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Inferring which and how biological pathways and gene sets change is a key question in many studies that utilize single-cell

RNA sequencing. Typically, these questions are addressed by quantifying the enrichment of known gene sets in lists of

genes derived from global analysis. Here we offer SiPSiC, a new method to infer pathway activity in every single cell.

This allows more sensitive differential analysis and utilization of pathway scores to cluster cells and compute UMAP or other

similar projections. We apply our method to COVID-19, lung adenocarcinoma and glioma data sets, and demonstrate its

utility. SiPSiC analysis results are consistent with findings reported in previous studies in many cases, but SiPSiC also reveals

the differential activity of novel pathways, enabling us to suggest new mechanisms underlying the pathophysiology of these

diseases and demonstrating SiPSiC’s high accuracy and sensitivity in detecting biological function and traits. In addition, we

demonstrate how it can be used to better classify cells based on activity of biological pathways instead of single genes and its

ability to overcome patient-specific artifacts.

[Supplemental material is available for this article.]

Single-cell RNA sequencing (scRNA-seq) has become a staple tech-
nique in biomedical research, allowing for a deeper understanding
of tissue characteristics and heterogeneity in health and disease
(Chi and Deng 2020). Pathway analysis serves as a crucial tool
for interpreting gene expression data, particularly in the context
of scRNA-seq. Typically, this is accomplished by identifying a
set of interesting genes, such as differentially expressed genes,
and examining their enrichment within biological pathways.
Although such approaches are very useful, there are many poten-
tial benefits to estimating pathway activity in each cell first and,
only then, utilizing this information for downstream analysis.
This overcomes limitations of single-cell data, such as inaccurate
estimation of the expression of a single gene in a single cell, and
enables the use of pathway activity for unsupervised analysis
such as clustering.

Although methods for pathway analysis in bulk RNA-seq
have been developed (Drier et al. 2013; Hänzelmann et al. 2013;
Wang et al. 2016), they often prove inadequate for scRNA-seq
data (Noureen et al. 2022). Past efforts to estimate pathway activity
in single cells have used techniques such as AUCell (Aibar et al.
2017) and single-sample gene set enrichment analysis (ssGSEA)
(Barbie et al. 2009). However, these methods were not designed
for this type of analysis and are not always optimal.

Here we introduce single pathway analysis in single cells
(SiPSiC), a new method tailored for analyzing the activity of a
gene set or of a biological pathway, in single cells. SiPSiC achieves
high sensitivity by relying on the normalized expression of all
genes, weighted by their relative rank. Using SiPSiC, we reanalyzed
scRNA-seq data of COVID-19, lung adenocarcinoma, and glioma;
identified both known and novel cellular pathways involved in
these diseases; and demonstrated SiPSiC’s high accuracy and supe-
rior ability to identify changes in pathway activity missed by the

original analyses. Furthermore, we propose new approaches for
data clustering and visualization based on SiPSiC scores, mitigat-
ing biases inherent in scRNA-seq data and emphasizing functional
similarity based on shared biological processes. Through compara-
tive analyses with existingmethods, we showcase SiPSiC’s superior
accuracy, sensitivity, and efficiency, positioning it as a valuable
tool for pathway analysis in single-cell studies.

Results

A new tool to infer pathway activity in single cells

scRNA-seq data often suffer from sparsity owing to high dropout
rates, posing challenges for accurate pathway analysis. To address
this issue, we introduce SiPSiC, a new tool designed to calculate
pathway scores for each individual cell and each gene set by using
gene expression values normalized by the expression levels in oth-
er cells and weighted by the rank of the average gene expression
across all genes of the gene set (seeMethods). This robust weighted
normalization enables accurate estimation of pathway activity,
even in small data sets or when pathway gene coverage is limited.

Available on both GitHub and Bioconductor, SiPSiC is an eas-
ily installed and well-documented tool to dissect single-cell-level
differences, allowing its users to interrogate tissue physiology
and heterogeneity with high sensitivity and accuracy.

SiPSiC reveals differential activity of pathways with potential

therapeutic implications in SARS-CoV-2-infected cells

We applied SiPSiC to investigate changes in the activity of biolog-
ical pathways after SARS-CoV-2 infection in two distinct data sets:
single-nucleus RNA-seq data from recently deceasedCOVID-19 pa-
tients (Melms et al. 2021) and scRNA-seq of African greenmonkeys
infected with SARS-CoV-2 or inactivated virus (Speranza et al.
2021). The original analysis of the human data included gene-
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based clustering fromwhich cluster markers were inferred to eluci-
date cellular response to SARS-CoV-2 infection. The monkey data
were originally analyzed by principal component analysis (PCA),
clustering, and fast gene set enrichment analysis (Korotkevich
et al. 2021). We calculated pathway scores per cell for each of the
50MSigDBhallmark gene sets (Liberzon et al. 2015) and compared
pathway scores between SARS-CoV-2 positive and negative con-
trols. Our findings can be largely divided into three categories:
(1) innate immune response of pneumocytes, (2) pathways modu-
lated by the virus to support its life cycle, and (3) adaptive immune
response in B and CD8+ T cells.

First, we applied SiPSiC to human alveolar cells (both type 1
and 2; 4575 cells from COVID-19 patients vs. 4303 control cells).
Twelve out of 50 pathways were downregulated in COVID-19
patients, and 31 were upregulated (Student’s t-test, FDR<0.01)
(Fig. 1A; see Supplemental Table S1). In addition to the interferon
response, whichwas also reported as upregulated in alveolar type 2
(AT2) cells by Melms et al. (2021), we identified many other upre-
gulated pathways involved in the innate immune response and its
implications. Among them are genes involved in the complement
pathway, DNA repair, andWnt/beta catenin signaling. Indeed, the
complement system was shown to be hyperactivated in severe

