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Abstract
We introduce a robust semantics-driven technique for pro-

gram equivalence checking. Given two functions we find a

trace alignment over a set of concrete executions of both pro-

grams and construct a product programparticularly amenable

to checking equivalence.

We demonstrate that our algorithm is applicable to chal-

lenging equivalence problems beyond the scope of existing

techniques. For example, we verify the correctness of the

hand-optimized vector implementation of strlen that ships
as part of the GNU C Library, as well as the correctness of

vectorization optimizations for 56 benchmarks derived from

the Test Suite for Vectorizing Compilers.

CCS Concepts • Software and its engineering → For-
mal software verification; Compilers.

Keywords verification, equivalence checking
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1 Introduction
Equivalence checking, the problem of formally proving that

two functions or programs are semantically equivalent, is

a long-standing and important problem; applications in-

clude verification of compiler correctness [26], superopti-

mization [3, 6], program synthesis [29], and verifying the

correctness of code refactoring [28].
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f() {

while (*)

A;

return a;

}

(a) Function f

g() {

while (*)

B;

return b;

}

(b) Function д

X() {

while (*)

A;

while (*)

B;

assert(a == b);

}

(c) Naive Composition

Y() {

while (*) {

assert(Inv);

A;

B; }

assert(a == b);

}

(d) Syntactic Composition

Figure 1. Two functions and two product programs. A and

B are basic blocks and share no variables.

Program equivalence checking is commonly performed

in two stages: the first stage is to construct a product pro-
gram for the two programs by aligning them, and the second

is proving a safety property, or invariant, of the resulting
program [4, 40]. There is a trade-off between the effort put

into each stage. For example, consider the functions f and

д in Figures 1a and 1b, where each function iterates over

some loop-free basic block. A simple product program for

f and д is shown in Figure 1c, where one program is run

after the other; one may check the invariant that the outputs

of f and д are equal. However, this alignment provides no

help in checking equivalence, which requires completely

summarizing the loops of f and д.
In some cases, a better alignment is to pair iterations of

the loops of f and д, as pictured in Figure 1d. This alignment

sometimes facilitates an easier, inductive proof of equiv-

alence in which corresponding loop-free code fragments

are shown to preserve an invariant Inv for each loop iter-

ation [32]. However, such syntactically constructed align-

ments only work in simple cases where the loops of f and

д execute for the same number of iterations. This is not the

case for several common loop optimizations that alter syntac-

tic structure, such as vectorization, loop unrolling, and loop
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peeling. What is needed is a semantically guided alignment

that relates the two programs in a way that is designed to

make the final proof of equivalence as simple as possible.

We introduce a novel and robust technique for construct-

ing product programs driven by semantics, rather than syn-

tax, that extends equivalence checking to real-world bench-

marks that are beyond the reach of prior work. Given two

functions f and д along with test cases provided by the user,

we build a trace alignment, which is a pairing of states in

execution traces of f and д for each user-provided test case.

Constructing the trace alignment is guided by the selection

of a weak invariant, called an alignment predicate, that iden-
tifies pairs of machine states that should be aligned. Only

once we have identified a trace alignment based on semantic

properties of the programs do we lift the alignment back

to the program syntax, construct a product program, and

learn invariants that we attempt to prove. This approach to

constructing the product program, wherein we first solve

the problem of semantically aligning the traces, is the novel

contribution that allows us to verify equivalence where tech-

niques described in prior work are inapplicable.

Our goal is to perform black-box verification of optimiza-

tions performed by compilers, superoptimizers or by hand

without any foreknowledge of the transformations applied

or toolchains used. Therefore we evaluate our technique

directly on x86-64 assembly. Given two functions, our tech-

nique utilizes a set of user-provided test cases to guess a set

of candidate alignment predicates. For each alignment predi-

cate, we infer the trace alignment and attempt to construct a

program alignment automaton (PAA) that specifies a product

program. We again use the test cases to learn the invariants

of the PAA. Finally, we use an SMT solver to check proof

obligations that establish the equivalence of the functions.

We demonstrate the ability to verify several types of loop

optimizations, including loop unrolling, loop peeling, vec-

torization, software pipelining, strength reduction, loop-

invariant code motion, register allocation and loop inversion,

among others. We evaluate our technique on 56 realistic loop

benchmarks where compilers (gcc-4.9.2 and clang-3.4) auto-
matically perform a number of these optimizations, at least

including vectorization. We further apply our technique to

verify the correctness of the hand-vectorized C implementa-

tion of the strlen function that ships with GNU C Library

(glibc, version ≥ 2.10.1), and also show that our method can

verify benchmarks used to evaluate other state-of-the-art

equivalence checkers.

Our contributions are:

• A novel and robust approach for semantics-driven con-

struction of product programs using alignment predi-

cates and trace alignments.

• A set of 56 realistic x86-64 benchmarks for evaluating

equivalence checking techniques on optimizations that

alter control flow, such as loop unrolling, loop peeling

and vectorization.

• The first fully automatic black-box algorithm for prov-

ing the correctness of vectorization optimizations as

performed by modern compilers on x86-64.
• A demonstration of a useful, real-world application of

our equivalence checking technology to verify the cor-

rectness of a handwritten vectorized implementation

of the strlen function shipped in glibc.

The rest of the paper is structured as follows. First we

introduce our running example (Section 2) before presenting

the formalisms used in ourwork (Section 3). Then follows our

equivalence checking procedure (Section 4) and evaluation

(Section 5). We then present related work (Section 6) and

conclude (Section 7).

2 Example
Consider the pair of C programs in Figure 2. Each function

is represented as a control flow graph (CFG); the nodes are

program points, and the edges are basic blocks along with a

guard predicate. These functions take as input two parame-

ters: array, which points to an array of 32-bit integers, and

len, which specifies the length of the array. Both functions

flip the bits of each array element. Function f (Figure 2a) iter-

ates over each element in the array with a counter variable i,
while д (Figure 2b) illustrates a simple way to vectorize this

code using a 64-bit operation. In д, the loop body c ′ (lines 8-
10) flips the bits of two array elements. Before the loop, there

are two possibilities. If len is odd, block a′ (lines 3-5) exe-
cutes and flips the bits of the first array element. Otherwise,

block b ′ executes and leaves the array untouched.

This example is representative of a number of challenges

that naturally arise in the presence of loop optimizations.

For example, if the loop in д iterates n times, then the loop

in f iterates for either 2n or 2n + 1 iterations, depending on

the parity of len. Previous equivalence checking techniques
handle situationswhere the relationship between the number

of iterations of f and д is static (e.g. if д iterates n iterations

then f iterates 2n iterations for all inputs). As a result, prior

automated equivalence checking approaches [3, 7, 13, 14, 27,

32] fail on this example.

