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Recent advances in genomics, coupled with a unique population structure and remarkable levels of variation, have propelled

the domestic dog to new levels as a system for understanding fundamental principles in mammalian biology. Central to this

advance are more than 350 recognized breeds, each a closed population that has undergone selection for unique features.

Genetic variation in the domestic dog is particularly well characterized compared with other domestic mammals, with al-

most 3000 high-coverage genomes publicly available. Importantly, as the number of sequenced genomes increases, new

avenues for analysis are becoming available. Herein, we discuss recent discoveries in canine genomics regarding behavior,

morphology, and disease susceptibility. We explore the limitations of current data sets for variant interpretation, tradeoffs

between sequencing strategies, and the burgeoning role of long-read genomes for capturing structural variants. In addition,

we consider how large-scale collections of whole-genome sequence data drive rare variant discovery and assess the geo-

graphic distribution of canine diversity, which identifies Asia as a major source of missing variation. Finally, we review

recent comparative genomic analyses that will facilitate annotation of the noncoding genome in dogs.

[Supplemental material is available for this article.]

The domestic dog has increasingly been recognized as a uniquely
informative model system. Dogs are divided into more than 350
breeds recognized worldwide by organizations such as the
Fédération Cynologique Internationale (FCI; https://www.fci.be/
en/) and American Kennel Club (AKC) (Rogers and Brace 1995;
Fogle 2000;https://www.akc.org). Therealso exists anuntoldnum-
ber of nonbreed, geographically defined populations, often referred
to as village dogs, that are not under human selection but thatmake
upmost of theworld’s dog populations (Boyko et al. 2009; Shannon
etal. 2015). Studiesofbothbreedandvillagedogshavegeneratedex-
citing opportunities to identify genetic mechanisms underlying
bothmorphological and behavioral traits, aswell as genetic variants
associated with disease, aging, and domestication.

Dogs were domesticated from wolves over a very short evolu-
tionary time, with recent estimates suggesting 15,000–40,000
years before the present (Skoglund et al. 2015; Perri et al. 2021;
Bergström et al. 2022). Although the timing, location, and number
of primary domestication events remain topics of debate
(Savolainen et al. 2002; Larson et al. 2012; Frantz et al. 2016,
2020; Sinding et al. 2020; Bergström et al. 2022), most recent anal-
yses are consistent with a dual origin of domestication from east
and west Eurasia that continues to shape the population structure
of modern dogs today (Bergström et al. 2022).

Breed-associated differences in morphology and behavior
have garnered particular interest and are often included in “breed
standards,” which are the ideal set of characteristics that define
each breed. The stringent criteria and closed breeding practices
set for each breed suggests that breed standard traits are highly her-
itable. Such traits are often synonymouswith a breed, like the spot-
ted coat of the Dalmatian, but can also be more nuanced, like the
requirement that every Norwegian Lundehund have a minimum
of six toes. Much harder to study are well-recognized stereotypic

dog behaviors (e.g., herding, pointing) and personality traits
(e.g., protective, affable, stubborn, etc.) (MacLean et al. 2019;
Dutrow et al. 2022; Morrill et al. 2022; Salonen et al. 2023). This
is largely because of variability in presentation, a lack of quantifi-
ablemetrics, complexunderlyinggenetics, and thedegree towhich
such phenotypes are truly breed traits (Morrill et al. 2022). Herein,
we discuss recent advances in canine genomics, strategies for opti-
mizing canine genetic studies, and future perspectives.

Behavior and morphology in dogs

Interest in canine behaviors led to studies of stereotypic breed be-
haviors from the earliest stage of the canine genome project
(McCaig 1996). Although such studies were generally underpow-
ered, more recent analyses have readdressed some of the same
questions, yielding interesting results (Dutrow et al. 2022;
Morrill et al. 2022). Dutrow et al. (2022) collated genetic data
from more than 4000 canids, identifying 10 major genetic lineag-
es. They showed that the lineage membership of breeds was asso-
ciated with behavioral trait data collected from 46,000 dogs.
Further, lineage-specific variation was associated with genes in
neurodevelopmental coexpression networks, suggesting that the
accumulation ofmany small effect variants drove behavioral diver-
sification between breeds (Dutrow et al. 2022). Interestingly, the
investigators found that sheepdog-associated variation was en-
riched among genes with roles in axon guidance. Eight of the 14
identified axon-guidance genes were important in midline pat-
terning, suggesting a relationship between binocular vision and
motor behavior in sheepdogs. In comparison, Morrill et al.
(2022) paired survey and genotype data from large numbers of
pure and mixed breed dogs to measure the relationship between
breed and behavior. Although they found that many behavioral
traits had high heritability, breed composition itself had only a
modest value for predicting the behavior of any one dog. TheyCorresponding author: eostrand@mail.nih.gov
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conclude that modern breeds are defined by morphological and
not behavioral traits.

