mRNA isoform translation at 152 

isoform-level resolution. To do so, we focused on annotated isoforms with at least 20 long reads 153 

across all replicates regardless of isoform length and called edits (Supplemental Table 1). We 154 

quantified editing for 405 annotated mRNA isoforms. We observed higher levels of editing in LR-155 

Ribo-STAMP than long-read APOBEC1-only samples (Supplemental Figure 2A), consistent 156 

with gene-level results. Using LR-Ribo-STAMP, we were able to successfully quantify EditsC for 157 

two isoforms (labeled A or B for convenience) of the same gene for 31 genes (Fig 3A). Ordering 158 

mRNA isoforms of those 31 genes by translation levels highlighted two isoforms of PCNP: a 159 

protein-coding isoform with higher editing and expression than an isoform predicted to be 160 

subjected to nonsense-mediated-decay (NMD) (Fig 3B, Supplemental Figure 2B). This aligns 161 

with NMD’s association with transcript degradation and inhibited translation (Nickless et al., 2017) 162 

and highlights LR-Ribo-STAMP’s ability to profile multiple types of mRNA isoforms.  163 

After ranking all isoforms by LR-Ribo-STAMP EditsC, we categorized the top and bottom 164 

quartiles as high and low translation isoforms, respectively. Subsequently, our analysis focused 165 

on contrasting isoform features that affect translation amongst these groups. There were 299 166 

genes represented in the high translation category, and 293 genes in the low translation category. 167 

This approach was adopted as a means to confirm the efficacy of LR-Ribo-STAMP in quantifying 168 

isoform-level translation in the absence of established techniques that profile isoform-level 169 

translation with long-read sequencing. Initially, we aimed to limit the analysis to genes with 170 

multiple isoforms represented in the dataset. However, this proved impractical due to the small 171 

number of isoforms and less differentiated EditsC profiles (Supplemental Figure 2C), which 172 

hampered meaningful statistical analysis. Therefore, we broadened our analysis to include 173 

isoforms of all genes. We placed emphasis on untranslated regions (UTRs) which are known to 174 

have regulatory significance in translation, but have historically been challenging to characterize 175 

using short-read sequencing (Hinnebusch et al., 2016).  176 
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In the 5’UTR, we examined differences in length, GC content, and upstream open reading 177 

frame (uORF) prevalence between high and low translation isoforms. While the 5’UTR lengths 178 

did not significantly differ (Wilcoxon Rank Sum, P=4.11 x 10-1), low translation isoforms had 179 

statistically significantly higher GC content (Wilcoxon Rank Sum, P=7 x 10-3) (Fig 3C-D). Using 180 

TISdb (Wan & Qian, 2014) to obtain predicted uORFs, we found that a statistically significantly 181 

higher proportion of low translation isoforms contained predicted uORFs compared to high 182 

translation isoforms (Chi-squared test, P=1.5 x 10-3) (Fig 3E). These observations largely agree 183 

with canonical translation models (Calvo et al., 2009; Leppek et al., 2018; Pelletier & Sonenberg, 184 

1985). In the 3’UTR, we assessed length, microRNA (miRNA) binding sites, and RNA-binding 185 

protein (RBP) binding site prevalence. Lowly translated isoforms had statistically significantly 186 

longer 3’UTRs (Wilcoxon Rank Sum, P=7.14 x 10-9) (Fig 3F). This is expected as longer 3’ UTRs 187 

often contain sequences recognized by regulatory elements that impact transcript stability, 188 

localization, and translation. miRNA binding sites and RBP motifs are two such features. After 189 

overlapping predicted miRNA binding sites from TargetScan (Agarwal et al., 2015) with data from 190 

LR-Ribo-STAMP, we found that a statistically significantly higher proportion (Chi-squared test, 191 

P=3.48 x 10-17) of lowly translated isoforms contained miRNA binding sites (Fig 3G) in 192 

concordance with previous studies (Oliveto et al., 2017). Focusing on a subset of RBPs selected 193 

based on having potential implications in translation, EIF4A (Chi-squared test, P=1 x 10-6) and 194 

