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ABSTRACT

With the growing number of clean-slate redesigns of the Internet, the need for
a medium that enables all stakeholders to participate in the realization, evaluation,
and selection of these designs is increasing. We believe that the missing catalyst is
a meta network architecture that welcomes most, if not all, clean-state designs on a
level playing field, lowers deployment barriers, and leaves the final evaluation to the
broader community.

This thesis presents the eXpressive Internet (Meta) Architecture (XIA), itself a
clean-slate design, as well as Linux XIA, a native implementation of XITA in the Linux
kernel, as a candidate. As a meta network architecture, XIA is highly flexible, leav-
ing stakeholders to choose an expressive set of network principals to instantiate a
given network architecture within the XIA framework. Central to XIA is its novel,
non-linear network addressing format, from which derive key architectural features
such as evolvability, intrinsically secure identifiers, and a low degree of principal iso-
lation. XIP, the network layer protocol of XIA, forwards packets by navigating these

structured addresses and delegating the decision-making and packet processing to ap-
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propriate principals, accordingly. Taken together, these mechanisms work in tandem
to support a broad spectrum of interoperable principals.

We demonstrate how to port four distinct and unrelated network architectures
onto Linux XIA, none of which were designed for interoperability with this plat-
form. We then show that, notwithstanding this flexibility, Linux XIA’s forwarding
performance remains comparable to that of the more mature legacy TCP/IP stack
implementation. Moreover, the ported architectures, namely IP, Serval (Nordstrom
et al., 2012), NDN (Jacobson et al., 2009), and ANTS (Wetherall, 1999), empower
us to present a deployment plan for XIA, to explore design variations of the ported
architectures that were impossible in their original form due to the requirement of
self-sufficiency that a standalone network architecture bears, and to substantiate the
claim that XITA readily supports and enables network evolution. Our work highlights
the benefits of specializing network designs that XIA affords, and comprises instruc-
tive examples for the network researcher interested in design and implementation for

future interoperability.
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Chapter 1

Introduction

How are we, the research community, going to find the next Internet architecture?
The research community is split into two groups, purists and pluralists, when it
comes to answering this question (Anderson et al., 2005; Roscoe, 2006). With the
benefit of hindsight, we can summarize those answers as follows: purists have been
busy designing customized network architectures for the specific future scenarios that
they each envision, whereas pluralists have focused on designs that both embrace the
diversity of architectures and future scenarios in the purists’ visions, as well as those
yet unforeseen. We are pluralists.

The search for future Internet architectures is motivated by deficiencies of the
current Internet. Many proposals have been put forward, but little has been done
to broadly evaluate and compare these proposals, which in turn has split the efforts
of the research community. We believe that a catalyst to find the next Internet
architecture is missing, and that once the community comes to consensus to identify
what the next Internet architecture should be, we would promptly work together to
realize it.

In this work, we advocate eXpressive Internet (Meta) Architecture (XIA) (Anand
et al., 2011a; Anand et al., 2011b; Han et al., 2012), a new kind of meta architecture
that nurtures coexistence of clean-slate designs, lets stakeholders experiment with

and choose the designs that best suit their needs. The distinctive feature of XIA over



previous meta architectures is that XIA enables coexistence of designs through the use
of so-called principals, each of which are afforded the opportunity to specialize. These
specialized principals enable designers to focus on the key functionality they want
to materialize, and promotes composition or reuse of these functionalities by other
supported principals. It is this distinctive feature of XIA that, through architectural
pluralism, lets stakeholders experiment with and choose the designs that best suit
their needs.

The rest of the introduction is organized as follows:

e First, we provide unifying terminology and definitions. The community lacks a
consistent vocabulary for enabling architectural comparisons (or even an agreed-
upon definition of network architecture itself). Therefore, we begin by present-
ing and formally defining our unifying terms: network factors, network archi-

tecture, and meta architectures in the next section.

e We argue for the need for meta architectures in Section 1.2. The presented
discussion centers on a broad motivation of meta architectures. Although it
encompasses some of the contexts that have motivated meta architectures in

previous works, it does not try to summarize all of them.

e Section 1.3 succinctly introduces XIA. This short presentation gives readers a
quick overview of our design deep enough to understand our contributions, and

most of the other chapters.

e We introduce a taxonomy of meta architectures in Section 1.4 that classifies

meta architectures documented in the literature, and contextualizes our work.

e Our thesis statement as well as a description of the approach we have employed

to demonstrate our statement is in Section 1.5.



e Contributions other than those our thesis statement covers are in Section 1.6.

e Section 1.7 describes the organization of the remaining chapters.