Most modern breeds were developed during Victorian times
and were formed on the basis of aesthetics, leading to striking dif-
ferences in breed morphology (Fogle 2000; Worboys et al. 2018).
Considerable effort has gone into identifying genes for body size
and shape, leg length, coat texture and color, skull shape, ear posi-
tion, and others (see the following and references therein, Plassais
et al. 2019; Bannasch et al. 2020; Brancalion et al. 2022). These re-
sults indicate a recurring theme in canine genetics: A small num-
ber of loci account for a large fraction of phenotypic variance.
For instance, fewer than 30 genes are responsible for >80% of the
variance in body size across breeds, supporting an earlier study
in which variation in just six genes accounted for ∼50% of body
size variation (Fig. 1A; Rimbault et al. 2013). Conversely, for com-
plex morphologic traits in humans, such as height, hundreds of
genetic variants often contribute to only a small fraction of pheno-
typic variance (Conery and Grant 2023). This difference speaks to
the strong artificial selection for morphological traits that dogs
have undergone, forcing single alleles to disperse rapidly through-
out a breed. It also means that genes for complex traits, such as
body shape and size, aremuch easier to identify in dogs than in hu-
mans owing to reduced genetic complexity (Boyko et al. 2010;
Hayward et al. 2016). As more dogs with individual-level pheno-
type data are included in such studies, additional loci contributing
to more nuanced parts of a phenotype will be found.

Disease gene studies in modern dogs

Strong selection formorphological andbehavioral traits is often ac-
companied by changes in disease susceptibility among one or a
small number of breeds sharing recent common ancestry. This
makes the study of breed-enriched disorders a major focus of com-
parative genomics communities. This area of investigation offers
theopportunity to solve theproblemof locusheterogeneity,which
has proven intractable in many human disorders (Ostrander et al.
2019a; Leeb et al. 2023). It should also be noted that research
into canine genetic diseases is a high priority not just for humans,
but for the49millionhouseholds in theUnitedStates alone that, in
aggregate, own 70 million dogs (U.S. Census Bureau and U.S.
Department of Housing and Urban Development 2021).

The importance of genetic analyses in dogs is reflected in the
growing market of direct-to-consumer tests available to dog own-
ers. To date, nearly 450 spontaneous diseases with suspected ge-
netic components have been described in dogs, with strong
support for at least 350 variants (Nicholas 2003). Although some
companies offer tests to predictmorphology, behavior, and disease
susceptibility, others focus on just the latter, with at least one com-
pany offering simultaneous testing for 270 diseases. Identification
of component ancestry for mixed breed dogs is also big business.
The widespread use of these tests is helping researchers to charac-
terize the broad population-based allele frequencies associated
with many diseases and to also help map new disease risk variants
(Donner et al. 2018, 2023; Kawakami et al. 2022).

Many heritable diseases in dogs have a similar clinical presen-
tation as the comparable human disorder (Kaur et al. 2023). For
instance, progressive retinal atrophy (PRA) is an umbrella term
referring to a group of heritable degenerative eye diseases in dogs
known to affect retinal photoreceptor cells, ultimately resulting
in blindness. Different presentations of the disease may be limited
to one or a small number of related breeds, inferring a strong genet-
ic component (Mellersh 2014; Hitti et al. 2019). Many forms of ca-

nine PRAmimic or present identically to retinitis pigmentosa (RP)
disorders in humans, which are often caused by variants in the
same genes (Bunel et al. 2019). However, in humans, variants in
more than 270 genes are associated with retinal dysfunction and
deterioration and more than one-third of cases remain unex-
plained (Martin-Merida et al. 2018), highlighting the ongoing
need for genetic studies of vision disorders in dogs. One additional
advantage of the dog genetic system is that some diseases can also
be found in small pedigrees, providing systems for the study of rare
human disorders, such as Stickler syndrome, a hereditary cataract
disorder found in the Old English sheepdog (Stanbury et al. 2023).
Also, progress in gene therapy suggests the dog has a considerable
amount to offer in the development of therapeutics (Tuohy and
Megaw 2021).