RBFOX2 (Chi-squared test, P=5 x 10-6) motifs were statistically significantly more prevalent in 195 

lowly translated isoforms (Fig 3H, Supplemental Figure 2D-E). In summary, LR-Ribo-STAMP is 196 

the first method to use long-read sequencing to concurrently profile mRNA translation, enhancing 197 

our ability to effectively profile translation of mRNA isoforms to extract regulatory features of 198 

translation regulation.  199 
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Figure 3:  Long-read Ribo-STAMP can profile translation at the mRNA isoform level for 
cells in an unperturbed state. (A) Heatmap showing EditsC quantified in long-read APOBEC1-
only and LR-Ribo-STAMP samples for two mRNA isoforms of the same gene. (B) LR-Ribo-
STAMP EditsC and mRNA isoform expression for two isoforms, PCNP-201 (ENST00000265260, 
protein-coding) and PCNP-202 (ENST00000460231, NMD), of the gene PCNP. (C) Comparison 
of 5’ UTR length of highly versus lowly translated mRNA isoforms. (D) Comparison of highly 
translated 5’ UTR GC content versus lowly translated mRNA isoforms. (E) The contingency table 
used to analyze the differences in the proportion of isoforms having uORFs between highly and 
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lowly translated isoforms. (F) Comparison of 3’ UTR length of highly versus lowly translated 
isoforms. (G-H) Comparative analysis of the different proportions of isoforms having (G) miRNA 

binding sites and (H) RBP motifs in the 3’UTR sequence between highly versus lowly translated 

isoforms. Significance is denoted as: *** for P ≤ 0.001, ** for P ≤ 0.01, * for P ≤ 0.05. 

 
Long-read Ribo-STAMP discovers differential gene-level translation and transcription in 200 

hypoxic conditions 201 

We next applied LR-Ribo-STAMP to discover changes in mRNA translation upon 202 

perturbation of cellular states. We used the MDA-MB-231 triple-negative breast cancer (TNBC) 203 

cell line after 48 hours of treatment with CoCl2, a commonly used hypoxia mimetic that blocks 204 

degradation of HIF1A, a transcription factor that regulates hypoxia-inducible genes (Masoud & Li, 205 

2015; Tripathi et al., 2019). We designed the treatment to mirror the physiological conditions of 206 

prolonged hypoxia found in solid tumors in which cancers such as TNBC exhibit adaptive 207 

responses, including invasiveness and mortality (Zarrilli et al., 2020).  208 

Our gene-level analysis identified 6,242 genes having LR-Ribo-STAMP editing and at 209 

least 20 long reads in control normoxia and hypoxia conditions across replicates. We did not 210 

observe any significant global changes in translation across genes post-treatment (Wilcoxon 211 

Rank Sum, P=1.01 x 10-1), consistent with results from a surface sensing of translation (SUnSET) 212 

assay (Schmidt et al., 2009) (Fig 4A), with equal loading (Supplemental Figure 3A). These 213 

observations align with previous studies showing that cancer cells are primarily glycolytic 214 

regardless of oxygen availability and, therefore, less sensitive to hypoxia than healthy cells 215 

(Shiratori et al., 2019). Correlation of gene-level LR-Ribo-STAMP EditsC across replicates shows 216 

good reproducibility and correlation of changes in expression and translation following treatment, 217 

reflecting a tight co-regulation of transcription and translation (Supplemental Figure 3B-C).   218 

We then analyzed variations in the expression and translation of HIF1A between normoxia 219 

and hypoxia. The western blot showed an accumulation of HIF1A following hypoxia, in line with 220 

previous studies that have shown stabilization of HIF1A protein under hypoxia conditions (Epstein 221 
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et al., 2001; Muñoz-Sánchez & Chánez-Cárdenas, 2019). While transcriptional changes of HIF1A 222 

following CoCl2-induced hypoxia are not well studied, especially under prolonged conditions, we 223 

observed an overall decrease in expression and translation but a slight increase in TE, the ratio 224 

of EditsC to RPKM (Supplemental Figure 3D-E). Gene Ontology enrichment analysis on 225 

translationally upregulated and downregulated genes showed the enrichment of categories 226 

associated with cellular adaptation to oxygen-depletion conditions (Adzigbli et al., 2022; Lee et 227 

al., 2020; Mao et al., 2024).  Translationally upregulated genes reflected the use of alternate 228 

pathways like anaerobic respiration to maintain cellular energy and function. Translationally 229 

downregulated genes reflect reduced cellular activity and energy conservation (Fig 4B).  230 

There is a known switch in hypoxia-associated protein synthesis machinery where 231 

hypoxia-inducible factors recruit a hypoxic complex, including EIF4E2, but not EIF4E, to the 5’ 232 

cap of the 3’UTR at transcripts containing RNA hypoxia-responsive elements (Melanson et al., 233 

2017; Uniacke et al., 2012). Therefore, we focused on EIF4E and EIF4E2 to observe an example 234 

of a specific shift in cellular pathways following hypoxia. Notably, we observed the switch in 235 

expression and a statistically significant switch in translation from EIF4E (two-sample t-test, P=4.6 236 

x 10-2) to its homolog EIF4E2 (two-sample t-test, P=3 x 10-3) following hypoxia (Fig 4C). We also 237 

identified that the CISD1 gene which harbored no mRNA expression changes showed increased 238 

translation (two-sample t-test, P=3 x 10-3), and increased TE differences (Fig 4D, Supplemental 239 

