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Abstract
Background

Age is the most important risk factor for cancer, but aging rates are heterogeneous across
individuals. We explored a new measure of aging-Phenotypic Age (PhenoAge)-in the risk
prediction of site-specific and overall cancer.

Methods

Using Cox regression models, we examined the association of Phenotypic Age Acceleration
(PhenoAgeAccel) with cancer incidence by genetic risk group among 374,463 participants
from the UK Biobank. We generated PhenoAge using chronological age and 9 biomarkers,
PhenoAgeAccel after subtracting the effect of chronological age by regression residual, and
an incidence weighted overall cancer polygenic risk score (CPRS) based on 20 cancer site-
specific polygenic risk scores (PRSs).

Results

Compared with biologically younger participants, those older had a significantly higher risk
of overall cancer, with hazard ratios (HRs) of 1.22 (95% confidence interval, 1.18-1.27) in men,
1.26 (1.22-1.31) in women, respectively. A joint effect of genetic risk and PhenoAgeAccel was
observed on overall cancer risk, with HRs of 2.29 (2.10-2.51) for men and 1.94 (1.78-2.11) for
women with high genetic risk and older PhenoAge compared with those with low genetic risk
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and younger PhenoAge. PhenoAgeAccel was negatively associated with the number of
healthy lifestyle factors (Beta = -1.01 in men, P < 0.001; Beta = -0.98 in women, P < 0.001).

Conclusions

Within and across genetic risk groups, older PhenoAge was consistently related to an
increased risk of incident cancer with adjustment for chronological age and the aging process
could be retarded by adherence to a healthy lifestyle.

eLife assessment

This is an important study on the role of phenotypic aging in cancer risk. It presents
results that show that Phenotypic Age Acceleration (PhenoAgeAccel) can predict
cancer incidence of different types and could be used with genetic risk to facilitate
the identification of cancer-susceptible individuals. This article presents solid results
that would be of broad interest to the research community and clinicians.

Introduction

Cancer continues to be the leading cause of death globally and the reduction of cancer-related
deaths remains to be a public health priority (Bray et al., 2018     ). The morbidity and mortality of
cancer increase dramatically with age, which demonstrated that aging is the greatest risk factor
for cancer (Siegel, Miller, & Jemal, 2018     ). Although everyone gets older, individuals are aging at
different rates (Rutledge, Oh, & Wyss-Coray, 2022     ). Therefore, the variation in the pace of aging
between-person may reflect the differences in susceptibility to cancer and death. Thus,
measurement of an individual’s biological age, particularly at the early stage of life, may promote
the primary and secondary prevention of cancer through earlier identification of high risk groups.

Recently, Morgan and colleagues developed and validated a novel multi-system-based aging
measurement (Levine et al., 2018     ), Phenotypic Age (PhenoAge), which has been shown to
capture long-term vulnerability to diseases like COVID-19, and strongly predict morbidity and
mortality risk in diverse populations (Kuo, Pilling, Atkins, et al., 2021; Liu et al., 2018     ). However,
it is largely unknown whether PhenoAge can predict overall cancer risk and identify high risk
individuals for potential personalized prevention.

To date, more than 2,000 genetic loci have been identified as susceptibility markers for certain
cancers by genome-wide association studies (GWAS) (Buniello et al., 2019     ). Although the effect of
these individual loci is relatively modest on cancer risk, a polygenic risk score (PRS) combining
multiple loci together as an indicator of genetic risk has been proved to effectively predict
incidence of site-specific cancer (Dai et al., 2019     ; Lecarpentier et al., 2017     ; Mars et al., 2020     ).
Recently, we systematically created site-specific cancer PRS for 20 cancer types, and constructed
an incidence-weighted cancer polygenic risk score (CPRS) to assess the effect of genetic risk on
overall incident cancer risk based on the UK Biobank (Zhu et al., 2021     ). Previous study had
indicated an interaction between genetic factor and age on cancer risk (Mavaddat et al., 2015     ).
However, the extent to interaction between genetic factor and PhenoAge on overall cancer risk
remained unclear.
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In this study, we calculated PhenoAge in accordance with the method described previously and
then evaluated the effectiveness of PhenoAge in predicting risk of overall cancer in the UK
Biobank. We also assessed the extent to which a level of accelerated aging was associated with an
increased overall cancer risk across groups with a different genetic risk defined by the CPRS.