1.1 Definitions

In order to clarify the exposition of our work, we have identified the need of crafting
definitions for the following terms: network factor, architecture, and meta archi-
tecture. We introduce these terms one by one, each followed by examples, provide
motivation for the structure of the definition, and an explanation of the vocabulary
used in the definition. The section concludes with a justification for not reusing
definitions found elsewhere.

The definitions in this section only cover data plane elements. Therefore, control
plane elements such as routing protocols are not considered. We adopt Shenker’s

definitions for data and control planes (Shenker, 2013):

Data plane: process packets with local forwarding state.

Control plane: compute the forwarding state of the data plane.
Our first definition is factors:

A network factor is a data plane component that specifies abstractions, data for-
mats, procedures, protocols, and at least one class of identifiers that, together,

enable the instantiation of functional network configurations of data processors.

We can see that IP, TCP and UDP are all examples of factors. Although a factor
is defined through many items, the essential one is furnishing a class of identifiers.
IP fulfills this requirement with its IP addresses, while the identifiers TCP and UDP
define are their port numbers. While this statement may seem obvious, it will gain

contrast when we introduce XIP in Section 1.3, XIA’s network layer protocol, which



does not define identifiers of its own, and thus is not a factor. Nevertheless, each of
XIA’s core principals are examples of a network factor.

The definition of network factor does not impose any size restrictions, reflecting
the reality that factor designers, as well as different meta architectures, may optimize
for different utilities, and may therefore view any such restrictions as arbitrary. This
degree of freedom is expressed in the definition through the lack of quantifiers before
every element that a factor defines except its classes of identifiers. An important side-
effect of this flexibility in the definition is what we call factor multiplicity, that is,
combining a fixed number of factors leads to a single factor, analogous to how numeric
expressions are defined. Therefore, TCP/IP, that is TCP, UDP, and IP combined, is
a factor.

Factor multiplicity copes with the fact that factors are often combined. The
examples of this fact can be sophisticated, and may be out of reach of first-time
readers. For example, in ANTS, if a coder wants to have the functionality of two
or more factors in a single factor, she has to literally combine the mobile code that
defines those factors, due to the degree of factor isolation in ANTS (Section 1.4);
ANTS is discussed in Sections 1.4 and 4.4. As another example, factors U4ID, 141D,
and X4ID (Section 4.1) could be merged into a single factor if a network architect
favors this approach. Finally, the Serval factor (Section 4.2) defines two classes of
identifiers that are tightly intertwined.

With factors defined, we can now define architectures:
A network architecture is a self-sufficient factor.

Self-sufficiency is a test. The authors of an architecture describe what the archi-
tecture is good for, and their design is self-sufficient if they can describe any working
aspect of the data plane of their design without resorting to components external to

the design, other than a control plane that populates forwarding state and the hard-



ware necessary to implement the architecture. Self-sufficiency is analogous to proving
that a program terminates for the inputs that their designers claim it would. Later,
Section 6.2 presents a more advanced view of factors that allows us to fold the hard-
ware necessary to implement an architecture into a factor, leaving only the control
plane as an external component. It is worth pointing out that self-sufficiency is an
implicit assumption in the literature on network architecture, and is well illustrated
by the title and goal of Section 3 of Omega’s design (Raghavan et al., 2012a) that
reads as “Making Omega Sufficient”.

Continuing our earlier examples, [P accomplishes its existential goal of sending
packets from a host to another on its own, that is, IP is a self-sufficient factor;
therefore, IP is an architecture. Given that TCP/IP is a factor, as established before,
and IP is self-sufficient, TCP/IP is an architecture as well. The same is not true for
TCP and UDP, which depend either upon IP, or upon an alternative internetwork
factor, to function.