Studies of canine cancer are a particular focus as the clinical
presentation, histopathology, molecular features, and treatment
responses often mimic human cancers, and breed predispositions
suggest strong genetic components for risk (Knapp et al. 2015;
Megquier et al. 2019b; London et al. 2023). For instance, osteosar-
coma is observed at increased frequency in long-limbed breeds
such as the Scottish deerhound (OR 118.4, 95% CI 41.12–
340.95) and Great Dane (OR 34.24%–95% CI 17.8165.83)
(O’Neill et al. 2023). Importantly, recent studies have identified
dozens of contributing loci, highlighting the utility of the dog as
a genetic model (Simpson et al. 2020; Sarver et al. 2023).
Additional examples include Scottish terriers, which are at a 22-
fold increased risk for bladder cancer (Knapp et al. 2014), and his-
tiocytic sarcoma (HS), a lethal disease that affects 25% of Bernese
mountain dogs and 20% of flat-coated retrievers (Abadie et al.
2009; Dobson et al. 2009). Encouragingly, studies of HS have re-
cently been undertaken using multiomic approaches, revealing
that regulatory variants for PIK3R6 and TNFAIP6 explain 35% of
disease risk (Evans et al. 2021).

The study of tumorDNA facilitates canine precisionmedicine
and improves prognostic biomarkers (Chon et al. 2023). For exam-
ple, B cell lymphoma is the most common hematological malig-
nancy in dogs, accounting for ∼50%–60% of cancer cases (Avery
2020). Sequencing of lymphoma tumor DNA reveals recurrent
somatic mutation profiles in tumor-suppressor genes, such as
FBXW7. Somatic mutations in this gene are also associated with
shorter survival times in affected dogs (Fig. 1B; Elvers et al. 2015;
White et al. 2020). In humans, FBXW7 mutations are associated
with tumor promotion in multiple types of cancers. Moreover,
proteomic profiling of FBXW7 mutant tumors aids the identifica-
tion of potential downstream therapeutic targets, suggesting this
gene could provide a viable therapeutic target in dogs (Urick and
Bell 2020; Kawaguchi et al. 2021; Urick et al. 2021).

Sequencing strategies for large-scale genomic analyses

In the past 10 years, there has been a steady decrease in the cost
of short-read whole-genome sequencing (WGS) (Cullen and
Friedenberg 2023), facilitating an explosion in sequencing data
for domestic species (Fig. 2A; Supplemental Table S1). As a result,
the domestic dog now has almost 3000 high-coverage genomes
available to the public, powering large-scale genome analyses
and capturing a significant amount of canine genomic diversity
(Meadows et al. 2023). However, for most domestic species, low-
passWGS (coverage<5×) is the preferred strategy (Fig. 2B), as lower
sequencing costs allow for additional resources to be directed to-
ward bolstering sample sizes. This widely employed strategy is ef-
fective for population genetic analysis, demography studies, and

Buckley and Ostrander

2 Genome Research
www.genome.org

 Cold Spring Harbor Laboratory Press on July 22, 2024 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.278569.123/-/DC1
http://genome.cshlp.org/
http://www.cshlpress.com


genome-wide association studies (GWAS). When paired with im-
putation, the resolution of low-pass sequencing is vastly improved
(Rubinacci et al. 2021). In dogs, low-pass sequencing and imputa-
tion can achieve >95% genotyping accuracy for variants at 1% al-
lele frequency in reference populations (Meadows et al. 2023).
However, an important limitation relates to diversity of the refer-
ence panel, as samples whose ancestry is poorly represented
achieve lower accuracy rates (Buckley et al. 2022).

Recently, the improved accessibility and quality of genome
sequencing have profoundly affected the adoption of various se-
quencing strategies (Fig. 2C). Initially, genome sequencing was
only performed for a small number of cases and controls to identi-
fy potential functional variants within a candidate locus, usually
defined using array-based technologies. Now, larger data sets exist
that have powered mapping studies for breed standard traits and
led to the creation of WGS reference panels. Despite these im-
provements, harmonization of genomic data from a broad array
of sources remains challenging, and as a result, the community
has pivoted toward large-scale sequencing efforts (Fig. 2D).

Sequencing strategies will continue to update as new technol-
ogies become more accessible. Advances in long-read sequencing
make it possible to capture the complexities of individual-level

genome structure across human popula-
tions (Beyter et al. 2021). This technology
will improve detection of structural vari-
ants (SVs) and help to identify new geno-
type–phenotype relationships in dogs
(Chaisson et al. 2019; Mastrorosa et al.
2023), as SVs are already known to be a
majorcomponentof caninegenomicvar-
iation (Halo et al. 2021;Wang et al. 2021;
Meadows et al. 2023). Dog genomes also
have elevated levels of retrogene activity
and associations between SVs and mor-
phological variation have already been
characterized, such as an FGF4 retrogene
associatedwith chondrodysplasia (Parker
et al. 2009; Serres-Armero et al. 2021;Ban-
nasch et al. 2022; Batcher et al. 2022).
Alignment between multiple long-read
dog genome assemblies has led to the
identification of additional SVs of conse-
quence (Edwards et al. 2021; Wang et al.
2021; Nguyen et al. 2023). For example,
a heterozygous duplication of CYP1A2,
a gene involved in xenobiotic meta-
bolism, was found in the UU_CFam_
GSD_1.0 reference assembly of a donor
German shepherd dog, Mischka (Wang
et al. 2021). Although this duplication
was not associated with any change in
transcript abundance, potential pheno-
types may only be observable after a
drug challenge, owing to the inducible
nature of the gene (Graham et al. 2002).
Other long-read assemblies, each with
the potential to reveal new genetic vari-
ants, include an updated sequence of
the boxer Tasha (Jagannathan et al.
2021), two new basenji assemblies (Ed-
wards et al. 2021), an additional German
shepherd dog (Field et al. 2020), a Labra-