Methods

Participants
The participants included in this study are derived from the UK Biobank. The UK Biobank is a
large population-based cohort study and detail protocol is publicly available (Bycroft et al.,
2018     ). In brief, approximately 500,000 participants aged 40-70 were recruited from 22
assessment centers across England, Scotland, and Wales between 2006 and 2010 at baseline. Each
eligible participant completed a written informed consent form and provided information on
lifestyle and other potentially health-related aspects through extensive baseline questionnaires,
interviews, and physical measurements. Meanwhile, biological samples of participants were also
collected for biomarker assays and a blood draw was collected for genotyping. The UK Biobank
study has approval from the Multi-center Research Ethics Committee, the National Information
Governance Board for Health and Social Care in England and Wales, and the Community Health
Index Advisory Group in Scotland (http://www.ukbiobank.ac.uk/ethics/     ).

PhenoAge
We calculated PhenoAge in accordance with the method described previously (Levine et al.,
2018     ). Briefly, PhenoAge is calculated based on 9 biomarkers (albumin, creatinine, glucose, [log]
C-reactive protein [CRP], lymphocyte percent, mean cell volume, red blood cell distribution width,
alkaline phosphatase, and white blood cell count) and chronological age that were selected using a
Cox proportional hazard elastic net model for mortality based on 10-fold cross-validation. The
Biomarkers in the UK Biobank were measured at baseline (2006-2010) for all participants. To
correct distribution skewness, we set the top and bottom 1% of values to the 99th and 1st
percentiles. The formula of PhenoAge is given by

where

Finally, we calculated Phenotypic Age Acceleration (PhenoAgeAccel), which was defined as the
residual resulting from a linear model when regressing Phenotypic Age on chronological age.
Therefore, PhenoAgeAccel represents Phenotypic Age after accounting for chronological age (i.e.,
whether a person appears older [positive value] or younger [negative value] than expected,
biologically, based on his/her age).
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PRS calculation and CPRS construction
The calculation of site-specific cancer PRSs and the construction of CPRSs have been described in
our previous published study (Zhu et al., 2021     ). In brief, for individual cancer, risk associated
single nucleotide polymorphisms (SNPs) and corresponding effect sizes were derived from the
largest published GWASs in terms of sample size.

Next, the dosage of each risk allele for each individual was summed after multiplication with its
respective effect size of site-specific cancer. Except for non-melanoma skin cancer and those
without relevant GWAS or significant genetic loci published by now, we derived PRSs for 20 cancer
types in this analysis. To generate an indicator of genetic risk for overall cancer, we constructed
the CPRS as follows:

Where CPRSi is the cancer polygenic risk score of ith individual, hk is the age-standardized
incidence of site-specific cancer k in UK population, and PRSi,k is the aforementioned PRS of site-
specific cancer k. Given the different spectrum of cancer incidence between men and women,
CPRS were constructed for males and females, respectively.

Assessment of healthy lifestyle
We adopted five healthy lifestyle factors according to the World Cancer Research Fund/American
Institute of Cancer Research recommendations (https://www.aicr.org/cancer-prevention/     ) (Shams-
White et al., 2019     ), i.e., no current smoking, no alcohol consumption, regular physical activity,
moderate BMI (body-mass index, 18.5∼30), and a healthy diet pattern. Participants of no current
smoking were defined as never smoker or former smokers who had quit smoking at least 30 years.
No alcohol consumption was defined as never alcohol use. Regular physical activity was defined as
at least 75 minutes of vigorous activity per week or 150 minutes of moderate activity per week (or
an equivalent combination) or engaging in vigorous activity once and moderate physical activity
at least 5 days a week (Lourida et al., 2019     ). A healthy diet pattern was ascertained consumption
of an increased amount of fruits, vegetables, whole grains, fish and a reduced amount of red meats
and processed meats (Lourida et al., 2019     ). The lifestyle index ranged from 0 to 5, with higher
index indicating a healthier lifestyle.