Thanks to factor multiplicity, the definition of architecture does not have to ex-
plicitly make mention of multiple factors. Having multiplicity in the definition of
architectures is intuitively appealing, but having multiplicity in both definitions leads
to ambiguous interpretations. For examples, TCP/IP would be an architecture either
following the description above, or because the set of factors it includes would be an
architecture as well. Finally, the choice of having multiplicity at the factor instead
of at the architecture definition is due the prevalence of factor multiplicity as already
discussed.

We define meta architectures directly over factors instead of over architectures:

A meta network architecture is a framework that harmonizes a broad spectrum
of factors within its framework without imposing any static dependencies among

factors.



The demand for supporting a broad spectrum of factors is meant to match the
intuition that designs that support a limited amount of diversity are insufficiently
general to warrant the meta architecture designation. Whereas the demand for not
imposing static dependencies, or dependencies that arise in the design phase, among
factors captures the notion that network evolution not only entails the ability to add
new factors to a meta architecture, but also to drop deprecated factors. It is worth
pointing out that our definition of meta architecture does not forbid runtime depen-
dencies among factors (a technique we support and whose benefits we articulate later).
Viewing them in a different way, static dependencies are imposed on stakeholders by
designers, whereas runtime dependencies are derived from stakeholders’ choices.

A framework that defines a meta architecture necessarily describes how factors are
embedded in the framework. Thanks to this description, each supported factor has the
same capabilities as any other factor in the framework. This description is analogous
to how a country constitution folds states in its framework. This description is what
harmonizes, that is, makes uniform, the interfaces that factors have to fulfill in order
to be supported. Fulfilling these interfaces is the essential requirement for mapping
factors onto a meta architecture. XIA’s framework for harmonizing factors is defined
by the XIP protocol, which is outlined in Section 1.3. While Section 1.4 presents
other meta architectures, it also gives an overview of how the supported factors are
folded into the framework of those meta architectures.

While designing and implementing a network architecture, it is easy to include
an arbitrary dependency between factors. Architectural designers and coders find
it alluring because it makes designs more concrete and intelligible earlier, and re-
duces initial coding effort. We define a static dependency among factors to be present
whenever removing one factor from the set of deployed factors requires the removal

of additional factors because they have to be recoded in order to work again. For



example, if IP were dropped from TCP/IP, TCP and UDP would need to be re-
coded to work with another internetwork factor. Therefore, despite its support for
many applications, TCP/IP cannot be considered a meta architecture because all
supported factors statically depend on IP. Section 1.4 presents positive examples of
meta architectures.

Three additional observations are warranted here. First, if a surviving factor has
its functionality reduced due to the new set of deployed factors in which the factor
finds itself, it does not characterize a static dependency. For example, consider the last
internetwork factor that is removed from a deployed set that also includes the Serval
factor (Section 4.2). Serval will no longer be able to establish connections between
hosts, but it will still be able to establish connections whose endpoints reside within
the same host. Second, network operators may deploy a meta architecture in such a
way that they force runtime dependency among factors. Since these dependencies are
derived from choices of stakeholders of the network, we do not view them as static
dependencies, but rather as runtime dependencies. Finally, our third observation is
that the control plane may need to be retooled to adapt to the change of the deployed
set. As stated above, our definitions do not cover the control plane.

Our definitions of architectures and meta architectures are related through the
factor definition. Factors are defined somewhat more abstractly than architectures.
Once self-sufficiency is given up, the size and scope of factors become less clear. This
property of the definition is desirable since it captures the intuitions that are present in
other works. It is intuitively tempting to define meta architectures over architectures
instead of over factors. In fact, Section 1.4 shows that yielding to this temptation has
been the norm. The reason for relying on factors to define meta architectures is to
reflect that factors, when allowed, can specialize, and increase their chance of being

reused in contexts others than those that motivated their conception. In other words,



it reflects that promoting interoperability among factors is attainable. Factor LPM,
introduced in Section 4.1 and reused in Section 4.2, materializes this point.

Readers may benefit from an analogy between our definitions and, perhaps more
familiar, electric circuits. Factors are equivalent to electronic components; they can do
as little as a resistor!, or as much as an integrated circuit, which can amalgamate huge
numbers of other electronic components, or somewhere in between those two extremes.
Building upon this analogy, an architecture is a combination of a finite number of
electronic components that together does something, for example: TVs, radios, and
network switches. While we do not have a clear element in electronics to represent a
meta architecture, the map proposed here highlights that defining meta architectures
directly over electronic components, instead of over a fully functional combination of
them, enables components being shared by the whole meta architecture.

