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Abstract

This paper deals with data uncertainties and model uncertainties issues in computational mechanics.

If data uncertainties can be modeled by parametric probabilistic methods, for a given mean model,

a nonparametric probabilistic approach can be used for modeling model uncertainties. The first

part is devoted to randommatrix theory for which we summarize previous published results and for

which two new ensembles of random matrices useful for the nonparametric models are introduced.

In a second part, the nonparametric probabilistic approach of random uncertainties is presented

for linear dynamical systems and for nonlinear dynamical systems constituted of a linear part with

additional localized nonlinearities. In a third part, a new method is proposed for estimating the

parameters of the nonparametric approach from experiments. Finally, examples with experimental

comparisons are given.

Keywords: Computational mechanics, random matrix, random uncertainties, dynamical system,

transient, nonlinear

1. Introduction

In computationalmechanics, random uncertainties in model predictions are due to data uncertainties

and to model uncertainties.

Data uncertainties concern the parameters of the mathematical-mechanical model such as the

geometrical parameters, the parameters allowing the boundary conditions to be described, the

constitutive equations, etc. Therefore, data uncertainties can clearly be taken into account by the
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parametric probabilistic approach whose stochastic finite elementsmethod [2,9-12,17,26,34,36] and

other theoretical and numerical methods [11] such as for stochastic eigenvalue problems [21,25,35]

constitute very efficient tools in computational mechanics.

Model uncertainties are introduced during the construction of the mathematical-mechanical model:

the constructedmodel cannot exactly represent a complexmechanical systemdue to the introduction

of approximations and simplifications and because the details are unknown, or are not accurately

known. Clearly, such model uncertainties are not relevant to the parametric approach because,

by definition, the model uncertainties cannot be taken into account by the parameters of the

mathematical-mechanical model under consideration (for instance, the thin plate theory does not

allow all the types of waves to be modeled). For predictive models of complex systems, a large

part of the lack of predictability is due to model uncertainties. For such a complex system:

(i) If an additional smaller spatial scale is introduced in the predictive model for reducing model

uncertainties, then data uncertainties increase due to the increasing of the number of parameters. (ii)

If several spatial scales (or equivalently, a hierarchy of models) are introduced, model uncertainties

will always exist for the smaller spatial scale. (iii) For the smaller spatial scale introduced in

the predictive model, the model uncertainties cannot be taken into account with the parametric

probabilistic approach of data uncertainties. Consequently, in a predictive model of a complex

system, there will always have a spatial scale for whichmodel uncertainties will have to be taken into

account for increasing the predictability. It should be noted that the objective of this nonparametric

probabilistic approach is to increase the predictability of a given and fixed mean model, that is to

say, is to increase the predictability without improving the mean model by introducing additional

smaller spatial scales or a hierarchy of models. The proposed nonparametric approach also allows

the data uncertainties to be modeled, particularly when the number of uncertain parameters becomes

large. The nonparametric probabilistic approach of random uncertainties for dynamical sytems was

introduced in [27,29]. This approach was developed thanks to the introduction of a new ensemble

of random matrices that we call the “positive-definite ensemble”. This ensemble, which is adapted

to the operators of dynamical systems, is constructed and studied in [28,29] and differs from the

Gaussian Orthogonal Ensemble (GOE) and from the other known ensembles of the random matrix

theory [19]which are not adapted to themass, damping and stiffness operators of dynamical systems.

The bases of the nonparametric probabilistic approach of random uncertainties for linear dynamical

systems is presented in [28,29,31] with applications to vibrations and transient elastodynamics. The
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case of uncertain dynamical systems in the medium-frequency range are studied in [32]. Since the

nonparametric approach consists in constructing a probability distribution of the random operators

of the problem, the case of non homogeneous uncertainties cannot directly be taken into account

and dynamic substructuring [4] has to be used. The case of non homogeneous uncertainties for

linear dynamical systems with an experimental validation is presented in [33,3]. Finally, the case of

nonlinear dynamical systemswith such a nonparametricmodel of random uncertainties is developed

in [30] and, in [5], a nonparametric-parametric approach is introduced and applied to earthquake

engineering analysis of a reactor cooling system under seismic loads.

The first part of this paper is devoted to random matrix ensembles which are used for random

uncertainties modeling in computational mechanics. First, for readability of the paper, the results

concerning the main ensemble introduced in [28,29] are summarized. In addition, we present two

new ensembles of randommatrices useful formodeling randomuncertaintieswith the nonparametric

approach. For instance, the first one is useful for modeling uncertainties of the mass operator of a

dynamical system for which the spatial distribution of the mass is uncertain but for which the total

mass is given. The second ensemble, that we call the pseudo-inverse ensemble of random matrices

can be used for modeling random uncertainties in the coupling operator between an elastic solid

and an acoustic fluid for structural-acoustic systems.