Figure 3F). CISD1 has previously been shown to promote the proliferation of cancer cells, 240 

associated with poor survival, and suggested as a prognostic for breast cancer (F. Liu et al., 2022; 241 

Mittler et al., 2019; Sohn et al., 2013). Overall, LR-Ribo-STAMP effectively profiles differential 242 

translation at the gene level revealing critical shifts in regulatory molecules. 243 
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Figure 4: Long-read Ribo-STAMP can profile changes in translation at the gene level for 
cells in disease state. (A) SUnSET assay and global quantification of LR-Ribo-STAMP EditsC 
at the gene level for normoxia (NT) and hypoxia (CoCl2) treatment conditions. (B) Gene Ontology 
analyses of genes having higher (left) and lower (right) LR-Ribo-STAMP EditsC following hypoxia. 
(C) LR-Ribo-STAMP EditsC and RPKM of EIF4E and EIF4E2 in normoxia and hypoxia. (D) LR-
Ribo-STAMP EditsC and gene expression of CISD1. Significance is denoted as: *** for P ≤ 0.001, 
** for P ≤ 0.01, * for P ≤ 0.05. 

 
 
Long-read Ribo-STAMP assesses changes in transcription and translation at mRNA 244 

isoform resolution in hypoxic conditions 245 

Given that translatome analyses in disease models have been largely confined to the gene 246 

level, LR-Ribo-STAMP provides an avenue for discovering mRNA isoforms sensitive to changes 247 

in cellular state. We called edits across the transcriptome (Supplemental Table 2) and applied 248 

hierarchical clustering and Ward’s method to identify five distinct clusters based on expression 249 

and translation changes of 5,173 isoforms, all having at least 20 long reads across replicates and 250 

conditions (Fig 5A).  There were 490 genes with multiple mRNA isoforms represented in this 251 
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group, although all genes were used for downstream analysis to ensure robust statistical 252 

comparisons.  253 

Based on LR-Ribo-STAMP EditsC and differential expression analyses completed using 254 

the long-read data, we observed a strong and global positive correlation between changes in 255 

isoform expression and translation (Supplemental Figure 4A). However, clustering enabled 256 

cluster-specific association with Gene Ontology terms and delineation of isoforms exhibiting 257 

changes in both expression and translation versus translation only. Cluster 1 showed unchanged 258 

expression but increased translation and association with respiration and electron transport chain 259 

terms, while Cluster 2 showed increases in both and association with metabolic process terms. 260 

Cluster 3 had variable translation changes without expression alterations and association with 261 

transcription terms, Cluster 4 had decreased translation with no expression change and 262 

association with cell cycle terms, and Cluster 5 saw decreases in both expression and translation 263 

and association with transport and localization terms. (Fig 5B-C). Notably, the Gene Ontology 264 

terms across clusters were consistent with cellular adaption to oxygen-depletion conditions. 265 

Knowing the regulatory potential of UTR regions, we examined attributes of the 5’ and 3’ 266 

UTRs and their associations with translation profiles. Based on the top enriched motif for each 267 

group found by motif enrichment analysis of 5’UTR and 3’UTR sequences for each cluster, we 268 

found distinct sequences associated with the different clusters of mRNA isoforms (Fig 5D). 269 

Specifically, Cluster 2’s 5’UTR motif AUUUUUUU resembled the binding site of the transcription 270 

factor, MAFF, known to be induced by HIF-1 under hypoxia conditions and promote disease 271 

progression by increasing invasive and metastatic behavior in tumor cells (Moon et al., 2021) 272 

(Supplemental Figure 4B).  The CCCAGG transcriptional motif in Cluster 2, similar to those in 273 

Clusters 3 and 5, resembled the motif of EBF1, a highly expressed transcription factor in TNBC 274 

cells that directly interacts with HIF1A to suppress its activity (Qiu et al., 2022) (Supplemental 275 

Figure 4C).  276 
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Additionally, we examined hypoxia-induced inhibition of the MTOR pathway (Arsham et 277 

al., 2003), which is known to translate mRNAs with 5’TOP motifs preferentially. While we did not 278 

observe a global translation change in all isoforms with 5’TOP motifs, specific isoforms like a 279 

select one of HSP90AB1, regulated by mTORC1 and containing a TOP motif, showed reduced 280 

translation (Thoreen et al., 2012). We also investigated changes in the translation of isoforms 281 

containing hypoxia response elements (HREs) in the 5’UTR. Isoforms containing HREs are 282 

expected to increase in hypoxic conditions (Harris, 2002). We did not observe a global change in 283 

all isoforms with HREs. However, specific isoforms, such as that of MIF, which have reportedly 284 

been upregulated by hypoxia in breast cancer cell lines (Bando et al., 2003), showed increased 285 

translation following hypoxia (Fig 5E). The lack of global changes seen in isoforms containing 286 