To conclude, why did we not use definitions already available in the literature for
factors, architectures, and meta architectures? We have not come across a formal def-
inition equivalent to ours for factors, and the literature on meta architectures does not
offer a broad definition that encompasses works of multiple authors as our definition
of meta architecture does. We believe that the lack of a meta architecture definition
in the literature explains why prior work has not contrasted their designs directly
against other meta architectures instead of focusing on pointwise comparisons.

It may surprise some researchers that although the term architecture has long
and extensively been used by the network community, few have tried to pin it down.
Roscoe (Roscoe, 2006, Section 3) captures well this pattern in the literature: “I can’t
say what an architecture is, but I know it when I see it”. It is not to say that we are
the first to try to define architectures, Raghavan et al. has proposed the following
definition (Raghavan et al., 2012b, Section 1):

L An electric component that controls current by providing resistance to the flow of electrons that
crosses it.



Architecture: This refers to the current IP protocol or, more generally, any globally

agreed upon convention that dictates how packets are handled.

While this definition explicitly agrees with ours that IP is an architecture, it places a
high toll on new architectures since they have to become broadly understood before
becoming an architecture. An online search for the string “define network architec-
ture” lists a number of definitions. While we have found that these definitions are
often reasonable, we have not found a definition that allowed us to relate an architec-
ture and a meta architecture, to say when a network design becomes an architecture,
or identify a single property that is common to all architectures. For example, a corol-
lary from our definitions is that an architecture defines at least a class of identifiers.

Although this section extensively explains our definitions, we recognize that more
examples and experience with them is required to master them. Many sections
throughout this dissertation return to and elaborate more examples of these defi-
nitions. Finally, we expect that as other researchers seek to pick up these definitions,

they will help to refine them further.

1.2 The need for a meta network architecture

An increasingly frequently debated question is whether or not TCP/IP has entered
the end of its life cycle. There is no definitive answer to this question, and both sides
of the argument have accumulated evidence to support their position. This section
visits oft-cited evidence that TCP/IP is failing to keep up with demand, as well as
arguments to dismiss this evidence, and presents a pragmatic view that stands aside
of this discussion. This pragmatic view points out that the search for a TCP/IP
replacement provides benefits independently of which side of the argument is right.
The contrarians, those who believe that TCP/IP is rapidly approaching the end

of its life cycle, point to the growing pressure on aspects that the original design of
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TCP/IP does not address, and has not evolved to do so. Among those aspects, the
three most often cited are (1) limited node mobility, (2) lack of support for diversity
at the network layer such as content routing, and (3) insufficient security. In the
last year, a number of companies have reported evidence that the pressure on these
aspects are growing: (1) the world surpassed a 1 billion smartphones in use (Koetsier,
2013; Hornyak, 2014), (2) static content takes more than half of all downstream traffic
during peak periods (Sandvine, 2013), and (3) denial of service (DoS) attacks have
threatened to disrupt the Internet (Prince, 2013).

The conservatives, those who believe that the Internet has not entered the end of
its life cycle, point that incremental evolution has been the norm since the early days
in 1970s, and argue that incremental evolution is the way to go (Rexford and Dovrolis,
2010). Mark Handley (Handley, 2006, Section 2.1) summarizes the incremental evolu-
tion that has kept the Internet growing, such as the development of DNS, congestion
control, and Classless Inter-Domain Routing. Conservatives dismiss the evidence of
the contrarians to point out that not only is the Internet properly working and still
growing, but the pressure on weak aspects of the Internet are being worked out: (1)
once deployed, Multipath TCP (Ford et al., 2011) holds the promise of addressing
most of the mobility issue, (2) Content Delivery Networks are expected to handle 51%
of all Internet traffic in 2017, up from 34% in 2012 (Cisco, 2013); moreover, an in-
crementally deployable version of Information-Centric Networking (ICN) has already
been proposed (Fayazbakhsh et al., 2013), and (3) there already exist companies that
provide DoS protection (CloudFlare, Inc., 2014; Arbor Networks, Inc., 2014; VeriSign,
Inc., 2014).

