
Heterogeneous Communication API

Free and Open Source: Apache 2.0 License

Michael Both: May 23, 2023
https://github.com/michaelboth/Takyon

For eHPC (embedded High Performance Computing)

https://github.com/michaelboth/Takyon

What is Takyon?
It’s a modern message passing communication API focused on eHPC (e.g. edge computing)

• Reliable and unreliable (unicast & multicast) communication

• Most interconnects: e.g. RDMA, sockets

• Any locality: inter-processor, inter-process, inter-thread

• Two-sided (send/recv), and one-sided (read/write)

• Blocking and non-blocking transfers

• Fault tolerant capable (via timeouts, disconnect detection, dynamic path creation)

• Most memory types: e.g. CPU, GPU

Takyon’s Intended Audience

Small heterogeneous systems (eHPC, edge computing, SWaP limited environments, etc)

Large homogeneous systems, with highly collective needs are better suited by MPI or libFabric

Why Introduce Another Communication API?

Takyon is an evolution that solves four major communication issues at once:

• One API for all device/interconnect variations

• Supports all common communication features

• Simple and intuitive: 8 functions and 8 data structures

• Best possible performance: throughput, latency, and determinism

The next four slides provide details on the above

One API for all Device/Interconnect Variations

Before Takyon With Takyon
CPU

PROCESS

THREAD

PROCESS
CPU

PROCESS

RDMA: Network Direct

RDMA: Verbs

Socket

ZeroMQ

MPI

MCAPI

etc.

GPIO

Remote PC or IO
Device

GPU

THREADLocal Socket

Memory Map

RDMA

MPI

ZeroMQ

MCAPI

Semaphore

KNEM

GPIO

etc.
M

em
cp

y

M
ut

ex

C
on

d
Va

r

et
c.

RDMA: GPU Direct CUDA IP
C

cu
da

M
em

cp
y

RD
M

A

Ze
ro

M
Q

So
ck

et

M
C

AP
I

et
c.

CPU
PROCESS

THREAD

PROCESS
CPU

PROCESS

Remote PC or IO
Device

GPU

THREAD

Takyon

Takyon Ta
ky

on

Ta
ky

on

Ta
ky

on
Ta

ky
on

Takyon

No single solution to fit all devices and localities

Supports all Common Communication Features

Feature

Sockets and
similar:
MCAPI,
ZeroMQ

RDMA:
Verbs and

Network Direct

OFA’s
libFabric MPI Takyon

Reliable and Unreliable ✅ ✅ ✅ ✅

Communication to external apps, sensors, and other IO devices ✅ ✅ ? ✅

Fault tolerant hooks (timeouts, disconnect detection, path creation) ✅ ✅ ? ✅

Deterministic: avoids implicit communication and allocations ✅ ✅ ✅ ✅

Includes Inter-thread communication ✅ ✅

Non blocking transfers ✅ ✅ ✅ ✅

One way read/write/atomcis: no involvement from remote endpoint ✅ ✅ ✅ ✅

GPU support ✅ ✅ ✅ ✅

Multiple memory blocks per message ✅ ? ✅ ✅

Memory pre-registered before transfer ✅ ✅ Partial ✅

Zero copy and one-way (i.e. no implicit round trip) ✅ ? ✅

32bit piggy back message with main message ✅ ? ✅

Simple and Intuitive

API Function
Count Typical Drawbacks

Sockets ~20 Lots of options, confusing terms
RDMA (OFA Verbs, Network Direct) ~100 Overwhelming learning curve, experts are rare
OFA’s libFabrics ~100 Overwhelming learning curve, experts are rare

MPI ~300 Large learning curve for various transfer models, limited to reliable
communication, ‘mpirun’ is not portable and can be difficult to tune

Takyon 8 Simple API, intuitive terms and concepts

Takyon eHPC audience is likely focused on something other than communication, such as radar
processing, and won’t have the time for a high learning curve

Best Possible Performance

• Zero-copy, and one-way (no round trips!)

