
Simultaneous assessment of human genome and
methylome data in a single experiment using limited
deamination of methylated cytosine

Bo Yan,1 Duan Wang,2 and Laurence Ettwiller1
1New England Biolabs Incorporated, Ipswich, Massachusetts 01938, USA; 2SLC Management, Wellesley Hills, Massachusetts
02481, USA

Multiomics require concerted recording of independent information, ideally from a single experiment. In this study, we

introduce RIMS-seq2, a high-throughput technique to simultaneously sequence genomes and overlay methylation informa-

tion while requiring only a small modification of the experimental protocol for high-throughput DNA sequencing to in-

clude a controlled deamination step. Importantly, the rate of deamination of 5-methylcytosine is negligible and thus

does not interfere with standard DNA sequencing and data processing. Thus, RIMS-seq2 libraries from whole- or target-

ed-genome sequencing show the same germline variation calling accuracy and sensitivity compared with standard DNA-

seq. Additionally, regional methylation levels provide an accurate map of the human methylome.

[Supplemental material is available for this article.]

Cytosine methylation is the main epigenetic DNA modification
found in higher Eukaryotes. In humans, it occurs mainly in a
CpG dinucleotide context with the help of DNA methyltransfer-
ases (DNMTs), which transfer a methyl group to a cytosine residue
to form 5-methylcytosine (m5C) (Moore et al. 2013). Methylation
of cytosine is involved in various biological processes, including
the regulation of gene expression and chromatin structure
(Holliday and Pugh 1975). Additionally, abnormal methylation
patterns have been found to play a significant role in disease pro-
gression and carcinogenesis (Jones and Baylin 2007). Accordingly,
methylation of cytosine can be used as a universal biomarker for
the diagnosis of disease, responses to therapeutic interventions,
and prognosis (Hulbert et al. 2017; Vrba and Futscher 2018), dem-
onstrating its usage for noninvasive detection of conditions.
Furthermore, DNAmethylation is a fairly accessible biomarker ow-
ing to its low sensitivity to experimental handling.

Techniques for the identification of DNAmethylation can be
grouped based on the properties used to discriminate between
methylated and unmethylated cytosines, namely, enzymatic
digestion, affinity enrichment, and enzymatic or chemical conver-
sion. The most commonly used techniques rely on the conversion
of cytosine to uracil followed by either hybridization of the con-
verted sequence to methylation arrays or sequencing of the
whole-genome (WGBS) or of a reduced representation (RRBS).
Converting all cytosines severely reduces sequence complexity,
and therefore, these conversion-based techniques have a single
aim, namely, to identify methylation. Recently, TET-assisted pyri-
dine borane sequencing (TAPS) (Liu et al. 2019) and DM-seq
(Wang et al. 2023) allow the conversion of only methylated cyto-
sine, which significantly improves mapping and coverage.

A direct dual readout of both the sequence and methylation
information on the sameDNAmolecule can be achieved using sin-
gle-molecule sequencing platforms, such as Oxford Nanopore

Technologies (Rand et al. 2017; Simpson et al. 2017) or Pacific
Biosciences (PacBio) (Clark et al. 2013). Oxford Nanopore
Technologies uses changes in the pore ionic current signal to
detect DNA modifications, whereas PacBio relies on changes of
the polymerase speed between the fluorescent pulses to indicate
modification (Clark et al. 2012). In both instances, these technol-
ogies require the sequencing of the original DNA molecule to pre-
serve the associated methylation information.

Such a readout of both sequence and methylation informa-
tion cannot be directly obtained from short-read sequencing
because amplification of the original DNA molecule is necessary
for clustering. We and others have therefore used the redundancy
of the double-stranded DNA to identify DNA methylation in-
formation and genomic variants simultaneously (Laird et al.
2004; Liang et al. 2021; Yan et al. 2022; Füllgrabe et al. 2023).
Although this setup allows for dual readouts in a single data set,
the experimental application of these techniques proved to be a
significant departure from standard library preparation as the pro-
cedure involves linking double-stranded DNA together.

Chemical or fortuitous deamination can also be used as
means to identify cytosine methylation. For example, Gokhman
et al. (2014) elegantly harness DNA damage resulting from the nat-
ural degradation processes of inappropriately stored DNA to iden-
tify methylated and unmethylated cytosines in ancient DNA.
Similarly, we developed RIMS-seq, a newmethod to identifymeth-
ylase specificity in bacteria (Baum et al. 2021). To perform RIMS-
seq, genomic DNA is subjected to a limited heat alkaline treatment
step that induces a deamination of a fraction of m5C. Although
unmethylated cytosines are also deaminated, they are effectively
eliminated during the amplification step owing to the usage of a
proofreading polymerase that stalls at dU sites. Thus, only the de-
aminated m5C results in a C-to-T transition in sequencing reads.
m5C sites are therefore identified by virtue of their elevated C-
to-T transition rate. Importantly, the protocol requires only a min-
imal departure from standard DNA-seq, and although the
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deamination is large enough to slightly elevate the C-to-T error
rate at m5C sites, this level of deamination does not affect library
yields and sequencing quality (Baum et al. 2021).

In this study, we developed RIMS-seq2 for the identification
of methylated loci in humans. We first adapted the experimental
protocol to assess concerted methylation at nearby CpG sites
and apply RIMS-seq2 on well-known cell lines as well as matched
tumor/normal tissue samples.We demonstrate broad applicability
of this technology in the simultaneous identification of sequence
and methylation in a single experiment with minimal modifica-
tion of the standard library protocol and sequencing qualities
matching DNA-seq for variant calling.