5’TOP motifs or HRE elements likely has to do with cancer cells already being in a glycolytic state, 287 

as mentioned before. 288 

Lastly, we explored the role of alternative splicing (AS), intending to connect changes in 289 

the transcriptome to changes in the translatome. AS is a mechanism centrally placed between 290 

transcription and translation and can determine transcriptome and translatome complexity 291 

through the inclusion or exclusion of exons and introns. AS analysis using the LR-Ribo-STAMP 292 

data revealed an alternative transcription termination site (ATTS) enrichment between normoxic 293 

and hypoxic conditions (Fig 5F-G). In our examination of genes that demonstrate changes in 294 

ATTS following hypoxia, we focused on GRK6. GRK6 is a member of the G protein-coupled 295 

receptor kinase (GRK) family previously implicated in inducing HIF-inducible factor activity in lung 296 

adenocarcinoma (Yao et al., 2021). Our analysis uncovered previously unrecognized significant 297 

shifts in translation of the isoforms resulting from varying ATTS usage following hypoxia. The 298 

ATTS usage manifests as two distinct mRNA isoforms: the shorter GRK6-206 299 

(ENST00000507633) and longer GRK6-201 (ENST00000355472). Under hypoxic conditions, we 300 
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predominantly see enhanced expression and translation of GRK6-206, whereas GRK6-201 sees 301 

a reduction in both (Fig 5H, Supplemental Figure 4D). We confirmed this result by western blot 302 

analysis (Supplemental Table 3) that shows increased protein abundance of the shorter GRK6-303 

206 protein isoform in comparison to the longer GRK6-201 protein after 48h of hypoxia (Fig 5I). 304 

Notably, the GRK6-206 isoform lacks an AGC kinase domain when translated. The AGC kinase 305 

domain is critical for GRK proteins to properly phosphorylate G protein-coupled receptors 306 

(GPCRs), which have been linked to tumor growth and metastasis (Dorsam & Gutkind, 2007; 307 

Pearce et al., 2010). This example illustrates the complex interplay between AS, transcription, 308 

and translation in a disease context. Overall, LR-Ribo-STAMP effectively elucidates the 309 

relationship between independent changes in transcription and translation at mRNA isoform 310 

resolution in disease modeling contexts. It also points to potentially critical regulatory elements 311 

and switches in mRNA isoform transcription and translation that can inform the discovery of new 312 

mechanisms.  313 
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Figure 5:  Long-read Ribo-STAMP can profile changes in translation at the mRNA isoform 
level for cells in disease state. (A) Hierarchical clustering of mRNA isoforms based on LR-Ribo-
STAMP EditsC and RPKM metrics. The color bar indicates correlations, and the annotations 
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indicate clusters. (B) Gene Ontology enrichment analysis by cluster. (C) Cluster-specific changes 
in isoform translation (log2(EditsC fold change)) versus change in expression (log2(expression 
fold change)) following hypoxia. (D) The top enriched motif found in 5’UTR (top) and 3’UTR 
(bottom) sequences for isoforms in each cluster. (E) Translation in normoxia and hypoxia 
conditions for mRNA isoforms containing 5’TOP motifs (left) and HSEs (right). (F) Splicing event 
enrichment following hypoxia. (G) Differences in isoform fraction usage (DIF) versus change in 
translation following hypoxia. (H) Long-read Ribo-STAMP of EditsC (left) and isoform expression 
(RPKM) (right) of GRK6-206 (ENST00000507633) and GRK6-201 (ENST00000355472) mRNA 
isoforms. (I) Western blot of the protein isoforms that result from GRK6-206 (55 kDa) and GRK6-
201 (66 kDa), at 0h and 48h of hypoxia. Values are normalized against the 0h timepoint. 
Significance is denoted as: *** for P ≤ 0.001, ** for P ≤ 0.01, * for P ≤ 0.05. 

 
DISCUSSION 314 

Long-read sequencing platforms have enabled a level of transcriptome discovery that was 315 

previously challenging to obtain, significantly enhancing our appreciation of the diversity of 316 

alternative mRNA isoforms (Amarasinghe et al., 2020; Marx, 2023). Long-read platforms continue 317 

to improve in throughput, accuracy, and accessibility, and with the emergence of single-cell long-318 

read sequencing, they are increasingly combined with other technologies like CRISPR-Cas9, 319 