A

B

Figure 1. SiPSiC detects differential activity of hallmark pathways in SARS-CoV-2-infected alveolar cells. (A,B) Heatmaps depicting Z-scores of SiPSiC
scores of alveolar cells for all differential hallmark pathways (FDR<0.01) for COVID-19 patients and the control group (A) or SARS-CoV-2-infected monkeys
and controls (B). Each row represents one hallmark pathway, and the pathway name is listed on the right. Pathways are sorted by significance of differential
scores; cells in each cell group are sorted by their average Z-score across all pathways upregulated in that group. Pathway names mentioned in the text are
colored red.
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SARS-CoV-2 infections (Afzali et al. 2022); SARS-CoV-2 induces
DNA damage (Gioia et al. 2023); and WNT5A is upregulated in
severe cases of COVID-19 (Choi et al. 2020). We also found up-
regulation of the mitotic spindle (FDR<1.1 ×10–4) and E2F targets
(FDR<2.3 ×10–15), findings consistent with demonstrated hy-
perplasia of pneumocytes in humans and monkeys post
SARS-CoV-2 infection (Ackermann et al. 2020; Speranza et al.
2021). In addition,Melms et al. (2021) found that the alveolar cells
of the COVID-19 group showed lower expression of the ETV5 tran-
scription factor required for maintaining AT2 cell identity com-
pared with alveolar cells of the control lungs. Combined, these
findings suggest that infected pneumocytes try to compensate
for the damaged tissue by advancing the cell cycle and differenti-
ating toward AT1 cells. Furthermore, SiPSiC detected upregulation
of the hallmark apoptosis pathway (FDR<1.1 ×10–30), consistent
with detection of many apoptotic cells in human airway epitheli-
um cultures infected with SARS-CoV-2 (Zhu et al. 2020). This may
relate to apoptosis induction by the viral ORF3a protein (Ren et al.
2020). Additionally, it may relate to apoptosis induction by TP53,
and indeed, SiPSiC also detected upregulation of the TP53pathway
(FDR , 7.9× 10−133). Prior research showed that viral infection
upregulates TP53 by type 1 interferon signaling (Takaoka et al.
2003) and, on the other hand, that TP53 both activates the inter-
feron pathway and promotes type 1 interferon release from cells
undergoing viral infection (Muñoz-Fontela et al. 2008). These
findings together suggest this positive feedback loop of interferon
and TP53 may also play a role in SARS-CoV-2 infection.

In the category of pathways modulated by the virus to sup-
port its life cycle, SiPSiC found upregulation of the PI3K/AKT/
MTOR and mTORC1 pathways, consistent with evidence that
these pathways are activated after SARS-CoV-2 infection (Appel-
berg et al. 2020). Moreover, mTORC1 activation is known to in-
duce expression of key enzymes involved in several metabolic
pathways, including glycolysis and biosynthesis of fatty acids
and cholesterol (Düvel et al. 2010), supporting SiPSiC’s findings
that glycolysis, fatty acidmetabolism, and cholesterol homeostasis
were all upregulated in the alveolar cells of COVID-19 patients.
Further support for the upregulation of glycolysis is provided by
previous works showing that SARS-CoV-2 infection indeed in-
creases glycolysis, both in colon carcinoma cells and inmonocytes
(Bojkova et al. 2020; Codo et al. 2020). mTORC1 has also been
shown to activate the IRE1-JNK signaling pathway of the unfolded
protein response (UPR), thereby triggering apoptosis (Kato et al.
2012). SiPSiC found that the UPR pathway was upregulated, too
(FDR , 1.16× 10−68), consistent with the activation of mTORC1
and previous research suggesting that SARS-CoV-2 induces the
UPR (Echavarría-Consuegra et al. 2021). A previous review stated
that UPR activation can increase type 1 interferon production
(Sprooten and Garg 2020). Combined, all these findings suggest
that SARS-CoV-2 infection increases endoplasmic reticulum (ER)
stress and UPR activation, which are also enhanced by the viral-in-
duced upregulation ofmTORC1, thereby promoting apoptotic cell
death and possibly also the positive feedback loop involving TP53
and type 1 interferons, which further encourages apoptosis.

Another pathway in this category found upregulated consists
of genes upregulated by reactive oxygen species (ROS). Oxidative
stress is known to be induced by several viruses (Lee 2018), and
monocytes infected with SARS-CoV-2 had a higher production of
mitochondrial ROS (Codo et al. 2020), suggesting that SARS-CoV-2
also induces oxidative stress in infected cells. Together, these results
suggest that SARS-CoV-2 activates MTOR and induces glycolysis
and oxidative stress. We applied SiPSiC to human activated B cells

(55 cells of COVID-19 patients, 48 control cells) and CD8+ T cells
(103 COVID-19 cells, six control) to better characterize the adaptive
immune response. Despite the relatively small cell populations, TGF
beta signaling was found upregulated in activated B cells of COVID-
19 patients (FDR<0.006), consistentwith previous reports (Ferreira-
Gomes et al. 2021; Melms et al. 2021). The G2/M checkpoint path-
waywas upregulated in the CD8+ T cell group of COVID-19 patients
(FDR<0.003), a finding missed by the conventional analysis in
Melms et al. (2021) but consistent with the expected increase in T
cell proliferation in the lungs (Liao et al. 2020). The interferon gam-
ma (IFNG) response pathway was found upregulated in the
SARS-CoV-2-infected CD8+ T cells as well, albeit with borderline
statistical significance (FDR<0.031). This finding correlates well
with prior evidence of elevated interferon levels in the plasma of
COVID-19 patients and the resulting effect on immune cells, as
well as with previous evidence showing upregulation of interfer-
on-related genes across different types of immune cells collected
from the mediastinal lymph nodes of SARS-CoV-2-infected mon-
keys (Schultheiß et al. 2020; Speranza et al. 2021).

Many of the pathways that SiPSiC found to be upregulated in
the alveolar cells of the COVID-19 groupwere of therapeutic poten-
tial, including DNA repair, UPR, PI3K/AKT/MTOR signaling, ROS,
andmetabolic pathways. Drugs targeting theDNAdamage response
can block SARS-CoV-2 replication (Garcia et al. 2021), suggesting
that SARS-CoV-2 not only increases DNA damage in the infected
cells but also relies on the cells’ reaction to it. SARS-CoV-2 replica-
tion can be blocked by UPR inhibitors (Echavarría-Consuegra
et al. 2021), PI3K/AKT/MTOR inhibitors (Appelberg et al. 2020;
Klann et al. 2020; Stukalov et al. 2021; Yuen et al. 2021), and drugs
targeting lipid metabolism (Abu-Farha et al. 2020; Williams et al.
2021). Treatment of COVID-19 patients with N-acetylcysteine
(NAC), a precursor of the antioxidant agent glutathione, correlated
with lower mortality in a retrospective study (Izquierdo et al. 2022),
and SARS-CoV-2-infected monocytes treated with antioxidant age-
nts such as NAC showed reduction in both viral replication and
production of several cytokines, particularly interferon type 1 and 2
(Codo et al. 2020). Codo et al. (2020) further showed that the in-
creased production of ROS in infected monocytes promoted glycol-
ysis and that inhibitors of glycolysis also reduced SARS-CoV-2
replication and could reduce the production of type 1 and 2 interfer-
ons. Notably, glycolysis inhibitors also reduced SARS-CoV-2 replica-
tion in colon carcinoma cells (Bojkova et al. 2020).