• Achieved by:

• Pre-registering (is time consuming) transport memory when the path is created

• Pre-post receive requests

• Creates a holding place for data to arrive later asynchronously in the background

• This makes sure there is no delay or implicit buffering needed when sending

• Non-Blocking

• Offload transfers to a DMA to allow for efficient concurrent processing and IO

Not all interconnects support the above, but Takyon’s abstraction does not
inhibit or degrade the interconnects that do support the above.

Latency, Throughput, and Determinism

Takyon API: 8 Functions

Function Description
takyonCreate() Create one endpoint of a communication path
takyonDestroy() Destroy the endpoint

takyonSend() Start sending a message

If the communication does not support non-blocking then this will block

takyonIsSent() Check if send is complete, up to a specified timeout period.

takyonPostRecvs() If supported, pre-post a list of recv requests before the sender starts sending

Provides memory buckets for receiving messages asynchronously

takyonIsRecved() Check if a message has arrived, up to a specified timeout period.
takyonOneSided() Start a one sided message transfer (read, write, atomics)
takyonIsOneSidedDone() Check if one-sided transfer is complete, up to a specified timeout period.

Two-sided
functions

One-sided
functions

Not all interconnects support the above; e.g. sockets don’t support one-sided
or posting receives

Takyon Provider: Defines the Interconnect
All providers are defined in a text string passed to takyonCreate()

Locality Examples
Inter-Thread "InterThread -pathID=<non_negative_integer>"

Inter-Process "InterProcess -pathID=<non_negative_integer>”

“SocketTcp -local -pathID=<non_negative_integer>"

Inter-Processor

"SocketTcp -client -remoteIP=<ip_addr> -port=<number>”

"SocketTcp -server -localIP=<ip_addr>|Any -port=<number> [-reuse]”

"SocketUdpSend -multicast -localIP=<ip_addr> -groupIP=<multicast_ip> -port=<number> [-noLoopback] [-TTL=<time_to_live>]"

"SocketUdpRecv -multicast -localIP=<ip_addr> -groupIP=<multicast_ip> -port=<number> [-reuse] [-rcvbuf=<bytes>]”

“RdmaRC -client -remoteIP=<ip_addr> -port=<number> -rdmaDevice=<name> -rdmaPort=<number>”

“RdmaRC -server -localIP=<ip_addr>|Any -port=<number> [-reuse] -rdmaDevice=<name> -rdmaPort=<number>”

“RdmaUC -client -remoteIP=<ip_addr> -port=<number> -rdmaDevice=<name> -rdmaPort=<number>”

“RdmaUC -server -localIP=<ip_addr>|Any -port=<number> [-reuse] -rdmaDevice=<name> -rdmaPort=<number>”

“RdmaUDMulticastSend -localIP=<ip_addr> -groupIP=<multicast_ip>”

“RdmaUDMulticastRecv -localIP=<ip_addr> -groupIP=<multicast_ip>”

No limit to the Takyon Provider possibilities: GPIO, sensors, FPGAs, etc.

Transport Memory

Transport memory may need to be shared between communication paths (Takyon or 3rd party)
and other processing APIs and IO devices

Therefore it is logical to have the application organize all transport memory

• CPU (local or memory map)

• GPU (CUDA)

• Sensor/FPGA/etc. memory

And then provide pointers to the TakyonBuffer structure and other 3rd party APIs

Takyon does NOT allocate transport memory (this is intentional)

Two-Sided versus One-Sided Transfers

• Both endpoints are involved
with a coordinated send() and
recv()