Results

Considerations for the application of RIMS-seq2 to human

genome sequencing

A previous version of the RIMS-seq protocol has been used for the
identification of methylase specificity in bacterial genomes using
an overall elevation of C-to-T transition rate of ∼0.1% (Baum
et al. 2021). This deamination level is generally enough for the
identification of sequence context(s) surrounding the methylated
cytosine characteristic of the prokaryotic methylase specificity
(ies). To apply RIMS-seq2 for the identification of human methyl-
ation, both the experimental and analytical protocols need to be
adapted to the fact that methylation happens almost exclusively
at CpG sites and only a subset of these sites are methylated. Hu-
man genomic DNA also harbors m5C as well 5-hydroxymeth-
ylated cytosines (5hmC). Using genomic DNA of a T4gt
bacteriophage that contains 5hmC (Miller et al. 2003), we showed
that the heat alkaline deamination of 5hmC, resulting in 5hmU,
exhibits a conversion rate similar to that of m5C in a RIMS-seq2
protocol (Supplemental Fig. S1A). Furthermore, the conversion
rate at 5hmC is consistently observed at ∼1% in all sequence con-
texts examined (Supplemental Fig. S1B). These results demonstrate
that RIMS-seq, analogous to bisulfite sequencing and EM-seq, in-
discriminately identifies m5C+5hmC.

Experimentally, we elevated the pH (1 M NaOH) and tuned
the deamination duration to 30 min at 60°C, achieving a ∼1% C-
to-T transition at m5C sites. Increasing the C-to-T transition rate
at m5C reduces the number of sites needed to estimate the methyl-
ation levels. Additionally, we have implemented a modification to
the previously published protocol by incorporating uracil DNA gly-
cosylase (Lindahl et al. 1977) for uracil base excision before ampli-
fication of the library. This refinement serves to further diminish
the background noise associated with C-to-T transitions at unme-
thylated sites, thereby enhancing the signal-to-noise ratio
(Methods). Under these conditions, the C-to-T transition is expect-
ed to increase to about 1000-fold at m5C sites compared with the
background error rate of Illumina. This fold increase represents
the “goldilocks” zone to identify methylation in human without
affecting sequencing quality for a variety of standard genomic ap-
plications. For example, we expect the identification of germline
variations to be done using standard tools for variant calling such
as GATK (McKenna et al. 2010) without affecting call accuracy.

Nevertheless, at current standard sequencing depth (30-fold
coverage or above), this level of deamination does not provide
base-resolution methylation identification but rather provides re-
gional aggregatedmethylation levels (RAMLs) over a defined geno-
mic region. We estimated that the accurate evaluation of the
methylation status can be safely done at about 100 combined

CpG sites or above. Considering a combined 100 CpG sites and a
1% deamination rate at methylated CpG sites, a 30-fold read cov-
erage at these sites would result in an average of 30 C-to-T deami-
nation events. This number of CpG sites represent about or less
than the average size of a single CpG island (CGI), a resolution
that is compatible with most epigenetic applications. Indeed,
functional genomic regions ranging between a few hundred and
a few thousand bases tend to be regionally methylated or unme-
thylated in concert (Chen et al. 2016), and a number of established
protocols for methylation analysis have already been taking ad-
vantage of this concerted signal to identify such local aggregate
as opposed to base-resolution methylation levels (Weber et al.
2005; Brinkman et al. 2010).

Whole-genome and targeted-genome sequencing

To demonstrate the applicability of RIMS-seq2 in the simultaneous
sequencing of DNA and methylome, we performed RIMS-seq2 on
human genomic DNA. RIMS-seq2 whole-genome sequencing
(WGS) was performed on NA12878 genomic DNA. Exome target
capture (TES) using RIMS-seq2 was performed on both NA12878
and K562 genomic DNA as well as genomic DNA extracted from
frozen/tumor breast tissue. Finally, to ensure reproducibility and
compatibility with DNA-seq, we performed technical replicates
on the target captures and included a control DNA-seq using the
same source of starting material, respectively.

For WGS, ∼150 ng of NA12878 genomic DNA was used to
generate 4.6 billion paired-end reads, achieving an average cover-
age >200×. For exome sequencing, we used 50–100 ng of genomic
DNA to generate about 100–200 million paired-end reads, achiev-
ing an average of more than 40-fold coverage (Supplemental Table
S1).

Reads were trimmed and mapped to the human genome
(GRCh38) using Bowtie 2 (Langmead and Salzberg 2012). C-to-T
transitions at CpG sites were identified for each individual read
and combined over predefined genomic regions to obtain C-to-T
transition rates (Methods) (Supplemental Table S1). Transition
rates were subsequently calibrated to obtain overall methylation
levels in these genomic regions (see below).

RIMS-seq2 shows a linear relationship between transition rates
and methylation levels

We first evaluated how the C-to-T transition rate of RIMS-seq2
correlates with local methylation level in CGIs, promoters, or ex-
onic regions. For this, we defined methylation levels across the
NA12878 genome using published gold-standard data sets. More
specifically, we calculated the weighted average methylation
from three data sets derived fromwhole-genome bisulfite sequenc-
ing (WGBS), EM-seq (Vaisvila et al. 2021), andNanopore (Jain et al.
2018) done on NA12878 (Methods). Because these data sets result
from independent technologies for methylation identification,
theweighted averagemethylation shouldminimize the bias inher-
ent to eachmethod (Olova et al. 2018) and provide closer to “true”
methylation levels (see Methods). Next, CGIs, promoters, or exon-
ic regions with similar methylation levels were binned together,
and the excess of C-to-T transition rate observed in RIMS-seq2 is
computed for each bin.