Outcomes
Outcomes of incident cancer events in the UK Biobank were ascertained through record electronic
linkage with the National Health Service central registers and death registries in England, Wales
and Scotland. Complete follow-up was updated to 31 October 2015 for Scotland, and to 31 March
2016 for England & Wales. Cancer events were coded using the 10th Revision of the International
Classification of Diseases. The outcome of all cancer events were obtained from data field 40006
and 40005 of the UK Biobank.

Statistical analysis
Cancer risk of participants in the UK Biobank was assessed from baseline until to the date of
diagnosis, death, loss to follow-up, or date of complete follow-up, whichever occurred first.
Multivariable Cox proportional hazards regression analyses were performed to assess associations
between PhenoAgeAccel and cancer risk and to estimate hazard ratios (HRs) as well as 95%
confidence intervals (CI). Schoenfeld residuals and log-log inspection were used to test the
assumption of proportional hazards. HRs associated with per 5 years increased of PhenoAgeAccel
was calculated for site-specific cancer and overall cancer respectively. In addition, we compared
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HRs between biologically younger and older participants, and calculated HRs for participants at
low (the bottom quintile of PhenoAgeAccel), intermediate (quintiles 2-4), and high (the top
quintile) accelerated aging.

Meanwhile, participants were also divided into low (the bottom quintile of CPRS), intermediate
(quintiles 2-4), and high (the top quintile) genetic risk groups. Absolute risk within each subgroup
defined by PhenoAgeAccel and CPRS were calculated as the percentage of incident cancer cases
occurring in a given group. We calculated absolute risk increase as the difference in cancer
incidences among given groups, extrapolated the difference in 5-year event rates among given
groups. The 95% CIs for the absolute risk increase were derived by drawing 1,000 bootstrap
samples from the estimation dataset. We performed additive interaction analysis between genetic
and PhenoAgeAccel categories by using two indexes: the relative excess risk due to interaction
(RERI) and the attributable proportion due to interaction (AP) (R. Li & Chambless, 2007     ). The
95% CIs of the RERI and AP were estimated by bootstrap (N = 5,000), which would contain 0 if
there was no additive interaction. We also used multivariable linear regression models to assess
associations between the PhenoAgeAccel and individual lifestyle factors with adjustment for age,
family history of cancer, Townsend deprivation index, height, and the first 10 principal
components of ancestry. All the above mentioned analyses were performed for men and women
separately.

Participants with missing data on any of the covariates were multiple imputed, and independent
analyses were also performed based on complete data for sensitivity analyses. Besides, to examine
the reliability of our results, we conducted several sensitivity analyses: (i) reclassifying
PhenoAgeAccel levels based on quartiles (bottom, 2-3, and top quartiles defined as low,
intermediate, and high accelerated aging, respectively) or tertiles (corresponding to low,
intermediate, and high accelerated aging) of PhenoAgeAccel; (ii) reevaluating the effect of
PhenoAgeAccel based on participants of unrelated British ancestry; and (iii) excluding incident
cases of any cancer occurring during the two years of follow-up. All P values were two-sided and P
< 0.05 was considered statistically significant. All statistical analyses were performed with R
software, version 3.6.3 (R Project for Statistical Computing).

Results

Participants
After removing participants who had withdrawn their consent, had been diagnosed with cancer
before baseline, failed to be genotyped, reported a mismatch sex with genetic data, or with missing
data on PhenoAge, the final analytic dataset included 374,463 eligible participants (173,431 men
and 201,032 women). Of which, 169,573 participants were biologically older, with 92,189 men and
77,384 women, whose median PhenoAgeAccel were 3.28 (interquartile range [IQR]: 1.50-6.06) and
3.07 (IQR: 1.33-5.79) respectively; 204,890 participants were biologically younger, with 81,242 men
and 123,648 women, whose median PhenoAgeAccel were -2.61 (IQR: -4.35--1.25) and -3.55 (IQR:
-5.64--1.81) respectively (Table 1     , Appendix 1-figure 1).

