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Abstract: This survey of model-based fault diagnosis focuses on those methods that are appli-
cable to aerospace systems. To highlight the characteristics of aerospace models, generic non-
linear dynamical modelling from flight mechanics is recalled and a unifying representation of
sensor and actuator faults is presented. An extensive bibliographical review supports a descrip-
tion of the key points of fault detection methods that rely on analytical redundancy. The
approaches that best suit the constraints of the field are emphasized and recommendations for
future developments in in-flight fault diagnosis are provided.

Keywords: aerospace systems, aircraft, analytical redundancy, fault diagnosis, fault detection
and isolation, flight control systems, health monitoring, non-linear systems

1 INTRODUCTION

According to a reliability study conducted by the US

Office of the Secretary of Defense [1], about 80 per

cent of flight incidents concerning unmanned aerial

vehicles (UAV) are due to faults affecting propulsion,

flight control surfaces, or sensors. To allow autono-

mous aerial vehicles to continue their missions, there

is an absolute necessity to identify unexpected

changes (faults) in the system before they lead to a

complete breakdown (failure).

Classically, hardware redundancy – multiple sen-

sors or actuators with the same function – and

simple thresholding were used to address fault detec-

tion [2]. Even if these techniques remain widespread

in the aerospace industry [3, 4], the additional costs

and weights they imply are an impediment to auton-

omy, especially for small and military autonomous

vehicles. There is, therefore, the need to call upon

analytical redundancy, i.e. to exploit mathematical

relations between measured or estimated variables

in order to detect possible dysfunctions. The resulting

set of methods is commonly called model-based,

where model should be understood as a knowledge-

based dynamical model, usually a set of differential

equations in state-space form. Many methods have

been proposed to address model-based fault diagno-

sis, an overview of which can be obtained from refer-

ence textbooks [5–12] and survey papers [13–26].

Emphasis will be put in this article on those model-

based quantitative methods that have been used for

aerospace applications. Relatively, few books and

survey papers have been published on this aspect of

fault diagnosis [27–34]. The survey proposed here is

supported by a large collection of references dealing

with fault detection for flight systems. Papers are

sorted according to the type of vehicle considered

and a classification is proposed relating the fault diag-

nosis methods employed to each category of aero-

space model. This should offer a better viewpoint

on current research in the domain.

This article is organized as follows. Fault diagnosis

terminology and concepts are briefly recalled in sec-

tion 2, along with the typical architecture of model-

based theory. The main characteristics of flight con-

trol systems are highlighted in section 3. In particular,

typical sensors and actuators are identified, and

models of faults that can affect them are given. The
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common mathematical modelling of flight dynamics

is also recalled, as it is the basis of dynamical models

for fault diagnosis. Section 4 associates fault detec-

tion methods with their aerospace applications.

The main principles of residual generation methods

are recalled and references are provided for further

investigation. Section 5 addresses details about

residual evaluation strategies, i.e. thresholding and

statistical tests. A concluding discussion on this

comprehensive survey is given in section 6 to

describe the state of the art in actual academic and

industrial applications, to highlight the most promis-

ing approaches and to supply recommendations for

future developments.

Specialists in aerospace engineering will access a

self-contained overview of applicable fault detection

and isolation (FDI) methods through sections 2, 4,

and 5, while specialists in FDI looking for applications

and benchmarks will find a generic modelling of aero-

space systems and faults affecting their devices in sec-

tion 3. Finally, this presentation may facilitate

interaction between users of different FDI approaches

on various flight systems, with special help from Table

4 and section 6.

2 BASICS OF FDI

2.1 Terminology

Initially proposed by the IFAC SAFEPROCESS

Technical Committee [35] and reproduced in

Appendix B of reference [7], the following terminology

is now standard in the fault diagnosis community.

A fault is an unpermitted deviation of at least one

characteristic property or parameter of the system

from acceptable/usual/standard conditions. A fault

may lead to a failure, which is a permanent interrup-

tion of the system ability to perform a required func-

tion under specified operating conditions.

Fault detection is the determination of the pres-

ence of faults in a system and of their times of

occurrence.It is generally followed by fault isolation

to determine the type and location of the faults. Fault

identification (or estimation) aims then at determin-

ing the size and time-varying behaviour of the faults.

The complete process is usually called either FDI

or fault detection and diagnosis (FDD), the latter

including identification. These tasks generally involve

the generation of residuals, which are fault indica-

tors based on deviation between measurements

and model-based computations. Residuals should

remain small as long as there is no fault, and

become sufficiently large to be noticeable whenever

faults occur.

Once a fault has been detected, a natural idea is to

try to compensate for it by modifying the control law

of the flight vehicle considered. This is what fault

tolerant control (FTC), or reconfiguration, is con-

cerned with. The interested reader can refer to [25]

for a survey of active FTC, which means that the

design of the reconfiguration is based on FDI infor-

mation while passive reconfiguration uses only robust

control. FTC is a field in its own right, which will be

left aside in this survey to focus exclusively on FDI.

2.2 Types of faults

Three types of faults are generally distinguished,

according to the part of the system they affect.

1. A sensor fault is an abnormal variation in measure-

ments, e.g. a systematic error abruptly affecting the

value provided by an accelerometer.

2. An actuator fault is a malfunction on a device

acting on the system dynamics, e.g. the locking-

in-place of a flight control surface.

3. Process faults are changes in the inner parameters

of the system that modify its dynamics, such as an

unmodelled change in aerodynamic coefficients.

The general time-behaviour of a fault is inherently

unpredictable and changes may be abrupt (involving

discontinuities), incipient (gradual), or intermittent –

the latter two being the most challenging to detect.

Further details on fault modelling and more examples

for aerospace applications are given in section 3.2.

2.3 Architecture of model-based methods

Fault diagnosis is typically achieved by combining a

residual generator and a residual evaluation strategy

to provide Boolean decisions on whether faults have

occurred. This sequence is illustrated in Fig. 1.

Residual generation uses a model of the system in

which the control inputs sent to the actuators and the

system outputs as measured by the sensors are

injected to predict the behaviour of the system (or

part of it) and compare this prediction to the actual

behaviour. The aim of this procedure is to compute

quantitative indices of the presence of faults, the resid-

uals. Much effort has been devoted to the design of

methods for residual generation (sections 4.2 to 4.6),

since this task is at the heart of model-based FDI.

The residuals should be close to zero in fault-free

condition and deviate from zero after the occurrence

of faults to which they are sensitive. There is the need

for a residual evaluation strategy that automatically

translates the time-behaviour of a residual into a

Boolean decision function, indicating whether each

signal is to be considered as small or not (section 5).

2 J Marzat, H Piet-Lahanier, F Damongeot, and E Walter
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This generally involves the choice of thresholds or

tests of statistical hypotheses.

Any given residual may be sensitive to one fault

only, to all the faults, or to an intermediate number

of faults. This is why a decision logic following residual

evaluation may be needed to transform the collection

of decision functions into actual fault isolation.

2.4 FDI performance and robustness issues

An adequate tuning of an FDI procedure should lead

to a satisfactory trade-off between the contradictory

objectives of minimizing the rates of non-detection

(missing a fault) and false-alarm (raising an alarm

in fault-free condition). To evaluate any given

Boolean decision function, quantitative indices mea-

suring FDI performance can be defined [36]. Figure 2

shows time zones in the evolution of a Boolean deci-

sion function that are the basis of the definition of

these indices. The value of the function before ton

and after thor is not to be taken into account, while

tfrom is the instant at which the fault occurs (known in

simulation but not in actual operation).

Assuming that the fault is persistent, one can define

the following indices to evaluate fault-detection

performance.

1. The detection delay tdt is the time elapsed between

the fault-occurrence time tfrom and the last instant

of time at which the decision signal switched from

false to true.

2. The false-detection rate rfd ¼
P

i t i
fd

� �
= tfrom � tonð Þ,

where t i
fd is the ith period of time between ton and

tfrom where the decision is true.

3. The non-detection rate rnd¼ 1� rtd, where

rtd ¼
P

i t i
td

� �
= thor � tfromð Þ is the true-detection

rate with t i
td the ith period of time between tfrom

and thor where the decision is true.

Similar indices can be defined to quantify perfor-

mance of fault isolation, by considering each decision

function or group of decision functions associated to

Fig. 1 Typical FDI scheme

Fig. 2 Time zone parameters for the definition of per-
formance indices

Model-based fault diagnosis for aerospace systems 3
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the detection of a particular fault [36]. Relative com-

putational cost and easiness of tuning should also be

taken into account in the global assessment of a FDI

approach.

Various sources of uncertainty may be present and

disturb diagnosis accuracy, since the model of the

system is not a perfect reflection of reality. The exis-

tence of measurement noise, model uncertainty, and

unmodelled exogenous disturbances should be taken

into account during design. Robustness can indeed

be supplied at different levels. On the one hand, an

effort could be undertaken to generate residuals that

are decoupled, as far as possible, from measurement

noise and unknown inputs (disturbances and other

faults) and robust to model uncertainty. On the

other hand, residual evaluation can embed statistical

information to reduce the influence of noise on deci-

sion, while adaptive thresholds may try to compen-

sate for unknown inputs [37].