Together these findings suggest that MTOR signaling and its
impact onROS andmetabolismplay an important role in the path-
ophysiology of COVID-19, and drugs targeting several of these
pathways could have synergistic effects with consequences on dis-
ease progression and severity.

Analysis of the African greenmonkey COVID-19 data set sup-
ported many of our findings from the human COVID-19 data set,
including pathways from all three categories. Differentially ex-
pressed pathways detected in the analysis of the alveolar cells are
presented in Figure 1B. In addition, SiPSiC analysis of the immune
cells from the monkeys’ lungs revealed additional pathways in-
volved in the response of lymphocytes to SARS-CoV-2 infection.
Complete results of this data set can be found in Supplemental
Note 1 and Supplemental Table S2.

SiPSiC detects key activated pathways in a tumor-specific epithelial

lineage of lung adenocarcinoma

To further demonstrate SiPSiC’s robustness, we applied it to lung
adenocarcinoma (Kim et al. 2020) and compared three malignant
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epithelial lineages denoted by Kim et al. (2020) as tS1, tS2, and tS3
(5880 cells total, including 2879 tS1, 2938 tS2, and 63 tS3 cells)
(Supplemental Table S3). Whereas tS1 and tS3 have healthy epi-
thelial counterparts, tS2 showed a tumor-specific phenotype;
hence, we focused on differentially active pathways in this lineage
(Supplemental Fig. S1A). In line with the findings of Kim et al.
(2020), the apoptosis (FDR<2.4 ×10–3) and late response to estro-
gen (FDR<3.3 ×10–4) pathways were found upregulated in tS2
cells compared with both tS1 and tS3. In addition, SiPSiC found
upregulation of the hypoxia and glycolysis pathways in tS2 cells
(FDR<1.3 ×10–6, FDR<3.2 ×10–12), suggesting hypoxic condi-
tions drive glucose metabolism in tS2 cells. Indeed, a lung adeno-
carcinoma hypoxia signature (Mo et al. 2020) is upregulated in tS2
cells, supporting our findings. Of note, Mo et al. (2020) reported
that high expression of this signature was correlated with higher
infiltration of activated CD4+ T cells andM0macrophages, where-
as Kim et al. (2020) showed that a positive correlation exists be-
tween the proportions of tS2 cells and exhausted CD8+ T cells or
monocyte-derived macrophages. Indeed, SiPSiC found upregula-
tion of several inflammatory pathways in the tS2 cells, including
the inflammatory response, complement, allograft rejection, and
IL6/JAK/STAT3 signaling, suggesting an immune response in tS2
cells and agreeing with immune cell infiltration.

Kim et al. (2020) showed that higher expression of the tS2-
specific genes is correlated with metastasis and poorer prognosis.
Several pathways SiPSiC identified as upregulated may be in-
volved, including PI3K/AKT/MTOR (FDR<2.9 ×10–230 and FDR<
0.019 compared with the tS1 and tS3 lineages, respectively),
mTORC1 (FDR<1.4 ×10–11), and epithelial-to-mesenchymal tran-
sition (EMT; FDR<7.7 × 10–10), previously demonstrated to be in-
volved in lung adenocarcinoma metastasis (Krencz et al. 2017;
Ding et al. 2018; Lu et al. 2020). In addition, cell cycle pathways
(G2/M checkpoint, FDR<3.3 ×10–4; E2F targets, FDR<4.4 ×10–4)
are upregulated, suggesting tS2 cells proliferate faster and can
therefore contribute to tumor aggressiveness.

SiPSiC analysis of glioma reveals novel

differentially active pathways showing potential

therapeutic implications

To validate the applicability of SiPSiC to different data types, we
analyzed scRNA-seq data of glioblastoma tumors (Neftel et al.
2019). In their work, Neftel et al. (2019) identified four malignant
“metamodules” (cellular states): oligodendrocyte-progenitor-like
(OPC-like), neural-progenitor-like (NPC-like), astrocyte-like (AC-
like), and mesenchymal-like (MES-like). We calculated pathway
scores per cell (n =6576) for each of the same 50 hallmark path-
ways. The cells were then split into four groups based on their
cell state assignments (1986 NPC-like, 1047 OPC-like, 1929 AC-
like, and 1614 MES-like cells), and comparisons were made be-
tween each pair of groups (Supplemental Table S4; Supplemental
Fig. S1B). We found that the G2/M checkpoint pathway was up-
regulated in the OPC- and NPC-like groups compared with the
AC- andMES-like groups, indicative of a higher proportion of pro-
liferating cells in these cell states. In addition, the hypoxia re-
sponse pathway was enriched in the MES-like group compared
with all other three groups. These findings are consistent with
the findings reported in Neftel et al. (2019). Furthermore, SiPSiC
analysis suggests that the MES-like group was enriched in the in-
flammatory response pathway, in concordance with prior evi-
dence that the mesenchymal subtype of GBM tumors is enriched
in inflammatory response–associated genes (Engler et al. 2012).

Notably, SiPSiC analysis of the glioblastoma data set also
indicated pathways with therapeutic implications. The TGF beta
(FDR<4.86×10–14), TNFA via NF-kB (FDR<2.77×10–117), and
IL6/JAK/STAT3 (FDR<8.86×10–36) signaling pathways and the
EMT pathway (FDR<1.02×10–113) were all found upregulated in
theMES-like group. A previousworkhas shown that in gliomas, reg-
ulatory T cells secrete TGFB1 and thereby promote the NF-kB-IL6-
STAT3 signaling axis, and IL6 receptor blockers have a potential
therapeutic effect (Liu et al. 2021). TGF beta signaling also activates
TNF signaling via NF-kB in glioblastoma, which in turn induces
mesenchymal transition (Bhat et al. 2013; Yan et al. 2022). Further-
more, these works also suggest that these two pathways can be tar-
geted to improve overall survival and specifically attenuate
resistance to radiotherapy in glioblastoma patients. Of relevance,
the mesenchymal subtype of glioblastoma is correlated with high
levels of both immune markers and infiltration of immune cells
(Verhaak et al. 2010;Wanget al. 2017). Together, these findings sug-
gest that regulatory T cells infiltrate glioblastoma tumors, promoting
the TGF beta, TNF via NF-kB, and IL6/JAK/STAT3 signaling path-
ways and thereby increasingmesenchymal transition of tumor cells.