The second part deals with a short overview with the nonparametric probabilistic approach of

random uncertainties in linear and nonlinear transient dynamics presented in [28-31]. Nevertheless,

we present an additional experimental validation for linear transient dynamics of a non homogeneous

structure submitted to a shock.

Finally, in the last part, we propose a new methodology for identification of the dispersion param-

eter of the nonparametric probabilistic model. Such a method is presented in the context of the

experimental modal identification of a linear dynamical system.

2. Random matrix ensembles for uncertainties modeling in computational mechanics

The random matrix theory were introduced and developed in mathematical statistics by Wishart

and others in the 1930s and was intensively studied by physicists and mathematicians in the context

of nuclear physics (Wigner, Dyson, Mehta and others). An excellent synthesis of the random

matrix theory can be found in the Mehta book [19]. For physical applications, the most important

ensemble of the random matrix theory, is the Gaussian Orthogonal Ensemble (GOE) for which the
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elements are constituted of real symmetric random matrices with statistically independent entries

and which are invariant under orthogonal linear transformations. The random matrix theory has

been used in other domains that in nuclear physics. In 1989, Weaver [37] show that the higher

frequencies of elastodynamic structures constituted of small aluminium blocks have the behavior

of the eigenvalues of a matrix belonging to the GOE. These results have clearly been validated for

the very high-frequency range in elastodynamics but not at all for the frequency band of interest

in structural dynamics, vibration and vibroacoustics systems which are concerned by the low- ,

medium- and high-frequency ranges.

In this section, we present five ensembles of random matrices which are useful for modeling data

and model uncertainties in computational mechanics.

(1) The first ensemble SG+ of random matrices, herein called the the normalized positive-definite

ensemble, has recently been constructed (see [28,29]) in the context of the development of a new

approach for modeling random uncertainties in dynamical systems with a nonparametric approach.

A random matrix belonging to SG+ is positive definite almost surely and its mean value is the

identity matrix. This ensemble constitutes the main ensemble used for constructing the four other

ensembles introduced below. Ensemble SG+ differs from the GOE and from the other known

ensembles of the random matrix theory. In order to improve the readability of this paper, we will

recall the main results concerning this ensemble.

(2) The second ensemble SE+ of random matrices, herein called the the positive-definite ensemble,

has been constructed in [28,29], simultaneously with SG+. A random matrix belonging to SE+ is

positive definite almost surely and its mean value is a given positive-definite matrix. For instance,

this ensemble is used for constructing probability model of positive operators such as the mass, the

damping or the stiffness operators of a dynamical system.

(3) The construction of the third ensemble SE+0 has been introduced in [27] and is similar to the

construction of ensemble SE+. A randommatrix belonging to this ensemble is semipositive definite

almost surely instead of being positive definite almost surely.

(4) The fourth one is the subset SE+
lf of SE+ constituted of random matrices in SE+ for which a

linear form on SE+ is given. A particular case is the ensemble SE+
tr for which the trace of the

random matrices is given. This is a new ensemble that we construct below. For instance, such an

ensemble is useful for modeling uncertainties of the mass operator of dynamical systems for which

the spatial distibution of the mass is uncertain but for which the total mass is known.
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(5) The fifth set SEinv of random matrices, herein called the the pseudo-inverse ensemble, is a

new ensemble that we construct in this paper. This ensemble is constituted of rectangular random

matrices having a mean-square pseudo-inverse. For instance, such an ensemble is useful for

modeling uncertainties in the coupling operator between an elastic solid and an acoustic fluid for a

structural-acoustic system [20].

In this paper, the following algebraic notations are used.

Euclidean space. Let x = (x1, . . . , xn) be a vector in  n. The Euclidean space  n is equipped with

the usual inner product (x, y) 7→<x , y>=
∑n

j=1 xjyj and the associated norm ‖x‖ =<x , x>1/2.

Matrix sets. Let !n,m( ) be the set of all the (n × m) real matrices, !n( ) = !n,n( ) be the set

of all the square (n× n) real matrices, !S
n( ) be the set of all the (n×n) real symmetric matrices,

!+0
n ( ) be the set of all the (n × n) real symmetric semipositive definite matrices and !+

n ( ) be

the set of all the (n × n) real symmetric positive-definite matrices. We then have

!
+
n ( ) ⊂ !

+0
n ( ) ⊂ !

S
n( ) ⊂ !n( ) .