3 AEROSPACE MODELS FOR FDI

FDI methods have been investigated for various types

of aeronautical and space vehicles. A classification of

papers according to the type of vehicle considered is

proposed in Table 1. Even if the characteristics and

missions of aircraft mentioned are quite diverse,

equipments and behaviours are similar. The aim of

this section is thus to review the classical modelling of

flight vehicles and their sensors and actuators for

fault diagnosis. The sensors considered here are navi-

gation sensors, which provide information on the

state of the flying vehicle.

3.1 Flight mechanics and mathematical

modelling

The rigid motion of a flight vehicle is mainly param-

etrized in two frames, namely the navigation and

body frames. The navigation frame is attached to a

fixed location at Earth’s local tangent plane and ori-

ented, e.g. north–east–down. It is then assumed to be

a local inertial frame where Newton’s laws of motion

apply. The body frame has its origin at the centre of

mass of the aircraft and its axes are, respectively ori-

ented forward along the longitudinal axis, to the right

along the lateral axis and downward [157–160].

3.1.1 Kinematics

Denote the position of a vehicle in the inertial frame

by xm¼ [x, y, z]T and its position in the body frame by

xbm¼ [xb, yb, zb]T. Velocities are then given by

vm ¼ ½ _x, _y, _z�T in the inertial frame and vbm¼ [vbx,

vby, vbz]T in the body frame. The change of coordi-

nates from inertial to body frames is governed by

three Euler angles [u, �,  ]T, for roll, pitch and yaw

respectively (Fig. 3). The kinematic transformation

from vbm to vm thus involves the rotation matrix

The roll, pitch, and yaw rates constitute the angular

velocity vector u¼ [p, q, r]T. Their projection in the

body frame allows them to be expressed from the

time derivatives of the Euler angles as

p
q
r

24 35 ¼ 1 0 � sin �
0 cos’ cos � sin ’
0 � sin ’ cos � cos ’

24 35 _’
_�
_ 

24 35 ð2Þ

_x
_y
_z

24 35 ¼ cos cos � � sin cos ’þ cos sin � sin ’ sin sin ’þ cos sin � cos ’
sin cos � cos cos ’þ sin sin � sin ’ � cos sin ’þ sin sin � cos’
� sin � cos � sin ’ cos � cos ’

24 35 � vbx

vby

vbz

24 35 ð1Þ

Table 1 Classification of FDI papers based on the type of aircraft considered, with corresponding

typica sensors and actuators (acronyms are explained in main text)

Aircraft model References Sensors Actuators

Small aircraft [1, 38–61] IMU/INS, ADS Ailerons, rudders, elevators, and propellers
Rotorcraft Quadrotor: [62–67]

Helicopter: [68–72]
IMU/INS, global positioning

system (GPS), barometer,
and radar

Rotors

General civil aircraft [2, 3, 32, 73–107] IMU/INS, GPS, pitot probes,
and ADS

Highly redundant ailerons, rudders, elevators,
and jet engines

Fighter aircraft F-16: [108–119]
Others: [120–129]

IMU/INS, ADS, GPS,
barometer, and radar

Ailerons, rudders, elevators, canards, and jet engines

Missile [130–136] IMU/INS, GPS, and radar Rudders, elevators, and jet engines
Rocket/reentry vehicle [137–143] IMU/INS, and ADS Ailerons, rudders, elevators, and jet engines
Spacecraft [4, 31, 144–156] IMU/INS, and star tracking Thrusters and reaction wheels

4 J Marzat, H Piet-Lahanier, F Damongeot, and E Walter
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which can be inverted as

_’
_�
_ 

24 35 ¼ 1 sin ’ tan � cos ’ tan �
0 cos ’ � sin ’
0 sin ’= cos � cos ’= cos �

24 35 p
q
r

24 35 ð3Þ

The kinematics equations (1) and (3) are part of

the dynamical model of any vehicle from Table 1.

Note that a quaternion may also be used instead of

the three Euler angles to manage the coordinate

transformation; in this case the rotation matrix in

(1) would be expressed with the four components

of the quaternion and (3) would become a relation

between the quaternion time-derivative and angular

velocity [158, 159]. The overall structure of the

model would remain the same, with one additional

state variable.

3.1.2 Dynamics

Force and momentum equations are needed to com-

plete the dynamical model of aeronautical systems,

since the relations established so far do not involve

control inputs. In the body frame, the force equation

takes the form

_vbx

_vby

_vbz

24 35 ¼ 1

m
faero þ fg þ fprop

� �
�

p
q
r

24 35� vbx

vby

vbz

24 35
ð4Þ

where fg is the gravitational force, fprop the propulsion

force (depending on the type of propulsion device),

and faero the aerodynamic force. The expression of fg

is always

fg ¼ mg
� sin �

cos � sin ’
cos � cos ’

24 35 ð5Þ

where the mass m and gravity g are not necessarily

constant. The structure of faero may vary according to

the type and configuration of the actuators. It can be

written for most of aeronautical applications as

faero ¼ Qsref

cxð�,�, V , uÞ
cyð�,�, V , uÞ
czð�,�, V , uÞ

24 35 ð6Þ

where the aerodynamic coefficients c(�) are non-linear

functions and u the vector of control inputs translat-

ing the actuator positions. The velocity norm V and

dynamic pressure Q are given by

V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

bx þ v2
by þ v2

bz

q
ð7Þ

Q ¼
1

2
�V 2 ð8Þ

and typical expressions for the angle of attack � and

the sideslip angle � are

� ¼ arctan
vbz

vbx

� �
ð9Þ

� ¼ arctan
vby

vbx

� �
ð10Þ

Especially in civil aviation, the time derivatives of (7),

(9), and (10) are sometimes used instead of (4) to

characterize the translational dynamics of aircraft.

The momentum equation is

_p
_q
_r

24 35¼ I�1
LnaeroþLaero

MnaeroþMaero

NnaeroþNaero

24 35� p
q
r

24 35� I �
p
q
r

24 350@ 1A0@ 1A
ð11Þ

where the inertia matrix I may have some terms equal

to zero, depending on the geometry of the aircraft.

The models of aerodynamic moments Laero, Maero,

Naero have an expression similar to the components

of faero

Laero

Maero

Naero

24 35 ¼ Qsref lref

clð�,�, V ,!, uÞ
cmð�,�, V ,!, uÞ
cnð�,�, V ,!, uÞ

24 35 ð12Þ

where the aerodynamic coefficients c(�) are non-linear

functions. The moments Lnaero, Mnaero, and Nnaero are

very much case-dependent, and may contain propul-

sion moments.

3.1.3 State-space model

A dynamical state-space model can be obtained by

considering a state vector consisting of the position

Fig. 3 Euler angles transforming inertial frame into
body frame

Model-based fault diagnosis for aerospace systems 5
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in inertial frame xm, the velocity in body frame vbm,

the angular velocityu, and the Euler angles u, �, and 

x ¼ ½x, y, z, vbx, vby, vbz, p, q, r , ’, �, �T ð13Þ

The dynamics of these 12 state variables are then

given by the kinematic relations (1) and (3), force

equation (4), and momentum equation (11). These

relations are strongly non-linear, due to the change

of coordinates from inertial to body frames and to

aerodynamics. The non-linear state-space model

has thus the general structure

_x ¼ fðx, uÞ
y ¼ hðxÞ

�
ð14Þ

where the measurement vector y is provided by the

available sensors and u the control input vector.

Under classical assumptions on control inputs, e.g.

small deflection angles of flight control surfaces and

linear model of propulsion, this non-linear model can

be reduced to a control-affine one

_x ¼ fðxÞ þ GðxÞu
y ¼ hðxÞ

�
ð15Þ

This type of model retains the non-linear global

behaviour of the system while benefiting from inter-

esting results in non-linear control theory [161]. If

necessary, a further step towards simplification may

be done by linearizing (15) around an operating point

or a reference trajectory. The corresponding linear

model has the form

_x ¼ Ax þ Bu
y ¼ Cx

�
ð16Þ

with A, B, C possibly time-varying.

3.1.4 Additional features

The structure of the measurement vector y depends

on the types of sensors embedded on the aircraft.

However, the measurement equation for navigation

purpose is often linear, which simplifies (14) and (15).

Combining sensors from Table 1 may even allow the

entire state vector to be observed, which makes more

analytical redundancy available. These sensors are

obviously subject to noise and inaccuracies that

should be dealt with.

Another important characteristic of these state-

space models is that their parameters are strongly

uncertain, if only because the aerodynamic coeffi-

cients are not well known (they are usually obtained

through wind tunnel data). Unmodelled disturbances

(such as wind turbulence) may also affect dynamics.