ATAC-seq, and STAMP (Brannan et al., 2021; Hu et al., 2023; Simpson et al., 2023). This 320 

integration is unlocking new avenues to explore complex biological phenomena. Despite this, 321 

transcriptome-wide analysis of translation with full-length mRNA isoform sensitivity remains 322 

challenging due to the incompatibility of current state-of-the-art translation profiling methods with 323 

long-read sequencing.  324 

To address this, we developed an experimental and computational framework featuring 325 

long-read sequencing with Ribo-STAMP (LR-Ribo-STAMP) to acquire transcription and 326 

translation information with mRNA isoform resolution simultaneously. Using a specialized 327 

platform-agnostic computational pipeline to filter for signal, we showcase the effectiveness of LR-328 

Ribo-STAMP in scalable profiling of transcription and translation at both gene and mRNA isoform 329 

levels using RNA editing in long reads as a proxy for ribosome association (Fig 1).  We observed 330 

a positive correlation in gene-level editing quantification between Ribo-STAMP data acquired with 331 
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short-read and long-read sequencing platforms, illustrating that the technology can be used to 332 

profile gene and isoform translation in unperturbed cells, and suggested that LR-Ribo-STAMP 333 

readouts may be used as a proxy for protein abundance (Fig 2-3). When applied to evaluate 334 

differences in normoxia versus hypoxia states, LR-Ribo-STAMP effectively captures variations in 335 

transcription and translation. By simultaneously profiling translation and transcription, we could 336 

link specific translation and transcriptional profiles to specific biological processes, identify critical 337 

sequence elements in UTRs, and map them to regulatory elements. By tying AS changes to 338 

mRNA isoform translation, we identified GRK6, which exhibited a hypoxia-induced shift to an 339 

mRNA isoform that generates a protein isoform lacking a critical protein domain, demonstrating 340 

the importance of understanding the interplay between transcription and translation (Fig 4-5).  341 

Our method represents a notable advance in the field by enabling quantification of 342 

translation at both gene and isoform levels, a capability beyond that of established gold standard 343 

methods and short-read Ribo-STAMP. Despite this, however, LR-Ribo-STAMP confronts 344 

challenges associated with long-read sequencing and RNA-mediated editing technology 345 

platforms. The ability to simultaneously measure translation and transcription is contingent upon 346 

having sufficient and cost-effective sequencing throughput, a hurdle yet to be fully overcome. 347 

However, recent advancements in high-throughput sequencing platforms, such as the Revio and 348 

PromethION, alongside new methods, such as PacBio’s Kinnex RNA kit which uses 349 

concatenation to increase throughput, show potential in addressing this challenge. In addition, 350 

LR-Ribo-STAMP requires accurate edit detection which depends heavily on the accuracy of the 351 

reads and the ability to minimize background editing and biases stemming from the fused editing 352 

enzyme. Recent advancements in sequencing accuracy, such as Oxford Nanopore Technology’s 353 

Q20+ chemistry, and an expanding selection of RNA editing enzymes (Medina-Munoz et al., 354 

2024) are helping to mitigate this issue as well. Finally, a general limitation of Ribo-STAMP stems 355 

from the need to stably integrate the construct into the genome, which currently confines its use 356 
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to cell lines rather than tissues. However, with the anticipated development of an in situ-based 357 

method, we expect the application of this technology to extend to tissue samples in the future.  358 

With these improvements and the continued development of more specialized 359 

computational approaches for distinguishing signal from background in Ribo-STAMP datasets 360 

and expanded isoform annotations, LR-Ribo-STAMP will be increasingly influential for profiling 361 

the translatome and transcriptome complexity. This includes the ability to analyze rare and 362 

unannotated transcripts. The extensive data generated by this method is ideal for gleaning critical 363 

regulatory pathways and mechanisms and constructing context-specific translatome and 364 

transcriptome profiles. Short-read Ribo-STAMP has already been coupled with short-read single-365 

cell sequencing (Brannan et al., 2021). With advancements in long-read single-cell sequencing, 366 

there is untapped potential for LR-Ribo-STAMP to be used to profile transcriptional and 367 

translational heterogeneity at the single-cell level.  368 

METHODS 369 

Generation of stable Ribo-STAMP and APOBEC1-only HEK293XT cell line and sequencing 370 

data 371 

Plasmid construction, cell culture conditions and maintenance, and generation of doxycycline 372 

(dox)-inducible HEK293XT Ribo-STAMP (RPS2-APOBEC1) and APOBEC1-only stable cell lines 373 

were completed in accordance with methods outlined by Brannan et al. (2021). For stable cell 374 

Ribo-STAMP and APOBEC1-only protein expression, cells were induced with 1ug/mL dox for 375 

72h. Total RNA was isolated from technical triplicate samples of HEK293XT cells expressing 376 

Ribo-STAMP and APOBEC1-only constructs using TRIzol extraction and column purification 377 

using the Direct-zol Miniprep kit (Zymo Research). Poly(A) selection was completed using the 378 