As expected, we found the excess of C-to-T transition to be
correlated with methylation levels in CGIs (Fig. 1A), promoters,
and exonic regions (Supplemental Fig. S1C,D). Such correlation
was only observed in a CpG context; the other contexts do not
show an excess of C-to-T transition, consistent with the fact that
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the vast majority of methylation events in human happen in CpG
context (Fig. 1A).

To demonstrate linearity between methylation levels and
RIMS-seq2 C-to-T transition rates, we performed a regression anal-
ysis test for the binned CGIs (Fig. 1B,C), promoters, and exons
(Supplemental Fig. S1E,F) for both whole-genome and targeted
RIMS-seq2. The resulting regression analysis reveals positive linear
relationships between transition rates and the methylation levels
in all regions for both whole-genome (R2 = 0.99, P-value of vari-
able < 0.01, coefficient = 0.01) and targeted RIMS-seq2 (R2 = 0.99,
P-value of variable < 0.01, coefficient = 0.01) (Supplemental Table
S2). This result indicates that quantitative measurement of meth-
ylation level using RIMS-seq2 is achievable and that the absolute
quantification can be calibrated using only two data points.

Development of a linear model between transition rates
and methylation levels

Although the heat alkaline deamination treatment is aiming at
∼1%C-to-T transition atm5C sites, experimental variations, geno-
mic DNA quality, and sequencing runs may affect the C-to-T tran-
sition rate at both C andm5C for each individual experiment. It is
therefore important to perform a calibration specific to each se-
quencing run. Having established the linear correlation between
transition rates and methylation levels, this calibration can be
done using two sets of internal controls only representing hyper-
methylated regions and unmethylated sites, respectively.

For hypermethylated regions, a set of 24 internal control re-
gions was selected as stably hypermethylated across a broad range
of tissues and cell types (Edgar et al. 2014) including in NA12878
(Fig. 1C; Supplemental Table S3). We used the non-CpG sites in
these regions to estimate the C-to-T transition rate at unmeth-
ylated cytosines. Applied to all the RIMS-seq2 data sets obtained
for this study (Supplemental Table S1), we obtained the C-to-T
transition rate at m5C to be ∼1% for m5C and 10×10%–5% for
C, which is a 1000-fold increase in C-to-T transition rate at meth-
ylated compared with unmethylated sites.

Next, using these stably hypermethylated regions, we ex-
plored the impact of sequence context on calibration, notably
the upstream base relative to the deaminated base. The effect of
the upstream base to CpG sites is subtle but not negligible with
sample and run variations (Supplemental Fig. S2A). The ApCpG
context for which an adenosine is found upstream of the CpG re-
peatedly shows the lowest C-to-T transition (Supplemental Fig.
S2A). The sequence context is therefore incorporated into the cal-
ibration procedure as a parameter to improve methylation call ac-
curacy. We also observed an effect of the sequencing cycles,
notably for the two first and two last cycles of paired-end sequenc-
ing (Supplemental Fig. S2B). For these cycles, the C-to-T transition
is lower than expected for fullymethylated sites and removed from
the methylation analysis.

In addition, because the deamination rate only moderately
increases the signal over the noise ratio, RIMS-seq2 is attuned to
variations from the reference genome. Thus, we also investigated

A

B C

Figure 1. Linear relationship between transition rates and methylation levels. (A) Whole-genome RIMS-seq2 excess of C-to-T transition rates in read 1
compared with read 2 (imbalance) function of the position on the read (in base pairs). CGI regions are binned into 1%–10% to 90%–100% methylation
levels. The rate of C-to-T transition in each bin was computed for CpG (red), CpA (blue), CpT (orange), and CpC (purple) contexts. (B) The rate of C-to-T
transition and benchmarkedmethylation in binned CGIs fits a positive linear regressionmodel for all NA12878 RIMS-seq2 whole-genome sequencing (red)
and exome sequencing in triplicates (blue). Top bar plots represent the total number of CGI in each bin. (C ) Twenty-two stablymethylated regions across a
broad range of tissues and cell types used as internal control for methylation level calibration. The number in red indicates the number of available human
WGBS samples used for methylation analysis. Genomic regions coordinates are derived from the human genome (GRCh38).

Assessing genetics and epigenetics using RIMS-seq2

Genome Research 3
www.genome.org

 Cold Spring Harbor Laboratory Press on July 22, 2024 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.278294.123/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.278294.123/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.278294.123/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.278294.123/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.278294.123/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.278294.123/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.278294.123/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.278294.123/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.278294.123/-/DC1
http://genome.cshlp.org/
http://www.cshlpress.com


the effect of single-nucleotide polymorphism (SNP) on methyla-
tion calls. We observed an increase in methylation call accuracy
if the publicly available NA12878 SNP positions were to be re-
moved prior to methylation call (Supplemental Fig. S2C). An
equivalent improvement was obtained if the SNP positions were
identified directly from the RIMS-seq2 data sets and subsequently
used for methylation call (for details, see below) (Supplemental
Fig. S2C). This result demonstrates that an external SNP data set
is not required for this analysis. Thus, prior to calibration, the po-
sitions identified by RIMS-seq2 as SNPs were removed from the
methylation calls. Finally, we assessed the influence of the map-
ping quality metric MAPQ on methylation calls and found that
for Bowtie 2 mapping, a MAPQ of 10 yielded the highest accuracy
(Supplemental Fig. S2D).