Hence, and since fault diagnosis aims at comparing

the fault-free behaviour specified by the model with

the observed one, it is important to avoid lineariza-

tion whenever possible. Consider, for instance, the

decoupled longitudinal and lateral linear models

that are sometimes considered for flight control sys-

tems. When an actuator fault occurs, strong couplings

appear between the axes, which makes this modelling

inadequate for robust fault diagnosis.

Although most aerospace systems are closed-loop

controlled (Fig. 4), this closed-loop structure is

seldom taken into account and the large majority of

FDI methods uses only open-loop models. A few

strategies have nevertheless been proposed to make

explicit use of relevant information concerning faults

that is propagated in closed-loop control signals (sec-

tion 4.6), showing promising results.

3.2 Faults on sensors and actuators

Faults may be caused by component aging, battle

damage, electromagnetic disturbances or natural

phenomena such as severe wind gusts or icing

(see references [1, 25, 32, 120, 162–164] for a history

of actual fault cases). Focusing on consequences of

such incidents, this section provides a description of

typical sensors and actuators in aerospace applica-

tions and, most important for simulation, a realistic

modelling of typical fault modes that may affect these

devices. The chain of actuation and sensing is illus-

trated for a single-input and single-output system in

Fig. 5.

Basically, an actuator fault is modelled as a discrep-

ancy between the computed control input uc and the

one actually achieved by the actuator ua. Similarly, a

sensor fault is modelled as a discrepancy between the

actual output of the system ya and the sensor output

ys. In practical operation, the only information avail-

able for fault diagnosis is the knowledge of uc, ys and a

model of the system.

Fig. 4 Closed-loop guidance and control for aircraft

6 J Marzat, H Piet-Lahanier, F Damongeot, and E Walter
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3.2.1 Sensors

The main sensors embedded in aerospace vehicles

are inertial measurement units (IMU) comprising

accelerometers and gyros that measure non-gravita-

tional acceleration and angular velocity, coupled with

inertial navigation systems (INS) that use these mea-

surements to estimate the position and orientation of

the vehicle. Measurements from IMU/INS are fre-

quently combined with those of GPS sensors measur-

ing position in inertial frame, to cope with the drift of

IMU outputs [165]. Micromechanical technology has

allowed huge progress in miniaturization and cost

reduction for these devices [166]. Fault detection

schemes devoted to IMU/INS/GPS systems can be

found in references [42, 45, 50, 52, 64, 67], mostly

based on parity space or observers exploiting analyt-

ical redundancy from (1) and (3).

Air data sensing (ADS) systems are used in addition

to the previous set of sensors to measure airspeed,

dynamic pressure, Mach number, or angles of

attack and sideslip [167]. They may include Pitot

probes for determining airspeed and surface pressure

sensors or mechanical devices for the other air data

parameters [140]. Complementary altitude measure-

ment may be provided by barometers or embedded

radars.

Very few studies are concerned with a global char-

acterization of sensors in aerospace applications, and

even fewer focus on the modelling of sensor faults. In

[168], the main technologies used to build sensors for

aerospace applications are reviewed, along with their

fault modes. Four generic types of faults, common to

most sensors, are described: bias (offset), drift (linear

or not), scaling (gain, linear, or not), hard fault (loss or

locking of signal). They are modelled as follows,

where the value of fault parameters �s, es, and yf are

indicated in Table 2.

ys ¼ �sð1þ "sÞ � ya þ yf ð17Þ

Severe faults, e.g. loss of measurements, are easy to

detect since sensor manufacturers generally provide

a built-in test. This is why small anomalies (bias,

small drift, etc.) should be the focal point of model-

based sensor fault detection.

3.2.2 Actuators

Two main groups of actuators are used for the control

of an aerial vehicle, namely flight control surfaces and

propulsion devices. Flight control surfaces may be –

according to their location and geometry – elevators,

rudders, canards, ailerons, flaps, and spoilers, which

are set in motion through hydromechanical or elec-

tromechanical circuits. Propulsion devices may be

propellers, rotors, jet engines, or thrusters. Note that

a jet engine can be seen as a system in itself and ded-

icated strategies are sometimes employed to diag-

nose faults in engine components [61, 98]. Within

the scope of this study, each actuator of an aeronau-

tical system, including jet engines, is considered as a

single device, which is monitored through the correct

or improper achievement of its desired control input.

Four actuator fault modes are distinguished: loss of

effectiveness, locking-in-place (jamming, freezing),

hard-over, and oscillatory failure [85, 90, 104, 117,

125]. They are modelled as follows

ua ¼ �f � kf � uc þ ð1� �fÞ � uf ð18Þ

where the value of the fault parameters�f, kf, and uf after

the time of occurrence tfault are indicated in Table 3.

Parameter faults due to, e.g. icing or wing damage

are modelled as changes in the corresponding model

parameters (mass, inertia, and aerodynamic coeffi-

cients) [40].

4 METHODS FOR FDI

Table 4 proposes a classification of FDI approaches

according to their aerospace applications, from a col-

lection of more than 100 papers. The rest of this

Fig. 5 Chain of actuation and sensing

Table 2 Model parameters for sensor faults

Bias Drift Scaling Hard fault No fault

es 0 0 6¼ 0 0 0
ss 1 1 1 0 1
yf 6¼ 0

(constant)
6¼ 0
(time-varying)

0 constant 0
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section is devoted to the description of the operating

principles of the main FDI approaches. For the sake

of simplicity, the presentation is based on linear

models, but pointers to non-linear extensions of the

methods considered are provided. In section 4.1,

«model-free» methods are described, but throughout

sections 4.2 to 4.6, a dynamical model in state-space

form as described in section 3 is assumed to be

available.

4.1 Model-free methods

When no explicit dynamical model is available,

system knowledge boils down to real-time measure-

ments, possibly completed by process history. With

such data, two main strategies may be adopted

(Fig. 6). The first strategy is classification, which

involves building classes from the database either in

a supervised way (i.e. with the help of an expert) or in

a semisupervised manner (i.e. putting in the same

class elements of the database that are deemed

close to one another, and relying on an expert only

to label the classes). A classifier is then trained with

respect to these classes to assign the newly measured

variables to classes representative of healthy or faulty

behaviours. The second strategy is regression, which

builds a statistical model that uses redundancy in the

process history to predict the values of variables and

generate residuals by comparing predictions to mea-

sured values.

4.1.1 Qualitative approaches

When no process history is available, the only exploit-

able information concerning the system monitored is

the empirical knowledge of experts, which may be

used to build expert systems. They consist of sets of

rules that aim to mimic human reasoning, by associ-

ating premises and conclusions to determine logical

chains of events. A fault is then reported if a forbidden

sequence of events is detected. The major drawbacks

of this approach are its lack of generality and its

inability to handle situations that have not been

explicitly taken into account in the design of the

knowledge base [171]. Qualitative trend analysis

aims at decomposing a measured signal into a

sequence of known primitives (e.g. ‘stable’, ‘increas-

ing’, and ‘decreasing’). This recognition can be

achieved either by analysing the sign of successive

derivatives of signals and using them in a rule base,

or by matching patterns with a database containing

samples of known primitives [172]. Both techniques

imply the cautious design of heuristic rules. Faults are

identified in the same manner as with expert systems.

If a model of the process is available but the

confidence in its parameters and quantitative outputs

Table 4 Types of aerospace models and FDI approaches (acronyms are explained in main text)

Vehicle / FDI approach Small aircraft Rotorcraft General civil aircraft Fighter aircraft Missile
Rocket/
reentry vehicle Spacecraft

Expert systems [74, 169]
Neural networks [60] [62, 69] [75, 82, 87] [112] [131] [137] [152]
SVM [92, 91]
Principal component

analysis (PCA)
[95, 98] [115, 126] [141] [145]

Parameter estimation [40] [80, 81, 94, 99, 102] [109] [149]
Observers [39, 43, 47, 53, 54] [63, 70, 72] [73, 79, 100, 104, 107] [125, 127] [130, 132] [156]
Kalman filters [58, 61] [68] [91, 93, 105, 106] [108, 110, 111,

113, 118, 123]
[142] [144, 148, 151]

Unscented Kalman filter
(UKF)/particle filters

[45] [103] [146, 147]

Set-membership
estimation

[67, 71] [89, 101] [124]

Parity space [42, 45, 49, 50, 52] [77, 97] [115, 119, 128] [140]
UIO [38, 44, 48, 57] [66] [77] [117] [153]
H1 filters [40, 46, 48, 51] [76, 83, 84, 96] [116, 129] [138, 143] [150]
Non-linear geometry [41, 55, 56, 59] [90] [133] [155]
System inversion [65] [114, 121, 122] [135, 136]
Active FDI/
control-based

[57, 58] [80, 81] [134, 170]

Table 3 Model parameters for actuator faults

Loss of effectiveness Locking-in-place Hard-over Oscillatory No fault

sf 1 0 0 0 1
kf 0< kf< 1 Ø Ø Ø 1
uf 0 uc(tfault) (constant) Constant (saturation) Periodic 0

8 J Marzat, H Piet-Lahanier, F Damongeot, and E Walter

Proc. IMechE Vol. 000 Part G: J. Aerospace Engineering

 by Julien Marzat on January 8, 2012pig.sagepub.comDownloaded from 

http://pig.sagepub.com/


XML Template (2012) [4.1.2012–3:31pm] [1–32]
K:/PIG/PIG 421717.3d (PIG) [PREPRINTER stage]

is very low, qualitative equations may be used to

express the type of variation of the process variables.