Poly(A) mRNA Magnetic Isolation Module (NEB E7490L) and RNA quality was assessed using 379 

high-sensitivity RNA Tapestation (Agilent, 5067-5579). Long-read RNA-seq libraries were 380 

prepared using the PacBio Iso-Seq Express protocol (101-763-800) and PacBio SMRTbell 381 

Express Template Prep Kit 2.0 (100-938-900). Samples were barcoded using the PacBio 382 
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Barcoded Overhang Adapter Kit (101-791-700) and then pooled in an equimolar fashion. Samples 383 

were sequenced on a SMRT cell 8M with a 30-hour movie time on the PacBio Sequel II system.  384 

Generation of stable Ribo-STAMP MDA-MB-231 cell line normoxia and induced hypoxia 385 

sequencing data 386 

Plasmid construction of Ribo-STAMP (RPS2-APOBEC1) was completed in accordance with 387 

methods outlined by Brannan et al. (2021). MDA-MB-231s (ATCC, HTB-26) were transduced with 388 

the lentiviral Ribo-STAMP vector for 24 hours before treatment with Puromycin (2mg/ml). 389 

Following 48 hours of Puromycin selection, cells were sorted for the top 10% of mRuby-Ribo-390 

STAMP expressing cells on a BD Influx Cell Sorter. Cells with doxycycline-inducible Ribo-STAMP 391 

were expanded and then cultured in DMEM + 10% FBS (Gibco) containing 1ug/ml doxycycline to 392 

induce Ribo-STAMP expression and 100 uM cobalt (II) chloride (Sigma, 15862-1ML-F) to 393 

simulate hypoxia. Following 48 hours of DOX and cobalt (II) chloride treatment, cells were 394 

harvested from normoxia and induced hypoxia conditions. RNA was isolated for technical 395 

duplicate samples with TRIzol extraction and column purification using the Direct-zol Miniprep kit 396 

(Zymo Research). RNA quality was assessed using RNA screen tape (Agilent, 5067-5576). 397 

Poly(A) site selection was completed using the Poly(A) mRNA Magnetic Isolation Module (NEB 398 

E7490L). Long-read RNA-seq libraries were then prepared from extracted RNA using the 399 

SMRTbell prep kit v3.0 (102-141-700). Libraries were barcoded, pooled in an equimolar fashion, 400 

and sequenced using 2 8M SMRT cells with a 30-hour movie time on the PacBio Sequel IIe.  401 

SUnSET Assay 402 

MDA-MB-231 cells were treated with 100uM cobalt (II) chloride to induce hypoxia for 48 hours. 403 

Cells were then treated with 10ug/ml puromycin for 10 minutes and then subsequently processed 404 

for western blot analysis. To process the samples for western blot, cells were lysed in RIPA buffer 405 

(Sigma) with 200x protease inhibitor and quantified with the Pierce BCA protein quantification kit 406 

(Thermo Fisher Scientific, 23225). Lysates were run on a 4-12% NuPAGE Bis-Tris gel in NuPAGE 407 

MOPS running buffer (Thermo Fisher Scientific) and transferred to a PVDF membrane. The 408 
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membrane was first incubated in Ponceau stain to obtain total protein staining for SUnSET assay 409 

normalization. Then, the membrane was blocked in 5% nonfat milk in TBST for 30 minutes and 410 

incubated overnight at 4°C with the Mouse anti-Puromycin (clone 12D10, Millipore Sigma, 411 

MABE343) antibody. The membrane was washed 3 times for 5-minutes each time in TBST, 412 

incubated for 1 hour at room temperature in 5% nonfat milk in TBST with a horse radish 413 

peroxidase-conjugated anti-mouse secondary antibody (cell signaling, 7076), and was washed 3 414 

times for 5-minutes each time in TBST and developed using Pierce ECL western blotting 415 

substrate (Thermo Fisher Scientific, 32132).  416 

Western Blot 417 

MDA-MB-231 cells were treated with 100uM cobalt chloride II to simulate hypoxia for 24 or 48 418 

hrs and then lysed with RIPA buffer (Sigma Aldrich) containing Protease inhibitor (Thermo 419 

Fisher Scientific). Protein lysates were centrifuged to pellet and remove insoluble material and 420 

were then quantified using the Pierce BCA Kit. Protein lysates were run on a 4-12% NuPAGE 421 

Bis-Tris gel and transferred to a polyvinylidene fluoride (PVDF) membrane. Membranes were 422 

blocked in Tris-Buffered Saline containing Tween 20 (TBST) with 5% milk for 20 minutes and 423 

probed overnight at 4C with primary antibody (Rabbit pAB anti GRK6 (N terminal) Abcam Cat# 424 

ab244364, Rabbit mAB anti HIF-1a Cell Signaling Cat# 14179, Mouse mAB anti GAPDH 425 