Our technique requires as input a set of test cases τ1, . . . ,τn .
The test cases may, for example, be generated randomly or

by bounded model checking. We execute f andд on each test
case to obtain traces. Figure 4 shows traces for each program

with array initialized to address 0x100000 and len=5.
We begin by guessing an alignment predicate, ξ , over pairs

of machine states from f and д that will help us align traces

of f andдwhen run on the same input. For this example, con-

sider the alignment predicate ξ = {array + 4i = array'}.
Suppose ρ and ρ ′ are traces of f and д for a particular test
case. We consider a machine state σ from ρ and σ ′ from
ρ ′. If the predicate ξ (σ ,σ ′) holds, we say the two traces are
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1 void f(int* array , uint len) {

2 for(uint i = 0; i < len; i++)

3 array[i] ^= 0xffffffff;

4 }

q1 q2 q3
[true]
i := 0

a

[i < len]
array[i] ^= 0xffffffff;

i++;
b

[i ≥ len]c

(a) C source and CFG for the unoptimized program, f .

1 void g(int* array , uint len) {

2 if(len % 2 == 1) {

3 *array ^= 0xffffffff;

4 array ++;

5 len --;

6 }

7 while(len) {

8 *(( long*)array) ^= 0xffffffffffffffff;

9 array += 2;

10 len -= 2;

11 }

12 }

q′
1

q′
2

q′
3

[len % 2 == 1]
*array ^= 0xffffffff;

array++; len--;

a′

[len % 2 == 0]

b ′

[len , 0]
*((ulong*)array) ^=
0xffffffffffffffff;
array+=2; len-=2;

c ′

[len == 0]

d ′

(b) C source and CFG for the vectorized program, д.

Figure 2. Functions f and д used in the example.

aligned by ξ at that pair of states. Additionally we consider

ρ,ρ ′ to be aligned at the beginning and at the end, even if

ξ does not hold. In Figure 4 we have drawn edges between

every pair of states in the two traces that are aligned by ξ .
Observe that the alignment may pair states in a many-to-

many correspondence, and that edges may cross. A trace
alignment by ξ is obtained by performing this procedure for

a set of test cases.

The trace alignment gives pairs of corresponding paths that
relate the behavior of f with д as follows. Consider any two

q1q
′
1

q2q
′
2

q3q
′
3

[len > 0 ∧
len' % 2 == 1]

ab;a′

[len' % 2 == 0]
a;b ′

[i < len ∧
len' , 0]

bb; c ′

[i ≥ len ∧
len' == 0]

c;d ′

Figure 3. Simplified program alignment automaton for the

example. The colors show the correspondence between the

transitions and the pairs of corresponding paths in Figure 5.

edges ei ,ej in Figure 4 that do not cross each other and have

no edges in between them (e.g. e10 is “between” e00 and e21,
while e64 and e73 cross each other). Each of ei ,ej is associated
with a machine state in the execution trace of f . These two
machine states delimit some series of basic blocks, called a

path, in f . Similarly, ei and ej delimit a corresponding path in

д. For example, consider edges e21 and e42. Between index 2

and index 4 of the trace of f , the path bb is executed, while

between index 1’ and 2’ of the trace of д, block c ′ is executed.
Thus, bb and c ′ are corresponding paths. Figure 5 lists all

such pairs of edges and the corresponding paths.

We use the corresponding paths to build a program align-
ment automaton (PAA) that (we hope) overapproximates the

behaviors of both programs. The PAA has one node for each

pair of program points. For each pair of corresponding paths

in each pair of traces, we add a transition to the PAA labeled

by these two paths.We perform a greedy simplification proce-

dure to remove redundant nodes and edges (see Section 4.2).

For the example, we remove the nodes q2q
′
1
,q2q

′
3
and q3q

′
2
,

and concatenate their incoming and outgoing transitions

(so transitions q1q
′
1
→ q2q

′
1
and transitions q2q

′
1
→ q2q

′
2
are

replaced by transitions q1q
′
1
→ q2q

′
2
). Note that different

alignment predicates will define very different PAAs.

Figure 3 shows the simplified PAA for the example, which

characterizes all the program behaviors. The three nodes are

the natural outcome of the construction after simplification.

This is in contrast to prior work such as [6, 7, 32] where

corresponding points in the two programs, sometimes called

cutpoints, must be chosen based on less information; usually

cutpoints are chosen syntactically. Our construction guar-

antees that ξ holds in all nodes of the PAA (except possibly

the entry and exit nodes) for all the traces generated by the

test cases.

In Figure 3 there are two transitions between q1q
′
1
and

q2q
′
2
; one is for inputs where len is odd, and a′ is executed in

д. The other is for inputs where len is even, andb ′ is executed
in д instead (this transition comes from corresponding paths

of aligned traces where the starting value for len is even).

The paths labeling the transitions show that b is executed

in f an extra time if a′ is executed. Each path P has a path

conditionψP , which is the conjunction of the predicates on
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index q ∆ i len array

0 q1 5 0x100000

1 q2 a 0 5 0x100000

2 q2 b 1 5 0x100000

3 q2 b 2 5 0x100000

4 q2 b 3 5 0x100000

5 q2 b 4 5 0x100000

6 q2 b 5 5 0x100000

7 q3 c 5 5 0x100000

index q′ ∆′ len' array'

0’ q′
1

5 0x100000

1’ q′
2

a′ 4 0x100004

2’ q′
2

c ′ 2 0x10000c

3’ q′
2

c ′ 0 0x100014

4’ q′
3

d ′ 0 0x100014

e00

e10
e21

e42
e63

e74

Figure 4. Execution traces of f and д for a particular input. Column q shows

the program point and column ∆ shows the last basic block executed. The edges

indicate pairs of states where the alignment predicate array+ 4i = array' holds.

Edges States P Q

e00 → e10 q1q′
1
→ q2q′

1
a ϵ

e10 → e21 q2q′
1
→ q2q′

2
b a′

e21 → e42 q2q′
2
→ q2q′

2
bb c′

e42 → e63 q2q′
2
→ q2q′

2
bb c′

e63 → e64 q2q′
2
→ q2q′

3
ϵ d ′

e63 → e73 q2q′
2
→ q3q′

2
c ϵ

e64 → e74 q2q′
3
→ q3q′

3
c ϵ

e73 → e74 q3q′
2
→ q3q′

3
ϵ d ′

Figure 5. Pairs of edges and corre-

sponding paths.

ϕq1q′
1

:= array = array ′ ∧ len = len′ ∧ ω = ω ′

ϕq2q′
2

:= array ′ − 4i = array ∧ len − i = len′ ∧

i ≤ len ∧ ω = ω ′

ϕq3q′
3

:= ω = ω ′

Figure 6. Invariants needed for the example.ω andω ′ denote
heap states of f and д. The alignment also allows us to show

that len′ ≡ 0 (mod 2) atq2q
′
2
, although this fact is unneeded.

its basic blocks. Each transition λ labeled by paths P ,Q has a

path condition given byψλ = ψP ∧ψQ , as shown in Figure 3.

Our next goal is to learn an invariant ϕs at every node

s in the PAA and then prove that the PAA soundly over-

approximates both programs. At the start node we fix the

invariant to assert equality of the input registers and the

initial heaps. At the exit, we assert equality of the output reg-

isters and the final heaps. The other invariants are learned

using the execution traces from the test cases provided by

the user (Section 4.4). A subset of the learned invariants for

the example is shown in Figure 6.