This qualitative physics has the same goal as the

above-mentioned methods, i.e. to predict the evolu-

tion of the process in order to detect abnormal behav-

iours [173]. Causal links could also be modelled

under the form of a signed digraph (SDG) [174].

Qualitative modelling has very limited predictive abil-

ity, except in very simple situations, unfortunately.

4.1.2 Pattern recognition for fault diagnosis

When some process history is available, diagnosis can

be viewed as a pattern recognition task where newly

acquired measurements are to be classified in prede-

termined modes. Prior knowledge takes the form of a

database comprising observations of the monitored

variables, which may be, e.g. state variables (13) or air

data parameters. First, two off-line operations have to

be carried out: the data are clustered into classes and

a decision rule is trained. Classes are thus defined and

each vector of the database is assigned to one of them.

For diagnosis, the modes to be considered are the

healthy one and all of the possible faulty ones.

Labelling may be performed by an expert, if available,

or with an algorithm like k-means clustering [175]. If

the database contains only non-faulty measure-

ments, another solution is to perform one-class clas-

sification [176–178], although this will not make fault

isolation practicable. Once the training data have

been labelled, a decision rule must be chosen and

trained to classify new vectors in the proper classes.

Parametric and non-parametric approaches are

available for this purpose.

Parametric discrimination aims at computing

direct boundaries between classes, using basis

functions. The simplest case is linear binary classifi-

cation, on which most methods are built [179]. Given

two classes, its aim is to find a hyperplane that splits

the data into two parts with respect to the predefined

labels. This separator is designed optimally according

to some predefined cost function; a norm should be

chosen to evaluate distance to the separator, along

with a regularization term to avoid overfitting of the

boundary. For non-linear problems where no linear

separator exists, more complex functions (quadratic,

cubic, etc.) could be used but involve the tuning of

a dangerously increasing number of parameters.

A very popular solution to design separators for clas-

sification has been to resort to neural networks

[112, 180]. Actually, the design difficulty moves

from choosing the parameters of the analytical sepa-

rator to the selection of an activation function and the

choice of the structure of the network, i.e. the number

of layers and the number of neurons composing each

of them. Minimizing the quadratic distance between

the output of the network and the label of the appro-

priate class requires the tuning of the weights of

the neurons, usually with the back-propagation algo-

rithm, a local gradient algorithm that may get trapped

in suboptimal local solutions. These tools have been

widely used in FDI [181–184].

Two key notions are used in modern pattern recog-

nition to build non-linear parametric separators,

namely those of kernel and of sparsity. The kernel

trick makes it possible to generalize linear methods

by mapping the data into some high-dimensional

feature space. The output of a kernel machine can

be expressed as

ykð�Þ ¼
X

i

�i � kð�, �iÞ ð19Þ

Fig. 6 Principle of model-free approaches
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where f is the new input point to classify, fis the train-

ing points, k(., .) the kernel, and �is the weights to be

tuned. This formulation involves an easily comput-

able kernel function, which is used to weigh the

contribution of the training points based on the dis-

tance between the training and new inputs. Sparsity is

also needed, as it would be computationally expen-

sive to have significant weights on all the samples

while all are not relevant. This is accomplished

through an appropriate design of the cost function

to be minimized to find the weights �i of the kernel

machine [185, 186]. Vapnik’s support vector machines

(SVM) have popularized these concepts [187]. The

goal of an SVM is to find a linear separator of the

data in the higher dimensional feature space. This

separator is designed in order to achieve structural

risk minimization (SRM). It aims at avoiding over-

fitting, which is the main danger with parametric

discrimination approaches such as neural networks.

Another advantage of the SVM approach is that

weight optimization is a convex problem, thus avoid-

ing the occurrence of local minimizers that plague

neural-network tuning. The final function is expres-

sed as a projection onto support vectors. Another

interesting approach uses Gaussian processes (GP),

which generalize multivariate Gaussian distributions

to infinite-dimensional spaces. GP regression has

been called Kriging by the geostatistical community

[188]. An appropriate choice of the GP covariance,

which plays the role of the kernel, makes it possible

to reduce computational complexity for large-

scale problems. Applications of kernel machines to

FDI have been reported [176, 177, 189–191] but

very few in aerospace [91, 92], though it seems a

promising way to perform or enhance fault detection.

Moreover, the criteria used could be modified to per-

form regression. It would then become possible to

use the same formalism to create a black-box model

that can generate residuals by comparing its outputs

and the measurements on the system to detect the

faults. Finally, it should be pointed out that the

choice of the kernel and cost function is crucial and

far from trivial, and that adequacy to the data must be

carefully checked [188].

If the design of a separator remains intractable, a

distance combined with a voting scheme can achieve

non-parametric classification. Given the labelled

data, a new point is classified in conformity with

its neighbourhood. The best-known method is the

k-nearest neighbour algorithm, which gives its value

to the new point according to the majority of the

labels of the k-nearest points. Of course, a distance

should be chosen to determine which points are the

‘nearest’. A histogram or a grid could also replace the

distance to analyse the neighbourhood influence on

the point considered [192, 193].

4.1.3 Principal component analysis

PCA achieves dimension reduction by projecting the

training data onto the l eigenvectors of the covariance

matrix associated to the eigenvalues that are larger

than some threshold. Consider that nm measure-

ments of nv variables have been acquired in fault-

free condition, forming the data matrix X 2 R
nm�n
v ,

assumed to be normalized to zero mean and unit

variance [194]. Its covariance matrix is estimated by

S ¼
1

nm � 1
XTX ð20Þ

which can be factorized into

S ¼ T eT� 	 � 0
0 e�


 �
T eT� 	T

ð21Þ

where T is an nm� l matrix and , an l� l diagonal

matrix of eigenvalues, with l the chosen number of

principal components. The projection of a newly

measured vector f into the principal subspace is

given byb� ¼ TTT� ð22Þ

and into the residual subspace by

e� ¼eTeTT� ð23Þ

A norm ofe� can thus be used as a residual indicative

of the presence of faults, as it should remain small in

fault-free condition. Moreover, the magnitude of a

fault on a single variable may be estimated by com-

puting the difference between the measurement of

this variable and its reconstruction using the projec-

tion matrix and the measurements of all the other

variables [195]. Robustification to outliers via a

modified computation of the covariance matrix has

been proposed in reference [196].

This framework assumes linear relations between

measured variables, which is not always valid. It can

be extended to the non-linear case through the kernel

trick [197], or other types of decompositions such as

Independent Component Analysis [198]. A recursive

form also exists to deal with dynamical systems [199].

A Partial-Least-Squares (PLS) approach [200] can be

viewed as closely related.

4.2 Parameter estimation

The mappings f(�) and h(�) of the non-linear state-

space model (14) depend on a set of physical param-

eters p	, comprising mass, inertia, geometrical char-

acteristics and functions converting actuator actions
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into force and momentum (e.g. aerodynamic coeffi-

cients). These parameters are not generally measured

and may depend on time. Moreover, state equations

may not be straightforward functions of p	, but may

depend instead of a vector of behavioural parameters

h, which may have no physical meaning.

Identification techniques should be considered to

detect process faults that may affect the values of

these parameters, provided that they are identifiable

[201]. One of many possible courses of action is to

distinguish the following five steps [15, 17, 202–205].

1. From model (14), establish input–output relations

yp ¼ hp up, h
� �

ð24Þ

where yp may include successive time derivatives

of the measured output y, and up successive values

of the control inputs on a time horizon.

2. Determine the relationship between the model

parameters h and the physical constants p	

h ¼ gp p	

� 
ð25Þ

3. Compute an estimatebh of model parameters from

equation (4.6), with on-line measurements.

4. Compute an estimate of the physical parameters,bp	 ¼ g�1
p

bh� 
.

5. Generate residuals by comparing bp	 to known

nominal or acceptable values of these parameters.

If nominal values are unknown or uncertain, resid-

uals may still be generated by computing the dif-

ference between the current estimate bp	ðt Þ and a

past value bp	ðt � thÞ, where th is a predetermined

time horizon.

Parameter estimation methods to address Step 3 can

be found in references [9, 206]. A possible way to

simplify (24) is to linearize the non-linear dynamics

(14) and then to aggregate successive time derivatives

to obtain a model that is linear in the parameter

vector h

yp ¼ Hp up

� �
� h ð26Þ

Estimation ofbh can then be achieved on-line through,

e.g. recursive least squares [7]. Note that an important

problem that may arise is the on-line determination

of successive time derivatives of noisy measured out-

puts y. In the general non-linear case, non-linear

optimization methods should be called upon, even

if the techniques involved may be computationally

much more expensive and not guaranteed to con-

verge to an optimal solution [10]. Guaranteed global

optimization methods such as made possible by

interval analysis may be considered, but their use is

only possible on limited types of problems [207].