Furthermore, SiPSiC detected upregulation of the KRAS sig-
naling up (FDR , 9.56× 10−22) and downregulation of the KRAS
signaling down (FDR , 1.7× 10−8) pathways in the MES-like
group, indicative of KRAS signaling activation in this group.
These findings are consistent with the finding that RAS and
TGFB1 cooperate to induce EMT in epithelial cells and evidence
that KRAS activation in glioblastoma cells induces a mesenchymal
shift (Kim et al. 2014;Marques et al. 2021; Zhao et al. 2021). SiPSiC
also identified upregulation of ROS in the MES-like group com-
pared with all other groups (FDR , 1.05× 10−57), suggesting
that the promotion of TGFB1-induced EMT by RAS is mediated
by enhanced production of ROS, as was shown in mammary epi-
thelial cells (Kim et al. 2014). Taken together, our findings suggest
a synergistic effect in glioblastoma in which regulatory T cells acti-
vate TGFB1 signaling, leading to EMT, which is enhanced by RAS
activation. Additionally, RAS inhibition was shown fatal to glio-
blastoma cells (Blum et al. 2005). Hence, our analysis suggests
that a combined therapy targeting RAS and TGFB1 or their down-
stream targets could have a synergistic therapeutic effect for glio-
blastoma, again demonstrating the potential of SiPSiC analysis
to accelerate the development of targeted therapy.

Garofano et al. (2021) suggested a different assignment of the
cells to four clusters based onmetabolic and other functional char-
acteristics (Garofano et al. 2021), and reported the results of path-
way analysis for these clusters. Our analysis was found highly
consistent with their results, with 95% of the hallmark pathways
reported by them similarly detected by SiPSiC (see Supplemental
Note 2).

To further validate SiPSiC, we applied it to an oligodendro-
glioma data set (Tirosh et al. 2016). Here too, SiPSiC analysis was
consistent with the findings reported by Tirosh et al. (2016),
whereas it also allowed us to detect pathways not reported in the
original analysis (for the complete results, see Supplemental
Note 3; Supplemental Table S5; Supplemental Fig. S1C).

To conclude, SiPSiC differential pathway analyses of the
COVID-19 and glioma data sets demonstrate that SiPSiC can accu-
rately detect key differentially active pathways even in sparse data
sets with few cells or when many of the pathways’ genes are not
available in the data. This allows for comprehensive and sensitive
pathway analysis in single cells, which can serve to study funda-
mental biology as well as generate clinically and therapeutically
relevant hypotheses that may be missed by standard analysis.
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Unsupervised clustering by SiPSiC scores identifies shared

biological features and cellular identities

Unsupervised clustering of scRNA-seq data sets allows the demar-
cation of distinct cell subpopulations within tissues, offering in-
sights into tissue heterogeneity in various scenarios. To assess
the potential benefits of clustering based on SiPSiC pathway scores
compared with the conventional approach of clustering by gene
expression, we calculated cell clusters and uniform manifold ap-
proximation and projection (UMAP) for 9635 malignant glioblas-
toma cells (Neftel et al. 2019), both by gene expression and by
SiPSiC scores (Methods).

Gene-based clustering produced 13 clusters. Although the
data set was sampled from nine different patients, in five clusters
(0, 1, 5, 9, and 10) >99% of the cells were of a single patient, and
in one other (cluster 7), 97% of the cells were of a single patient,
reflecting the strong patient-bias typical for gene-based clustering

of malignant cells (Fig. 2A,B). In contrast, using SiPSiC pathway
scores for clustering with the same algorithm and resolution pro-
duced six clusters. In five of these clusters no more than 76% of
the cells were of a single patient, suggesting that patient-specific
batch effects have limited effect on SiPSiC-based clustering (Fig.
2A,B). Although 96% of the cells in cluster 0 belong to patient
105, most of these cells are classified as MES-like1 cells, suggesting
this cluster may capture their MES-like1 identity and not necessar-
ily patient-specific artifacts. Together, this suggests that SiPSiC-
based clustering was largely based on similar biologically relevant
features of the cells rather than patient-specific batch effects.

Clustering by SiPSiC scores also allows the detection of func-
tional heterogeneity in anunsupervisedmanner by comparing dif-
ferential pathway scores between the clusters (see Supplemental
Table S6). Cluster 1 was enriched in the Wnt/beta catenin and
hedgehog signaling pathways, both found upregulated in the
NPC-like metamodule in our differential pathway analysis of the

Smart-seq2 glioblastoma data set above
(Supplemental Fig. S1B). Indeed, 2096
(84%) out of the 2496 cells in this cluster
were NPC-like cells (Fig. 2C). Further-
more, the adjacent cluster 4 contains
339 additional NPC-like cells, forming a
distinct group of 2435 (96.4%) of the
2527 NPC-like cells in the data on the
UMAP projection. Similarly, 12 out of
the 13 pathways found enriched in clus-
ter 3 were detected by SiPSiC as upregu-
lated in the MES-like cells, and 883
(76%) out of the 1164 cells in this cluster
are MES-like cells. The adjacent clusters 0
and 2 contain 1977 and 644 additional
MES-like cells, respectively, forming to-
gether with cluster 3 a large group of
3504 (87%) of the total 4017 MES-like
cells on the UMAP projection (Fig. 2C).
Moreover, three out of the four pathways
that were enriched in cluster 5 showed
upregulation in AC-like cells: The inter-
feron alpha and angiogenesis pathways
are significantly upregulated in the AC-
like cells versus all other metamodules,
as well as the IFNGpathway that is signif-
icantly upregulated compared with NPC-
and OPC-like cells (Supplemental Fig.
S1B; Supplemental Table S4). Indeed,
356 (78%) of the 455 cells in this cluster
are AC-like cells (Fig. 2C).

In contrast, testing the gene-based
clusters for enrichment of these cellular
identities, we found that both the MES-
like and NPC-like cells were split across
different groups of clusters. Although
clusters 0, 3, and 9 contain 2754 (69%)
of the MES-like cells in the data, addi-
tional 955 (24%)MES-like cells are found
in clusters 1, 7, and 11 (Fig. 2A,C). Of
note, <21% of the cells in cluster 9 are
MES-like cells. NPC-like glioblastoma
cells are evenmore scattered across differ-
ent clusters. Although 1680 (66%) of the
NPC-like cells are found in clusters 2 and

A

B

C

Figure 2. SiPSiC-based clustering overcomes patient biases presented by gene-based clustering. (A–C )
UMAP projections based on gene expression (left) and hallmark pathway scores by SiPSiC (right). (A) Cells
were clustered by Louvain algorithm according either to SiPSiC scores or to gene expression. UMAPs
show cells colored by cluster. (B) Cells colored by patient identity. (C) Cells colored by malignant meta-
module assignment.
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4, clusters 5 and 8 contain an additional 570 (23%) and 170 (7%)
NPC-like cells, respectively, resulting in three clearly distinct
groups of NPC-like cells on the UMAP (Fig. 2A,C); 99.8% of the
cells in cluster 5 belong to a single patient, again showing strong
patient bias that hinders the ability to cluster the cells properly.