dor retriever (Player et al. 2021), and a Great Dane (Halo et al.
2021). Eventually, long-read sequencing will become common
practice in animal genomics, permanently altering sequencing
strategies and analysis techniques while capturing the full spec-
trum of variation within a single genome.

Large-scale sequencing efforts

The International Dog10K consortiumwas founded to create a sin-
gle high-quality data set representative of global canine breed
diversity (Ostrander et al. 2019b). Although samples were contrib-
uted by multiple consortium members, all sequencing and bioin-
formatic processing was performed using a uniform approach.
Altogether, the project encompasses 1987 genomes and is com-
posed of 1611 breed dogs from 321 distinct breeds (Meadows
et al. 2023). The overarching strategy was aimed at sampling as
many breeds and village dog populations as possible, as well as pre-
viously uncharacterized populations (Ostrander et al. 2019b). The
project also included 67 wild canids, most of which were wolves.
The final data set represents the largest single public release of
high-coverage canine WGS data to date, consisting of more than
48 million single-nucleotide, indel, and structural variants.

A

B

Border Terrier Rottweiler Irish Wolfhound

Figure 1. Genomic analyses help resolve the genetics of shared human–canine traits. (A)
Approximately 50% of variance in dog breed body size is explained by association at seven genetic mark-
ers. The figure shows several combinations of small and large body-size alleles contributing to the heights
of different breeds. Raw data provided by Rimbault et al. (2013). (B) Recurrent mutations in FBXW7 are a
feature of canine lymphoma and human cancer. The figure shows a single-amino-acid site, R470, which
accounts for 41% of all FBXW7 somatic mutations in a cohort of whole-exome-sequenced lymphoma
samples. Data obtained from UCSC, originally provided by Elvers et al. (2015).
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Other large-scale canine sequencing efforts include the
Darwin’s Ark Project and the Dog Aging Project, both of which
use low-pass WGS and imputation for genotyping, allowing these
projects to genotype many more samples at lower cost. The
Darwin’s Ark Project is focused on determining the genetic basis
of complex traits, including behavior. Thus far, the project reports
sequencing 2155 dogs and has collected survey data for more than
18,000 individuals (Morrill et al. 2022). The Dog Aging Project is a
longitudinal study aimed at collecting environmental, clinical,
and biochemical data on several thousand dogs and has plans to
sequence 10,000 dogs in total. The goal of the project is to investi-
gate how genetic and environmental factors contribute to aging
(Creevy et al. 2022).

Although Dog10K, Darwin’s Ark, and the Dog Aging Project
each consist of thousands of samples, they vary significantly in
terms of sequencing coverage, associated metadata, and sample
diversity. The Dog10K Project is designed with sufficient WGS
coverage levels to identify new variants, focusing sampling
efforts on previously uncharacterized breeds and populations.
One tradeoff of this approach is that sample metadata are
primarily restricted to breed standard metrics or geographical

data, limiting the scope of traits that can bemapped in this cohort.
Conversely, the Darwin’s Ark Project and Dog Aging Project limit
genotyping to known variants that are captured through imputa-
tion of low-pass sequence data. These projects also focus their sam-
pling efforts on pet dogs, allowing owners to fill out detailed
surveys on individual dogs, thereby facilitating investigation of
complex traits and gene-by-environment interactions.

A role for rare variation in canine genomics

To date, canine genomic research has prioritized analysis of com-
monover rarevariations in studiesof traitmapping, asbreed-specif-
ic population structure and selection history make it difficult to
assess the impact of raremutations. However, given thewell-estab-
lished role of rare variants in human disease, the field of canine ge-
netics is beginning to focus on rare variant discovery and
characterization (Halvorsen et al. 2021;Momozawa andMizukami
2021).