Surrogate-based optimization may be an interesting

alternative to reduce computational cost [208, 209].

Other types of approaches, such as subspace identi-

fication [210, 211], are also to be considered.

At Step 5, a set of admissible values could be con-

sidered instead of a single nominal value [212, 213].

In this context, a set of possible estimates of the

parameters may be determined (approximated by,

e.g. vector intervals, ellipsoids, or zonotopes), and

diagnosis can then be achieved by checking whether

the intersection between this estimated set and the

set of admissible values is void, which suggests the

presence of a fault [214–216].

4.3 State estimation

Estimating the state of the system makes it possible

to create residuals by comparing the reconstructed

signals with their measured or expected values

[217, 218]. State estimators may be classified accord-

ing to how uncertainty is taken into account.

4.3.1 Deterministic approach

Luenberger observers [219] allow the reconstruction

of the state variables under deterministic hypotheses.

Observer-based FDI methods are now classical and

have been widely used for a large panel of applica-

tions [220–222]. Consider the nominal deterministic

linear state-space model (16) first

_x ¼ Ax þ Bu
y ¼ Cx

�
ð27Þ

and the corresponding full-state observer

_̂x ¼ Ax̂þBuþ Lð y � Cx̂Þ
ŷ ¼ Cx̂

�
ð28Þ

The state-estimation error ex ¼ x � x̂ satisfies

_ex ¼ ðA � LCÞex ð29Þ

and ex asymptotically goes to zero if the model is cor-

rect and L is chosen in such a way that (A�LC) is

Hurwitz, which is always possible if the pair (C, A) is

observable. Consider now a time-varying fault vector

wf affecting the state as

_x ¼ Ax þ Buþ Ef wf

y ¼ Cx

�
ð30Þ

This model encompasses actuator, sensor and even

structural faults, as wf can take any value. Equation

(29) becomes

_ex ¼ ðA � LCÞex þ Ef wf ð31Þ
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The estimation error is thus sensitive to faults, and

the output estimation error ey¼ y� ŷ can be used as

a residual. In the frequency domain, and if the effect

of initial conditions can be neglected, one can write

eyðsÞ ¼ Cðs1� A þ LCÞ�1Ef wfðsÞ. If the Laplace trans-

form wfðsÞ of wf does not belong to the kernel of

C(s1�AþLC)�1Ef, then the residual is sensitive

to wf. Note that observers for fault diagnosis need

not be full-state, since only output reconstruction

may be required, which suggests that reduced-order

observers may be sufficient.

Such an observer, driven by all inputs and outputs

of the system, is sometimes referred to as the simpli-

fied observer scheme [73]. Even if it may detect faults,

this scheme generally does not allow fault isolation

since all output estimates may react to any fault

affecting the process. Two types of banks of observers

have been designed for generating residuals that are

sensitive to desired sets of faults, namely the dedi-

cated observer scheme (DOS) and the generalized

observer scheme (GOS) [73]. A DOS is a bank of obser-

vers driven by only one sensor output (or control

input) and thus sensitive to only one sensor fault (or

one actuator fault). In a GOS, observers are driven by

all outputs (or inputs) but one and thus sensitive to all

faults except one. Figure 7 illustrates the structure of

DOS and GOS for sensor FDI.

Non-Linear state estimation is often addressed by

linearizing the model around an operating point or

along a trajectory, in order to apply the previous tech-

niques. This has given birth to the extended

Luenberger observer (ELO) [223, 224]. Since lineariz-

ing implies losing information, the use of fully

non-linear observers have been investigated for fault

diagnosis [221]. However, no general non-linear

structure can be defined and tuning remains complex.

Available results mainly concern adaptive observers

[225–229] and high-gain observers [230–232].

Recently, a new form of non-linear observers has

been proposed [233, 234], which is designed via the

solving of a partial differential equation. Its applica-

bility to observer-based fault diagnosis remains to

be evaluated. Sliding mode observers are also an inter-

esting alternative, since they allow the direct estima-

tion of faults that have broken the sliding motion

[235–237].

To avoid heavy computations, multiple-model

strategies are also being investigated. They assume

that the non-linear model of the system can be

approximated by interpolating between local linear

models. This Takagi–Sugeno representation may be

obtained analytically or by system identification

[238]. It is then possible to build a set of interpolating

linear observers to achieve diagnosis [239, 240].

4.3.2 Stochastic approach

Kalman filtering [241] achieves state estimation in a

stochastic context where the existence of state per-

turbations and measurement noise is explicitly taken

into account by assuming that they have known

Gaussian probability distributions (or that the first

and second moments of their probability distribu-

tions are known). In steady-state and fault-free con-

dition, the innovation of a Kalman filter should be

white noise with zero mean and known covariance.

It can thus be monitored by statistical tests on mean

or variance to diagnose faults. This was initially intro-

duced in reference [242] and has been widely

exploited since then [243–245]. Banks of filters can

also be defined, the two principal architectures

being multiple model adaptive estimation (MMAE)

and interacting multiple model (IMM).

MMAE [108, 246] is a collection of filters using

hypothesized models of fault-free and faulty beha-

viours, designed in DOS or GOS and running inde-

pendently. The stochastic nature of the innovations

of the filters makes it possible to compute a probabil-

ity for each model, and thus to provide a confidence

level for fault isolation. IMM [123, 247–249] also

Fig. 7 Banks of observers for detection and isolation of sensor faults
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integrates the probability of switching from one

model to another as a Markov chain and achieves a

fusion of the estimates.

Extension to non-linear systems is commonly

addressed through linearization around the current

mean estimate within the extended Kalman filter

(EKF) [250]. Contrary to the EKF, the unscented

Kalman filter (UKF) does not linearize the model

[251] and predicts the system behaviour using eval-

uations of the non-linear model at a set of points

roughly approximating a Gaussian distribution of

the state vector [252, 253]. Based on a similar

idea, sequential Monte Carlo methods such as par-

ticle filtering (PF) are a very promising approach to

deal with non-linearity and non-Gaussian distribu-

tions [146, 254]. PF is now used for tackling com-

plex fault detection issues [255–257].

4.3.3 Bounded-error approach

The methods presented so far either do not use any

explicit uncertainty representation or assume a prob-

ability distribution for the uncertain variables, most

often Gaussian. An alternative approach is to use

bounds on acceptable errors. This bounded-error

approach can be used for linear and non-linear

models. In non-linear state estimation, for example,

interval analysis can be used to predict the evolution

of the set of possible values for the state vector [207,

258]. Part of the predicted set that are inconsistent

with measurements may then be eliminated. Fault

detection can thus be performed by checking

whether the resulting set is empty [212, 259].

4.4 Parity space

Parity relations eliminate unknown state variables

from static or dynamic model equations to produce

residuals that only depend on the system inputs and

outputs [14, 260, 261]. Links between parity space

methods and observers have been investigated in

references [262–264].

Consider first the (static) measurement equation

with faults

y ¼ Cx þ Ef wf ð32Þ

In order to decouple the unknown state variables and

generate residuals that are only sensitive to faults, the

parity vector Wy is computed. W is a projection

matrix that should be orthogonal to C to ensure

WC¼ 0, and such that WEf 6¼0, to allow faults to be

detected. This strategy is useful to manage hardware

redundancy efficiently, i.e. when multiple sensors

measure the same variables [265] or with pyramidal

IMU configurations [154].

Extension to dynamic systems exploits model

structure and temporal redundancy on a time hori-

zon th. Consider the discrete-time version of the fault-

free model (16) with A, B, C assumed constant

xðk þ 1Þ ¼ AxðkÞ þ BuðkÞ
yðkÞ ¼ CxðkÞ

�
ð33Þ

Successive measurements on the time horizon [k;

kþ th] satisfy

This can be written as

Yðk, thÞ ¼ HðthÞxðkÞ þ GðthÞUðk, thÞ ð35Þ

where

Yðk, thÞ ¼

yðkÞ
yðk þ 1Þ

..

.

yðk þ thÞ

26664
37775, Uðk, thÞ ¼

uðkÞ
uðk þ 1Þ

..

.

uðk þ thÞ

26664
37775
ð36Þ

HðthÞ ¼

C
CA

..

.

CAth

2664
3775, GðthÞ ¼

0 0 � � � 0
CB 0 � � � 0

..

. . .
. . .

. ..
.

CAth�1B � � � CB 0

2664
3775
ð37Þ

This new system is static, and a projection matrix W

can be seeked for such that WH(th)¼ 0. The contin-

uous-time formulation is very similar, except that

successive time derivatives of inputs and outputs

are involved instead of successive values in time

[266].

Extension to some classes of non-linear systems

has been investigated. The design of analytical redun-

dancy relations when the non-linear mappings from

model (14) are polynomial in the state and input

variables is addressed in references [267, 268] with

the help of elimination theory. An extension to

yðkÞ ¼ CxðkÞ
yðk þ 1Þ ¼ Cxðk þ 1Þ ¼ CAxðkÞ þ CBuðkÞ

..