Norms and usual operators. We denote:

(1) the determinant of matrix [A ] ∈ !n( ) as det[A ] and its trace as tr[A ] =
∑n

j=1[A ]jj,

(2) the transpose of [A ] ∈ !n,m( ) as [A ]T ∈ !m,n( ),

(3) the operator norm of the matrix [A ] ∈ !n,m( ) as

‖A‖ = sup
‖x‖≤1

‖[A ] x‖ , x ∈  
m ,

which is such that ‖[A ] x‖ ≤ ‖A‖ ‖x‖ , ∀x ∈  
m,

(4) for [A ] and [B ] ∈ !n,m( ), we denote ≪ [A ],[B ]≫= tr{[A ]T [B ]}and the Frobenius norm
(or Hilbert-Schmidt norm) ‖A‖F of [A ] is such that

‖A‖2
F =≪ [A ],[A ]≫= tr{[A ]T [A ]} =

n∑

j=1

m∑

k=1

[A ]2jk ,

which is such that ‖A‖ ≤ ‖A‖F ≤ √
n ‖A‖.
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2.1. Normalized positive-definite ensemble SG+ of random matrices

In this section, we summarize the theory developed in [28,29] concerning the construction of

ensemble SG+ of random matrices.

2.1.1. Definition of ensemble SG+

This ensemble is defined as the randommatrices [Gn], defined on a probability space (A, T , P ), with

values in  +
n (!), whose probability distribution is constructed by using the entropy optimization

principle [24,15] for which the constraints (define as the available information) are the following:

(1) Matrix [Gn] is a symmetric positive-definite real random matrix, that is to say,

[Gn] ∈  
+
n (!) a.s . (1)

(2) Matrix [Gn] is a second-order random variable,

E{‖[Gn]‖2} ≤ E{‖[Gn]‖2
F } < +∞ . (2)

(3) The mean value [Gn] of random matrix [Gn] is the (n × n) identity matrix [In],

E{[Gn]} = [Gn] = [In] ∈  +
n (!) . (3)

(4) Random matrix [Gn] is such that

E{ln(det[Gn])} = v with |v| < +∞ . (4)

In Section 2.1.8, we will see that the constraint defined by Eq. (4) yields the following fundamental

property for random matrices in ensemble SG+,

E
{
‖[Gn]−1‖2

F

}
< +∞ . (5)

It should be noted that Eq. (1) shows that random matrix [Gn] is invertible almost surely, but

since the almost sure convergence does not yield the mean-square convergence, then an additional

condition has to be introduced to obtain the property defined by Eq. (5). This is the role plays by

Eq. (4). In addition, since for θ ∈ A, ‖[Gn(θ)]−1‖ ≤ ‖[Gn(θ)]−1‖F , then Eq. (5) yields

E
{
‖[Gn]−1‖2

}
< +∞ . (6)
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2.1.2 Dispersion parameter of a random matrix in ensemble SG+

Let δ > 0 be the real parameter defined by

δ =

{
E{‖ [Gn] − [Gn] ‖2

F}
‖ [Gn] ‖2

F

}1/2

=

{
1

n
E{‖ [Gn] − [In] ‖2

F }
}1/2

, (7)

that allows the dispersion of the probability model of random matrix [Gn] to be fixed. In Ref. [29],

it is proved that the dispersion of the probability model is fixed by giving parameter δ which has to

be independent of n and which has to be such that

0 < δ <
√

(n + 1)(n + 5)−1 . (8)

If Eq. (8) does not hold, then Eq. (5) does not hold. Then the constraint defined by Eq. (8) is

important for the model.

2.1.3. Probability distribution of a random matrix in ensemble SG+

The probability distributionP[Gn] of randommatrix [Gn] is defined by a probability density function

[Gn] 7→ p[Gn]([Gn]) from +
n (!) into!+ = [0 , +∞[, with respect to themeasure (volume element)

d̃Gn on the set  S
n(!) such that (see [28] for the construction of this measure),

d̃Gn = 2n(n−1)/4 Π1≤i≤j≤n d[Gn]ij . (9)

We then have

P[Gn] = p[Gn]([Gn]) d̃Gn , (10)

with the normalization condition
∫

 
+
n (!)

p[Gn]([Gn]) d̃Gn = 1 . (11)

Probability density function p[Gn]([Gn]) is then written ([28,29]) as

p[Gn]([Gn]) = "
 

+
n (!)([Gn])×CGn

×
(
det [Gn]

)(n+1)
(1−δ2)

2δ2 × exp

{
−(n + 1)

2δ2
tr [Gn]

}
, (12)

in which "
 

+
n (!)([Gn]) is equal to 1 if [Gn] ∈  +

n (!) and is equal to zero if [Gn] /∈  +
n (!) and

where positive constant CGn
is such that

CGn
=

(2π)−n(n−1)/4
(

n+1
2δ2

)n(n+1)(2δ2)−1

{
Πn

j=1Γ
(

n+1
2δ2 + 1−j

2

)} , (13)

where Γ(z) is the gamma function defined for z > 0 by Γ(z) =
∫ +∞
0

tz−1 e−t dt. Equation (12)

shows that {[Gn]jk, 1 ≤ j ≤ k ≤ n} are dependent random variables.
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2.1.4. Characteristic function of a random matrix in ensemble SG+