Associations of PhenoAgeAccel with cancer risk
There were 22,370 incident cancer cases, with 11,532 men and 10,838 women, during a median
follow-up of 7.09 years (IQR: 6.35-7.72). The PhenoAgeAccel was significantly associated with
increased risk for cancer sites of lip-oral cavity-pharynx, esophagus, stomach, colon-rectum,
pancreas, lung, breast, cervix uteri, corpus uteri, prostate, kidney, bladder, multiple myeloma,
Hodgkin’s disease, and lymphoid leukaemia, while negatively associated with risk of prostate
cancer after adjusting for chronological age and other covariates (Figure 1     , Appendix 1-table
1).

https://doi.org/10.7554/eLife.91101.1
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Table 1.

Baseline characteristics of participants stratified by PhenoAgeAccel categories
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Figure 1.

Association results of PhenoAgeAccel with site-specific cancer risk per 5 years increased.

Cox proportional hazards regression adjusted for age, height, cancer family history, Townsend deprivation index at
recruitment, and the first 10 principal components of ancestry.

https://doi.org/10.7554/eLife.91101.1
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For overall cancer, we observed an obviously higher distribution of PhenoAgeAccel in incident
cancer cases than participants without incident cancer in both men and women (Figure 2A      and
B     ). PhenoAgeAccel was significantly associated with an increased risk of overall cancer in men
(HR = 1.15, 95% CI, 1.13-1.17, P < 0.0001) and women (HR = 1.15, 95% CI, 1.13-1.17, P < 0.0001) per 5
years increase (Table 2     ). We also observed a significantly gradient increase in incident cancer
risk from decile 1 to decile 10 of PhenoAgeAccel (Figure 2C      and D     ). Compared with
biologically younger participants, those older had a significantly higher risk of overall cancer, with
HRs of 1.22 (95% CI, 1.18-1.27, P < 0.0001) in men, 1.26 (95% CI, 1.22-1.31, P < 0.0001) in women,
respectively (Figure 2E      and F     ). Besides, Compared with individuals at low accelerated aging
(the bottom quintile of PhenoAgeAccel), those in the intermediate (quintiles 2 to 4) and high
accelerated aging (the top quintile) had a significantly higher risk of overall cancer, with HRs of
1.15 (95% CI, 1.09-1.21, P < 0.0001) and 1.44 (95% CI, 1.36-1.53, P < 0.0001) in men, 1.15 (95% CI,
1.09-1.21, P < 0.0001) and 1.46 (95% CI, 1.38-1.55, P < 0.0001) in women, respectively. These results
did not change after adjustment for genetic risk and lifestyle factors (Table 2     ). Similar patterns
were noted in a series of sensitivity analyses with reclassifying accelerated aging levels according
to quartiles or tertiles of the PhenoAgeAccel (Appendix 1-table 2), exclusion of incident cancer
cases occurred during the two years of follow-up (Appendix 1-table 3), in the unimputed data
(Appendix 1-table 4), or in the unrelated British population (Appendix 1-table 5).

Joint effect and interaction of genetic factor
and PhenoAgeAccel on overall cancer risk
The overall incident cancer risk associated with both genetic risk and PhenoAgeAccel in a dose-
response manner (Figure 3     ). Of participants with high genetic risk and older PhenoAge, the
incidence rates of overall cancer per 100,000 person-years were estimated to be 1477.89 (95% CI,
1410.87-1544.92) in men and 1076.17 (95% CI, 1014.14-1138.19) in women versus 581.06 (95% CI,
537.12-625.00) in men and 594.71 (95% CI, 558.50-630.92) in women with low genetic risk and
younger PhenoAge. Approximate double risks [HR, 2.29 (95% CI, 2.10-2.51) in men, P < 0.0001; 1.94
(95% CI, 1.78-2.11) in women, P < 0.0001] were observed in participants with high genetic risk and
older PhenoAge, compared with those with low genetic risk and younger PhenoAge. Similar
patterns were noted by reclassifying accelerated aging levels into low (the bottom quintile of
PhenoAgeAccel), intermediate (quintiles 2-4), and high (the top quintile) (Appendix 1-figure 2).
However, we did not observe interaction between genetic and PhenoAgeAccel on overall cancer
risk in men and women (Appendix 1-table 6).