Rare variants are usually defined as having a minor allele fre-
quency (MAF) < 1%, whereas larger cohorts tend to define rare var-
iants at MAF<0.1%. One reason for classifying rare variants as

A B

C D

Figure 2. Illumina whole-genome sequences (WGSs) publicly released by animal genomics communities. (A) Number of samples per species sequenced
at depths between 20× and 40×. (B) Distribution of sequencing depths for six different domestic mammalian species. (C ) Public release of canine WGS
Illumina data from 2013 to 2024 on the NCBI Sequence Read Archive (SRA). Size of the data points represents the number of samples released within
a yearly quarter at a similar sequencing depth. Points are colored according to their listed NCBI BioProject in D. (D) The total number of samples released
for the nine largest canine WGS BioProjects.
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distinct from common is that their analysis requires alternative
statistical approaches. For example, rare variants are typically re-
moved fromGWAS, as allele counts for those sites are often under-
powered. A major challenge in canine genomics research is
determining whether variant allele frequency is predictive of vari-
ant age. Most rare variants in human populations are derived from
recent mutations, reflecting low levels of inbreeding in recent hu-
man history (Albers and McVean 2020; Ceballos et al. 2021). In
contrast, canine variant frequencies are less likely to be predictive
of variant age and are instead likely to be sensitive to population
sampling effects, reflecting the outcomes of recurrent population
bottlenecks, multiple admixture events, the use of popular sires,
and small founding populations (Karlsson et al. 2007; Freedman
et al. 2014, 2016). Consider, for example, a dog from an underrep-
resented breed within a large multibreed cohort. This dog’s ge-
nome will contain many rare variants, as defined by low MAF
within the larger cohort. Without sufficient representation of
this dog’s ancestry within the cohort, it is impossible to determine
which low MAF variants represent recent mutations versus those
that are common to the breed and only seem rare because the
dog’s ancestry is underrepresented. This need for precise classifica-
tion of rare variants has important outcomes for assessing selec-
tion effects acting upon genes. If rare variants are recent, their
distribution across coding sequences is expected to be the result
of gene mutability and evolutionary constraint, which together
cause genes with essential roles to be depleted of functional muta-
tions (Samocha et al. 2014). However, if variants only appear rare
owing to sample acquisition bias, their presence in the genome
may have persisted owing to population dynamics like drift or ar-
tificial selection rather than their impact on fitness. In these cases,
the accumulation of functional variation within a gene may be a
poor indicator of the gene’s importance.

To better characterize variant allele frequencies within dog
populations, we measured each Dog10K individual’s site frequen-
cy spectrum (ISFS) and then placed each dog into one of four
groups according to the skew of the resulting curve (Fig. 3A;
Supplemental Table S2). Groupings approximately represented
the ratio of rare to common variants, in which dogs from group
1 carried the lowest number of rare variants, and dogs from group
4 carried the highest. The types of dogs represented in each group
also varied (Fig. 3B). Most breed dogs belonged to group 1, indicat-
ing that most of their variants were shared across multiple breeds.
Dogs from group 2 and group 3, which hadmore rare variants than
group 1 dogs, made up ∼10% of breed dogs and ∼80% of village
dogs, which is indicative of the comparatively higher levels of ge-
netic diversity found in village dog populations (Shannon et al.
2015; Meadows et al. 2023). Finally, dogs belonging to group 4
were either wolves or wolf–dog hybrids and contained the highest
level of individual variation.

Another metric for evaluating canine variation is the number
of singleton variants per dog. Dogs with well-represented ancestry
will only carry a small number of singletons, whichmostly consist
of recently occurringmutations. Dogs with poorly represented an-
cestry will instead have many singletons, consisting of both re-
cently acquired mutations and ancestral variants that are shared
with dogs not included in the data set. For the purposes of identi-
fying rare variants that represent recent mutations, only dogs with
a small number of singletons should be considered, such as those
in group 1 (Fig. 3C).

Individual inbreeding coefficients, calculated as the fraction
of the genome within runs of homozygosity, can also indicate
the diversity of the population from which a dog was sampled.

For inbred populations, the landscape of common variation can
be captured with fewer samples than in outbred populations.
Importantly, dogs in groups 2, 3, and 4 all have lowermean inbreed-
ing coefficients compared with that of group 1 (Fig. 3D). However,
some individuals from these groups appear relatively inbred, sug-
gesting that additional sampling of their source populations will
lead to vastly improved breed representation for these dogs.
Together, these results indicate that assumptions made in the anal-
ysis of human genetic data do not necessarily hold for dogs.