Together, these results demonstrate that SiPSiC scores em-
phasize common cellular functions, are robust to batch effects,
and are therefore better fitted to uncover the biological underpin-
nings of different cell clusters. Other methods were developed to
explicitly remove known batch effects such as patient-specific dif-
ferences. To compare SiPSiC clustering results to explicit patient
batch correction, we applied Seurat integration (Butler et al.
2018), Harmony (Korsunsky et al. 2019), and scVI (Lopez et al.
2018) to the same data set and repeated the clustering pipeline
(Supplemental Fig. S2). All three methods removed the differences
between patients, similarly revealing the functional clustering dis-
covered by SiPSiC. Therefore, althoughwe do not suggest SiPSiC as
a batch correcting tool per se, we do point to its utility in focusing
on biologically relevant cellular characteristics.Moreover, it can be
useful even in the context of overcoming artifacts, especially when
the batches and the source of the artifacts are unknown and can-
not be directly removed or when batch correction overcorrects
real biological differences.

Benchmarking of pathway scoring methods reveals higher

accuracy and improved scalability of SiPSiC for different

data types

To compare SiPSiC results to state-of-the-art methods for scoring
pathway activity in single cells, we repeated the differential path-
way analyses of the glioblastoma and both COVID data sets with
AUCell (Aibar et al. 2017), variance-adjusted Mahalanobis (VAM)
(Frost 2020) and ssGSEA (Barbie et al. 2009).

A summary of differentially active pathways between the ac-
tively infected monkeys and controls by all four methods can be
found in Table 1. All four methods found upregulation of the
mTORC1 signaling, MYC targets V1, oxidative phosphorylation,
ROS, allograft rejection, andboth interferonpathways in the active
infection group of the alveolar cells. However, several differences

were observed between the different methods. SiPSiC and
ssGSEA were the only methods to detect significant upregulation
of apoptosis (Fig. 3), whereas SiPSiCwas the onlymethod to detect
upregulation of the adipogenesis pathway in alveolar cells. Both
findings are supported by all four methods detecting the same
pathways in the active infection group of the human alveolar cells.

To compare the methods in an unbiased manner, we defined
misses of a method as pathways whose differential activity was
consistently detected by all three other methods (FDR<0.01) but
not by themethod in question (either did not pass FDRor changed
in the opposite direction). For instance, AUCell failed to detect dif-
ferential activity of the complement pathway (FDR<0.5) in the ac-
tive infection group of the monkey alveolar cells, whereas all the
othermethods showed significant upregulation. AUCell also failed
to detect differential activity of the mitotic spindle, interferon al-
pha, and interferon gamma pathways in B cells, whereas all other
methods found upregulation of the interferon pathways and
downregulation of the mitotic spindle pathway, suggesting
SARS-CoV-2 infection hinders B cell proliferation in the host’s
lungs.

Comparing the results of the CD8+ T cell analyses, we found
that all methods successfully detected the activation of cells, as all
four showed upregulation of the TNFA via NF-kB, complement, in-
flammatory response, and interferon pathways in this group.
However, SiPSiC was the only method to detect upregulation of
both MYC target pathways in the active infection group, whereas
AUCell missed the MYC target V2 pathway, producing a median
score of zero for all T cell groups, and the two other methods failed
to reach statistical significance for the MYC target V1 pathway
(Supplemental Fig. S3). As mentioned above, CD8+ T cell prolifer-
ation can be expected in the lungs of COVID-19 patients, and a sig-
nificantly higher (89%) averageMYC expressionwas indeed found
in the active infection group compared with the control in this
data set (P<0.0032, unpaired Wilcoxon test), supporting SiPSiC’s
higher robustness.

For the humanCOVID data set, we found themethods yielded
similar results regarding the upregulated pathways in alveolar cells
of COVID-19 patients, with 24 pathways detected by all four
(Table 2). The inflammatory response, IL6/JAK/STAT3 signaling,

Table 1. Summary of the number of differentially active pathways in the active infection group of the COVIDmonkey data set, by all four tested
methods

Cell type Pathway status SiPSiC AUCell ssGSEA VAM Overlap

Alveolar Upregulated 31 30 34 28 24

Downregulated 12 9 8 10 4

Skipped 0 4 0 0 0

Missed 0 4 1 3 —

B cells Upregulated 1 0 0 0 0

Downregulated 0 0 0 0 0

Skipped 0 19 0 0 0

Missed 0 0 0 0 —

T cells Upregulated 1 0 1 3 0

Downregulated 0 0 0 0 0

Skipped 0 24 0 0 0

Missed 0 0 0 0 —

The overlap column shows the number of pathways found as differentially active by all methods. Skipped pathways are pathways for which AUCell
could not calculate scores, and missed pathways are cases in which the relevant method failed to detect differential activity of a pathway detected by
all other methods. For the analysis of all 50 hallmark pathways, see Supplemental Table S2.
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and TNFA signaling via NF-kB were all downregulated according to
all four methods, suggesting a counterintuitive reaction of infected
epithelial cells suppressing immune response. Additionally, the TGF
beta signaling pathwaywas founddownregulatedbyallmethods ex-
cept ssGSEA, providing further support for this putative anti-inflam-
matory response. In activated B cells, SiPSiC was the only method
that managed to show upregulation of TGF beta signaling (Fig. 3),
consistent with previous reports as mentioned above, whereas all
other methods did not find any differentially active pathway in

this group. Similarly, SiPSiC and VAM
were the onlymethods to detect upregula-
tion of the G2/M checkpoint pathway in
CD8+ T cells (Fig. 3), in linewith the upre-
gulation of MYC found in the monkey T
cells and the expected proliferation of
these cells as mentioned above.