Methylation calling at regional resolution

We are now addressing the ability of RIMS-seq2 to define methyl-
ation at regional resolution. As a first pass, profiles of C-to-T rate
were compared with a published WGBS methylation profile per-
formed on NA12878. Visual inspection of the methylation profile

indicates that the C-to-T profile correlates closely with themethyl-
ation-level profiles from WGBS sequencing (Fig. 2A).

To quantify how correlated themethylation levels are between
RIMS-seq2 and other technologies for methylation analysis such as
bisulfite sequencing or EM-seq, as well as technologies that provide
both sequence and methylation readouts such as Nanopore, 5-let-
ter-seq (Füllgrabe et al. 2023), and Methyl-SNP-seq (Yan et al.
2022), we proceed with a genome-wide comparison of various pub-
licly available methylation data sets done on the same cell lines.
Because RIMS-seq2 cannot reliably identify methylation at base res-
olution with current standard sequencing depth, we aim at obtain-
ing RAML values at defined genomic regions. For this, we delineated
genomic regions of interest for methylation identification such as
CGIs, promoters, and exonic regions and performed local calibra-
tions using the linear model described above for the combined
CpG sites in these regions. For comparison, we also performed sim-
ilar regional methylation aggregates with the public methylation
data sets. We found that the large majority of CGIs (66%) and pro-
moters (71%) have methylation levels <30% (Fig. 2C), indicating
hypomethylation in these regions consistent with the fact that
these regions tend to be hypomethylated (Weber et al. 2007).
Conversely, only 30% of exonic regions are hypomethylated.

A

B C

Chr 19:

Figure 2. Performance of RIMS-seq2 (methylation). (A) C-to-T profile at a specific locus (combined 30 CpG sites) compared to methylation profile from
bisulfite sequencing. (B) Methylation-level (RAML) correlation at CGIs between RIMS-seq2 and EM-seq. Each point corresponds to a CGI region (raw data
provided in Supplemental Table S4). The plotting area has been divided into nine quadrants. (C )Methylation profiles at promotersmeasured by RIMS-seq2
(both WGS and TES), EM-seq (light blue), bisulfite sequencing (dark blue), and Nanopore (green). The overall percentage methylation of CpG sites was
measured using 100 bp sliding windows within 2 kb upstream of and downstream from transcription start sites (TSSs). TSSs were defined using UCSC an-
notation. Distance to a TSS is measured in base pairs.
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For comparison with existing technologies, we computed
standard correlation coefficients and complemented the correla-
tion coefficients with ameasure of quadrant consistency for an ad-
ditional metric of similarity. Technical replicate analysis of RIMS-
seq2 performed on the same sample shows goodmethylation con-
cordance with a quadrant consistency of 91% and a 0.95 correla-
tion (Supplemental Fig. S3). The same correlation levels are
observed between triplicate RIMS-seq2 exome sequencing and
WGS (Supplemental Fig. S3). High correlation levels are observed
in replicates of both cell lines as well as the frozen tissue
(Supplemental Figs. S3, S4). The correlations between RIMS-seq2
and other technologies are similarly high, ranging from 0.94 to
0.98 (Fig. 2B; Supplemental Fig. S4). The agreement between
RIMS-seq2 and other methods that allow DNA sequencing and
methylation calling is even higher, with correlations of 0.982
and 0.978 between RIMS-seq2 and 5-letter-seq (Füllgrabe et al.
2023) and methyl-SNP-seq (Yan et al. 2022; Füllgrabe et al.
2023). Comparison between Nanopore WGS and RIMS-seq2
exome sequencing revealed a strong concordance between data
sets with 0.945 correlation (Supplemental Fig. S4).

DMR identification using RIMS-seq2

We applied RIMS-seq2 to the detection of differentially methylat-
ed regions (DMRs) between matched paired frozen breast tissue
and tumor samples. Exome sequencing was performed in tripli-
cates and compared with EM-seq performed in duplicates on the
same samples (Methods). Analysis of the frozen tissue samples re-
vealed a noteworthy methylation correlation, with an average of
0.95, observed between RIMS-seq2 and EM-seq (see Supplemental
Fig. S4C). This result supports the versatility of RIMS-seq2 in han-
dling more complex samples.

Next, we assessed the ability of RIMS-seq2 to identify differen-
tially methylated CGIs that also show a significant difference in
methylation levels between tissue and tumor according to EM-
seq (Methods) (Supplemental Table S5). Analysis shows that out
of the 932 EM-seq differentially methylated CGIs, 626 also exhib-
ited differential methylation in RIMS-seq2 (Fig. 3A, true positive).
Notably, the majority of RIMS-seq2 false negatives were identified
in DMRs that, according to EM-seq, displayed intermediate meth-
ylation differences between cancer and tissue (see Fig. 3B). This

suggests that RIMS-seq2 may have lower sensitivity to intermedi-
ate differences in methylation levels but still maintain accuracy
for more substantial methylation changes.

Comparison with available technologies for genome sequencing

Coverage bias, insert sizes, chimeras, and on-target sequencing

We perform basic quality control on both the RIMS-seq2 data set
and standard DNA sequencing (Supplemental Fig. S5). Damage
to the DNA has been shown to reduce the amplicon size after li-
brary preparation (only small fragments are amplified in severely
damaged DNA) (Pääbo 1989). We therefore sought to compare
the insert size distribution between RIMS-seq2 and DNA-seq to as-
sess the damaging impact of the heat alkaline treatment. The dis-
tribution of both RIMS-seq2 and DNA-seq insert sizes is similar
(Supplemental Fig. S5A), indicating that the heat deamination
treatment step did not have a significant impact on amplicon sizes.