Geographical distribution of missing canine

genetic variation

To identify potential sources of missing genetic variation by coun-
try of origin, we cataloged data for more than 500 dog breeds and
varieties (Fig. 3E; Supplemental Table S3). We also used breed ori-
gins from Dog10K samples to capture genetic variation of breeds
and populations from each country (Fig. 3F). We observed that
Dog10K lacks proportional representation of breeds from regions
such as Southeast Asia, Eastern Europe, and South America. In ad-
dition, India was a particularly large outlier as it has 18 distinct
breeds, none of which are represented in Dog10K. Moreover,
peer-reviewed analyses regarding the genetics of Indian dog breeds
are rare, indicating that India could provide a large source of miss-
ing genetic variation once samples can be exported from the coun-
try (Shannon et al. 2015). Other sources of missing variation may
be found in dogs that do not belong to recognized breeds. For ex-
ample, different varieties of dogs are found throughout Africa, but
only nine breeds in our data set have an African country listed as
their origin. Most importantly, African village dogs carry ancestry
components distinct from other canine populations (Boyko et al.
2009; Wang et al. 2016; Liu et al. 2018), indicating that further
sample collection within this region will greatly increase genomic
diversity within canine variant catalogs.

Although the absence of particular breeds from largeWGS co-
horts can be indicative of missing variation, genetic variants from
unsampled breeds can often be foundwithin closely related breeds
that share recent common ancestry reflecting shared identity-by-
descent (IBD) segments (Parker et al. 2017). This is evidenced by
high imputation accuracy for dogs whose breeds are absent from
reference panels (Buckley et al. 2022;Meadows et al. 2023), reflect-
ing breeding strategies aimed at transferring favorable traits during
breed formation or reflecting the predominance of a source popu-
lation that shares and distributes favorable traits to multiple
breeds. In the latter case, breed dog geneticsmay be reflective of lo-
cal village dog populations (Shannon et al. 2015; Dutrow et al.
2022). Regardless, capturing ISFS is useful for determining how
much unique variation an individual dog is contributing to a
cohort.

Most breed dogs from Europe, the Americas, Oceania, and
Africa are from ISFS group 1 (Fig. 3G). Europe is the most well rep-
resented in the data set; thus, many breeds of European origin can
be organized into distinct lineages with extensive haplotype shar-
ing (Parker et al. 2017; Dutrow et al. 2022). The degree to which
this reflects small source populations versus simply the effort to
collect breeds of European origin is not clear. However, breeds
from the Americas, Oceania, and Africa are also likely to be reflec-
tive of European colonization (Shannon et al. 2015). The genetic
structure of Asian dog breeds is highly distinct, and most Asian
dogs are from ISFS group 2 or 3, indicating that Asian breeds could
also be a source of missing variation. This high level of diversity
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Figure 3. (See following page for legend.)
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has been used to argue for an Asian origin of dog domestication
(Savolainen et al. 2002; Vonholdt et al. 2010; Wang et al. 2016).

Village dogs tend to carry more diversity than breed dogs,
likely owing to the absence of selected breeding or closed breeding
populations (Fig. 3H). However, in the Americas and Oceania, vil-
lage dogs harbor a significant level of Western European–associat-
ed variation. Because pre-European-contact dog populations are
largely extinct or never existed in these countries, populations in
the Americas and Oceania may have therefore arrived with the
later introduction of European breeds (Shannon et al. 2015).
Conversely, Asian village dogs and breed dogs are most enriched
for rare variation. Ultimately, greater sampling of these popula-
tions, alongwith adequate phenotyping, will likely lead to new ge-
notype–phenotype discoveries (Surbakti et al. 2020).

Interpretation of variant effects

In trait mapping, the single nucleotide polymorphisms (SNPs)
with the strongest phenotype association are often within the
noncoding portion of the genome. Determining how these SNPs
exert their functional consequences often requires annotation of
gene regulatory elements. In human genomics, considerable effort
has been directed toward this goal, leading to the creation of awide
array of gene regulatory annotation data sets, such as ENCODE
(The ENCODE Project Consortium et al. 2020), the Roadmap Epi-
genomics Program (Satterlee et al. 2019), and GTEx (The GTEx
Consortium 2020). Conversely, in canine genomics, similar func-
tional data are often lacking. The need for genome regulatory an-
notation in dogs is further emphasized by additional challenges
specific to the canine system. For instance, although pedigrees
can be extensive in dogs (Jónasdóttir et al. 2000), it is unusual to
have samples from three generations to establish robust linkage.
In addition, few relevant canine-derived cell lines exist for testing
variant function in the appropriate contexts. Also, although possi-
ble, performing CRISPR-Cas9 in dogs is expensive and inefficient,
and animal use issues are a major concern (Zou et al. 2015; Tian
et al. 2023). Variant prioritization is also made more challenging
in dogs owing to extensive linkage disequilibrium (LD) caused
by breeding practices that favor specific traits and reduce overall
haplotype diversity (Sutter et al. 2004; Lindblad-Toh et al. 2005;
Halo et al. 2021; Wang et al. 2021; Meadows et al. 2023).