• Unicast and Multicast are two-
sided

Two-Sided

A BSend Recv

A BRecv Send

Some Takyon Providers only allow one or the other

• Only one endpoint is involved with the
transfer

• Can support read, write, and atomics

One-Sided

A BWrite

A BRead

Write
A B

A BRead

A BAtomics A BAtomics

Takyon Supports Reliable and Unreliable Transfers

A B
• Messages may drop, come out of

order, or be duplicated

• Unicast and multicast

• Usually small messages

• E.g. audio, video, lidar, radar

Unreliable

A B

Reliable

• Every byte matters

• Can support very large messages

• E.g. Distributed computation

Two-Sided (Send/Recv) Semantics: Message Size

A B
Receiver provides a byte
bucket to hold <R> bytes

RecvSend

Send <S>
bytes

sizeof(<S>) <= sizeof(<R>)
I.e. sent messages can be smaller than what

takyon’s recv request provided as a byte bucket

Message Posted Message Bucket

Two-Sided (Send/Recv) Semantics: Message Order

Rule 1: The order of arriving messages is based on one of:

• If the Provider is ‘reliable’ then the messages will arrive in the same order as sent

• If the Provider is ‘unreliable’ then the messages may:

• Arrive in a different order than sent

• Be dropped and lost forever

• Be a duplicate of a previously arrived message

Rule 2: The arrived message is put into the recv buffer based on:

• If takyonPostRecvs() IS supported: the order of received messages is defined by the order of

posting recv requests

• If takyonPostRecvs() NOT supported: the order of received messages is defined by the order

of calling takyonIsRecved()

Blocking versus Non-Blocking Transfers
Interconnects that can support non-blocking usually have a DMA engine

takyonSend() - Send message and block until
message is sent. Memory buffer can be
updated when this call is complete.

takyonIsRecved() - Wait for a message to
arrive. Memory buffer won’t be overwritten
until reused by subsequent call this this
function.

takyonOneSided() - Transfer message and
block until complete. Memory buffer can be
updated when this call is complete.

Blocking
CPU does transfer

takyonSend() - start two-sided transfer

takyonIsSent() - block until sent

takyonPostRecvs() - provides a place to recv data ahead of time

takyonIsRecved() - block until message arrives

takyonOneSided() - start one-sided transfer

takyonIsOneSidedDone() - block until transferred

Non-Blocking

Don’t modify message
at this point

Process the message before re-posting to avoid
overwriting data from a newly arriving message

If not called before message arrives, message will be
dropped (unreliable), or cause a failure (reliable)

DMA does transfer in the background

Don’t modify message
at this point

Non-Blocking Notifications and Fences

Send and one-sided completion notifications

• The application can decided if a completion notification should be used or not:

TakyonSendRequest.use_is_sent_notification = false; // Don’t call takyonIsSent()
TakyonOneSidedRequest.use_is_done_notification = false; // Don’t call takyonIsOneSidedDone()

• Since transfers are processed in order, can used a subsequent transfer to see of if previous
un-signaled transfer completed. Improves latency and throughput.

Fences

• Forces preceding non-blocking transfers (send, read, write, atomics), where notification is

turned off, to complete before the new transfer starts

TakyonSendRequest.submit_fence = true;
TakyonOneSidedRequest.submit_fence = true;

• This is typically only needed if a preceding 'read' or 'atomic' operation is invoked (changes
local memory) just before sending the results of the preceding operations

Single Message, Multiple Sub Buffers

Some providers only allow one sub buffer per message

Hypothetical Example:

• It’s common for GPUs to do heavy

processing and CPU does light
book keeping, but both need to
know the attributes of the data

Multiple sub buffers may allow for highly organized and optimized processing

A B
CPU Buffer

HEADER
HEADER (copy)

DATA

CPU Buffer
HEADER

CUDA Buffer
HEADER (copy)

CUDA Buffer

DATA
Send request
has one sub

buffer

Recv request
has three sub

buffers

Single Message

Fault Tolerant Communication

• Detecting degraded communication

• Disconnect detected (e.g. network is down); i.e. Takyon function return false

• Timeout (the transfer is not occurring in a reasonable amount of time)