Germline variant calling

The deamination conditions should not interfere with genome se-
quencing for a variety of applications such as the identification of
germline variations. To demonstrate that RIMS-seq2 accurately
identifies germline variation, we use the GATK pipeline (McKenna
et al. 2010) for variant calling on both the whole-genome and
exomeRIMS-seq2 data and compare the results to JIMB variants fo-
cusing on SNPs. If deamination is interfering with variant calling,
the overall fraction of C-to-T or G-to-A transition should be higher
in RIMS-seq2 data sets. Nonetheless, the profile of SNPs closely re-
sembles the JIMB SNPs, indicating that the overall SNP profiles are
not affected (Fig. 4A). The metrics of precision, sensitivity, and F-
score of the SNPs called using RIMS-seq2 data are similar to stan-
dard DNA sequencing (Fig. 4B–D).

Discussion

RIMS-seq2 enables the simultaneous identification of sequence
and methylation for short-read sequencing. Importantly, the ex-
perimental setup closely resembles a standard library preparation
with minimal changes, and the resulting data can be analyzed us-
ing standard variant calling. These features make this technology

A B

Figure 3. DMR identification using RIMS-seq2. (A) Pie chart of the performance of RIMS-seq2 compared with EM-seq with the number of CpG islands
(CGIs) that are found as true positive (red), false negative (green), false positive (purple), and true negative (blue). (B) Correlation between the differential
methylation in EM-seq and RIMS-seq2. The “not evaluated” (yellow) category represents CGIs with differences <10%, which were not used for analysis.

Assessing genetics and epigenetics using RIMS-seq2

Genome Research 5
www.genome.org

 Cold Spring Harbor Laboratory Press on July 22, 2024 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.278294.123/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.278294.123/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.278294.123/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.278294.123/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.278294.123/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.278294.123/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.278294.123/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.278294.123/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.278294.123/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.278294.123/-/DC1
http://genome.cshlp.org/
http://www.cshlpress.com


an extremely easy to deploy strategy for simultaneous germline
variation andmethylation identification in large-scale sequencing
laboratories.

Simultaneous germline variation andmethylation identifica-
tion are now routinely performed using long-read sequencing
(Rand et al. 2017; Simpson et al. 2017) in the context of native
DNA for which no prior amplification has been performed, limit-
ing the range of applications to direct methylation sequencing.
Comparison between Nanopore WGS and RIMS-seq2 exome and
genome sequencing revealed a strong concordance between data
sets. RIMS-seq2 can be performed with or without amplification
and thus can be performed on a greater set of applications.

At current standard sequencing depth of 30-fold for WGS,
RIMS-seq2 cannot achieve base resolution. Moreover, because of
the minimal deamination rate (1%) of methylated cytosines and
subsequent calibration to determine percentage methylation, re-
gional deviations from the average 1% deamination rate are magni-
fied. This amplification contributes to increased variation in
methylation percentages, particularly prominent in fully methylat-
ed regions. Nonetheless, this resolution is sufficient to tightly corre-
late at a regional level with established technologies and identify
DMRs. To increase coverage and resolution, target enrichment fol-

lowed by RIMS-seq2 allows for the sequencing of panels of regions
such as exome sequencing. Thenovelty about target enrichment us-
ing RIMS-seq2 is the ability to call methylation using standard
probes (four bases). The method is as expensive as performing tar-
geted DNA-seq at equivalent coverage. As exemplified with exome
sequencing, RIMS-seq2 is expected to perform well with any com-
mercially available target enrichment panels or custom panels
that target genomic regions in humans and other organisms.

With constant increase in sequencing throughput and price
drops, it is conceivable that several-thousand-fold coverage of
the human genome can be achievable in a routine fashion. Such
coverage levels are already possible for targeted-genome sequenc-
ing, enabling base-resolution methylation calls using RIMS-seq2.

Importantly, RIMS-seq2 comes at almost no extra cost com-
pared with a standard DNA-seq and is compatible with a large
number of presequencing treatments such as target enrichment,
as demonstrated in this study, but also chromatin accessibility
sequencing, ChIP-seq, or single cell. In conjunction with target
enrichment, quality-control metrics show essentially identical
performance compared with the DNA-seq.

As we have demonstrated in this study, the 1% deamination
at CpG sites does not interfere with germline variation calls

A B

D

C

Figure 4. Performance of RIMS-seq2 (DNA sequencing). (A) Germline transitions/transversion profiles for JIMB and RIMS-seq2 WGS for homozygous
(top) and heterozygous (bottom) SNPs. In all cases, transitions represent the majority of the SNPs identified. (B) Precision of variant calling for standard
DNA-seq and RIMS-seq2 targeted-exome sequencing. (C ) Precision, sensitivity, and F-score for WGS RIMS-seq2 (full data set and downsampled to 30-
fold coverage). (D) The effect of the DP filter on precision.
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because variant frequencies are significantly above the deamina-
tion rates. Nonetheless, RIMS-seq2may interfere with the identifi-
cation of rare somatic mutations for which the frequency of
variant is similar to the deamination rate. In these cases, deamina-
tion may confound the identification of rare somatic mutations
and may not be used for these applications. Alternatively, algo-
rithms for somatic mutations can be adapted to distinguish true
mutations from limited deamination.