For all [Θn] in  S
n(!), the characteristic function of random matrix [Gn] with values in  +

n (!) ⊂
 

S
n(!) is defined by Ψ[Gn]([Θn]) = E

{
exp(i ≪ [Θn] , [Gn]≫)

}
. We then have

Ψ[Gn]([Θn]) =

∫

 
+
n (!)

exp( i tr{[Θn] [Gn]}) p[Gn]([Gn]) d̃Gn , (14)

which ([28,29]) yields

Ψ[Gn]([Θn])=
{
det

(
[ In] − i

2δ2

n+1
[Θn]

)}−(n+1)(2δ2)−1

. (15)

If (n + 1)/δ2 is an integer, then Eq. (15) shows that the probability distribution defined by Eq. (10)

with (12) and (13) is a Wishart distribution [1,8]. In general, (n + 1)/δ2 is not an integer and

consequently, the probability distribution defined by Eq. (10) with (12) and (13) is not a Wishart

distribution.

2.1.5. Second-order moments of a random matrix in ensemble SG+

Since [Gn] = [In], the covariance CGn

jk,j′k′ of random variables [Gn]jk and [Gn]j′k′ , defined by

CGn

jk,j′k′ = E
{
([Gn]jk − [In]jk)([GAn

]j′k′ − [In]j′k′)
}

, (16)

is written [29] as

CGn

jk,j′k′ =
δ2

n+1

{
[In]j′k [In]jk′ + [In]jj′ [In]kk′

}
. (17)

In particular, the variance of random variable [Gn]jk is such that

V Gn

jk =
δ2

n+1
(1 + [In]jk) . (18)

2.1.6. Invariance of ensemble SG+ under real orthogonal transformations

Let [Φn] be any real orthogonal matrix belonging to  n(!) such that [Φn]T [Φn] = [Φn] [Φn]T =

[ In]. Let [G′
An

] be the random matrix with values in  +
n (!) defined by [G′

n] = [Φn]T [Gn] [Φn].

We then have

[Gn] = [Φn] [G′
n] [Φn]T . (19)

The probability density function p[G′

n]([G
′
n]) of random matrix [G′

n], with respect to the volume

element d̃G′
n (see Eq. (9)), is such that

p[G′

n]([G
′
n]) d̃G′

n = p[Gn]([Gn]) d̃Gn , (20)
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inwhich p[Gn]([Gn]) is defined byEq. (12). Let [Gn] and [G′
n] be such that [Gn] = [Φn] [G′

n] [Φn]T .

Since [Φn] is a real orthogonal matrix, we deduce that d̃Gn = d̃G′
n, det [Gn] = det [G′

n] and

tr [Gn] = tr [G′
n]. From Eq. (12), we deduce that

p[Gn]([Gn]) d̃Gn = p[Gn]([G
′
n]) d̃G′

n . (21)

From Eqs. (20) and (21), we deduce that

p[G′

n]([G
′
n]) d̃G′

n = p[Gn]([G
′
n]) d̃G′

n , (22)

which proves the invariance of random matrix [Gn] under real orthogonal transformations.

2.1.7. Algebraic representation of a random matrix in ensemble SG+

The following algebraic representation of random matrix [Gn] allows a procedure for the Monte

Carlo numerical simulation of randommatrix [Gn] to be defined. With this procedure, the numerical

cost induced by the simulation is a constant that depends on dimension n but that is independent of

the values of parameter δ. Random matrix [Gn] can be written as

[Gn] = [Ln]T [Ln] , (23)

in which [Ln] is an upper triangular random matrix with values in  n(!) such that:

(1) random variables {[Ln]jj′ , j ≤ j′} are independent;

(2) for j < j′, real-valued random variable [Ln]jj′ can be written as [Ln]jj′ = σnUjj′ in which

σn = δ(n + 1)−1/2 and where Ujj′ is a real-valued Gaussian random variable with zero mean and

variance equal to 1;

(3) for j = j′, positive-valued random variable [Ln]jj can be written as [Ln]jj = σn

√
2Vj in which

σn is defined above and where Vj is a positive-valued gamma random variable whose probability

density function pVj
(v) with respect to dv is written as

pVj
(v) = " +(v)

1

Γ
(

n+1
2δ2 + 1−j

2

) v
n+1

2δ2 − 1+j
2 e−v . (24)
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2.1.8. Convergence property of a random matrix in ensemble SG+ when dimension goes to infinity

It is mathematically proved [29] that E{‖ [Gn]−1‖2
F } < +∞ and therefore that E{‖ [Gn]−1‖2} <

+∞. In addition, the following fundamental property is proved,

∀n ≥ 2 , E{‖[Gn]−1‖2} ≤ Cδ < +∞ , (25)

in which Cδ is a positive finite constant that is independent of n but that depends on δ. Equation

(25) means that n 7→ E{‖[Gn]−1‖2} is a bounded function from {n ≥ 2} into  +. In [29], we

have numerically studied the convergence velocity as a function of dispersion parameter δ. Figure 1

shows the graph of function n 7→ E{‖[GAn
]−1‖2} for δA = 0.1, 0.3 and 0.5, constructed by using

Eqs. (23)-(24) and the Monte Carlo numerical simulation with 100 realizations. It can be seen that

a reasonable convergence is reached for n ≥ 20 if δ = 0.1, for n ≥ 60 if δ = 0.3 and for n ≥ 100

if δ = 0.5.