The choice of alignment predicate is crucial to finding

invariants. For example, suppose that our alignment predi-

cate depicted in Figure 4 also paired state 3 of f ’s trace with
state 1’ of д’s trace. After simplification, there is a transition

q1q
′
1
→ q2q

′
2
labeled by abb;a′. Consequently, none of the

invariants for q2q
′
2
depicted in Figure 6 would hold. Instead,

to prove equivalence one would need a set of disjunctive in-

variants to reason about two cases: either f is one iteration

ahead of д, or it is not (depending on whether the transition

labeled abb;a′ is taken). A similar problem arises if one la-

bels a transition a;a′ instead of ab;a′, as is the case in works

such as [3, 32] where loop iterations are assumed to be in

one-to-one correspondence.

To prove the equivalence of the two programs there are

two primary types of proof obligations we must check (see

Section 3.1). First, we check that the invariants hold. For each

transition s → t with paths P andQ , we verify the following:

if a pair of machine states satisfies ϕs , then if paths P and

Q are executed, the execution terminates without error in

states satisfying ϕt .
Second, we must ensure that the PAA has the necessary

transitions to overapproximate all program behaviors. Each

node s corresponds to a pair of program points (qi ,q
′
j ). We

want to ensure that every pair of feasible execution paths

starting at qi and q
′
j is represented in the automaton. Con-

sider the node q2q
′
2
. From node q2 there are two kinds of exe-

cutions: (α ), those for which i ≥ len and execution halts; and

(β ), those for which i < len and execution continues. From

q′
2
there are similarly two kinds of executions: (γ ), those for

which len′ = 0 and execution halts; and (δ ), those for which
len′ , 0 and execution continues. Thus there are four pairs

of possible behaviors: αγ ,αδ ,βγ and βδ . Of these, αγ and

βδ are already represented in the PAA via the self-loop at

q2q
′
2
and the transition q2q

′
2
→ q3q

′
3
. For the other two, we

need to show they are infeasible. Now, αδ only executes if

i ≥ len and len′ , 0, however i ≥ len ∧ len′ , 0 ∧ ϕq2q′
2

is unsatisfiable. Similarly i < len ∧ len′ = 0 ∧ ϕq2q′
2

is also

unsatisfiable, so βγ is infeasible.

Verifying these proof obligations is sufficient to conclude

that these two programs are equivalent for all inputs.

3 Formalization
We say that two x86-64 functions, f and д, are equivalent
if, when run starting in identical machine states (registers,

stack, heap), one of the following holds:

1. both terminate normally, with identical heap-state and

identical output registers; or

2. each program either encounters a run-time error or

loops forever.

We use σ to denote a machine state, including the program

counter, and all register, stack and heap values. We use ω
to denote just the heap. When we use x to denote a state

element of f , we use x ′ to denote the corresponding state

element of д. A trace, ρ, is a sequence of machine states.
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Weuse relational Hoare triples [5, 19] to express proof obli-

gations. Let ϕ1,ϕ2 be predicates on pairs of machine states

from f and д, let P (resp. Q) be a path through f (resp. д).
Then {ϕ1} P ; Q {ϕ2} denotes the statement: if ϕ1 (σ ,σ

′)
holds for states σ ,σ ′ of f ,д and paths P ,Q are executed (im-

plying the path conditions hold), then execution terminates

normally in states σ ′′,σ ′′′ where ϕ2 (σ
′′,σ ′′′) hold.

A PAA is an automaton where each node s is labeled with
a pair of program points, one from f and one from д, along
with an invariant ϕs . We assume that f and д each have

unique entry and exit program points. The start node of

the PAA corresponds to the pair of program entries, and

the unique final node corresponds to the pair of exit points.

Each transition is labeled by a finite path in each program: a

transition (u,u ′) → (v,v ′) must be labeled with a path P in

f from u to v , and a pathQ in д from u ′ to v ′ where either P
orQ must be nonempty. The PAA fully determines a product

program, although we do not explicitly build the product

program in our work.

3.1 Proof Obligations for Program Alignment
Automata

To use a PAA to check program equivalence, the following

properties must be verified:

1. For each transition s → t labeled with paths P ,Q it

holds that {ϕs } P ; Q {ϕt }.
2. For each node s = (u,u ′) all pairs of program paths

through f and д starting from u and u ′ not included in
the PAAmust be infeasible. That is, if P andQ are paths

through f and д starting at u and u ′, and there is no

transition s → t labeled by P∗,Q∗ where P∗ is a prefix
of P and Q∗ is a prefix of Q , then {ϕs } P ; Q {false}.

3. The PAA has no cycles of transitions where all the

paths through f or д are empty.

4. The invariant of the final node implies that the heap

states and output registers are equal.

The alignment predicate, and the trace alignment derived

therefrom, play the critical role of selecting the right tran-

sitions for the PAA so that we can prove the invariants at

each node. The following lemma illustrates the key induc-

tive argument for a proof of equivalence, and the corollary

establishes soundness.

Lemma 3.1. LetA be a program alignment automaton where
the above proof obligations have been checked. Suppose f and
д are executed from states σ ,σ ′ at the program points (u,u ′),
and there is a node s = (u,u ′) ofAwhere ϕs (σ ,σ ′) holds. Then
if f executes to completion without exceptions withinm steps
(each step is an execution of a basic block), д also executes to
completion without exceptions, and their final states satisfy
the invariant of the final node of A.

Proof. By strong induction onm. Whenm = 0, the premises

imply that f and д have already executed to completion

function verify(f ,д,data)
(dtrain ,dtest ) ← Partition(data)
AP ← GuessAlignmentPredicates( f ,д,dtrain )
for all ξ ∈ AP do

TA← BuildTraceAlignment(ξ ,dtrain )
A← BuildPAA(TA)
if TestPAA(A,dtest ) then

A← LearnInvariants(A,dtest ∪ dtrain )
if CheckProofObligations(A) then

return equivalent
end if

end if
end for
return unknown

end function

Figure 7. The equivalence checking algorithm.

and the conclusion holds. Suppose the lemma holds for 0 ≤

i < m. Assume f and д are executed from (u,u ′) and that

f terminates within m steps. By proof obligation 2, some

prefix of the execution traces of f and д must match the

paths P ,Q of some transition λ : s → t in A. Removing these

prefixes from the execution traces, we now have a new pair

of traces where f and д execute from t with states σ ′′,σ ′′′

that satisfy ϕt (by proof obligation 1). In the case where P is

non-empty f still executes to completion, but now within

j < m steps. By the inductive hypothesis, we can conclude

the lemma holds. In the case where P = ϵ , we repeat the

step of identifying a matching transition and removing the

trace k times, where k is the length of the longest series of

transitions from s where the paths for f are empty; by proof

obligation 3, k must be defined. Then proceed as before. □

Corollary 3.2 (Soundness). If there exists a program align-
ment automaton, A, for f ,д where the proof obligations hold
then f and д are equivalent.