For the glioblastoma data, we found
less agreement between themethods (see
Table 3). SiPSiC showed no misses, dem-
onstrating its higher robustness across
data types; however, AUCellmissed three
pathways and ssGSEA and VAM missed
five pathways each, withmostmisses ow-
ing to biases toward specific metamod-
ules. VAM showed bias toward the MES-
like group (28 upregulated pathways
compared to 20, 23, and 17 detected by
AUCell, SiPSiC, and ssGSEA, respective-
ly) and NPC-like group (13 upregulated
pathways compared to six, eight, and
four detected by AUCell, SiPSiC, and
ssGSEA, respectively). Specifically, VAM
detected upregulation of the adipogene-
sis pathway in the MES-like group,
whereas all other methods found it was
upregulated in the AC-like group. This
bias prevented VAM from detecting dif-
ferential pathway activity in either the
MES- or NPC-like group over the other,
which accounts for three more misses of

the method. Indeed, although all other methods found upregula-
tion of the PI3K/AKT/MTOR signaling and heme metabolism
pathways in the MES-like group and found upregulation of the
hedgehog signaling in the NPC-like group, VAM detected upregu-
lation of the PI3K/AKT/MTOR signaling pathway in the NPC-like
group, whereas it failed to achieve statistical significance compar-
ing the NPC- and MES-like groups in the two other pathways. In
summary, these biases account for four out of the five misses of
VAM.

Figure 3. SiPSiC shows improved accuracy compared with AUCell, ssGSEA, and VAM. Violin plots
showing normalized pathway score distributions as calculated by the four different methods.
Significant results (FDR<0.01) are colored red. (Top) Apoptosis, monkey alveolar cells. (Middle) TGF
beta signaling, human B cells. (Bottom) G2/M checkpoint, human CD8+ T cells.

Table 2. Summary of the number of differentially active pathways in COVID patients, by all four methods

Cell type Pathway status SiPSiC AUCell ssGSEA VAM Overlap

Alveolar Upregulated 20 9 18 11 7

Downregulated 3 10 9 0 0

Skipped 0 2 0 0 0

Missed 0 3 1 2 —

B cells Upregulated 2 0 4 2 0

Downregulated 7 0 6 2 0

Skipped 0 20 0 0 0

Missed 0 4 0 0 —

T cells Upregulated 20 12 17 11 7

Downregulated 4 4 6 0 0

Skipped 0 16 0 0 0

Missed 0 3 0 2 —

The overlap column shows the number of pathways found as differentially active by all methods. Skipped pathways are pathways for which AUCell
could not calculate scores, and missed pathways are cases in which the relevant method failed to detect differential activity of a pathway detected by
all other methods. For the analysis of all 50 hallmark pathways, see Supplemental Table S1.
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ssGSEA, in contrast, showed bias toward the OPC-like group,
with 10 pathways detected as upregulated compared to two, two,
and none detected by AUCell, SiPSiC, and VAM, respectively.
This bias accounts for four out of ssGSEA’s five misses, as it found
upregulation of the Wnt/beta catenin, G2/M checkpoint, and E2F
targets pathways in the OPC-like group—all found upregulated in
the NPC-like group by the other methods—and failed to show sig-
nificant difference between the OPC- and MES-like groups in the
mTORC1 signaling pathway, which was found upregulated in
the MES-like group by all other methods. A similar bias was pre-
sented by AUCell toward the AC-like group with 13 pathways
found upregulated compared to four, 10, and one found by
SiPSiC, ssGSEA, and VAM, respectively. This bias accounts for
two of AUCell’s three misses, one of them being the inflammatory
response pathway, which all other methods detected as upregu-
lated in the MES-like group, consistent with previous knowledge
as mentioned above.

Of note, SiPSiCwas the onlymethodwith nomisses across all
cell types in all three data sets, suggesting it is the most robust
method of the four (see Tables 1–3).

We also compared the execution time of the different meth-
ods, applied to the same three data sets (seeMethods). The detailed
execution times and fold change figures compared with SiPSiC can
be found in Supplemental Table S7. AUCell, ssGSEA, and VAM
were respectively at least 43%, 169%, and 77% slower than
SiPSiC across all cell types and data sets, excluding the B cells of
monkeys, for which AUCell was slightly quicker than SiPSiC. On
average, we saw a fold change of 1.99, 11.06, and 3.71 in the exe-
cution times of AUCell, ssGSEA, andVAMacross the data sets com-
pared with SiPSiC execution times. In addition, the differences in
execution times were largely correlated with data set size so that
SiPSiC’s advantage was greater in larger data sets. For instance, al-
though AUCell, ssGSEA, and VAM showed a fold change of 0.77,
2.69, and 1.77 compared with SiPSiC for the B cells of monkeys
(113 cells), these numbers increased to 1.85, 9.25, and 2.33, respec-
tively, in the analysis of monkey alveolar cells, in which 1004 cells
were included.Moreover, in the glioblastoma analysis (6576 cells),
SiPSiC executed in just 5.7 sec, whereas AUCell, ssGSEA, and VAM
took 14.1 sec (247% of SiPSiC’s execution time), 146.2 sec
(2565%), and 20.5 sec (360%) to complete. Therefore, SiPSiC is
more scalable and better fitted for use on large data sets, allowing
meta-analysis of large amounts of single-cell data becoming avail-
able now and in the near future.

SiPSiC is robust to normalization parameter settings

SiPSiC normalizes the expression of each gene by the median ex-
pression level of the top τ%of cells (see Methods). The above anal-

ysis was conducted with the default value of τ= 5%. To test the
robustness of SiPSiC results to τ, we repeated the analyses of the
same five data sets with τ= 2% and τ= 10% (Supplemental Table
S8). The different values of τ had only minimal impact on the re-
sults, and most pathways were either found not significantly dif-
ferent or found significantly upregulated in the same group of
cells. In the lung adenocarcinoma and both COVID data sets, be-
tween 46 (92%) and 49 (98%) of the 50 hallmark pathways pro-
duced the same results across all comparisons. For glioblastoma
and oligodendroglioma, 38 (76%) and 43 (86%) of the pathways
produced the same result.

Across the data sets, we found only three pathways in which
results with τ=5%were inconsistent with both τ= 2% and τ=10%.
These are the IFNG pathway in the glioblastoma analysis, the allo-
graft rejection in the T cells of monkeys, and the genes downregu-
lated by UV in T cells of human SARS-CoV-2 patients. In
glioblastoma, upregulation of the IFNG response in AC-like cells
was observedwith τ= 2%and inMES-like cells with τ=10%,where-
as with τ= 5%, both groups were found upregulated compared
with OPC-like and NPC-like cells as part of an overall bias toward
AC-like cells upregulation with τ=2% and MES-like cells with τ=
10% (Supplemental Table S8). For the allograft rejection pathway
changes were minimal but just crossed the selected threshold of
FDR<0.01 (0.0094 for τ=2%, 0.0112 for τ=5%, and 0.0089 for τ
=10%). For genes downregulated by UV, downregulation in T cells
was detectedwith τ= 2% and τ=10% but was not significant with τ
=5%, as well as according to AUCell, ssGSEA, andVAM, suggesting
the results with τ=5% better reflect reality.