0 100 200 300 400 500 600
0

2

4

6

8

10

12

14

16

Fig. 1. Graph of function n7→E{‖[Gn]−1‖2} for δ=0.1 (square symbol), δ=0.3 (triangle symbol) and δ=0.5 (circle

symbol).

2.1.9. Probability density functions of the random eigenvalues of a random matrix in ensemble

SG+

Let Λ1, . . . , Λn be the positive-valued random eigenvalues of random matrix [Gn]. The joint

probability density function pΛ1,...,Λn
(λ1, . . . , λn) with respect to dλ1 . . . dλn of random variables

Λ1, . . . , Λn is written [28] as

pΛ1,...,Λn
(λ1, . . . , λn) = ![0,+∞[(λ1) × . . .× ![0,+∞[(λn) × C × (λ1 × . . . × λn)(n+1)

(1−δ2)

2δ2

× {Πα<β |λβ − λα|} e−
(n+1)

2δ2 (λ1+...+λn) , (26)
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in whichC is a constant of normalization defined by the equation
∫ +∞
0

. . .
∫ +∞
0

pΛ1,...,Λn
(λ1, . . . , λn)

dλ1 . . . dλn = 1. Presently, we are interested in the probability density function of each random

eigenvalue for the order statistics. Let Λ̃1 ≤ Λ̃2 ≤ . . . ≤ Λ̃n be the order statistics of the random

eigenvalues Λ1, . . . , Λn. Then, the joint probability density function p
Λ̃1,...,Λ̃n

(λ1, . . . , λn) with

respect to dλ1 . . . dλn of random variables Λ̃1, . . . , Λ̃n is written [28] as

p
Λ̃1,...,Λ̃n

(λ1, . . . , λn) =
 Sn

(λ1, . . . , λn) pΛ1,...,Λn
(λ1, . . . , λn)∫

Sn
pΛ1,...,Λn

(λ1, . . . , λn) dλ1 . . . dλn
, (27)

in which Sn is the simplex defined by

Sn = {(λ1, . . . , λn) ∈ !
n ; 0 < λ1 < . . . < λn < +∞} . (28)

The probability density function p
Λ̃j

(λj) with respect to dλj of random variable Λ̃j can then be

written as

p
Λ̃j

(λj) =

∫

except overλj

p
Λ̃1,...,Λ̃n

(λ1, . . . , λn) dλ1 . . . dλj−1dλj+1 . . . dλn . (29)

An explicit calculation of p
Λ̃j

(λj) cannot be performed. An estimation can be constructed by using

the Monte Carlo numerical simulation. Figure 2 shows the graphs of probability density functions

p
Λ̃j

for j = 1, . . . nwith δ = 0.5, n = 30 andwith 10 000 realizations in theMonte Carlo numerical

simulation. This figure shows that the dispersion of random eigenvalue Λ̃j increases with its rank

j.

−1 −0.5 0 0.5 1 1.5 2 2.5
0

2

4

6

8

10

12

14

16

18

Fig. 2. Graphs of probability density functions p
Λ̃j

for j=1,...n corresponding to the order statistics of the random

eigenvalues of random matrix [Gn].

C. Soize - Computer Methods in Applied Mechanics and Engineering (CMAME) (accepted in March 2004) 11



2.2. Ensemble SE+ of random matrices

2.2.1 Definition of ensemble SE+

The ensemble SE+ is defined as the set of the random matrices [An], defined on probability space

(A, T , P ), with values in  +
n (!), having similar properties that the properties defined by Eqs. (1),

(2) and (4), but for which

E{[An]} = [An] ∈  +
n (!) , (30)

in which the mean value of [An] is a given matrix [An] in  +
n (!). Since matrix [An] is positive

definite, there is an upper triangular matrix [LAn
] in  n(!) such that

[An] = [LAn
]T [LAn

] , (31)

which corresponds to the Cholesky factorization of matrix [An]. Consequently, ensemble SE+ is

defined as the set of matrices [An] which are written as

[An] = [LAn
]T [Gn] [LAn

] , (32)

in which matrix [Gn] is the random matrix in ensemble SG+.