The scarcity of regulatory annotation within the dog genome
can be addressed by leveraging evolutionary conservation between
dogs and humans. Approximately 1.4 Gb of DNA sequence, or
∼40% of the human genome, is shared between humans and
dogs, which is typical of the evolutionary distance between hu-
mans and other non-primate mammalian species (Lindblad-Toh
et al. 2005; Armstrong et al. 2020). Tools like liftOver use hu-
man–dog alignments to map human noncoding regulatory ele-
ments within the canine genome, enhancing prediction of

variant impacts in dogs (Hinrichs et al. 2006). However, the use
of species pairwise alignment-based approaches for regulatory an-
notation assumes that conserved noncoding sequences have con-
served epigenomic activity, which is often not the case (Zemke
et al. 2023). Also, dogs lack a functional copy of PRDM9; hence,
the recombination landscape is biased toward CpG islands and
promoters, causing the gene regulatory landscape of canids to
diverge from other mammals (Auton et al. 2013). Finally, robust
regulatory element annotation requires capturing epigenomic ac-
tivity in the appropriate cellular contexts. To overcome these lim-
itations, the Zoonomia Consortium has created whole-genome
alignments of 240 species to detect evolutionarily constrained ge-
nomic elements of potential functional importance (Zoonomia
Consortium 2020). Almost half of all constrained bases had no
functional annotations in any ENCODE cell types (Christmas
et al. 2023), highlighting the difficulty of identifying functional
DNA elements through epigenomic profiling alone. Importantly,
human GWAS SNP heritability and canine disease mutations
were both enriched within constrained sites (Meadows et al.
2023; Sullivan et al. 2023), indicating that genomic constraint
will aid in prioritizing noncoding variation for traitmappingwith-
in the dog’s characteristic large LD blocks (Tengvall et al. 2022;
Lingaas et al. 2023).

One limitation of using evolutionary constraint to predict
functional importance is that species-specific functional elements
will be overlooked. In these cases, conserved sequence can be con-
trasted against rapidly evolving lineage-specific sequence to iden-
tify species-specific accelerated regions (Pollard et al. 2006). In
humans, these accelerated regions (HARs) often act as enhancer el-
ements during neural development and are important in neurodi-
vergent conditions (Girskis et al. 2021; Whalen et al. 2023). For
example, excess rare biallelic point mutations in HARs are at a sig-
nificant excess in individuals with autism spectrum disorder risk,
often affecting active enhancers for genes implicated in neural
function (Doan et al. 2016). Similar approaches could be applied
to dogs to identify genomic regions related to canine-specific
traits, as has been done in other species (Ferris et al. 2018).

Species alignments have also advanced variant interpretation
within coding sequences after being combined with machine
learning approaches to distinguish pathogenic from benign mis-
sense changes. The programs PrimateAI and PrimateAI-3D take ad-
vantage of naturally occurring amino acid substitutions across
primates to learn the tolerable landscape of missense mutations
in humans (Sundaram et al. 2018; Gao et al. 2023). Because most
protein sequences from closely related species have conserved
structural/functional roles, amino acid substitutions likely have
benign functional consequences. Coding variation across primates
is therefore sufficient to characterize the pathogenicity of human
missense mutations. A similar approach may also be suitable for
the dog genome. Amino acid substitutions between carnivores

Figure 3. (See figure on preceding page.) Genetic diversity of dog breeds represented within Dog10K. (A) Individual site frequency spectrum (ISFS) from
the Dog10K data set (Meadows et al. 2023). Each curve represents the number of variants that each dog carries and the MAF of those variants across the
Dog10K cohort. Individual dogs were grouped according to the skewness of their ISFS curve. Most of the genetic variation for dogs in ISFS group 1 is com-
mon across dog populations, whereas dogs in ISFS group 4 carry a high number of variants that are rarewithin Dog10K. (B) ISFS group proportions for each
Dog10K sample category (wolf, village dogs, or breed dogs). Height of the horizontal bars is proportional to the number of Dog10K dogs belonging to
each category. (C) Distribution of singleton variants per individual, plotted according to ISFS group. (D) Degree of inbreeding for each dog depicted as the
fraction of the genome within runs of homozygosity, plotted according to ISFS group. (E) Global distribution of dog breeds. Colors represent global re-
gions, and depth of shading represents the number of breeds originating in each country. (F) Sample collection within the Dog10K Project is representative
of global breed diversity. The number of breeds collected was proportional to the number of breeds that originated in each country. The size of the data
point indicates the median breed population size collected within Dog10K. Data points are colored according to the global region of breed origin. (G)
Number of Dog10K breed dogs per country that belong to each ISFS group depicted in A. Depth of shading in G and H represents the numbers of
dogs in each category according to the key shown in E. (H) Number of Dog10K village dogs per country that belong to each ISFS group depicted in A.
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would provide suitable input data, obviating the need to sequence
thousands of individual dogs.