Independently from when or whether TCP/IP will be replaced, moderates recog-
nize that there are proposed solutions for (1) node mobility (Nordstrom et al., 2012),

(2) an alternative network layer for ICN (Jokela et al., 2009), and (3) new defenses in
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the literature (Yang et al., 2005) that have not been fully explored due to the lack of
of a proper medium to prove their value. In addition, given the already large and still
growing dependence of the world upon the Internet, it would be prudent to identify
a suitable replacement for TCP/IP in a timely fashion, so as to avoid disruption that
may take place if the search for this replacement is unfinished when demand becomes
urgent. Finally, in case an opportunity for replacing TCP/IP is an elusive dream,
valuable findings could nevertheless be back-ported onto the existing architecture.

The growing number of clean-slate redesigns of the Internet reflects the sensible
effort of the network community to address the need of timely finding successors to
TCP/IP. However, this effort lacks a medium to bring all stakeholders to participate
in the realization, evaluation, and selection of future Internet architectures. On the
one hand, most existing clean-slate designs are siloed and elevate a few network use
cases above others, which fails to facilitate a collaborative environment for the myr-
iad of Internet stakeholders, whose goals are not generally aligned. Further evidence
comes from the fact that there are few, if any, examples of cross-pollination of run-
ning code across clean-slate proposals. On the other hand, and in the community’s
defense, designers have justifiably found it difficult to bring a new design into fruition,
demonstrate its merits, and have the community at large experiment with it, due to
the lack of a suitable comparative evaluation platform on which to do so.

Moreover, the current push toward cloud computing has centralized many servers
into massive datacenters, which in turn creates opportunities to explore architectures
that improve the return on investment made by datacenter operators. The networks
of these datacenters are built from, to some degree, programmable devices, thanks to
the rise of merchant silicon?. A meta architecture reduces the risk of managing these

datacenters, because it does not bind datacenter operators to a single architecture,

2 Merchant silicon are “off the shelf” chips that facilitate the implementation of networking
devices such as switches and routers.
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or to a small set of architectures that may turn out to be losers in the long run.

We believe that the missing catalyst to bring the exploration of future Internet
architectures into fruition is a meta network architecture. In fact, part of the research
community has already identified this need given the meta architectures that have
been explored (Section 1.4). In the thesis, we advocate a new variety of meta archi-
tecture that promotes interoperability among ported factors to bring the community
at large to create the next Internet architecture. The next sections present XIA,
our meta architecture, and a taxonomy of meta architectures that provides a broad

comparison of meta architectures, including XIA.

1.3 Overview of XIA

XIA’s central goal is an evolvable and secure Internet architecture. By evolvable,
XTA means having an explicit, well-defined, incremental path to introduce changes
to its network layer, which is called the eXpressive Internet Protocol (XIP). These
changes are introduced and removed in units; each of these units is called an XIA
principal. We will show that XIA principals are examples of our more general term,
factors. By secure, XIA means providing the capabilities to deliver security guar-
antees to applications. XIA’s main vehicles to carry evolution and enable security
guarantees are, its expressive network addresses and the intrinsic security found at
its network identifiers, respectively. The remainder of this section presents the key
concepts of XIA’s design, puts these concepts together to form sample addresses, and
concludes with why XIA with an empty set of principals is a meta architecture, but
not an architecture, according to our definitions. The content here serves as a quick
introduction to XIA, a more complete description is provided in Chapter 2.

In order for XIA principals to influence the forwarding mechanism of XIP, they

must introduce their own identifiers. These identifiers are called eXpressive [Dentifiers
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(XIDs), and name any object or concept that principals define. Each XID is the
pairing of a principal type (32 bits) and a name or ID (160 bits). Example of principals
and corresponding XIDs are the Autonomous Domain (AD) principal, which names
XTIA networks, the Host (HID) principal, which names any machine (virtual or not)
with an XTA stack, and the Content (CID) principal, which names immutable content.