2.2.2 Properties of a random matrix in ensemble SE+

Taking into account Eqs. (1) to (5), it can be deduced that random matrix [An] has the following

properties:

(1) Matrix [An] is a symmetric positive-definite real random matrix, that is to say,

[An] ∈  
+
n (!) a.s . (33)

(2) Matrix [An] is a second-order random variable,

E{‖[An]‖2
F} < +∞ . (34)

(3) The mean value of random matrix [An] is such that

E{[An]} = [An] ∈  +
n (!) . (35)

(4) Random matrix [An] is such that

E
{
‖[An]−1‖2

}
≤ E

{
‖[An]−1‖2

F

}
< +∞ . (36)
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2.2.3. Dispersion parameter of a random matrix in ensemble SE+

The dispersion is controlled by parameter δ defined by Eq. (7) and verifying Eq. (8), that we rewrite

as δA > 0, and which is such that

δA =

{
1

n
E{‖ [Gn] − [In] ‖2

F}
}1/2

. (37)

Parameter δA, which has to be independent of n and which has to be chosen such that

0 < δA <
√

(n + 1)(n + 5)−1 , (38)

allows the dispersion of the probability model of random matrix [An] to be fixed. Finally, the

algebraic representation of random matrix [An] is given by Eqs. (32) and (23)-(24).

2.2.4. Probability model of a set of random matrices in ensemble SE+

Let us consider ν random matrices [A1
n], . . . , [Aν

n] belonging to ensemble SE+. This means that

the mean values of the random matrices are known but that no information is available con-

cerning correlation tensor between two any random matrices such as [Aν
j ] and [Aν

k]. Then, ap-

plying the maximum entropy principle, it can be proved that the probability density function

([A1
n], . . . , [Aν

n]) 7→ p[A1
n],...,[Aν

n]([A
1
n], . . . , [Aν

n]) from  +
n (!)× . . .× +

n (!) into !+ with respect

to the measure (volume element) d̃A1
n × . . .× d̃Aν

n on  S
n(!) × . . .×  S

n(!) is written as

p[A1
n],...,[Aν

n]([A
1
n], . . . , [Aν

n]) = p[A1
n]([A

1
n]) × . . .× p[Aν

n]([A
ν
n]) , (39)

which means that [A1
n], . . . , [Aν

n] are independent random matrices.

2.3. Ensemble SE+0 of random matrices

The ensemble SE+0 is defined as the set of the second-order random matrices [Am], defined on

probability space (A, T , P ), with values in  +0
m (!), such that

E{[Am]} = [Am] ∈  +0
m (!) , (40)

inwhich themean value of [Am] is a givenmatrix [Am] in +0
m (!). Sincematrix [Am] is semipositive

definite, there is a rectangular matrix [LAm
] in  n,m(!) such that

[Am] = [LAm
]T [LAm

] , (41)
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in which

n = m − µrig , (42)

where µrig ≥ 1 is the dimension of the null space of [An ]. The computation of this factorization

will not be explained here but can be deduced from the usual decompositions [13]. The ensemble

SE+0 is then defined as the set of matrices [Am] which are written as

[Am] = [LAm
]T [Gn] [LAm

] , (43)

in which matrix [Gn] is the random matrix in ensemble SG+. Clearly, we have

E{‖ [Am] ‖2
F } < +∞ . (44)

The dispersion is controlled by parameter δA defined by Eq. (37) and verifying Eq. (38).

2.4. Ensembles SE+
lf and SE+

tr of random matrices

2.4.1 Definition of ensembles SE+
lf and SE+

tr

Let [Bn] 7→ f([Bn]) be a linear form on  +
n (!) with values in ]0 , +∞[. For instance f can be the

trace which is such that, for all [Bn] in  +
n (!), we have tr[Bn] > 0. More generally, linear form f

can be written as f([Bn]) = tr{[S]T [Bn] [S]} in which [S] ∈  n,ν(!) with ν ≥ 1 and where [S]

differs from the zero matrix. The ensemble SE+
lf is defined as follows. Each random matrix [ Bn]

belonging to SE+
lf is a second-order random matrix, defined on probability space (A, T , P ), with

values in  +
n (!), whose mean value is

E{[ Bn]} = [Bn] ∈  +
n (!) , (45)

and which is written as

[ Bn] = bn

1

f([ An])
[ An] , (46)

in which the random matrix [ An] with values in  +
n (!) belong to SE+ and is written as

[ An] = [Un]T [ Gn] [Un] , (47)

where [Un] is an invertible matrix in  n(!] such that

[Bn] = bn E{ 1

f([ An])
[ An]} , (48)
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and where the randommatrix [ Gn] belongs to SG+. It should be noted that, if [Un] verifies Eq. (48),

then µ [Un] verifies Eq. (48) for all real µ. In addition, the definition of SE+
lf is consistent if, for any