Proof. Suppose we run f ,д on an input. By Lemma 3.1 if f
terminates without error then д does also; by swapping f
and д the converse also holds. The lemma also implies the

final invariant of A holds, and by the fourth proof obligation

f and д are equivalent. □

4 Equivalence Checking Procedure
Figure 7 gives pseudocode for our algorithm. The user sup-

plies two functions, f and д, along with a set of test cases,

data. The test cases are partitioned into two sets, a training

set and a test set. We invoke GuessAlignmentPredicates
with the training data to build a set of candidate alignment

predicates (Section 4.6). For each alignment predicate ξ we
call BuildTraceAlignment to construct a trace alignment,

TA, over the training data (Section 4.1) and then use TA
to construct the PAA (Section 4.2). To ensure that the PAA
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is general and not overfitted to the training data, we use

the test data to check the viability of the PAA via TestPAA
(Section 4.3). Finally we learn the invariants for the PAA

(Section 4.4) and check the proof obligations (Section 4.5).

4.1 Construction of the Trace Alignment
Given an alignment predicate ξ we construct a trace align-
ment. The trace alignmentTA is a set of pairs (ρ,ρ ′) where ρ
and ρ ′ are prefixes of the traces of f and д for some test case.

We initialize TA to the empty set. For each training test case

τ we execute f and д to obtain traces ρτ = σ1σ2 · · ·σn and

ρ ′τ = σ
′
1
σ ′
2
· · ·σ ′m . For each σi ,σ

′
j we check ξ (σi ,σ

′
j ); when

satisfied, we add the pair (σ1σ2 · · ·σi ,σ
′
1
σ ′
2
· · ·σ ′j ) to TA. Fig-

ure 4 shows prefixes of traces that are aligned by ξ in the

example.

4.2 Construction of the Program Alignment
Automaton

We initialize the PAA with a node for every pair of program

points in the two programs. We consider pairs (ρ,ρ ′) ∈
TA along with minimal ν ,ν ′ such that (ρν ,ρ ′ν ′) ∈ TA (e.g.

for the trace alignment in Figure 4, we consider the pairs

shown in Figure 5). For each such pair we add a transition

(p,p ′) → (q,q′) labeled by the paths of basic blocks taken

by ν and ν ′, where (p,p ′) is the last pair of program points

in ρ,ρ ′ and (q,q′) is the last pair of program points in ν ,ν ′.
As an optimization, we consider only ν ,ν ′ that are small, for

example, fewer than 10 machine states in length.

The PAA can be regarded as a nondeterministic finite

automaton (NFA) in the following sense. A pair of traces

ρ,ρ ′ for f and д is accepted by the PAA if there is a series of

transitions (a run through the PAA) from the start node to the

exit node that correspond with ρ,ρ ′ (i.e. concatenating the
labels of the transitions gives paths that match paths taken

by ρ and ρ ′). The above construction ensures that every pair

of traces in the training set is accepted by the PAA (we say

the PAA “accepts the training set”).

After performing this construction, we simplify the PAA

by removing nodes and transitions while ensuring the PAA

still accepts the training set. Removing nodes makes finding

provably correct invariants easier, and removing transitions

decreases the number of proof obligations. In our experi-

ments, we find simplification reduces the number of nodes

by 3.9x and the number of edges by 3.7x. We perform the

following two operations until we reach a fixed point.

First, we remove every node s that does not have a self-
loop other than the entry and exit. Suppose s has incoming

transitions r1 → s, . . . ,rn → s and outgoing transitions

s → t1, . . . ,s → tm . For each i, j-pair replace the transitions
ri → s and s → tj with a transition ri → tj labeled with the

concatenation of the paths of the original two transitions.

Second, we remove extra transitions. If a transition λ :

s → t is labeled with paths P ,Q and transition λ∗ : s → u is

q1q
′
1

q2q
′
2

q2q
′
1

a; ϵ b;a′
bbb;a′c ′

bb; c ′

(a) PAA before simplification.

q1q
′
1

q2q
′
2

ab;a′

abbb;a′c ′

bb; c ′

(b) After removing node q2q
′
1
.

q1q
′
1

q2q
′
2

ab;a′
bb; c ′

(c) After deleting the extra edge.

Figure 8. Example of simplification procedure.

labeled with paths P∗,Q∗ where P is a prefix of P∗ and Q is

a prefix of Q∗, then λ∗ is removed. Once we cannot remove

any more transitions or nodes, the PAA is simplified.

Figure 8a shows a hypothetical PAA for the example (Sec-

tion 2). We can remove node q2q
′
1
since it has no self loops.

We combine the transition a; ϵ with each ofb;a′ andbbb;a′c ′

to get two transitions q1q
′
1
→ q2q

′
2
as shown in Figure 8b.

Because ab is a prefix of abbb and a′ is a prefix of a′c ′ we
can remove one more transition to obtain the simplified PAA

shown in Figure 8c.

4.3 Testing the Program Alignment Automaton
If the alignment predicate is chosen poorly, the PAA con-

structed in Section 4.2 may be overfitted to the training data.

As a worst case example, consider the alignment predicate

ξ = “false”. Traces will only be aligned by ξ at the beginning
and the end. Every new test case may add a new transition

from the start node to the end node labeled by the entire

pair of traces. Thus, there is no limit on the number of tran-

sitions (if the traces can be arbitrarily long) and such a PAA

is not useful for equivalence checking. A good alignment

predicate, on the other hand, results in a PAA to which no

further transitions are needed to accept additional test cases

— the PAA already captures all possible pairs of executions

of the two programs. We must verify that the PAA is such

a sound overapproximation of the two programs as part of

equivalence checking (see Section 4.5), but we can eliminate

many PAAs earlier by testing. We use a separate test set of
inputs for this purpose.

By construction, the PAA accepts the training set (Sec-

tion 4.2), so we check that the PAA also accepts the test set.

This check is similar to the standard language membership

test for NFAs. If the PAA fails to accept the test set, then we

reject the PAA and try another alignment predicate.

4.4 Learning Invariants
Our goal is to learn invariants for each node of the PAA.

We take a data-driven approach and use the test cases to

guess a conjunction of predicates for each node, and later

(Section 4.5) we discard the conjuncts that cannot be proven.



PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

Inv →
∑

civi = c
��� v1 −v2 ≤ c ��� ±v ≤ c

��� m = v
��� v1 −v2 ≡ c1 (mod c2)

��� v ≡ c1 (mod c2)
��� ωS = ω

′

S

Figure 9. The language of invariants. Each c represents a
bitvector constant andm represents a memory location. v
represents a register, a subregister, or a stack-allocated mem-

ory location. ωS represents the heap excluding the set of

memory locations S .

First, for each node s of the PAA we need to identify a set

of pairs of machine states, Σs , over which to learn invariants.