Intrinsic security cryptographically links each XID’s name to some property. For
example, AD XIDs are the hash of public keys of the networks they name, HID XIDs
are the hash of public keys of the machines they name, and CID XIDs are the hash of
the contents of the file they name. When a network delivers to an application the file
corresponding to the requested XID C'I Dy, the application can verify that it received
the correct file by hashing the content of the file and comparing the hash against
the content name C'ID;. The hash of a public key allows an application to obtain
the corresponding public key from any source, trusted or not, verify that it is the
correct public key, and from there, bootstrap a secure communication to the entity
bound to that public key. While it is desirable to have intrinsic security for all XIDs,
this is not attainable because some principals do not have security properties to offer
on their XIDs; see Section 4.1 for examples. Nevertheless, principal designers are
strongly encouraged to imbue their principals’ XIDs with intrinsic security wherever
it is possible.

XIP addresses amalgamate principals’ behaviors to accomplish application-level
intents, and are represented as single-component, single-source, single-sink directed
acyclic graphs (DAGs) of XIDs. The ultimate intent of a packet is expressed in the
XID of the sink node of the destination address. The entry node of an address,
represented by a dot (e), has the sole purpose of pointing to where the navigation
of the DAG begins, and thus the simplest, nonempty XIP address is ¢ — XID;.

While destination addresses must be nonempty, source addresses can be empty; see
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Section 4.3 for an example. All other (internal) nodes of an address represent XIDs,
and each node is associated with between one and four strictly prioritized outgoing
edges; four being the maximum fanout supported in XIP addresses.

Routers are required to forward packets according to the intent expressed in each
DAG destination address. Therefore, a valid set of packet forwarding decisions at
routers must correspond to a successful traversal of the DAG from entry node to sink
to achieve the final intent. How is this accomplished? First, the XIP header stores
the DAG as a collection of nodes and their prioritized edges. Additionally, the XIP
header records a dynamic LastNode pointer to one of the nodes in the DAG. This
pointer, initially set to the entry node, reflects the portion of the DAG that has been
realized by this packet by forwarding decisions so far. Thus, when the packet reaches
the intended destination, the LastNode will point to the sink.

To forward a packet, a router first inspects the LastNode field to identify the
progress made through the DAG so far. For each of the outgoing edges from the
referenced node, in priority order, the router attempts to forward on the corresponding
XID. If that XID is local to that router (for example, the XID is an AD and the router
is in that domain), the router updates the LastNode field of the packet and either
recurses on the forwarding decision, or, when LastNode points to the sink, delivers
the packet to the corresponding principal of the sink node. Otherwise, if the XID
is non-local, the router forwards the packet toward the designated XID, as normal.
Finally, if the router cannot forward along any of the outgoing edges of the DAG, the
address is not reachable and the packet is dropped.

Among the many address structures that DAGs afford, three addressing patterns
are commonly used to date: scoping, fallback, and iterative refinement. Scoping a
CID to a given host can be accomplished with an address like ¢ — HID; — CIDx;

this address requires packets first be forwarded to host HID;, and from there, on to
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CID,. When a new XIA principal is being deployed, chances are that many routers
in the network do not know it, this can be addressed with the fallback pattern, which
uses a lower priority edge to route to a well-known principal in case the new principal
is not known by the router making the routing decision. For example, assuming that
the CID principal is not widely deployed, one can still reach CID; even if HID; is

the only host aware of the CID principal (dashed edges reflect lower priority):

Finally, the iterative refinement pattern combines scoping and fallback patterns. In
the event host addresses such as HID; are not globally routable, we can have C'I D,

fall back to an AD XID (AD;) where HID; is presumed to reside:

Recalling our earlier architectural definitions, note that, unlike IP, XIP is not a
factor, because it does not define any class of identifiers. Therefore, XIA with an
empty set of principals, or equivalently, XIP alone, is not an architecture. On the
other hand, each XIA principal, through the requirement that it introduce its own
eXpressive [Dentifiers (XIDs), is a network factor. Through its use of XIA principals
(including those introduced in this section and those in Chapter 4), XIP harmonizes
a broad spectrum of network factors without imposing any static dependencies (as
discussed in Chapter 3). Therefore XIA constitutes a meta architecture. Stakeholders
have to choose a set of factors that, together, instantiate XIA as an architecture. One
plausible choice is inclusion of the AD, HID, and CID principals; this can serve as a

baseline XIA architecture, according to our terminology.
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1.4 Taxonomy of meta architectures

The notion of a meta network architecture that evolves to accommodate unforeseen
network use cases has attracted researchers for decades. Researchers in Sweden de-
veloped Softnet (Zander and Forchheimer, 1983), the first meta architecture of which
we are aware, in the early 1980s. While studying meta architectures, the degree to
which they isolate their factors is enlightening because it highlights the value that
meta architectures offer to applications, which ultimately reflect the utility functions
of their end users. This section groups other meta architectures according to the
degree of isolation between their factors; proceeding from the highest degree of factor
isolation to the lowest.