[Bn] given in  +
n (!), Eq. (48) has at least a solution. If f([Bn]) = tr[Bn], then SE+

lf is denoted

by SE+
tr . Since matrix [Bn] is positive definite, there is an upper triangular matrix [LBn

] in  n(!)

such that

[Bn] = [LBn
]T [LBn

] , (49)

which corresponds to the Cholesky factorization of matrix [Bn]. Consequently, random matrix

[ Bn] can be rewritten as

[ Bn] = [LBn
]T [ Hn] [LBn

] , (50)

in which the random matrix [ Hn] with values in  +
n (!) is a second-order random variable whose

mean value is

E{[ Hn]} = [ In] , (51)

and which is written as

[ Hn] = bn

1

f([ An])
[LBn

]−T [ An] [LBn
]−1 , (52)

where [ An] is defined by Eq. (47).

2.4.2 Properties of a random matrix in ensemble SE+
lf

It can easily be deduced that second-order randommatrix [Bn]with values in +
n (!)withE{[Bn]} =

[Bn] ∈  +
n (!), is such that

f([Bn]) = bn a.s , (53)

E
{
‖[Bn]−1‖2

}
< +∞ . (54)

As previously, the dispersion of random matrix [Bn] is controlled by δB such that

δB =

{
1

n
E{‖ [Gn] − [In] ‖2

F}
}1/2

, (55)

in which δB has to be independent of n and such that 0 < δB <
√

(n + 1)(n + 5)−1.
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2.4.3. Algorithm for the construction

In this subsection, we present an algorithm for constructingmatrix [U n]. We introduce the invertible

matrices [V n] and [Wn] in  n(!) such that

[V n] = [Un] [LBn
]−1 , [Wn] = [V n] [V n]T . (56)

Therefore, Eqs. (48) can be rewritten as

[Wn]−1 = bn E

{
[Gn]

f([ An])

}
, (57)

in which

[ An] = [Un]T [ Gn] [Un] , [Un] = [V n] [LBn
] . (58)

The construction of a solution [Un] of Eqs. (56)-(57) is performed with the following iterative

algorithm.

• Initialization: [W (0)
n ] = [ In].

• Calculations for iteration (j) for which matrix [W (j)
n ] is known.

1. Calculation of [V (j)
n ] such that [W (j)

n ] = [V (j)
n ] [V (j)

n ].

2. Calculation of [U (j)
n ] = [V (j)

n ] [LBn
].

3. Calculation of

[B(j)
n ] = bn E{[ A

(j)
n ]/f([ A

(j)
n ])}

[R(j+1)
n ] = bn E{[Gn]/f([ A

(j)
n ])}

with [ A
(j)
n ] = [Un]T [ Gn] [U(j)

n ].

4. Convergence test with ε(j) = ‖ [Bn] − [B(j)
n ] ‖ / ‖ [Bn] ‖ :

If ε(j) ≤ ε0 then [Un] = [U (j)
n ] and go to 8.

If ε(j) > ε0 then go to 5.

5. Calculation of [W (j+1)
n ] = [R(j+1)

n ]−1.

6. Loading [W (j+1)
n ] in [W (j)

n ].

7. Go to 1.

8. End
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2.4.4. Normalized case

We consider the normalized case defined by [Bn] = [ In] with n = 6 and f = tr. Then,

[ Bn] = [ Hn], we have bn = tr [ In] = 6 and ‖ [Bn] ‖ = 1. Three values of the dispersion

parameter are considered: δB = 0.1, 0.3 and 0.5. The convergence of the iteration algorithm for

the construction of matrix [Un] is analyzed in computing ε(j) = ‖ [Bn] − [B(j)
n ] ‖ / ‖ [Bn] ‖ as

a function of the iteration number j. Figure 3 displays the graphs of functions j 7→ log 10(ε(j))

for δB = 0.1, 0.3 and 0.5. It can be seen that for the three values of the dispersion parameter,

convergence is reached with 7 iterations with a relative error less than 10−12.

0 1 2 3 4 5 6 7 8
−16

−14

−12

−10

−8

−6

−4

−2

0

Fig. 3. Convergence of the iteration algorithm. Graphs of functions j 7→log 10(ε(j)) with ε(j)=‖ [B
n
]−[B(j)

n
] ‖ / ‖ [B

n
] ‖

for δB=0.1 (circle), δB=0.3 (triangle),δB=0.5 (square).

For δB = 0.5, matrix [Un] obtained at convergence by the iteration algorithm is written as

[Un] =




0.9992 0 0 0 0 0
−0.0023 1.0015 0 0 0 0
−0.0003 −0.0012 1.0008 0 0 0
−0.0040 0.0004 0.0020 0.9998 0 0
−0.0013 −0.0021 0.0004 −0.0024 0.9987 0
0.0004 −0.0010 0.0008 0.0011 −0.0016 0.9999




.

In this case, [Un] is a lower triangular matrix.