Discussion

scRNA-seq is a powerful technique for interrogating cellular het-
erogeneity, allowing researchers to comprehensively query chang-
es in biological processes in high resolution. Despite its utility,
computational methods for inferring the activity of biological pro-
cesses are still lacking. As the scale, resolution, and abundance of
scRNA-seq continue to grow, there is a pressing need to refine ex-
isting methodologies and develop novel improved ones. These en-
deavors are pivotal for uncovering novel biological processes and
elucidating poorly understood phenomena.

In this paper, we introduce SiPSiC, a novel method for infer-
ring pathway scores from scRNA-seq data. We demonstrate its ap-
plicability and high sensitivity, accuracy, and consistency by
applying it to publicly available data sets of COVID-19 and
various malignancies. Our analyses reveal numerous pathways ex-
hibiting altered activity, many of which were not previously iden-
tified in the original papers. These findings align with established
biological knowledge and are corroborated by other research stud-
ies, underscoring the biological relevance of SiPSiC-derived
insights.

SiPSiC presents several advantages over the conventional ap-
proach of gene set enrichment of differential genes. Its primary
benefit lies in its capability to assess pathway activity for every sin-
gle cell, allowing more robust detection of changes in pathway ac-
tivity, estimation of heterogeneity in pathway activity changes,
and representation of the data in pathway space.We suggest a nov-
el approach for dimensional reduction and clustering for single-
cell data using SiPSiC scores rather than gene expression profiles.
This strategy accentuates biological similarities between cells,
while mitigating technical artifacts and covariates such as patient
of origin. Although SiPSiC is not a batch correction method, it of-
fers distinct advantages that may render batch correction

Table 3. Summary of the number of differentially active pathways in
each glioblastomametamodule, according to the four testedmethods

SiPSiC AUCell ssGSEA VAM Overlap

AC-like 4 13 10 1 1

MES-like 23 20 17 28 13

OPC-like 2 2 10 0 0

NPC-like 8 6 4 13 2

Missed 0 3 5 5 —

Missed pathways are cases in which the relevant method failed to detect
differential activity of a given pathway in the specific cell group where all
other methods detected the pathway. For a summary of the analysis of
all 50 hallmark pathways, see Supplemental Table S4.
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unnecessary in certain scenarios. Unlike batch correction meth-
ods, SiPSiC does not artificially alter the raw data, thus avoiding in-
advertent removal of genuine biological differences. Moreover,
batch correction requires knowing what the batches are, and
that they are at least partially independent of the biological differ-
ences, and therefore may not always be feasible.

Comparative analyses against existingmethods that can com-
pute pathway activity per cell—AUCell, ssGSEA, and VAM—dem-
onstrate SiPSiC’s superior ability to identify real, biologically
meaningful results while substantially reducing computational ex-
ecution time. In summary, we demonstrate that SiPSiC provides
accurate, comprehensive, and useful insights into biological path-
way activity at the single-cell level. We attribute this success to the
combination of proper normalization, ensuring comparable con-
tribution from different genes, and rank-based weighting, en-
abling the utilization of the higher information content of
highly expressed genes.

However, our algorithm does present potential pitfalls. First,
SiPSiC’s results depend on the units in which gene expression
data are provided. Based on our analyses, we recommend provid-
ing SiPSiC with TPM values (or CPM if normalization by gene
length is not required) rather than logarithmic transformations
of these values. Second, SiPSiC is susceptible to outliers, and we
therefore recommend filtering both genes and cells before apply-
ing this method. Lastly, the activation of many biological process-
es involves the induction of some genes and the silencing of
others. SiPSiC does not account for genes changing in the opposite
direction in the same gene set, hence gene sets used as input for
SiPSiC analysis should be separated according to the direction of
change upon activation of the pathway. To address this, we select-
ed the MSigDB hallmark pathway database, whose pathways meet
this criterion (Liberzon et al. 2015). Although other methods de-
veloped for bulk RNA-seq data can model more complex pathway
structures (Tarca et al. 2009; Vaske et al. 2010; Drier et al. 2013;
Young and Craft 2016), they rely on high-quality data and there-
fore are prone to errors when applied on sparse and noisy data typ-
ically achieved by single-cell RNA-seq.

Methods

The SiPSiC algorithm

Taking an scRNA-seq gene expressionmatrixX in TPMorCPMand
taking a given gene set, SiPSiC performs the following steps to cal-
culate the score for all the cells in the data:

(1) Calculate normalized gene scores. Calculate the median
of the τ percentage of cells with highest expression (default τ=
5%). If it is positive, use it as normalization factor; if zero, use
the maximum value as the normalization factor. Calculate
new normalized gene scores for each gene i in cell j: Si,j = Xi,j

NFi
,

where NFi is the normalization factor.

The reason behind this step is that scRNA-seq data are normally
sparse (Chi and Deng 2020); namely, the fraction of zeros in the
data is large. Thus, by selecting the median of the top τ% cells,
there is a high likelihood that for most genes the value will be
greater than zero, but still not be an outlier, which could perturb
further processing steps.

(2) Pathway scoring. Rank the genes in the gene set by their to-
tal expression across all cells

∑
j Xi,j. The pathway score Pj is the

weighted average of the normalized gene scores by the normal-

ized rank
ranki
nP

( )

: Pj = 1
nP

2 ∗
∑nP

i=1
ranki∗Si,j.

scRNA-seq data set preprocessing

We downloaded published data sets from five papers (Tirosh et al.
2016; Neftel et al. 2019; Kim et al. 2020; Melms et al. 2021;
Speranza et al. 2021). For the human COVID-19, lung adenocarci-
noma, and oligodendroglioma data sets, cell identity annotations
were downloaded aswell. For the glioblastoma Smart-seq2 data set,
we used the malignant cell metamodule assignment that was pub-
lished. To identify cell identities for the monkey COVID-19 data
set, we first identified biomarkers for alveolar, activated B, and
CD8+ T cells. First, we used the human COVID-19 data set to ex-
tract markers of each cell type compared with all other cells, using
the FindMarkers function of Seurat (Butler et al. 2018), with
logfc.threshold =1 and min.diff.pct = 0.5, following the parame-
ters used by Speranza et al. (2021). In addition to these markers,
we also selected canonical marker genes of alveolar, B, and T cells
from the literature: CAV1, PDPN, SFTPB, SFTPC, and SFTPD were
used for alveolar cells (Chen et al. 2004); MS4A1 (CD20), CD27,
and CD28 for B cells (Sanz et al. 2019); and CD2, CD8A, and
CXCR3 (CD138) for T cells (Tzankov et al. 2005; Groom and
Luster 2011). Next, we clustered the monkey data set using R’s
Seurat clustering pipeline described below with a 0.5 resolution
(for the findClusters function), and all clusters were annotated as
a given cell type if and only if they displayed high expression of
both the canonical markers and the markers identified in the hu-
man data set. This resulted in 1411, 1060, and 17,365 cells identi-
fied as alveolar, B, and CD8+ T cells, respectively, before filtering
was applied. After filtering, these numbers dropped to 1004 (86
control; 217, 3 days; and 701, 10 days) alveolar cells, 113 (29 con-
trol; 71, 3 days; and 13, 10 days) B cells, and 2224 (360 control;
1162, 3 days; and 702, 10 days) T cells.