.

yðk þ thÞ ¼ CAth xðkÞ þ CAth�1BuðkÞ þ . . .þ CBuðk þ th � 1Þ

ð34Þ
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state-affine systems is presented in reference [269]

and to input-affine systems in reference [270], both

based on the geometrical concepts described in sec-

tion 4.5.4.

4.5 Decoupling strategies

Important issues in fault diagnosis are robustness to

exogenous inputs such as state disturbances and

the design of filters that are sensitive to some faults

and as decoupled as possible from other. Consider a

vector of state disturbances wd that affect the system

(30) as

_x ¼ Ax þ Buþ Edwd þ Ef wf

y ¼ Cx

�
ð38Þ

The methods considered so far are not able to distin-

guish the undesired unknown input wd from the

input wf resulting from faults. For example, the full-

state observer-based residual (31) now becomes

_ex ¼ ðA � LCÞex þ Ef wf þ Edwd ð39Þ

Ideally, a decoupling observer-based filter

_bx ¼bfðbx, u, yÞ

r ¼ bhðbx, u, yÞ

(
ð40Þ

should generate residuals r sensitive to wf, insensitive

to wd and converging to zero when there is no

fault [271]. A necessary condition for such an exact

decoupling to be possible is that dim wd<dim y.

Four approaches addressing this problem are

described in this section. Eigenstructure assignment

(section 4.5.1) and unknown-input observers (UIO)

(section 4.5.2) are closely related, since they both

seek for exact decoupling via linear algebra. Non-

Linear geometric approaches (section 4.5.4) general-

ize these ideas to non-linear systems with the help of

differential geometry, while norm-based approaches

(section 4.5.3) use robust control theory for approxi-

mate decoupling.

4.5.1 Eigenstructure assignment

In eigenstructure assignment [262], the vector of

residuals is computed by left multiplying the

output-estimation error ey of the full-state observer

(28) by some weighting matrix W as

r ¼ Wey ¼ WCðx �bxÞ ð41Þ

The coupled design of W and the observer gain L is

then undertaken to nullify the transfer from wd to r,

which implies that WCEd¼ 0, as well as to ensure the

convergence of the observer [272]. Note that parity

space residuals could also be made insensitive to

unknown inputs with similar design principles [273].

4.5.2 Unknown-input observer

A very useful extension of observers for fault detec-

tion is the UIO, which can be designed in determin-

istic or stochastic settings. The UIO aims at

performing state estimation with minimal influence

of the unknown inputs (i.e. exogenous disturbances)

[38, 274–277]. The structure of a linear UIO for resid-

ual generation is given by

_bx ¼ Fbx þ TBuþ ðK1 þ K2Þ y
r ¼ ð1� CHÞy � Cbx

�
ð42Þ

where, to ensure decoupling and asymptotic conver-

gence, the design matrices F,T,K1,K2,H should be

chosen such that

ðHC� 1ÞEd ¼ 0
T ¼ 1�HC

F ¼ A �HCA � K1C is Hurwitz
K2 ¼ FH

8>><>>: ð43Þ

If such a design exists, observers that are sensitive to

all faults but one and insensitive to disturbances can

be incorporated in a GOS architecture, or in a dual

fashion in a DOS architecture.

The extended unknown input observer (EUIO) [11]

deals with non-linearities via linearization around

current trajectory, like an EKF. Fully non-linear

extensions of the UIO have been considered for

systems with Lipschitz non-linearities in reference

[277–279], and for systems that can be transformed

into such systems [280]. An algebraic approach has

also been proposed [281, 282].

4.5.3 H1 strategies

If exact decoupling of unknown inputs from faults is

not achievable, it may be considered in the worst-

case sense. Norm-based methods [12, 283–285] aim

at maximizing the effect of faults on residuals accord-

ing to the H1 norm (maximum induced gain of the

transfer matrix from faults to residuals), while mini-

mizing a measure of the influence of disturbances

(minimum induced gain of the transfer matrix from

disturbances to residuals). If the initial problem can

be put into standard form, filter design is then gener-

ally tackled by linear matrix inequalities (LMI) [286].

Estimation of faults in this context has also been

investigated [287].

4.5.4 Non-Linear geometric approaches

Differential-geometric tools are used in reference

[288] to check whether it is possible to generate
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diagnosis filters that are sensitive to one fault only

and decoupled from other faults and disturbances.

This problem is solvable if there exists observable

subsystems that are unaffected by all faults but one.

This non-linear geometric formulation is closely

related to parity space and UIO approaches, since it

still exploits the null-space of the observability distri-

bution to generate residuals [289]. Differential-

algebraic approaches have also been proposed in

reference [290, 291].

Inversion-based FDI reconstructs control inputs

to diagnose faults [292, 293]. The left-inverse of the

non-linear system [294] is computed to obtain a new

dynamical model that reconstructs faults from origi-

nal inputs, outputs, and their successive derivatives.

Considering the problem from the input side is an

interesting and relevant change of viewpoint, since

most fault diagnosis methods generate residuals by

comparing estimated outputs with their measured

values. In this context, the fact that most aerospace

vehicles are equipped with an IMU (Table 1) makes it

possible to use the force equation as a static relation

to reconstruct control inputs that have been achieved

by actuators [135, 136]. Residuals can then be gener-

ated by comparing these reconstructed inputs with

the values that have been sent by the control algo-

rithm to the system, without the need to integrate a

dynamical model.

4.6 Control-related strategies

All the methods presented in the previous sections

are open-loop, in the sense that feedback control is

not taken into account in filter design. This seems

unfortunate, as control information may provide

additional insight on the system behaviour and thus

help detect and isolate faults.

An interesting idea in this context is active fault

diagnosis, where an auxiliary input may be injec-

ted into the system to enhance fault identification

[295–297]. This technique has been recently applied

to small UAVs [57, 58], with the addition of a small

sinusoidal component to the control signal of actua-

tors suspected of faults. This strategy is appealing,

even if the design of such signals should be cautious

since the additional input may seriously deteriorate

performance in normal operating condition or even

destabilize the system [298].

As there is a trade-off to achieve between fault

detection and performance of the closed-loop

system, designing simultaneously control laws and

observation filters has been addressed [299, 300].

Multi-objective optimization methods are used to

maximize the effect of faults on the diagnosis filter

while still achieving control objectives [285].

The effect of feedback on fault diagnosis methods

has been analysed in reference [301] and more

recently in reference [302], where model uncertainty

or multiplicative faults are shown to make the resid-

uals depend on the control signal. More generally, the

control input holds relevant information concerning

faults in a feedback-controlled system. Following this

idea, it has been pointed out in reference [134, 170]

that control objectives can be used as residuals indi-

cating the presence of faults and even allow fault

isolation.

5 RESIDUAL EVALUATION

After residuals – presumably noisy and disturbed –

have been generated by methods from section 4,

there is the need to analyse them on-line to provide

Boolean decisions on whether they significantly differ

from those that would be generated during normal

operation. Given this collection of Boolean values,

the fault-incidence matrix should be built, to express

the influence of each fault on residuals [303, 304]. To

achieve isolation, each fault should affect a different

set of residuals – this is, e.g. what is seeked for by DOS

and GOS architectures.

The problem of residual analysis boils down to

comparing the characteristics of each signal with

what is expected. This usually concerns a change in

the mean, which should be statistically close to zero

in normal operation; a change in the variance or

another statistical property could also be monitored

[5, 7], but will not be considered in what follows. The

evaluation methods presented in this section are

independent from the residual generation step.

However, it should be noted that the tuning of these

tests should be coordinated with that of the residual

generation method employed to obtain adequate

robustness.

To present the main thresholding methods, a scalar

residual r(t) is considered. The residual-evaluation

methods provide a scalar binary decision function,

which should return false if the mean �r of the residual

is close enough to its initial mean (usually zero) and

true if a jump or a drift in the signal has been detected.

This could be formulated as a test between two

hypothesis at each time step, H0 corresponding to

false and H1 to true [305]

H0 : �rðt Þ ¼ 
0, 
0 known ð
0 ¼ 0Þ
H1 : �rðt Þ ¼ 
1, 
1 known or unknown

�
ð44Þ

Most statistical tests assume a Gaussian distribution

for r and require the knowledge of its nominal mean


0 and variance �2
0 . These values can be estimated on

the first data obtained in operation, provided that the
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system can be assumed to be non-faulty at the

beginning. The size of the change to be detected 
1

may be fixed or estimated on-line. Four decision sit-

uations may arise, depending on the correspondence

between the true hypothesis and the one chosen by

the test, as summarized by Table 5. The contradictory

objectives of minimizing non detection and false

alarm are then a major concern when choosing and

tuning a threshold or a statistical test.

Note that r is not necessarily Gaussian, especially

when dealing with non-linear models. To allow the

statistical tests described hereinafter to remain

applicable, the asymptotic local approach [306, 307]

defines the modified residual on N observations as

rloc ¼
1ffiffiffiffiffi
N
p

XN

t¼1

rðt Þ ð45Þ

Despite the absence of knowledge of the statistical

properties of r, rloc is approximately Gaussian for a

sufficiently large N, and thus eligible to a hypothesis

test similar to (44).