Machine learning approaches combined with multispecies
alignment can also be used to annotate gene regulatory elements
within noncoding regions (Chen et al. 2018; Kelley 2020; Min-
noye et al. 2020; Kaplow et al. 2022). The Tissue-Aware Conserva-
tion Inference Toolkit (TACIT) (Kaplow et al. 2023) uses chromatin
accessibility data from several species to learn sequence features
predictive of tissue-specific and cell type–specific enhancer activi-
ty. The tool can then use this information to predict enhancer ac-
tivity across a phylogeny. One application of TACIT demonstrates
how predicted enhancers can be associated with brain size, a high-
ly complex phenotype. The development of such approaches
makes it possible to predict the regulatory landscape for trait-rele-
vant cell types in dogs using data previously produced in other
mammals.

Although the sophisticated use of species alignment and ma-
chine learning can greatly expand our knowledge of the dog ge-
nome, there is still an important role for experimentally derived
annotations. Two initiatives characterizing the epigenome of the
dog include BarkBase and Epigenome Catalog of the Dog (EpiC
Dog). BarkBase contains bulk ATAC-seq data from five dogs, with
five to 10 tissues available per individual (Megquier et al. 2019a).
EpiC Dog contains data from three dogs across 11 tissues for five
different histone marks and DNA methylation, allowing for the
identification of 13 different chromatin states, each reflecting dif-
ferent types of regulatory activity (Son et al. 2023). However, anal-
ysis of epigenomic activity in bulk tissue is always subject to effects
of cellular heterogeneity within the sample. Single-cell profiling of
open chromatin in trait-relevant tissues and developmental time
points will help prioritize variants with phenotypic impacts as
well as disease and trait-relevant cell types (Corces et al. 2020;
Son et al. 2023).

The future of canine genomics

Comparative genomics relies on the observation that species diver-
gence has led to a high degree of biological innovation, without
disruption of essential biological processes. Analyses therefore
depend either on using shared sequences between divergent spe-
cies to identify conserved genomic elements or on using species-
specific genetic associations with shared traits to identify genes
in conserved biological pathways. Canine genomics primarily em-
ploy the latter approach, utilizing genotype–phenotype associa-
tions to define new roles for genes and refine existing paradigms.
The future of canine genomics will therefore be shaped by im-
provements to the collection of samples and associated metadata,
capturing the full repertoire of genomic variation, linking genome
variation to gene function, and validating gene–trait associations.

Existing sample collection efforts focus on ascertainment of
rare breeds and pet dogs, withmetadata often provided by owners.
Future efforts should prioritize mixed breed dogs of known ances-
try with detailed health data, as canine genetic studies are often
confounded by breed ancestry. A cohort of mixed breed dogs
will also retain causal variants for breed-related traits and have
low levels of population stratification. Multiple prospective co-
horts need to be initiated using much the same structure as the
Golden Retriever Lifetime Study (Labadie et al. 2022). Such studies
should include frequent sampling, owner questionnaire data, and
access to detailed health care data and related samples. In addition,
the use and accessibility of electronic medical records, the back-

bone of human disease genetic studies, should become a part of
standard veterinary practice.

Without the full repertoire of canine genomic variation, par-
ticularly SVs, variant impact is difficult to define. Long-read
sequencing technologies and new assembly algorithms have re-
sulted in telomere-to-telomere sequencing for humans (Rautiai-
nen et al. 2023). As scalability improves, this technology should
be applied to dogs, thus facilitating the association of complex,
largely uncharacterized SVs and their associated phenotypes
(Miga and Eichler 2023).

Studies that link genetic variation to gene function and ex-
pression should also be prioritized, as canines offer unique oppor-
tunities to identify new functions for recognized DNA sequence
motifs. To accomplish this, the development of expression quan-
titative trait loci data sets and massively parallel reporter assays
linking variants to nearby gene activity are needed.

Finally, affordable strategies for validation of gene and trait
associations in dogs are needed. The strongest evidence for a gene’s
role in a particular trait is to show that purposeful modulation
of the gene’s activity causes changes in the corresponding
phenotype. In addition to exploiting existing approaches, large
repertoires of canine cell lines need to be developed and character-
ized, and an economical system for distribution established. For
example, reference cell lines, such as those used by The ENCODE
Project Consortium, would greatly enhance canine genetic studies
(The ENCODE Project Consortium 2011). Together, the advances
summarized here will increase the utility of the dog as a genetic
system uniquely powered to inform studies of human conditions.
In addition, the same advances will improve canine health, reveal-
ing ever more about these important members of our families and
positioning the dog in its rightful place, as it has always been, by
our side.
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