Network virtualization (Anderson et al., 2005; Sherwood et al., 2010) and SDN/
OpenFlow (McKeown et al., 2008; Bosshart et al., 2013; Feamster et al., 2013) are
natural meta architectures; they do not limit the number of supported factors, nor
do they impose static dependencies among the supported factors. At a high level,
these meta architectures slice network infrastructure into independent, isolated sets
of resource that are used to support their factors; we call this group slicing meta ar-
chitectures. The degree of factor isolation, however, is high, so high that applications
are solely responsible for all the necessary work to leverage multiple factors, which
requires access to multiple slices of the network. Moreover, the high degree of isola-
tion forces the supported factors to be self-sufficient in order to properly operate their
slices. As a result, these meta architectures only support full-blown architectures.

The next group of meta architectures, the translating meta architectures, encom-
passes Plutarch (Crowcroft et al., 2003), FII (Koponen et al., 2011), OPAE (Ghodsi
et al., 2011), Omega (Raghavan et al., 2012a), and SDIA (Raghavan et al., 2012b).
These meta architectures segment the network into independent regions, map each

region to supported factors, and promote bridges between regions to translate the
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protocols in both directions. Similar to slicing meta architectures, supported fac-
tors must in fact be organized into network architectures, but applications are not
solely responsible for interoperability between regions. The troubling aspect of this
group is that facilities for translation between these pluralistic architectures are not
provided, and may not always be possible. For example, there is no clear mapping
between a host-centric architecture, such as IP, and a content-centric one, such as
NDN (Jacobson et al., 2009); Section 4.3 returns to this point.

The third group, active meta architectures, is centered on active networks (Ten-
nenhouse and Wetherall, 1996; Tennenhouse et al., 1997), and most notably ANTS
(Wetherall, 1999), the meta architecture that pursued programmable networks as the
standard-bearer for active networks. ANTS does not slice or segment a network; its
factors share the whole network. Factor designers build factors with mobile code that
is shipped through the network from applications to routers with the help of a code
distribution protocol. While applications can interoperate with multiple factors at
the same time, the runtime environment of mobile code intentionally isolates factors
to address security issues. Nevertheless, factors can be combined to compose a sin-
gle factor. But due to isolation in the runtime environment, factors still have to be
self-sufficient, as with the previous groups of meta architectures.

XTA distinguishes itself from other meta architectures by promoting interoperabil-
ity among all of its supported factors, in the form of XIA principals. This interop-
erability takes place with (1) XIA factors sharing the whole network, as in ANTS,
(2) network addresses enabling factor composition at every address (Sections 1.3 and
2.3.2), and (3) factor designers postponing dependencies among factors until runtime
through routing redirects, an extension of XIA’s routing algorithm that we introduce
in Linux XIA (Section 3.2). Thanks to these mechanisms, XIA factors can delegate

functions and responsibilities to other factors, which, in turn, enables XIA factors to
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specialize. A key novelty is that XIA factors do not have to be self-sufficient, unlike
all of the meta architectures cited above.

The degree of factor isolation has deep effects on meta architectures. A high
degree of isolation forces factors to be architectures, as arises in slicing, translating,
and active meta architectures. In contrast, the low degree of isolation found in XIA
allows factors to specialize and achieve their functionality with minimal form. This
effect is explored in Chapter 4, where we leverage this flexibility when porting designs

onto the XIA meta architecture.