We have shown that the sequencing context has a minimal
effect on the deamination rate of methylated cytosine. Thus,
RIMS-seq2 can be directly applied to the identification of methyl-
ation in organisms thatmethylate cytosines in other contexts than
CpG context such as plants and prokaryotes. Likewise, in this
work, we choose to focus our analysis on CpG sites, but CpA sites
can be included for samples that are known to have significant lev-
els of CpA methylation.

Methods

RIMS-seq2 library preparation

We used human genomic DNA isolated from GM12878 cells (re-
ferred as NA12878, provided by Coriell Institute), K562 cells (pro-
vided by ATCC), and paired breast tumor/tissue (Biochain
D8235086-PP-10) for RIMS-seq2 sequencing in this study. We
used 100–200 ng and 50–100 ng of genomic DNA for RIMS-seq2
WGS and TES library preparation, respectively. We performed
RIMS-seq2 following the published protocol (Baum et al. 2021)
with some modifications. We used the NEBNext Ultra II library
prep kit (NEB E7645) following the manufacturer’s instructions
until the USER treatment step included following the adapter
ligation step. After this first USER treatment step, the sample was
subjected to heat alkaline deamination in 1 M NaOH (final
concentration) for 30 min at 60°C. The sample was subsequently
cooled down on ice, and equal moles of acetic acid were added
to a final concentration of 1 M to neutralize the pH. DNA was pu-
rified using a Zymo oligo clean and concentrator kit (D4060 Zymo
Research) following the protocol for clean-up of DNA >80 nt. An
additional USER treatment step was performed to the purified
DNA by adding 2 μL USER (included in all the NEB index primer
kits) and incubating for 15 min at 37°C. Finally, we used the
USER-treated DNA as a template for PCR amplification using
NEBNext Ultra II Q5 master mix. Eight samples were amplified
and pooled for target enrichment using the Twist comprehensive
exome panel (Twist 102031), following the manufacturer’s recom-
mendations. The enriched DNA was subsequently amplified with
NEBNext Ultra II Q5master mix, and both the whole-genome and
targeted libraries were sequenced on the Illumina NovaSeq 6000
platform using a paired-end mode with a read length of 100 bp.

EM-seq library preparation

Fifty nanograms of genomic DNA from breast tumor/tissue was
used to prepare EM-seq libraries as per the manufacturer’s instruc-
tions (NEB E7120). The Illumina NovaSeq 6000 sequencer was
used to sequence the libraries in a paired-end mode, generating
100 bp reads. The evaluation of EM-seq conversion efficiency
(>99.7%) was performed by utilizing unmethylated lambda geno-
mic DNA as a spike-in.

Reference genome and other annotation files

We used the GRCh38 human reference genome (hg38), UCSC hu-
man CGI annotation, and known human SNP files used for GATK
base quality recalibration as previously explained (Yan et al. 2022).

RIMS-seq2 data processing

Initially, Trim Galore! (version 0.6.4; https://github.com/
FelixKrueger/TrimGalore) was utilized to trim the Illumina adapter
from the reads. Additionally, for NA12878 WGS RIMS-seq2, the
first two bases of Read1 were trimmed owing to their poor quality
(‐‐clip_R1 2). Next, the trimmed reads were aligned to the hg38 hu-
man reference genome using Bowtie 2 (version 2.3.0) with the de-
fault parameters for paired-endmapping and inclusion of the read
group identifier defined by @RG. To ensure the accuracy of down-
stream analysis, we discarded improperly mapped reads using
SAMtools (version 1.14) (Li et al. 2009) and PCR duplicates using
Picard tools (version 2.26.11) (https://broadinstitute.github.io/
picard/) MarkDuplicates.

RIMS-seq2 C-to-T transition counting

To prevent the repetitive counting of the same transition event, we
utilized a custom script (TrimOverlappingReadPair.py) to remove
the overlapping regions between Read1 and Read2 from Read2.
Next, we separated the mapped Read1 (-f 64) and Read2 (-F 64)
using SAMtools. Then we compared the Read1 and Read2
mapping to the hg38 genome using SAMtools mpileup with the
following parameters: ‐‐min-MQ 10 ‐‐min-BQ 30 ‐‐output-BP-5
‐‐no-output-ins ‐‐no-output-ins ‐‐no-output-del ‐‐no-output-del
‐‐no-output-ends. The C-to-T transition at CpG sites was then
counted for both Read1 and Read2 in a context-dependent man-
ner using a custom script (CountErrorMpileup.py), with the follow-
ing parameters: ‐‐REFC ‐‐BASE T ‐‐left 1 ‐‐right 0 for Read1 and ‐‐REF
G ‐‐BASE A ‐‐left 0 ‐‐right 1 for Read2. Context-independent count-
ing was performed using ‐‐left 0 ‐‐right 0 for both Read1 and Read2.
Furthermore, the removal of SNP positions and specific sequencing
cycles from counting was accomplished using the ‐‐vcf and ‐‐cycle
options, respectively, to enhance the accuracy of downstream
methylation prediction. Finally, we added the C-to-T transition of
all the CpG sites in the targeted region(s) such as CGI using a cus-
tom script (CountErrorRegion.py). These regional C-to-T transition
counts (defined as Error) and all cytosine counts (C+C to T, defined
as Total) were used for regression analysis and methylation predic-
tion. The C-to-T transition rate (R) equals to error divided by total.