5.1 Static thresholding

Without any statistical consideration, the «three-

sigma» rule chooses bilateral fixed thresholds equal

to 
0� ��0, where �� 3 usually [308], relying on the

fact that 99.7 per cent of the points of a Gaussian

distribution lie within three standard deviations of

its mean. The decision is H1 when the value of the

residual falls outside the thresholds, else the decision

is H0. This simple test can be used to detect large

jumps in residuals, but is likely to miss detection

when the size of the change is of the same order of

magnitude as the standard deviation of the process.

A robust version of static thresholding assumes that

bounds on model uncertainties, disturbances and

noise are known and propagates them through the

residual generator to provide bilateral thresholds in

the worst-case sense (thus conservative) [309, 310].

5.2 Student’s t-test

This test checks whether the signal follows a Gaussian

distribution (
0, �0), which leads to an automatic

thresholding provided by Student’s table given a

required confidence level (e.g. 95 per cent) [311]. If

this threshold is crossed, then the decision is H1.

5.3 Generalized likelihood ratio test

This test is based on the likelihood ratio �(r) of the

probability that the mean of r is 
1 6¼
0 to the prob-

ability that it is 
0, still assuming that the signal is

Gaussian with standard deviation �0 [5]. On N

successive independent observations of r(t), the like-

lihood ratio is

�ðrÞ ¼
Pðr j H1Þ

Pðr j H0Þ
¼

exp �

PN

t¼1
ðrðt Þ�
1Þ

2

2�2
0

� �
exp �

PN

t¼1
ðrðt Þ�
0Þ

2

2�2
0

� �

¼ exp

1 � 
0ð Þ

�2
0

XN

t¼1

rðt Þ �

0 þ 
1

2

� " # ð46Þ

The likelihood-ratio test, built on the Neyman–

Pearson lemma [312], decides for hypothesis H0 if

�(r)<� and H1 otherwise, where � is some tunable

threshold. The generalized version uses the on-line

maximum-likelihood estimate b
1 of 
1 to allow the

detection of a (possibly time-varying) change of

unknown magnitude. The practical implementation

using the log-likelihood ratio on N observations is

given byPN
t¼1 rðt Þ5 �2

0


̂1�
0
ln �ð Þ þ

N 
0�b
1

� �
2 ¼)decideH0

else¼)decideH1

(
ð47Þ

5.4 Sequential probability ratio test

The sequential probability ratio test is very similar to

the generalized likelihood ratio, as it also uses the

likelihood ratio. However, the minimum size of

changes to be detected 
1 has to be specified, and

the threshold � is fully determined by fixing the

desired false-alarm probability pfa and non-detection

probability pnd> [5]. The following decisions are taken

at each step

�ðrÞ5 pnd

1�pfa
¼)decideH0

�ðrÞ4 1�pnd

pfa
¼)decideH1

else take no decision

8><>: ð48Þ

This test introduces a <<no decision>> option, where

more data are requested to decide between H0 and

H1. In the context of diagnosis, this can be interpreted

as non-faulty behaviour, i.e. H0.

5.5 CUSUM test

Few statistical hypothesis are needed for this two-

sided test, which is expressed as follows [5, 7]

Table 5 Decision situations in a two-hypothesis test

Decide H0 Decide H1

H0 true (no fault) Proper decision False alarm
H1 true (fault) Non-detection Proper decision
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S1ðt Þ ¼max S1ðt � 1Þ þ rðt Þ � 
0 � 
1=2, 0ð Þ

S2ðt Þ ¼max S2ðt � 1Þ � rðt Þ þ 
0 � 
1=2, 0ð Þ

�
ð49Þ

where 
1 is the minimal size of the fault to be

detected. The decision rule is then

S1 4 �ð Þor S2 4 �ð Þ¼)decideH1

else¼)decideH0

�
ð50Þ

where � is again some tunable threshold, reflecting

the desired false-alarm rate.

5.6 Randomised subsampling

This method, proposed recently in reference [313],

uses M subsamplings of the signal on N observations.

The sum of the errors with respect to the expected

mean 
0 is computed on each subsample. The deci-

sion is H0 if at least L of the M sums are greater than

zero and at least L of the M sums are smaller than

zero, else the decision is H1. An interesting property

of the test is that the expected probability of false

alarm is intrinsically equal to 2L/M.

6 DISCUSSION

6.1 FDI methods: the case of civil aviation

Focusing on the particular case of civil aviation

(based on papers [73–107]), Table 6 presents different

types of faults that have been studied in the literature

and states the methods that have been employed to

detect them, among those presented in section 4.

Advantages and drawbacks that have been reported

for each method are also indicated. It should be noted

that these conclusions are only partial, as none of

these papers can claim to have compared all methods

that could be applied on the test cases considered.

Suggestions on how fair comparisons could be con-

ducted are discussed at the end of the paper.

6.2 Current industrial practice

It is widely acknowledged by academic researchers

and industrials that there is still a wide gap between

state-of-the-art research in FDI and current industrial

practice [34]. Within the few actually implemented

schemes, diagnosis is generally part of an Integrated

Vehicle Health Management (IVHM) system [314],

which also includes prognosis and maintenance plan-

ning. The diagnosis methods employed in this context

usually rely on hardware redundancy or simple limit

checking of sensor outputs with threshold values fixed

on the basis of recorded flight data [2].

As an illustration of embedded fault diagnosis in

the civil aviation industry, comparable strategies

have been patented by Boeing [315–317] and Airbus

[318–320]. In reference [315], Boeing proposes a

voting scheme between the two redundant parts of

a flight control surface with two redundant control-

lers, a limit-checking technique in reference [316] for

redundant sensor values, while in reference [317]

extra control signals with negligible impact on aircraft

motion in fault-free condition, are sent to the flight

control surfaces to highlight faults. Airbus developed

in reference [318] a voting scheme between redun-

dant power supplies of an aircraft and described

fault-tolerant redundant flaps in reference [319].

In reference [320], the use of SVM is advocated to

analyse data from built-in tests of sensors and esti-

mate the actual time of occurrence of a fault.

The recent introduction of fly-by-wire electrical

control systems in civil aviation have motivated sev-

eral studies on model-based fault diagnosis by the

aforementioned companies. The concern for faster,

cleaner, and more energy-efficient aircraft has also

made essential the use of analytical redundancy to

reduce the number of redundant components and

thus the aircraft mass [3]. This has, for example,

led to the use of an observer-based oscillatory failure

detection scheme which is actually embedded in

A380 aircraft [104].

There seems to be a general agreement in the space

industry on the use of IVHM architectures. Indeed,

schemes developed by Astrium [321], CNES [322],

NASA [323] or Thales Alenia Space [4, 324] generally

involve hardware redundancy of subsystems, man-

aged in an upper layer so as to provide a comprehen-

sible decision. Parallel projects have been launched

by ESA and NASA (see below) to investigate more

elaborate model-based fault diagnosis strategies,

though no embedded implementation has been

reported yet.

A few projects have been launched to bring

together academic and industrial engineers to

assess various FDI methods on realistic simulators

or real subsystems (e.g. ESA SMART-FDIR [325] or

COMPASS [326], NASA X-37 [327] and parts of CxP

[328] or European projects GARTEUR [32] ADDSAFE

[329]). To reduce the gap between academic results

and industrial end-users, these projects involve func-

tional engineering simulators such as pilot-in-the-

loop or aircraft-in-the-loop testbeds. This should

help advanced model-based fault diagnosis methods

to face certification issues (some of which are hinted

at in references [3, 330]).

6.3 Concluding remarks

A generic, yet realistic, modelling of the dynamics of

aerospace vehicles has been presented in this article.