Disadvantages of older PhenoAge with overall incident cancer
In further stratification analyses by genetic risk category with younger PhenoAge as the reference
group, we confirmed that older PhenoAge was significantly associated with a higher incident
cancer risk across genetic risk groups (Table 3     ). Among participants at high genetic risk, the
standardized 5-year incident cancer rates were 5.78% and 4.58% for biologically younger men and
women versus 6.90% and 5.17% for those older, respectively. Similarly, among participants at low
genetic risk, the standardized 5-year incident cancer rates increased from 2.71% and 2.83% for
biologically younger to 3.87% and 3.39% for those older in men and women, respectively. Similar
patterns were noted by reclassifying accelerated aging levels into low (the bottom quintile of
PhenoAgeAccel), intermediate (quintiles 2-4), and high (the top quintile) (Appendix 1-table 7).

In addition, to evaluate the implication for cancer screening in populations with different
PhenoAgeAccel, we estimated the 5-year absolute risk of overall cancer between biologically
younger and older participants with the increasing of age. Assuming 2% of absolute risk within
the next 5 years as the threshold to be recommended for cancer screening, biologically younger

https://doi.org/10.7554/eLife.91101.1
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Table 2.

Association between PhenoAgeAccel and cancer risk
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Figure 2.

Effect of PhenoAgeAccel on the risk of incident cancer in the UK Biobank.

The distrubution of PhenoAgeAccel between participants with incident cancer and those without incident cancer in the UK
Biobank for men(A) and women (B). Participants in the UK Biobank were divided into ten equal groups according to the
PhenoAgeAccel for men (C) and women (D), and the hazard ratios (HRs) of each group were compared with those in the
bottom decile of PhenoAgeAccel. Error bars are 95% CIs. Standardized rates of cancer events in younger and older PhenoAge
groups in the UK Biobank for men (E) and women (F). HRs and 95% CIs were estimated using Cox proportional hazard models
with adjustment for age, height, family history of cancer, Townsend deprivation index, and the first 10 principal components
of ancestry. Shaded areas are 95% CIs.
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Figure 3.

Risk of incident cancer according to genetic and PhenoAgeAccel
categories in the UK Biobank for men (A) and women (B).

The HRs were estimated using Cox proportional hazard models with adjustment for age, height, family history of cancer,
Townsend deprivation index, and the first 10 principal components of ancestry. Participants were divided into younger and
older PhenoAge under different genetic risk groups.

https://doi.org/10.7554/eLife.91101.1
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Table 3.

Risk of incident cancer according to PhenoAgeAccel categories within each genetic risk level a
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men would reach the threshold at age 52, whereas those older men would reach the threshold at
age 50; similarly, biologically younger women would reach the 2% of 5-year absolute risk at age 46,
whereas those older women would reach the threshold at age 44 (Figure 4     ).

Associations of lifestyle factors with PhenoAgeAccel
In the UK Biobank, biologically younger men (9.6%, 7,781/81,242) and women (14.4%,
17,781/123,648) were more likely to have favorable lifestyle (4 to 5 healthy lifestyle factors) than
older men (5.7%, 5,255/92,189) and women (9.3%, 7,178/77,384) (Table 1     ). Among both men and
women, we observed that PhenoAgeAccel decreased with the increase of healthy lifestyle factors
(Appendix 1-table 8). In addition, we found a significant negative correlation between the
number of healthy lifestyle factors and PhenoAgeAccel (Beta = -1.01 in men, P < 0.001; Beta = -0.98
in women, P < 0.001) (Appendix 1-table 9).