Data processing and methylation quantification by other methods

We downloaded the previous published 5-letter-seq (Füllgrabe
et al. 2023) methylation information from the NCBI Gene
Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/)
under accession number GSE208549 and Methyl-SNP-seq (Yan
et al. 2022) methylation information from GEO under accession
number GSE206253. The EM-seq or WGBS data set were down-
loaded from NA12878 ENCODE WGBS (ENCODE: ENCSR890
UQO), NA12878 NEB WGBS (NCBI Sequence Read Archive [SRA;
https://www.ncbi.nlm.nih.gov/sra]: SRR10532136, SRR10532135,
SRR10532127, and SRR10532126) (Vaisvila et al. 2021), NA12878
NEB EM-seq (NCBI SRA: SRR10532145, SRR10532144,
SRR10532139, and SRR10532138) (Vaisvila et al. 2021), and K562
ENCODE WGBS (ENCODE: ENCSR765JPC). The EM-seq of breast
tumor/tissue was generated in this study as mentioned above.

Weprocessed these data sets and extractedmethylation infor-
mation using the Bismark pipeline: (1) For a fair comparison, we
shortened the paired-end reads to 100 bp long and trimmed the
Illumina adapters as well as the first two bases of Read2 (Trim
Galore! ‐‐clip_R2 2); (2) we aligned trimmed reads to the human
GRCh38 genome using Bismark (version 0.22.3); (3) we filtered
the PCR duplicates and incomplete bisulfite conversion using
Bismark deduplicate_bismark and filter_non_conversion, respec-
tively; and (4) we combined the replicates and extracted CpG sites
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methylation using bismark_methylation_extractor. The methyla-
tion level of targeted regions such as CGI or promoters was calcu-
lated as explained previously (Yan et al. 2022).

For NA12878 BS-tagging sequencing (mentioned as Tn5 BS in
Supplemental Figure S4A) (Suzuki et al. 2018), we converted its
processed methylation information on hg19 to hg38 using the
UCSC liftOver tool (Hinrichs et al. 2006). For NA12878
Nanopore sequencing, the data processing andmethylation quan-
tification were described previously (Yan et al. 2022).

Regression analysis between the C-to-T transition rate

and the methylation level

We mathematically described the relationship between the RIMS-
seq2 C-to-T transition rate and the methylation level of CpG sites
in certain regions of the GM12878 cells. We chose the CGIs, pro-
moter regions that are defined as 1000 bp upstream of and 100
bp downstream from the annotated TSS, and Twist target enrich-
ment exome bait regions for this analysis. The methylation level
of these regions was measured by three methods including
WGBS, EM-seq, and Nanopore sequencing as mentioned above.
We used regions having coverage of CpG sites of 50 or more in
WGBS and EM-seq and of 20 or more in Nanopore for analysis.

To reducemethod bias, we integrated themeasurements from
these three methods, which is defined as the benchmarked meth-
ylation level for the region n (BMn), using the following steps: First,
we calculated the proportion (Pn,i) andweight (Wn,i) of eachmeth-
od for region n given by

Pn,i = Cn,i∑N
m=1

Cm,i

,

Wn,i = Pn,i∑3
j=1

Pn,j

,

where i, j∈ {1, 2, 3} denotes the three methods, n, m∈ {1, 2, …, N}
denotes the region, andCn,i represents the coverage of CpG sites by
the method in certain region n. Second, for region n, we selected
the two measurements with closest values given by

(în, ĵn) = argmin
i,j

|Mn,i −Mn,j|,

where Mn,i and Mn,j stand for the methylation level measured by
method i and j for region n. We computed the BMn, which is the
weighted average methylation by

BMn =
Wn,în

Mn,în
+Wn,ĵn

Mn,ĵn

Wn,în
+Wn,ĵn

.

Next, we classified these regions into NBin bins (NBin=10) with
equal width based on the benchmarkedmethylation level. The low-
er bound (LBk) and upper bound (UBk) of each bin k is defined as

LBk = k− 1
NBin

,

UBk = k
NBin

,

with k∈ {1, 2,…, 10}. The averagemethylation level of bin k (ABMk)
is calculated by

ABMk =

∑N
n=1

BMn1LBk,BMn,UBk

N
,

where N is the number of CGI regions in bin k, and “1” represents
the indicator function. For a given condition,

1cond = 0, cond = FALSE
1, cond = TRUE.

{

Therefore, BMn1LBk,BMn,UBk means the benchmarked methylation
within the lower and upper bound.

We also measured the RIMS-seq2 C-to-T transition rate with
the following parameters as explained above: ‐‐min-MQ 10 for
SAMtools mipleup; ‐‐vcf using SNP annotation based on JIMB
WGS of NA12878 for counting error using CountErrorMpileup.py.
Then the total counts (Totaln) and C-to-T transition counts (Errorn)
of the CpG sites in all the regions included in bin kwere added to-
gether to represent the transition rate (Rk) of this bin:

Rk =

∑N
n=1

Errorn

∑N
n=1

Totaln

,

with N as the number of regions in bin k.
Finally, we performed the regression analysis to evaluate the

linear relationship between the methylation level ABMk and tran-
sition rate Rk. By interpreting the P-value of variable and intercept,
we concluded that these two variables fit the linear model as
shown in Supplemental Figure S1, E and F:

Rk = a+ b · ABMk + 1k.

RIMS-seq2 RAML quantification

Given themethylation level and C-to-T transition rate fitting a lin-
earmodel, we can predict the RAML based on the C-to-T transition
rate of the target region. We used 24 hypermethylated regions
(Supplemental Table S3) for which the CpG sites are known and
confirmed to be stably methylated in the human genome to estab-
lish the linear model. We use R0 and R100 to represent the C-to-T
transition rate of the non-CpGcytosines and theCpG sites in these
stably hypermethylated regions, respectively. It is worth mention-
ing that we adjusted R100 corresponding to the real methylation
level in these regions based on all the published human WGBS
data from ENCODE as annotated in the Supplemental Code, given
by

WM =

∑N
n=1

Mn

N
,

R100 =
∑24
n=1

Errorn
WMn∑24

n=1
Totaln

,

where Mn represents the methylation level of a certain hyperme-
thylated region based on one human ENCODE WGBS data set,
and N is the number of available human WGBS data sets for this
region. Therefore, WM represents the mean methylation level of
this hypermethylated region in human genome.