Fault modes that may affect their sensors and
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Table 6 Civil aviation faults and methods employed to detect them

Method Type of faults and references Advantages as reported in papers Drawbacks as reported in papers

Luenberger

observers

� Bias, dead zone, scale factor on

accelerometers [73]

� Bias on velocity and Mach

measurements [77]

� Bias elevator or pitch rate

sensor [78]

� Elevator bias, accelerometer bias,

wind gust [79]

� Control surfaces (loss of

effectiveness, locking) [85]

� Bias on rudder or thrust [97]

� Oscillatory flight control

surface [104, 107]

� Small false alarm rate

� Short detection delay

� Some robustness to model

uncertainty

� Isolation of simultaneous faults

� Computational burden

� Not always easy to distinguish

faults from unmodelled

disturbances (except with UIO)

Kalman filters � Failures of sensors in an

engine [91]

� Same advantages as Luenberger

observers

� Well-established for linear(ized)

models only

� Locked aileron [105] � Gaussian measurement noise

and state perturbations taken

into account

� Gaussian assumptions not

always valid� Bias in IMU/INS [106]

� Bias on sensor in

electromechanical flight

control surface [103]

Particle filter � Bias in IMU sensor [93] � Non-linear model taken into

account

� Non-Gaussian noise can be

dealt with

� Huge computational cost

� Knowledge of statistical

distribution of noise required

H1 filters � Rudder loss of effectiveness [76]

� Elevator and throttle loss of

effectiveness [83]

� Bias on IMU or rudders [84]

� Intermittent bias on pitch rate

measurement [96]

� Worst-case robustness to

disturbances

� Possible estimation of

fault magnitude

� Limited to linear or linear

parameter varying models

under standard form

� Conservative design

Sliding mode

observers

� Biases in IMU or ADS [86]

� Drift in rudder and throttle [88]

� Engine separation, rudder loss of

effectiveness [100]

� Fault estimation

� Quick convergence

� Estimation of some disturbances

� Computational burden

� Difficult tuning

Bounded-error

observer

� Bias on rudders [89]

� Locking of actuator, bias on

speed sensor [101]

� Non-linear model taken into

account

� Very few false alarm

� Disturbances taken into account

� Computational burden

� Detection delay (conservative

design)

NL geometric

observer

� Locking/hardover/loss of

effectivenes of elevator or

throttle [90]

� Non-linear model taken into

account

� Fault isolation

� System-dependent design

� Computational cost

Parameter

estimation

� Wing damage, rudder

locking [80]

� Wing damage [99]

� Icing [102]

� Appropriate to structural damage

detection

� On-line identification time

� Less appropriate to sensor or

actuator fault isolation

Neural networks � Bias/drift of IMU sensors or

actuator [75]

� Dynamical model not required � Choice of network structure may

be difficult

� Tail or wing damage [82] � Huge on-line learning time

� Elevator bias [87] � Learning convergence not

guaranteed

PCA � Wing damage [95]

� Bias in engine components [98]

� No dynamical model � Restricted to linear dependence

between variables

� Required training data

SVM � Bias of rudder or angle-of-attack

sensor [92]

� Linearity of the prediction � Required training data

� Limited to known classes of faults

Expert system � Engine separation [74] � Small computational cost � Very system-dependent
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actuators have been discussed and modelled. The key

points of FDD approaches that are applicable in this

context have been explained, focusing on model-

based methods but also including a short overview

of model-free methods that may be useful when

models are inaccurate or unavailable. This presenta-

tion, supported by a large bibliographical review, pro-

vides a synthetic view of recent applications of FDD

methods in aerospace. Table 4, which relates the clas-

ses of FDI methods and the types of aerospace vehi-

cles on which they have been applied, seems

particularly relevant for this purpose. What appears

is that no specific method is dedicated to a single type

of system, since their dynamic models are sufficiently

generic to make the same procedures applicable.

However, with this article, engineers that are inter-

ested in a specific type of vehicle can have a quick

access to FDI methods that are being applied on sim-

ilar systems. The fact that similar methods have been

used to address different types of vehicles confirms

the genericity of the modelling presented.

Parameter estimation (section 4.2) is well suited to

detect structural changes, while other model-based

methods (sections 4.3 to 4.6) are more interesting

for detecting faults on sensors and actuators. Some

qualitative elements of comparison between meth-

ods can be found in references [19–22, 25, 26]. The

most versatile approaches appear to be using banks

of observers or Kalman filters (section 4.3), since they

can handle any type of fault and make it possible to

generate structured residuals that facilitate fault iso-

lation. However, they require a large modelling effort

and imply a heavy computational cost with respect to

the resources available on-board. For example, single

fault monitoring on classical state variables of an

aeronautical model requires the numerical integra-

tion of 12 filters, and each filter provides 12 residuals.

Alternative solutions should be developed, in parallel

with increasing embedded computational ability.

Relying directly on fault estimation instead of

residuals is attractive, since it makes the decision

logic lighter (a fault-incidence matrix is no longer

needed). There has been a trend in this direction,

especially with the introduction of sliding-mode

observers and geometrical approaches for non-

linear systems. Moreover, this approach is well

suited to address reconfiguration of the control law

of the system and achieve fault tolerance [331].

The highly non-linear dynamics governing aero-

space models (section 3) limits the range of applicable

methods using an explicit knowledge-based dynamical

model. Linearization or polynomial approximation

only add more uncertainty to an already inaccurate

model. Despite this widespread observation, most

applications use linear models or linearization: 29 per

cent of the papers reported in Table 4 used linear

models, 46 per cent linearized methods and only

25 per cent non-linear approaches. Though there has

been a trend towards extension to non-linear control-

affine systems, which often seems an acceptable

modelling trade-off to represent the behaviour of

flight vehicles. More applications should be developed

in this direction. Non-linear FDI is still ongoing

research, as is non-linear observer theory, and aero-

nautical applications can motivate interesting develop-

ments in both fields. In particular, various decoupling

strategies have been proposed to deal with uncertainty

and disturbances (section 4.5). UIO and geometric

approaches are particularly promising, but their appli-

cability to non-linear aircraft remains to be confirmed.

The assumption of bounded errors is also an attractive

way to handle uncertainty in a non-linear context.

An interesting property of aerospace dynamical

models that could be exploited more efficiently for

diagnosis is that the kinematics equations (1) and

(3) do not involve control inputs. These relations pro-

vide analytical redundancy that may be used to detect

sensor faults. Similarly, faults on actuators can be

detected using force and momentum equations (4)

and (11) only.

Reliability of the knowledge about the system is a

major criterion for method selection. Models

described in section 3 have been validated by previous

works in flight mechanics, even though their inner

parameters may be inaccurate in actual flight condi-

tions, especially aerodynamic coefficients whose

in-flight variations are not well known. Modern

pattern recognition approaches (section 4.1) could

be of great help to increase diagnosis robustness to

these sources of uncertainty. Nevertheless, these tech-

niques cannot be used alone when no specific record

is available before the mission, and prior knowledge

on the dynamics of the system should not be ignored.

An interesting approach would be to assist a model-

based algorithm with a model-free one, based on

in-flight measurements. A line of inquiry may be

given by a semi-parametric kernel machine taking

into account the influences of both model and mea-

surements to regularize estimation.

It must also be kept in mind that flight vehicles are

closed-loop controlled, which may lessen the impact

of failing components by modifying the fault dynam-

ics. This may be taken into account in the design of

fault detection methods that will test consistency

between computed control inputs (i.e. controller

outputs) and the control inputs actually achieved,

as estimated from measured system outputs. It is

even possible to design control inputs in such a way

as to facilitate FDI, or to use the adequacy with con-

trol objectives to detect faults. These control-related
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strategies (section 4.6) are just beginning to be inves-

tigated and already show great potential.

There is a rising interest from industry in advanced

model-based strategies to cope with the drawbacks of

classical hardware redundancy and threshold man-

agement techniques (section 6.2). To validate these

new approaches, there is the need for actual flight

tests, since most work is done in simulation (admit-

tedly with increasing realism). It is already interesting

to assess that a fault diagnosis algorithm raises no

false alarm in normal operation.

Concerning residual evaluation strategies, statisti-

cal tests should generally be preferred to fixed thresh-

olds that may become unreliable due to uncertainty,

or on the contrary too conservative. The CUSUM test

is widely used, and has demonstrated good abilities

in quantitative comparisons on typical test cases

[5, 332].

Finally, an objective evaluation of the various meth-

ods on benchmarks is necessary in order to build

an efficient FDI aircraft methodology. Method-

independent performance indices such as those

defined in section 2.4 can be used as objectives to be

optimized. All the FDI strategies considered have

some internal parameters that need to be chosen. To

compare these strategies as objectively as possible,

these inner parameters should be systematically

tuned to achieve optimality in terms of the perfor-

mance indices. The design of such a procedure has

been addressed as a global optimization problem

solved via robust surrogate-based optimization in

references [332, 333] and shown promising results.
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APPENDIX

Notation

1n n�n identity matrix

A, B, C state, input, and output

matrices of a linear model

c(.) aerodynamic coefficient

f, G, and h state and output mappings of

a non-linear model

faero, fg, and fprop aerodynamic, gravitational,

and propulsion forces (N)

I inertia matrix (kg � m2)

K state feedback gain

L Luenberger observer gain

Laero, Maero, Naero aerodynamic moments

(N�m)

Lnaero, Mnaero, Nnaero non-aerodynamic moments

(N�m)

m mass (kg)

Q dynamic pressure (N/m2)

r vector of residuals

r scalar residual
�r mean of r

sref and lref reference surface, m2, and

length (m)

u input vector

vm ¼ ½ _x, _y, _z�T velocity in inertial frame

(m/s)

vbm¼ [vbx, vby, vbz]T velocity in body frame (m/s)

wd disturbance vector

wf fault vector
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x state vector

xm¼ [x, y, z]T position in inertial frame (m)

xbm¼ [xb, yb, zb]T position in body frame (m)

y output vector

� angle of attack (rad)

� sideslip angle (rad)

u¼ [p, q, r]T angular velocity (rad/s)

[u, �,  ]T orientation (rad)
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