Discussion

In this study, we calculated PhenoAgeAccel to explore the effect of accelerated aging on the risk of
cancer, and demonstrated a positive association between accelerated aging and increased cancer
risk after adjustment for chronological age in the UK Biobank. Meanwhile, older PhenoAge was
consistently associated with an increased absolute risk of incident cancer within each genetic risk
group; and participants with high genetic risk and older PhenoAge had the greatest incident
cancer risk. Therefore, our findings provided the first evidence for PhenoAgeAccel to be used for
risk stratification of cancer, which were independent from genetic risk. Moreover, we also
demonstrated that participants with older biological age often reaches the screening threshold 2
years in advance compared with biologically younger peers; and keeping a healthy lifestyle can
effectively slow down the aging process.

Older age has been long recognized as the main risk factor for cancer, and the multistage model of
carcinogenesis posits that the exponential increase in cancer incidence with age were mainly
resulted from the sequential accumulation of oncogenic mutations in different tissues throughout
life (Laconi, Marongiu, & DeGregori, 2020     ). In consistent with this, age and exposure (i.e.
smoking, ultraviolet light) dependent mutation signatures have been identified in several cancers
by tissue sequencing (Alexandrov et al., 2020     ). However, biological aging is an enormously
complex process and is thought to be influenced by multiple genetic and environmental factors
(van Dongen et al., 2016     ). Therefore, several biomarkers, i.e. ‘ageing clocks’ derived from
epigenomic, transcriptomic, proteomic and metabolomic data, have been proposed to measure the
biological age and predict risk of cancer and other diseases (Rutledge et al., 2022     ; Zhang et al.,
2022     ). However, these measures were usually based on omics data and was not suitable for
application in large population by now. As a result, results from this study would provide a cost-
effective indicator for measuring of biological age as well as a novel biomarker for cancer risk
prediction.

The associations between biological age and cancer risk has been investigated by several studies
recently. Li et al. explored three DNA methylation phenotypic age and cancer risk in four subsets
of a population-based cohort from Germany, and reported strong positive associations for lung
cancer, while strong inverse associations for breast cancer (X. Li, Schottker, Holleczek, & Brenner,
2022     ). Meanwhile, results from Melbourne Collaborative Cohort Study reported that epigenetic
aging was associated with increased cancer risk of kidney cancer and B-cell lymphoma (Dugue et
al., 2018     ). However, because of sample size, the association results were still inconsistent for
DNA methylation phenotypic age among different studies. Leukocyte telomere length was also
significantly associated with age and were regarded as an indicator of aging. Based on data from
the UK Biobank, Schneider et al. recently explored the associations between telomere length and

https://doi.org/10.7554/eLife.91101.1
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Figure 4.

Absolute risk estimates of overall cancer based on the UK Biobank for men (A) and women (B).

The x-axis is chronological age. The curves describe average risk of participants in younger and older PhenoAge groups. The
dashed curve represents the average risk of the whole population in different ages. The red horizontal dotted line represents
2% of 5-year absolute risks of overall cancer.
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risk of several disease, and reported significant positive associations of telomere length for
lymphoid leukemia, multiple myeloma, non-Hodgkin lymphoma, esophagus cancer, while
negative associations for malignant neoplasm of brain, mesothelioma, and melanoma (Schneider
et al., 2022     ). The positive associations were in consistent with our findings, however, the
negative associations were not significant in our study. Meanwhile, the study did not indicate
associations for other cancers, including cancers of lung, stomach, pancreases, and kidney, which
showed relatively large effects (HR>1.3) in our study. These findings indicated that the different
measures of biological age may reflect the different aspects of aging, and could be joint application
in cancer risk assessment.