For the traces of each test case (from either the test set or

the training set), we consider every possible run of the PAA

and record the machine states at each transition. Given a test

case τ we run both programs to obtain traces ρ,ρ ′. Let ν ,ν ′

be prefixes of ρ,ρ ′ that execute paths P ,Q . Consider every
sequence of transitions (if any) from the start node of the PAA

such that the concatenation of the labels of the transitions

match P and Q . For each such sequence of transitions that

ends in node s , we add the pair (σ ,σ ′) to Σs where σ and σ ′

are the last machine states of ν and ν ′.
The language of invariants, shown in Figure 9, includes

linear equalities, inequalities and equalities mod n. Inequali-
ties are needed for reasoning about branch conditions, and

equalities mod n are needed to prove properties of warm-up

and cool-down loops in vectorized code. There are three

different data-driven techniques for learning the conjuncts.

First, for inequalities, we sample a subset of the data and

find all the inequalities with the strongest bound possible.

Then, we check if these inequalities hold over the entire data

set; the failing ones are discarded.

Second, we use techniques from linear algebra to find a

space of all linear equalities that hold over the data [32].

We construct a matrix M over the ring of 64-bit bitvectors

Z
2
64 containing program values where row i corresponds to

σi and σ
′
i , and column j corresponds to a register or stack

location. We use SageMath version 7.5.1 [36] to compute

the kernel K = kerM . Each vector in the generating set

for K corresponds to a linear equality that holds over all

pairs (σi ,σ
′
i ). Performing this computation over Z

2
64 rather

than Z is expensive, but necessary because some equalities

hold over Z
2
64 that do not hold over Z (in past work [6, 32]

the invariant learning routine would miss some of these

equalities). Therefore, we perform two optimizations. First,

we do a pre-pass in which we remove pairs of columns where

a linear relationship of the form c1v1+c2v2 = 0 can be readily

found. Second, we only sample k = 25 rows of test data for

the matrix. We test the learned invariants against the rest of

the data set; if the learned invariants do not hold, we sample

up to k more rows from among the failures and repeat.

Lastly, for the remaining classes of invariants we learn the

strongest possible invariant over the entire data set. Here, no

division between test and training data is needed.We attempt

to learn an equality mod n for every pair of program values.

For each pairv1,v2 we compute all differencesdi = v1−v
′
2
for

each σi ,σ
′
i . We then compute the greatest common divisor d

of all di −dj . If d , 1, then we can find c such thatv1−v2 ≡ c
(mod d ). To learn an invariant of the form ωS = ω ′

S
we

choose the minimal set S for which the invariant holds on

all test cases.

Invariants learned for the PAA in Figure 3 are shown in

Figure 6.

4.5 Verifying Proof Obligations
We perform a Houdini-style [15] fixed point computation

to reduce the set of learned invariants to those that can be

proven by induction. For each node s we have the invariant
ϕs = ϕ1s ∧ · · · ∧ ϕ

n
s . For each transition λ : t → s labeled

by paths P and Q we attempt to prove {ϕt } P ; Q {ϕis } for
1 ≤ i ≤ n. If any conjunct does not hold, we remove it from

the invariant. We repeat this procedure until all the proofs

succeed. We then check the remaining proof obligations

(Section 3.1), and Corollary 3.2 implies equivalence.

Our implementation supports twoways tomodel the stack.

The first models the stack conservatively, where we assume

that the stack pointer is an arbitrary address that could alias

with arbitrary data structures on the heap, and ensures that

the two functions behave identically. However, for verify-

ing optimizations that transform the stack, we also support

assuming that stack locations do not alias with any heap

locations or pointers in input parameters. In these cases we

also assume that stack accesses of different sizes do not alias,

so we model them using separate memory stores [39].

4.6 Space of Alignment Predicates
In practice we find there is a small space of predicates that

almost always contains a useful alignment predicate for pairs

of equivalent x86-64 functions. Namely, choosing a pred-

icate of the form (c1v1 − c2v2 = k ) ∧ ω = ω ′ is typically
sufficient. Here v1 and v2 are registers or stack-allocated lo-

cations in f andд. We restrict c1,c2 ∈ {1,2,4,8,16} and k ∈ Z.
Moreover, we only need to consider alignment predicates

where either c1 = 1 or c2 = 1. There are 16 registers, but we

only need consider registers whose values are defined (as

determined by a program analysis). Thus, the total number

of choices for c1,c2,v1 and v2 has a relatively small bound.

For each of these, we heuristically pick k by finding values

seen for c1v1 − c2v2 across different states that are in com-

mon across multiple pairs of traces. Performing this search

is generally quite fast, and we make no attempt to rank the

alignment predicates heuristically or try them in a particular

order. If all the alignment predicates fail, we additionally

attempt to use predicates of the form c1v1 − c2v2 = k , where
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the alignment predicate does not constrain the heap states.

We offer intuition for, and evaluate the utility of, this space

of alignment predicates in Section 5.5.

5 Evaluation
In this section we seek to validate the following points:

• Our technique is able to verify the correctness of vec-

torization and other complex loop transformations

as performed by modern compilers on x86-64. (Sec-
tions 5.1 and 5.2)

• Our technique can verify optimizations that are be-

yond the scope of existing automated black-box tech-

niques. (Section 5.3)

• Our technique can verify equivalence checking bench-

marks used to evaluate other state-of-the-art tools.

(Section 5.4)

• The search space of alignment predicates that we use is

suitable for realistic verification problems. (Section 5.5)

We conclude with limitations in Section 5.6.

5.1 Experimental Setup
To evaluate our method we construct a set of benchmarks for

verifying vectorization optimizations. We started with 156

functions from the Test Suite for Vectorizing Compilers (TSVC),
whichwas developed “to assess the vectorizing capabilities of

compilers” and ported to C in [24]. We removed five classes

of functions from the original TSVC set:

• Functions that could not be vectorized using -msse4.2
and -O3with either gcc 4.9.2 or clang 3.4. These func-
tions are not interesting in our evaluation because the

loop structures are preserved. These functions should

be easy for both our technique and other state-of-the-

art tools. (96 functions)

• Duplicate functions. Some TSVC functions were de-

signed to check that a compiler could perform an anal-

ysis to verify the safety of an optimization; however,

after successful vectorization, the generated x86-64
code matches that of another function. (6 functions)

• Functions with method calls. Our implementation does

not support method invocations. (9 functions)

• Out of scope functions designed to test loop inter-

change. See Section 5.6. (6 functions)

• Functions with two-dimensional arrays or memory

indirection. (11 functions)

The TSVC functions operate on statically-allocated, fixed-

size global arrays of floating point values. While our tech-

nique works as is on over 80% of the floating point bench-

marks (by using uninterpreted functions to model floating

point operations), there are additional issues when learning

invariants from floating point data that are not addressed by

existing invariant inference techniques. For example, there

are multiple binary representations for some floating point

values, such as NaN. These issues are orthogonal to our con-

tributions; to separate the evaluation of our method from

the details of floating point semantics, we systematically

replaced floating point types with integer types. We con-

structed 256 test cases by creating machine states containing

input arrays of randomly-chosen bytes. This same set of test

cases was sufficient to obtain code coverage over all these

benchmarks. We also added a parameter to each function

to specify the array length. We added assumptions on the

input values to prevent pointers for different arrays from

aliasing. Adding assumptions to avoid undefined behavior is

generally required for equivalence checking [8, 33].