The glioblastoma Smart-seq2, lung adenocarcinoma, and oli-
godendroglioma data sets were log normalized by the original au-
thors; hence, we first converted them to linear scale. For the
glioblastoma 10x Genomics data set, we used all malignant cells
and genes reported by Neftel et al. (2019) after their filtering. For
all other data sets, we took all relevant cells (see below), removed
cells expressing (at least one read) less than 1000 genes, and
then excluded genes expressed in <10% of the remaining cells.
For the two COVID-19 data sets, we selected alveolar cells, B cells,
and CD8+ T cells, and applied the above filtering for each cell type
separately. Because both data sets were supplied as simple count
matrices, we divided all transcripts by the total counts of their
cell of origin and multiplied by 1 million after filtering. For the
lung adenocarcinoma data set, we selected only tS1, tS2, and tS3
cells. For oligodendroglioma, we selected only malignant cells.

SiPSiC score comparisons

We applied SiPSiC to each data set separately. An unpaired
Student’s t-test was used to compare SiPSiC scores between two
groups of cells. When more than two groups of cells were identi-
fied in the data set, we performed all pairwise comparisons. The re-
ported FDR values represent the largest FDR of all pairwise
comparisons. We considered a pathway upregulated or downregu-
lated only when there was, respectively, a positive or negative me-
dian difference and an FDR<0.01 comparedwith each of the other
groups, unless stated otherwise.

To infer that the Mo et al. (2020) hypoxia signature was up-
regulated in the tS2 lineage, we relied on the fact that all four genes
included in this signature were tS2 specifc (Supplementary Data 3
of Kim et al. 2020). In the glioblastoma data set analysis, because
Garofano et al. (2021) performed pathway analysis on different
groups of cells than the ones reported in Neftel et al. (2019), we re-
lied on the overlaps between the two classifications. Because the
PPR and NEU clusters were enriched in both NPC- and OPC-like
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cells, when a specific pathway was reported as upregulated in one
of these clusters, we considered our result consistent with the find-
ings of Garofano et al. (2021) evenwhen only one of the respective
cell states (either OPC- or NPC-like) showed upregulation of that
pathway compared with the MES- and AC-like cell states. Such
“semiconsistent” pathways account for five of the 31 consistent
pathways mentioned in the results section.

Heatmapswere generated using the R package pheatmap, ver-
sion 1.0.12. Only differential pathways are shown. After selecting
relevant cell groups (see below), we calculatedZ-scores fromSiPSiC
pathway scores for each of the pathways individually. We sorted
the cells in each cell group based on their average Z-score across
all pathways upregulated in that group and plotted them in as-
cending order (left to right). The pathways upregulated in each
group were sorted in ascending order of FDR values (most signifi-
cant result at the top). Following the emphasis in the main text,
only the active infection (3 day) and control groups were selected
for themonkey COVID-19 data set, whereas for the lung adenocar-
cinoma data set, we only compared the tS1 and tS2 cell lineages, as
the tS3 lineage contained only 63 cells. Because almost all path-
ways showed a significant difference between these two groups,
we included the 20 most significant pathways in the heatmap
and sorted the cells in each of the two lineages according to their
average Z-scores across these 20 pathways.

Clustering and cluster composition analysis

We identified malignant cells in the 10x Genomics data set pub-
lished by Neftel et al. (2019), and clustered them using the
Louvain algorithm implemented in R’s Seurat package, both based
on single genes and on SiPSiC pathway scores. Cell annotations
were based on the markers provided by Neftel et al. (2019) for
the malignant metamodules they defined. Batch correction was
applied by following the standard pipeline described in the docu-
mentation of Seurat, scVI, andHarmony. For additional details, see
the Supplemental Methods.

Method benchmarking

We repeated the SiPSiC analyses for the glioblastoma (Smart-seq2)
and twoCOVID-19 data sets using AUCell version 1.24.0 andVAM
1.1.0. ssGSEA was applied using its implementation in R’s GSVA
package (Hänzelmann et al. 2013), version 1.50.0. To guarantee in-
tegrity of the results, the same preprocessing steps were applied;
cell assignments to the different groups were kept; and pathway
up- or downregulation was defined as in our SiPSiC analyses across
the data sets. All parameters of the different methods were set to
default. Pathways skipped by AUCell but consistently detected
by all other methods as either up- or downregulated in a specific
group were counted both as skipped and missed by AUCell.

Violin plots were generated with the R package ggplot2, ver-
sion 3.4.4. For each method, all cell scores were normalized with
(divided by) the maximum score produced by this method for
the relevant pathway prior to plot generation.

We used R studio’s profiler (R’s Profvis package, version 0.3.8)
to record the execution of the different methods on a computer
with Windows 11 x64, 6 Intel i7-8700 (3.20 GHz) cores and 64
GBRAM. The R versionwas 4.3.2 (RCore Team2023) used in R stu-
dio version 2023.12.0 (build 369). SiPSiC execution times were cal-
culated as the sum of all calls to the getPathwayScores function for
each of the 50 hallmark pathways, whereas for AUCell, we mea-
sured the execution time of the AUCell_run function. Because
these functions also include the detection of the relevant pathway
genes in the input data matrix, for VAM, we summed the execu-
tions of the createGeneSetCollection and vamForCollection func-

tions, whereas for ssGSEA, the ssgseaParam function was ignored
as its execution time never passed R studio’s profiler threshold
for detection (20 msec), and only the call to the gsva function
was considered.

Software availability

SiPSiC is available at Bioconductor (https://bioconductor.org/
packages/SiPSiC), at GitHub (https://github.com/DanielDavis12/
SiPSiC), and as Supplemental Code 1. Custom scripts applying
SiPSiC and the other methods to the different data sets are avail-
able as Supplemental Code 2.
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