1.5 Thesis statement and approach

The central hypothesis in this dissertation is that an interoperable meta network
architecture can welcome most, if not all, clean-state designs on a level playing field,
yet it leaves the final evaluation of these designs to the broader community. It is
worth pointing out that although we emphasize clean-state designs because they lack
a platform for deployment, XIA welcomes existing designs into its framework as well.
The following chapters demonstrate this hypothesis by defining XIA, describing our

native implementation of XIA, and answering the following questions:

e [s XIA expressive enough to accommodate a broad spectrum of factors? If the
expressiveness of XIA were myopic, our thesis hypothesis would have a rather
limited scope. To answer this question we ported four distinct and unrelated
network architectures onto Linux XIA, namely IP, Serval (Nordstréom et al.,
2012), NDN (Jacobson et al., 2009), and ANTS (Wetherall, 1999). None of the
ported architectures were designed for interoperability with XIA. Moreover, the
port of ANTS, an early meta architecture with a high degree of generality, is
the essential step in our larger demonstration that the evolutionary model of

XIA supports a superset of that of ANTS.



19

e What is necessary to avoid static dependency among factors? While static
dependency may be spotted in some high-level descriptions of designs, this is
not always the case. Some static dependencies only become apparent when
designs are made concrete through an implementation; this was the case with
XTA. During the development of Linux XIA, static dependency was creeping
into the code due to the need to reuse functionality of factors by other factors.
Avoiding this static dependency required a small change on the forwarding

algorithm of XIA to include what we named routing redirects.

e What is impact of the flexibility built into Linux XIA on forwarding perfor-
mance? Given that Linux XIA supports dynamically loaded factors, routing
redirects, and dynamic routing dependencies on top of XIA’s already flexible
addresses, the forwarding performance of Linux XIA is a concern for anyone
interested in developing factors, or deploying XIA. Not to mention that failing
to realize a reasonable forwarding performance would again limit the scope of
our hypothesis. Linux XITA sports performance results comparable to those of
Linux IP, a mature implementation of TCP/IP, in our simulations of a core
router. The results hold even while accounting for different packet sizes, more

complex addresses used in XIA, and high update rates of the routing table.

During the development of the work to substantiate our thesis hypothesis and to
answer the questions above, we have made a number of other contributions, which

we discuss next.

1.6 Contributions

The central finding of this research is that XIA can instantiate a broad spectrum of

factors, and avoid static dependence among factors. The port of IP, Serval (Nordstrém
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et al., 2012), NDN (Jacobson et al., 2009), and ANTS (Wetherall, 1999) provides
evidence of the expressiveness of XIA. The forwarding performance measurements of
Linux XTA show that the additional flexibility is reasonable when compared to IP.
More broadly, we conclude that Linux XIA is a suitable platform for the search of
the next Internet architecture.

The contributions of this dissertation also include the following:

Clarifying interpretations of network factors, network architectures, and meta

network architectures;

A taxonomy of meta architectures;

e An open source, fully functional, native implementation of XIA in Linux (Machado,

2013a);

e An open source environment for evaluation of forwarding performance of net-

work stacks implemented in Linux (Machado, 2013b);

A deployment plan of XIA that leverages the current Internet as a medium to
interconnect XIA networks. Any successful clean-slate architecture will need
to coexist with IP for years (or forever). Our port of IP to XIA shows both
how XIA can emulate IP and how it can progressively wean itself off of IP by

removing dependencies in a staged deprecation;

e A design improvement of Serval that is not possible in its original form; more
specifically, ServallD identifiers are intrinsic secure in XIA, what enables re-
silience against on-path attacks. Serval is a service-centric architecture that

complements Linux XIA with a mobile, multipath, reliable transport;

e Two whitepaper ports of NDN to XIA that expose the tradeoff between sup-

porting dynamic content and public-key management in NDN. NDN, a content-
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centric architecture, embodies a design that may seem to necessitate a stan-
dalone architecture; its port to XIA, in fact, tests aspects of XIA not explored

by other architectures, such as the fundamental role of source addresses.

1.7 Thesis outline

The following chapters are organized as follows. The two following chapters define
XTA and discuss its concepts at a high level of abstraction (Chapter 2), and present key
internals of our Linux implementation of XIA (Chapter 3). While Chapter 2 addresses
the first defining property of meta architectures, namely, the support to a broad
spectrum of factors, it is only in Chapter 3 that we show how to address the second
defining property of meta architectures, that is, how to avoid static dependencies
among factors. While one can appreciate the harmful