Millipore Cat# MAB374). Membranes were washed 3 times for 5 minutes with TBST and then 426 

probed for 1 hour at room temp in TBST containing 5% milk with secondary antibody (Anti 427 

mouse IgG, HRP linked Cell Signaling Cat# 7076, Anti rabbit IgG, HRP linked Cell Signaling 428 

Cat# 7074) diluted 1:5000. Membranes were washed 3 times for 5 minutes with TBST and 429 

developed using Thermo Pierce ECL detection kits on an Azure Western Blot Imaging System. 430 

RNA-seq data processing, QC, and generation of counts matrices and isoform read 431 

assignments 432 

All data processing was completed using the Triton Shared Computing Cluster 433 

(https://doi.org/10.57873/T34W2R). Demultiplexed circular consensus sequence (CCS) reads 434 

 Cold Spring Harbor Laboratory Press on July 22, 2024 - Published by genome.cshlp.orgDownloaded from 

https://doi.org/10.57873/T34W2R
http://genome.cshlp.org/
http://www.cshlpress.com


 25 

obtained after sequencing were processed using the Iso-Seq v4 pipeline (Epstein et al., 2001) 435 

(https://isoseq.how/). First, full-length non-concatamer reads were generated using lima v2.9.0 436 

with parameters: --isoseq. Reads were then refined with Iso-Seq v4.0.0’s refine tool with 437 

parameters: --require-polya. Refined reads from HEK293XT and MDA-MB-231 samples were 438 

aligned to the GRCh37 and GRCh38 reference genomes, respectively, using pbmm2 v1.13.1 439 

align with parameters: --preset ISOSEQ. HEK293XT samples were aligned to GRCh37 to 440 

maintain consistency and comparability with analyses completed by Brannan et al. (2021). 441 

GRCh38 was used leverage the most updated, comprehensive, and widely accepted reference 442 

for this proof-of-concept study. 443 

The quality of aligned reads was assessed using NanoPlot v1.32.1(De Coster & Rademakers, 444 

2023) with parameters: --raw and --tsv_stats. Reads with a quality score below 20, as assessed 445 

by NanoPlot, along with unmapped reads, supplementary alignment reads, secondary alignment 446 

reads, and those aligned to the incorrect strand were excluded from the analysis 447 

(filter_bam_v2.py). Following read filtering, mRNA isoform-level counts matrices and read 448 

assignments were obtained using IsoQuant v3.3.0 (Prjibelski et al., 2023) with parameters: --449 

data_type pacbio, --transcript_quantification unique_only, and --gene_quantification unique_only. 450 

Reference genome GRCh37 and GENCODE comprehensive annotation GRCh37 (v19) were 451 

used for generating isoform counts for HEK293XT sample data and reference genome GRCh38 452 

and GENCODE comprehensive annotation GRCh38 (v38) were used for generating isoform 453 

counts for MDA-MB-231 samples. Read assignments (read_assignment.tsv) output from 454 

IsoQuant were used to assign individual mapped reads to isoforms. Counts matrices were used 455 

to calculate reads per kilobase of transcript per million mapped reads (RPKM). The RPKM was 456 

calculated in accordance with the following equation: RPKM = Number of Reads / (Gene 457 

Length/1000 * Total Reads/1000000). Mapped reads were determined using SAMtools v1.16 view 458 

(Danecek et al., 2021) with parameters: --count. Only genes and mRNA isoforms having at least 459 

20 reads across each replicate in each condition were considered for downstream analysis. 460 
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 Edit detection from aligned sequencing data 461 

To facilitate isoform-specific edit detection and allow for multi-processing, each sample’s aligned 462 

reads were divided into smaller groups. Each group contained a unique set of reads 463 

corresponding to one isoform of all genes, as assigned by the output of IsoQuant 464 

(split_bam_isoquant.py). Subsequently, the pileup method in pysam v0.21.0 was used to iterate 465 

through every base of every isoform, to determine the count of reads at a position containing a 466 

C-to-U edit and the total number of reads at those positions 467 

(read_level_quant_se_ct_annotated.py). Edits are associated with one of four categories: the full 468 

transcript, 5’ untranslated region, 3’ untranslated region, or the coding sequence (CDS). The 469 

coordinates of these regions were determined using the GENCODE comprehensive annotations 470 

for GRCh37 (v19) and GRCh38 (v38) for HEK293XT and MDA-MB-231 samples, respectively. 471 

Using the pileup method, we also associate an edited position with a read identifier.  472 