The associations between PhenoAgeAccel and increased cancer risk may be partly attribute to a
result of decline in the immune system and accumulation of environmental carcinogenic factors.
Recent GWASs of PhenoAgeAccel showed that SNPs associated with PhenoAgeAccel were enriched
in pathways of immune system and activation of pro-inflammatory (Kuo, Pilling, Liu, Atkins, &
Levine, 2021     ; Levine et al., 2018     ). In addition to genetics, behaviors (i.e. obesity, smoking,
alcohol consumption, and physical activity), and life course circumstances (i.e.
socioenvironmental circumstances during childhood and adulthood) were reported to account for
about 30% variances of phenotypic aging (Liu et al., 2019     ). This was in accordance with our
findings that, adherence to healthy lifestyles (involving no current smoking, normal BMI, regular
physical activity, and healthy diet) could slow down the aging process. In other words, these
healthy lifestyles considered in our and previous studies may be causal drivers of phenotypic
aging, they represent a more targetable strategy for reducing overall cancer burden by retarding
the aging process. Therefore, PhenoAge provide a meaningful intermediate phenotype that can be
used to guide interventions for high risk groups and track intervention efficacy (Liu et al., 2019     ).

This study has several strengths, including a large sample size, a prospective design of the UK
Biobank study, and an effective application of PhenoAgeAccel in predicting risk of overall cancer.
Nevertheless, we also acknowledge several limitations. First, we calculated PhenoAge based on 9
biomarkers from blood, which were measured at baseline. As such, we were unable to access the
change of PhenoAgeAccel during the follow-up period. Second, previous studies have indicated
that patricians in the UK Biobank differ from the general UK population because of low
participation and healthy volunteer bias (Fry et al., 2017     ). Finally, even though the findings were
achieved from participants with diverse ethnic backgrounds of the UK Biobank, the
generalizability of our findings should be further assessed in more diverse populations when
available.

In summary, our study showed that accelerated aging, which was measured by PhenoAgeAccel,
was consistently related to an increased risk of several site-specific cancer and overall cancer with
adjustment for chronological age, within and across genetic risk groups. PhenoAgeAccel can serve
as a productive tool to facilitate identification of cancer susceptible individuals, in combination
with individual’s genetic background, and act as an intermediate phenotype to guide interventions
for high risk groups and track intervention efficacy.
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Reviewer #1 (Public Review):

Bian et al showed that biomarker-informed PhenoAgeAccel was consistently related to an
increased risk of site-specific cancer and overall cancer within and across genetic risk groups.
The results showed that PhenoAgeAccel and genetic liability of a bunch of cancers serve as
productive tools to facilitate the identification of cancer-susceptible individuals under an
additive model. People with a high genetic risk for cancer may benefit from PhenoAgeAccel-
informed interventions.

As the authors pointed out, the large sample size, the prospective design UK Biobank study,
and the effective application of PhenoAgeAccel in predicting the risk of overall cancer are the
major strengths of the study. Meanwhile, the CPRS seems to be a solid and comprehensive
score based on incidence-weighted site-specific polygenic risk scores across 20 well-powered
GWAS for cancers.

It wouldn't be very surprising to identify the association between PhenoAgeAccel and cancer
risk, since the PhenoAgeAccel was constructed as a predictor for mortality which attributed a
lot to cancer. Although cancer is an essential mediator for the association, sensitivity analyses
using cancer-free mortality may provide an additional angle. It would be interesting to see, to
what extent, PhenoAgeAccel could be reversed by environmental or lifestyle factors. G by E
for PhenoAgeAccel might be worth a try.

https://doi.org/10.7554/eLife.91101.1.sa1

Reviewer #2 (Public Review):

Summary:

Bian et al. calculated Phenotypic Age Acceleration (PhenoAgeAccel) via a linear model
regressing Phenotypic Age on chronological age. They examined the associations between
PhenoAgeAccel and cancer incidence using 374,463 individuals from the UK Biobank and
found that older PhenoAge was consistently related to an increased risk of incident cancer,
even among each risk group defined by genetics.

Strengths:

The study is well-designed, and uses a large sample size from the UK biobank.

Weaknesses:
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Since the UK biobank has a large sample size, it should have enough power to split the
dataset into discovery and validation sets. Why did the authors use 10-fold cross-validation
instead of splitting the dataset?

https://doi.org/10.7554/eLife.91101.1.sa0
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