We were left with 28 functions. Most iterate over one or

more arrays (up to 5), perform arithmetic, and update the

arrays. Some process the array forwards, some backwards,

and somewith a stride. Some have loop carried dependencies,

others do not. One function, s176, features a doubly-nested
loop. No combination of these features hindered our ability to

check equivalence. For each of the 28 functions we attempted

to prove that gcc -O1 code was equivalent to gcc -O3 code

and to clang -O3 code, resulting in a total of 56 benchmarks.

Sometimes discharging a particular proof obligation takes

a long time or times out using one SMT solver, but finishes

quickly with another solver. Thus we use two solvers, Z3 [11]
(commit 7f6ef0b6) and CVC4-1.5 [2] with the theory of ar-

rays and bitvectors. Also, the encoding of constraints that

represent memory accesses may have a profound impact on

solver performance. Therefore we implement two memory

models [39], a flat memory model, and one based on alias re-

lationship mining (ARM). The flat model encodes all memory

accesses as a read or an update to an array (with separate

arrays for the stack, if needed). ARM uses data from test

cases to guess and prove relationships that ensure pointers

do not alias; then the constraints are encoded with minimal

use of arrays [6]. We set a 30-minute timeout for each proof

obligation for each solver and memory model. We use the

result of whichever solver and memory model pair finishes

first. We use the counterexamples from the SMT solver to

eliminate other proof obligations that are demonstrably false,

as in [16].

We used rigorously tested semantic models for x86-64
instructions developed by hand [6] and synthesized auto-

matically [18]. We model multiplications and floating point

operations using uninterpreted functions. We performed the

construction of the PAA for each benchmark using one core

of an Intel Xeon E5-2667 CPU @ 3.3GHz machine. We use

a pool of preemptible cloud virtual machines to check the

proof obligations.

5.2 Results
A list of the benchmarks and the outcomes are shown in

Figure 10. We successfully verified 55 of the 56 benchmarks.

The one failure (s351-gcc) was due to a timeout. In all other

cases the proofs succeeded. The PAAs all had 3 or 4 nodes.
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gcc -O1 gcc -O3 clang -O3
Benchmark LOC LOC Out LOC Out

s000 14 18 ✓ 44 ✓
s1112 12 31 ✓ 59 ✓
s112 14 55 ✓ 24 ✓NV

s121 16 44 ✓ 48 ✓
s1221 14 24 ✓ 37 ✓
s122 17 108 ✓S 21 ✓NV

s1251 18 29 ✓ 60 ✓
s127 22 82 ✓ 31 ✓
s1281 21 30 ✓ 66 ✓
s1351 12 17 ✓ 51 ✓
s162 17 49 ✓ 58 ✓
s173 17 56 ✓ 70 ✓S

s176 29 99 ✓S 34 ✓NV

s2244 19 56 ✓ 65 ✓
s243 25 30 ✓NV 68 ✓
s251 16 27 ✓ 49 ✓
s3251 22 149 ✓S 26 ✓NV

s351 29 130 ×S 24 ✓
s452 22 27 ✓ 25 ✓
s453 15 22 ✓ 15 ✓NV

sum1d 15 28 ✓ 45 ✓
vdotr 17 28 ✓ 49 ✓
vpvpv 15 26 ✓ 38 ✓
vpv 13 25 ✓ 37 ✓
vpvts 14 30 ✓S 54 ✓
vpvtv 14 26 ✓ 36 ✓
vtv 14 25 ✓ 36 ✓
vtvtv 15 26 ✓ 51 ✓

Figure 10. Results for 56 vectorization benchmarks. ✓ repre-

sents successful verification and × represents a timeout. For

six functions only one compiler succeeds in vectorization;

these benchmarks are marked by NV. Benchmarks requiring

assumptions about the stack are marked by S.

The number of edges varied from 4 to 254, with a median

of 4 and an average of 9. The number of conjuncts in the

invariants in the final PAA ranged from 374 to 1417, with

a median of 651. The median time to discharge all proof

obligations was 45.0 CPU hours; the minimum time was 2.5

CPU hours (s112-clang) and the maximum 1166 CPU hours

(s351-clang). The end-to-end time for this benchmark us-

ing the cloud was 4.6 hours. The cost for cloud instances

was $0.01 per CPU hour, so the cost of checking the proof

obligations for this benchmark was $11.66 while a typical

problem cost just $0.45.

The most difficult benchmark, s351, includes a loop with

five multiplications, five additions and ten memory deref-

erences in each iteration. The s351-gcc benchmark, which

encountered timeouts while checking proof obligations, in-

cluded a 4-way vectorized loop with a fully-unrolled cool-

down loop to handle the last four iterations. It is likely

that with more effort our constraint generation procedure

can be tuned to discharge the problematic proof obligations

more efficiently. While s351-clang still used vector instruc-

tions, clang generated much simpler code than gcc. Still,
the s351-clang benchmark took the most CPU time of all

the successful benchmarks.

5.3 GNU C Library strlen Case Study
Sometimes compilers are unable to vectorize performance-

critical functions and so library developers perform the vec-

torization themselves. This is the case for the strlen func-
tion in glibc, which was most recently updated in May 2009

with the release of version 2.10.1. There is a test in the glibc
test suite that runs both a reference implementation and the

hand optimized one, and checks that the outputs are equal.

Instead of running the programs on some inputs, we can

leverage test cases to prove that the two implementations

are equivalent for all inputs. We successfully verified the

correctness of the strlen function (shown in Figure 11a)

originally released in 2.10.1, which still ships as of 2019 in

version 2.29, against a simple reference implementation (Fig-

ure 11b). The alignment predicate found asserts the equality

of the pointers into the string (ptr and p). The end-to-end
verification time was only 3.3 minutes on a single CPU core.

The vectorized code has two loops; the warm-up loop

(lines 6-8) counts characters one-by-one until the pointer

reaches an 8-byte boundary or a null character. The main

loop (lines 14-29) reads 8 characters from the string at a

time and uses clever bit-manipulation techniques to check

if any of the 8 characters are null. If so, the code checks

the remaining characters one-by-one and returns the length;

otherwise, the loop continues.

Thus, the code reads beyond the end of the string unless

the string ends at an 8-byte boundary or the warm-up loop

encounters the null terminator. This is safe on x86-64 be-

cause memory permissions are set on a page-level granular-

ity (usually 4kB in size). Ifm is a memory address the process

is allowed to read, so is 8⌊m/8⌋+7. While the optimized code

can perform an out of bounds read, it never uses this value,

and the read does not trigger a page fault (assuming that the

unoptimized code does not fault). This example shows two

programs that are provably equivalent, even though they

dereference a different set of memory locations.

In general, if the memory locations accessed by f are

provably on the same pages as those accessed by д, then f
raises a page fault if and only if д does; but, if the memory

accesses are on different pages, no such guarantee exists. For

the sake of checking aggressive optimizations, we decided

not tomodel page faults (we do, however, check for final heap

equality, which addresses most faults due to memory writes).