• Handle a degraded communication path

• Used dynamic path destruction/creation, without effecting other existing paths

• Some other application defined alternative

• Notes about being fault tolerant

• Communication API should provided the hooks for fault tolerance

• Only the app can know what to do when communication degrades

• Communication paths should be independent (Want to avoid “One light goes out they all go out”)

Takyon is not fault tolerant (by design), but does provide fault tolerant hooks

Accelerate Development by Locality Staging

1. Start with one process and multiple threads

• While dataflow is being developed, only need to run a single executable

• Easier to debug crashes or validate memory leaks/overwrites (e.g. valgrind)

2. Move to multiple processes on one CPU

• Simple way to validate the migration of dataflow, without jumping to multi-

processors

3. Move to multiple processors

• Migration should be simple

• Can now test for deployment performance

CPU
PROCESS
THREAD

THREAD

THREAD

CPU
PROCESS
THREAD

PROCESS
THREAD

PROCESS
THREAD

CPU

PROCESS
THREAD

CPU

PROCESS
THREAD

CPU

PROCESS
THREAD

All Takyon examples support this

Looking to the Future

CHALLENGE: Is Takyon missing a key feature?

Posible Enhancements

• Strided Transfers

• Currently avoiding this since common interconnects don’t support this

• Publish/Subscribe

• A potential replacement for the overly complex DDS

• Could have simplified participants, publishers, subscribers, and QoS

• Make messages opaque and private (removes need for DDS’s intermediate language)

• Collectives: barrier, scatter, gather, all-to-all, reduce, etc.

• Already done as a separate API with Takyon 1.x, and may be converted to Takyon 2.x

• Create a complimenting GUI to build and maintain the collective groups visually

From Open Source to Open Standard
Takyon is looking to become an Open Standard

• Open standards make technology pervasive

• Open standards with rigorous conformance testing enable consistency across multiple

implementations that can meet the needs of diverse markets, price points, and use cases

• Open standards often use open source to spread the implementation effort for sample

implementations, tools, samples, conformance tests, validators etc.

Open Standard = Shared Specification

Implementation
Implementation

Implementation
Implementation Open Source = Shared Implementation

Implementation

Implementation Implementation

Implementation

Ultimate Goal: A Khronos Open Standard

Proposal
Heterogeneous

Communication API

Exploratory Group
Determines industry interest and

create detailed Statement of Work

Working Group
Meet to work on detailed design
work. Open to Khronos Members

Khronos Standard

Takyon = A design contribution for a Heterogeneous Communication API

High-level discussions,
requirements, design directions

and design contributions

SOW

 Heterogeneous Communication 
proposal is here, ready to form a

new exploratory group

Khronos uses a methodical “New Initiative” process to evaluate industry interest in new standardization
proposals. This process makes it straightforward for any company that perceives an industry need to propose a

new collaborative activity at Khronos—whether or not they are Khronos members. 
Learn more at: https://www.khronos.org/exploratory/

Proven processes for creating royalty-free interoperability standards

https://www.khronos.org/exploratory/

Call to Action
Get involved to help shape Heterogeneous Communication Standards

• Call for participation in a Khronos Exploratory Group
• Open to all at no cost

• Goal of the group is to explore industry interest in the creation of open royalty-free API

standard for Heterogeneous Communication

• All participants will be able to discuss use cases and requirements for new interoperability

standards to accelerate market growth and reduce development costs for Heterogeneous
Communication

• Design contributions will be considered and Takyon is currently the only design contribution,
but others are welcome

• If the Exploratory Group reaches significant consensus and industry support then Khronos will
work to initiate a Working Group to start the detailed work of defining an industry standard

Khronos Exploratory Group Enquiries: marketing@khronosgroup.org
Takyon Questions: michael23.both@gmail.com

mailto:marketing@khronosgroup.org
mailto:michael23.both@gmail.com