In this study, we focused exclusively on edits within the CDS. We identified and removed edits 473 

that were present in all replicates and conditions of each sample group. Additionally, edits 474 

overlapping with positions listed in the dbSNP database (Sherry et al., 2001), corresponding to 475 

the reference genome used, were also excluded from the analysis. The remaining edited positions 476 

were considered for downstream analysis (filter_edits_calc_editsC.py). 477 

Edit fraction, EditsC, and TE metrics for quantification 478 

To calculate the edit fraction at each position, the formula used is edit fraction = edited reads/total 479 

reads. EditsC represents the proportion of cytosines in a gene or mRNA isoform that undergo C-480 

to-U editing.  For determining the total count of cytosines, exon and UTR coordinates were curated 481 

at the gene and mRNA isoform levels using BEDtools (Quinlan & Hall, 2010) v2.29.2 merge with 482 

parameters: -s and -c 4,6. The sequences corresponding to these regions were then obtained 483 

using BEDtools v2.29.2 getfasta with the appropriate reference FASTA files and parameters: -484 

name and -s. The total number of cytosines was obtained for each gene or isoform by counting 485 
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the cytosines in the sequences. To calculate the translational efficiency (TE) of a gene or isoform, 486 

the formula used is TE = EditsC/RPKM.  487 

Downstream analysis of edit quantification 488 

Gene Ontology enrichment analyses were conducted using decoupleR v1.5.0 (Badia-i-Mompel 489 

et al., 2022) and the Biological Processes category. Replicate correlations were completed using 490 

Pearson’s R correlation via SciPy v1.11.4, while different sample type correlations were 491 

completed using Spearman’s Rank correlation with the same package. Visualization of editing, 492 

gene expression, mRNA isoform expression, and reference annotations was done using the 493 

Integrative Genomics Viewer (IGV) v2.14.1 (Robinson et al., 2011).  494 

For HEK293T cell samples, linear regression at gene and mRNA isoform levels was performed 495 

using statsmodels v0.14.0, with a standard deviation threshold of 1 for residual values. For 496 

comparative analysis of short-read and long-read Ribo-STAMP data, short-read Ribo-STAMP 497 

data was acquired from GSE155729. To compare LR-Ribo-STAMP EditsC vales with mass 498 

spectrometry data, we obtained label-free quantification (LFQ) intensity values from the LR-Ribo-499 

STAMPProteomXchange Consortium and dataset identifier PXD020630. We calculated the 500 

average LFQ intensity values across all wild-type HEK293T samples to compare against EditsC 501 

values computed from LR-Ribo-STAMP. Following this, high and low translation isoforms were 502 

categorized based on LR-Ribo-STAMP EditsC, with the top and bottom quartiles corresponding 503 

to high and low translation. UTR lengths and were derived from GENCODE comprehensive 504 

annotation GRCh37 (v19), and Wilcoxon Rank Sum (SciPy v1.11.4) was used to assess group 505 

differences. Overlaps of 5’UTR sequences with predicted uORFs obtained from TISdb (Wan & 506 

Qian, 2014) and 3’UTR sequences with predicted binding sites from TargetScan (Agarwal et al., 507 

2015) were identified using BEDtools v2.29.2 intersect with default parameters. Published RBP 508 

motifs (Riley et al., 2014) were obtained and exact matches were searched for in 3’UTR 509 

sequences. Chi-squared tests were implemented using SciPy v1.11.4. 510 
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For MDA-MB-231 samples, a two-tailed t-test (SciPy 1.11.4) was used to compare normoxia and 511 

hypoxia conditions at gene and isoform levels. Significant changes in translation were designated 512 

as genes or isoforms with P≤0.05 and |(log2(EditsC hypoxia/EditsC normoxia)| ≥1. Following 513 

differential gene and isoform expression analysis with DESeq2 v1.39.3 with count matrices 514 

obtained from IsoQuant, significant changes in expression were designated as genes or isoforms 515 

having an adjusted P≤0.05 and |log2(expression hypoxia/expression normoxia)| ≥1. Clustering of 516 

mRNA isoforms based on transcription and translation measurements was completed using 517 

Ward’s method. UTR sequences of each cluster were analyzed for enriched motif sequences 518 

using MEME v5.3.0 (Bailey & Elkan, 1994). TomTom v5.5.5 (Gupta et al., 2007) was used to 519 

identify known motifs with strong similarity to those identified in the clusters. Presence or absence 520 

of sequence elements such as 5’TOP motif and HRE were determined by looking for exact 521 

sequence matches. Differences in LR-Ribo-STAMP EditsC between normoxia and hypoxia for 522 

each group were determined based on Wilcoxon rank sum, implemented with Python package 523 

SciPy 1.11.4. Alternative splicing analysis was performed on normoxia and hypoxia sequencing 524 

data using R package (R Core Team, 2023) IsoformSwitchAnalyzer v2.2.0 (Vitting-Seerup & 525 

Sandelin, 2019).  526 
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