Thus {ϕ1} P ; Q {ϕ2} may hold even if path P contains a
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1 size_t strlen (char *str) {

2 char *ptr;

3 ulong *longword_ptr;

4 ulong longword , himagic , lomagic;

5

6 for (ptr = str; (( ulong) ptr & 7) != 0; ++ptr)

7 if (*ptr == '\0 ')

8 return ptr - str;

9

10 longword_ptr = (ulong *) ptr;

11 himagic = 0x8080808080808080L;

12 lomagic = 0x0101010101010101L;

13

14 for (;;)

15 {

16 longword = *longword_ptr ++;

17 if (( longword - lomagic) & ~longword & himagic)

18 {

19 char *cp = (char *)( longword_ptr - 1);

20 if (cp[0] == 0) return cp - str;

21 if (cp[1] == 0) return cp - str + 1;

22 if (cp[2] == 0) return cp - str + 2;

23 if (cp[3] == 0) return cp - str + 3;

24 if (cp[4] == 0) return cp - str + 4;

25 if (cp[5] == 0) return cp - str + 5;

26 if (cp[6] == 0) return cp - str + 6;

27 if (cp[7] == 0) return cp - str + 7;

28 }

29 }

30 }

(a) Vectorized strlen implementation (simplified). The main loop

has eight different branches to exit, and the warm-up loop has two.

Compilation adds an extra branch that skips the warm-up loop. The

alignment predicate ensures that each of these paths is mapped to

the correct number of iterations in the reference implementation.

1 size_t strlen (char *s) {

2 char* p;

3 for(p = s; *p; ++p);

4 return p - s;

5 }

(b) Reference strlen implementation.

Figure 11. Two implementations of strlen.

memory access but path Q does not. There is no guarantee

that equivalent programs will access memory pages in the

same order; f could read andwrite amemory location in each

loop iteration, while д reads and writes the memory location

once (Section 5.4 offers one such example). Therefore, fully

modeling page faults likely requires invariants that track

which memory locations each program has accessed.

We also discovered that the hand-optimized code was

written conservatively. When the guard of the if-statement

on line 17 is satisfied, one of the eight return statements

is always taken. We can optimize the code by moving the

cascade of if-statements to the outside of the loop, and we

proved this is sound.

To the best of our knowledge, no other black-box tech-

nique in the equivalence checking, relational verification

nor translation validation literature is able to automatically

verify this example. There are two challenging aspects to

highlight. First, the number of iterations executed in the

warm-up loop and main loops are data-dependent; i.e., the

number of iterations of the warm-up loop depends on the

alignment of the input string to an 8-byte boundary. Second,

the PAA has a large number of edges, and a naive search to

build the PAA is too inefficient. Using an alignment predicate

makes the search tractable.

5.4 Comparison with Related Work
We believe techniques that depend on syntactic alignment

of the two programs [13, 14, 26, 27, 32] fail on most or all

of our benchmarks, including at least 47 benchmarks where

loop unrolling has been performed (usually as part of vector-

ization). In [3] the authors suggest unrolling one loop and

then attempting a syntactic alignment. This approach does

not support cool-down loops (present in 21 of our bench-

marks) nor loop peeling optimizations (present in another 9

benchmarks). The technique of [7] succeeds on benchmarks

unrolled µ times, where µ is an unroll factor. The cost of

the technique is superexponential in µ in the worst case

and reported results are only for µ = 1 [7, 16]. Among our

benchmarks, 32 have been unrolled 4 times and 15 have been

unrolled 8 times. Finally we believe ours is the only black box,

automated technique able to check equivalence for glibc
strlen (Section 5.3) and our running example (Section 2).

A challenging equivalence checking problem is presented

in [7]. As far as we know, only our technique and the tech-

nique of [7] are able to handle this problem. The benchmark

consists of checking the correctness of a loop that sums the

positive integers of an array after optimizations have been

performed, including loop inversion, a transformation of

branch conditions, replacing a branch inside the loop with

a conditional move instruction, and register allocation. The

unoptimized program writes to a global heap variable on

every iteration, while the optimized version only writes the

result once at the end of the loop. Their benchmark was for

32-bit x86 rather than x86-64, but we found that compiling

the C source on x86-64 with gcc 4.9.2 using -O0 and -O1
produced the same control flow graphs and the same op-

timizations; we believe that this modified benchmark is a

suitable proxy for the original.

We successfully verified this benchmark; the alignment

predicate we found related the stack-allocated pointer of the

unoptimized programwith an index counter in the optimized

one and did not relate heap states. The total time to guess

the alignment predicate, construct the PAA, learn invariants

and verify the proof obligations on a single CPU core was

34.4 minutes. Most of the time was spent verifying the proof

obligations, which was done only using Z3 and only with

the flat memory model.

The authors of [7] also demonstrate a large scale eval-

uation of their technique on whole binaries, but in whole
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programs many of the equivalence checks between corre-

sponding functions are easy (e.g. do not involve loop opti-

mizations), and [7] does not describe the harder equivalence

checking problems. Since our contribution is about equiv-

alence checking of loops, our evaluation focuses on loops

rather than whole programs.

5.5 Search over Alignment Predicates
We performed an experiment to count the number of align-

ment predicates in the search space for each benchmark, and

the number of viable PAAs that we could build (meaning the

number of PAAs that accept the test set; see Section 4.3). For

each benchmark we tried between 182 and 3318 alignment

predicates, with a median of 1130. Between 0.37% and 22%

of these alignment predicates led to viable PAAs. Averaging

across the benchmarks, 3.1% of alignment predicates suc-

ceeded. At least 8 viable PAAs were found per benchmark,

with a maximum of 65 and a median of 28. These findings

suggest that our space of alignment predicates is robust for

our set of benchmarks.

In practice the successful alignment predicates typically

relate a pointer or counter in f with a pointer or counter in

д. This is the case in our example (Section 2) where the align-

ment predicate matches the value of a pointer in f , namely

array + 4i, with the pointer array' inд. Whenд processes
8 bytes of the array and the pointer increases by 8, we find a

corresponding path in f where 8 bytes are processed and its

pointer increases by 8. The powers of two in our alignment

predicates arise because counters are generally multiplied

by powers of two to address array locations, and not due to

specifics of any optimizations performed on our benchmarks

(e.g. the number of loop iterations unrolled). Alternatively,

for the example, we can use equality of heap states as the

alignment predicate to ensure that the memory writes of

f and д are aligned and obtain the same result. For bench-

marks where heap equality alone was a suitable alignment

predicate, a large proportion of alignment predicates worked.

We also observe that some alignment predicates succeed in

aligning one loop an iteration (or k iterations) ahead of the

other. We can check the proof obligations for the resulting

PAAs as long as the invariants are able to sufficiently relate

the program states despite this offset.

Since there are only a few ways to reference a memory

location on x86-64, it is unsurprising that even our simple

alignment predicates suffice to identify corresponding uses

of pointers and counters between the two programs. For

example, if f accesses an array using a pointer in register r1,
and д accesses an array of k-byte elements using a base ad-

dress b and counter register r2, then the alignment predicate

r1 = b + k ∗ r2 would assert the equality of these two mem-

ory dereferences. Indeed, this is in our space of alignment

predicates.