The RAML can be estimated by

Error − Total ∗R0

(R100 − R0) ∗Toal .

Total and Error are the cytosine counts and C-to-T transition
counts in the corresponding region as explained above. Because
themethylation level needs to be between 0% and 100%,we apply
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a lower and upper bound for the estimated methylation level
(Meth):

Meth = min 1, max 0,
Error − Total∗R0

(R100 − R0)∗Total
( )( )

.

DMR analysis

We examined whether there was a significant difference in the
methylation levels of specific CGIs, with a threshold set at a
≥10% difference between breast tumor and paired nontumor
breast tissue.

First, we utilized TES RIMS-seq2 for three replicates of both
breast tumor and paired nontumor breast tissue. We analyzed
the RIMS-seq2 results to determine the significance ofmethylation
level variations exceeding 10% between tumor and tissue samples.
The detailed procedure is outlined below.

For a specific CGI region n, we identified the two measure-
ments with the closest values from the methylation results ob-
tained from the three RIMS-seq2 replicates using the following
formulas:

( în, ĵn) = argmin
i,j

|Mn,i −Mn,j|,

where i, j∈ {1, 2, 3} represents the two closest replicates from the
three replicates, and n∈ {1, 2, …, N} denotes the CGI. Then the
weighted averagemethylation BMn for CGI region nwas computed
following the previously described procedure. And the corre-
sponding total coverage Totaln was given by

Totaln = Totaln,i + Totaln,j.

Additionally, we calculated the weighted average methylation
(Tumor BMn, Tissue BMn) and the corresponding total coverage
(Tumor Totaln and Tissue Totaln,) for both breast tumor and paired
tissue. For a specific CGI n, the mean weighted average methyla-
tion Mean BMn of tumor and tissue was determined by

Mean BMn =
Tumor BMn ∗Tumor Totaln + Tissue BMn ∗Tissue Totaln

Tumor Totaln + Tissue Totaln
.

Afterward, we calculated the Z-score to assess whether the differ-
ence in methylation levels between tumor and tissue exceeded
10% (0.1), as indicated by the formulas

z. =
Tumor BMn − (Tissue BMn + 0.1)���������������������������������������������������������������������������

Mean BMn ∗ (1−Mean BMn) ∗ 1
Tumor Totaln

+ 1
Tissue Totaln

( )√

and

z, =
Tumor BMn − (Tissue BMn − 0.1)���������������������������������������������������������������������������

Mean BMn ∗ (1−Mean BMn) ∗ 1
Tumor Totaln

+ 1
Tissue Totaln

( )√ ,

where z> represents the condition in which the methylation of
CGI in the tumor is significantly greater than in the tissue by
10%, and z< represents the condition in which the methylation
of CGI in the tumor is significantly less than in the tissue by
10%. The corresponding probability is calculated as follows:

P. = 1− f(z.)

and

P, = f(z,),

where f represents the cumulative distribution function (CDF) of
the normal distribution. Therefore, the one-sided P-value is the
minimum value between P> and P<.

Second, we identified differentially methylated CGIs using
EM-seq results. EM-seq was conducted for breast tumor and paired
nontumor breast tissue with two replicates. The differential meth-
ylation analysis for CGIs was performed using edgeR (version
3.38.4) (Robinson et al. 2010) with a false discovery rate (FDR)
threshold of <0.05.

Finally, we conducted a comparison between differentially
methylated CGIs defined by RIMS-seq2 and EM-seq. Specifically,
we focused on 1000 CGI regions with a difference in methylation
levels >10% based on EM-seq results, which also had correspond-
ing RIMS-seq2 results for comparison. True positives (TPs) were de-
fined as CGIs identified as differentiallymethylated by both RIMS-
seq2 and EM-seq. False positives were CGIs identified as differen-
tially methylated by RIMS-seq2 but not by EM-seq. False negatives
were CGIs identified as differentially methylated by EM-seq but
not by RIMS-seq2. True negatives were CGIs identified as not dif-
ferentially methylated by both EM-seq and RIMS-seq2.

Variant calling and SNP comparison

The variant calling and comparison were performed as described
previously (Zhou et al. 2019; Yan et al. 2022), except for the use
of GATK version 4.2.5.0. For RIMS-seq2 WGS and TES, we applied
an additional filter, “DP<5,” to remove SNPs with low coverage.
The resulting SNP sites were used in the RIMS-seq2 methylation
prediction process. We used the WGS of NA12878 (generated by
JIMB NIST Genome in a Bottle; JIMB WGS HG001) and K562
(ENCODE, ENCSR053AXS) (Zhou et al. 2019) as a benchmark for
variant calling comparison. We restricted the comparison to the
variants on somatic chromosomes and Chr X.

Data access

All raw andprocessed sequencing data generated in this study have
been submitted to the NCBI Gene Expression Omnibus (GEO;
https://www.ncbi.nlm.nih.gov/geo/) under accession number
GSE234235. The RIMS-seq code is available at GitHub (https://
github.com/elitaone/RIMS-seq2) and as Supplemental Code.
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