While it did not arise in our benchmarks, we expect that

some equivalence checking problems will require the align-

ment predicate to assert an equality over three or four reg-

isters. Four registers would be the maximum required to

relate any two pointer dereferences. We also expect that

some benchmarks involving multiple loops will require a

disjunction over program points; for example, we may want

to use one alignment predicate for one loop, and another

alignment predicate for another loop. While one could ex-

tend our work to such problems by broadening the space of

alignment predicates and thus increasing search times, our

observation that good alignment predicates tend to relate

pointers and counters suggests that these alignment pred-

icates may be guessed directly from the program text. We

leave this question to future work.

5.6 Limitations
A main limitation of our work is that we cannot reason

about transformations that reorder an unbounded number of

memory writes, for example, loop splitting, loop fusion, loop

interchange and loop tiling optimizations. This is because the

only invariants we learn and prove over the heap states assert

heap equality on all but a finite set of memory locations. This

limitation could be addressed by learning and proving more

general quantified invariants over heap states.

Another limitation arises when the correspondence be-

tween the control flow of the two programs depends on an

unbounded input. Consider the two functions in Figure 12

where the loop of f has been flattened. Here,m iterations

in f correspond to 1 iteration in д. As far as we know, no
equivalence checking techniques that construct a product

program or similar structures are able to verify this bench-

mark as is (although those that summarize loops, like [10],

may succeed). The reason is that the product program needs

to align the entire execution of the inner loop of f withm
iterations of the loop of д. To extend our approach to bench-

marks like these, we would need to summarize loops (in this

case the inner loop of f ) and check for termination.

However, we confirmed our method can verify a modified

version of this benchmark where other approaches using

product programs likely fail. If the input value m is con-

strained to a small finite setm ∈ {c1,c2, . . . ,ck } while n is

left unbounded then we can construct a PAA for the two

programs and prove equivalence. The PAA contains a node

s with k transitions λi : s → s where λi relates ci iterations
of f to 1 iteration of д. In essence, the PAA we learn creates

a disjunction of all the k cases and we check each one. We

can reason disjunctively because the path condition for λi
only holds whenm = ci .
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1 int f(uint n, uint m) {

2 int k = 0;

3 for(uint i = 0; i < n; ++i) {

4 for(uint j = 0; j < m; ++j) {

5 k++;

6 }

7 }

8 return k;

9 }

10 int g(uint n, uint m) {

11 int k = 0;

12 for(uint i = 0; i < n; ++i) {

13 k += m;

14 }

15 return k;

16 }

Figure 12. A difficult problem for equivalence checking via

product programs.

6 Related Work
The most similar work to ours is that of [7], where the au-

thors perform black-box equivalence checking across a va-

riety of compiler optimizations. They construct and check

a representation of a product program called a joint trans-

fer function graph (JTFG) without any need for test cases

or execution data. The equivalence checking method re-

quires that branch conditions of one program provablymatch

branch conditions of the other, which does not hold for ei-

ther strlen (Section 5.3) or the example of Section 2. Also,

paths in one program must correspond to sets of paths in

the other, rather than allowing a many-to-many relationship.

This assumption excludes a number of realistic benchmarks,

such as strlen. Where the technique succeeds, the equality

of branch conditions defines an alignment predicate which

we can use to attempt equivalence checking; however, the

converse does not hold. We believe this technique could be

generalized by replacing the branch condition equality check

with checking an alignment predicate.

Translation validation [26, 31, 34] uses compiler instru-

mentation to help generate a simulation relation to prove the

correctness of compiler optimizations. A black box technique

such as ours requires no effort to instrument the compiler

or understand the specific transformations it performs, and

further enables the comparison of programs produced by

different people or compilers (as illustrated in our case study

of glibc strlen).
In the literature of translation validation, equivalence

checking, and relational verification, many works align loop

iterations of one program in one-to-one correspondence with

loop iterations of the other (as in Figure 1d), meaning that

both programs execute each loop body the same number of

times. Consequently, they often fail to prove equivalence of

two functions where the loops execute for different numbers

of iterations, which is the case for optimizations such as

loop peeling, loop unrolling, and vectorization. Examples

include past work on data-driven equivalence checking [32],

Necula’s well-known translation validation work [26], and

others [13, 14, 27]. A related technique is to apply transfor-

mations (e.g. unrolling) to the programs so that the loop exe-

cutions in the transformed programs are in correspondence,

but this is brittle in the presence of unforeseen optimiza-

tions [3, 4]. In [23] the authors use a sequential composition

of programs (as in Figure 1c), and attempt to summarize

them by solving integer recurrences.

In contrast, the authors of [9, 10, 25] use constrained Horn

clauses to summarize the entire execution of two programs

and then use Horn clause solvers to prove equivalence. To

make the problem tractable, the authors introduce a transfor-

mation called predicate pairing [9], where predicates from

the two programs are combined into one predicate that mod-

els both programs. These predicates usually correspond to

matching one iteration of a loop or one recursive step in one

program with one in the other. The authors do not report on

their ability to handle optimizations such as vectorization or

loop unrolling where loop iterations or recursive steps are

executed in one program more often than the other.

Some works use manually-provided specifications to per-

form alignment. For example, in [21] the authors prove the

correctness of some difficult compiler optimizations, such as

loop interchange, by using programmer-supplied templates

which imply a correspondence between loop-free code frag-

ments. Other works allow users to specify “control flow

synchronization points” manually [20].

Equivalence checking techniques for affine programs can

typically handle transformations that reorder loop iterations,

such as loop tiling, loop interchange, vectorization and loop

fusion, among others. In [38] the authors use abstract in-

terpretation to summarize loops with a polyhedral domain.

Polycheck [1] performs verification for affine programs dy-

namically; it uses a modified compiler to generate an instru-

mented binary that performs checks at run-time. The authors

of [30] handle affine programs where loops have constant

bounds; the authors expand traces of both programs and at-

tempt to match operations between the traces via a series of

normalization and rewriting steps. Similarly, the work [12]

checks equivalence of loop parallelization and vectorization

optimizations in a more general non-affine setting, but is lim-

ited to cases where the control flow of the program remains

the same for all possible inputs.

In equality saturation [35, 37] authors build graphs of ex-

pressions for each program, transform the graphs via a series

of rewrite rules, and check for equality. These approaches

depend on the manually-specified rewrite rules and do not

attempt to build a product program.

Some works use unsound reasoning for loops. SymD-

iff [17] models loops unsoundly by unrolling them for a
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fixed number of iterations. UC-KLEE [28] explores a finite

number of paths through a pair of programs to find differ-

ences. Recent work considers the correctness of peephole

optimizations without loops [22], where the authors make

progress on problems such as modeling undefined behavior.

7 Conclusion
In this paper we describe a semantic, data-driven approach

to constructing product programs for equivalence checking.

From an alignment predicate we construct a trace alignment

and product program that enables verification. We demon-

strate the applicability of this approach to a number of re-

alistic benchmarks beyond the reach of prior equivalence

checking work.
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