2.5. Ensemble SEinv of random matrices

2.5.1. Decomposition of a rectangular matrix

Let [Am,n] be a rectangular real matrix in  m,n(!) for which its null space is reduced to {0}, that
is to say such that

[Am,n] x = 0 =⇒ x = 0 . (59)
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Then, rectangular matrix [Am,n] can be written as

[Am,n] = [Um,n] [Tn] , (60)

in which the rectangular matrix [Um,n] and the symmetric square matrix [T n] are such that

[Tn] ∈  +
n (!) and [Um,n] ∈  m,n(!) such that [Um,n]T [Um,n] = [ In] . (61)

2.5.2. Construction of the decomposition of a rectangular matrix

The construction of the decomposition defined by Eq. (60) can be performed by using the singular

value decomposition [13]. Nevertheless, we give below a direct construction which is similar to the

construction used to construct the decomposition "# of a compact operator $ [14].

For a given rectangular matrix [Am,n] ∈  m,n(!) with a null space reduced to {0} (see Eq. (59)),
let [Bn] be the positive-definite square matrix such that

[Bn] = [Am,n]T [Am,n] ∈  +
n (!) . (62)

It should be noted that [Bn] is a positive-definite symmetric matrix because the null space of matrix

[Am,n] is reduced to {0}. Since [Bn] belongs to  +
n (!), matrix [Bn] is diagonalizable and can be

written as

[Bn] = [Φn] [Σn] [Φn]T , (63)

in which [Σn] ∈  +
n (!) is the diagonal matrix of the positive eigenvalues of matrix [Bn] and where

[Φn] ∈  n(!) is the matrix of the corresponding eigenvectors which is an orthogonal matrix, that

is to say such that [Φn] [Φn]T = [Φn]T [Φn] = [ In]. Consequently, [Σn]1/2 is the matrix of the

singular values of matrix [Am,n] and we define the matrix [T n] by

[Tn] = [Bn]1/2 = [Φn] [Σn]1/2 [Φn]T ∈  +
n (!) . (64)

Since matrix [T n] belongs to  +
n (!), it is invertible and the matrix [U m,n] in the decomposition

[Am,n] = [Um,n] [Tn] can then be constructed by the following equation,

[Um,n] = [Am,n] [Tn]−1 ∈  m,n(!) . (65)

The construction of the decomposition is then complete. It should be noted that [U m,n]T [Um,n] =

[Tn]−T [Am,n]T [Am,n] [Tn]−1 = [Tn]−T [Bn] [Tn]−1 = [Bn]−1/2 [Bn] [Bn]−1/2 = [ In].
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2.5.3. Definition of ensemble SEinv

Let [Am,n] be a rectangular real matrix in  m,n(!) with a null space reduced to {0} whose

decomposition (see Section 2.5.1) is

[Am,n] = [Um,n] [Tn] , (66)

in which [Um,n] ∈  m,n(!) and [Tn] ∈  +
n (!). Since symmetric matrix [T n] is positive definite,

there is an upper triangular matrix [LTn
] in  n(!) such that

[Tn] = [LTn
]T [LTn

] , (67)

which corresponds to the Cholesky factorization of matrix [T n]. A random rectangular matrix

[Am,n] belonging to the ensemble SEinv , is a randommatrix defined on probability space (A, T , P ),

with values in  m,n(!), whose mean value is

E{[Am,n} = [Am,n] ∈  m,n(!) , (68)

and which is written as

[Am,n] = [Um,n] [ Tn] , (69)

in which the matrix [Um,n] ∈  m,n(!) is such that

[Um,n]T [Um,n] = [ In] , (70)

and where the random matrix [ Tn] with values in  +
n (!) is written as

[ Tn] = [LTn
]T [Gn] [LTn

] , (71)

with [Gn] a randommatrix in ensemble SG+. Finally, from Eqs. (2), (6) and (71), it can be deduced

that

E{‖ [ Tn] ‖2} = C0 < +∞ , E{‖ [ Tn]−1 ‖2} = C1 < +∞ , (72)

in which C0 and C1 are two finite positice constants.
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2.5.4. Properties of a random matrix in ensemble SEinv

From Subsections 2.5.1 to 2.5.3, it can easily be deduced that the randommatrix [Am,n]with values

in  m,n(!), belonging to ensemble SEinv , and defined in Subsection 2.5.3, has the following

properties:

(1) Randommatrix [Am,n] is a second-order randomvariable andwe have the following inequalities,

E{‖[Am,n]‖2
F } = E{‖[Tn]‖2

F} < +∞ , (73)

0 < C2 ≤ E{‖[Am,n]‖2} ≤ C3 < +∞ , (74)

in which C2 = 1
C1

‖ [Um,n] ‖2 and C3 = C0 ‖ [Um,n] ‖2 with C0 and C1 are the constants defined

in Eq. (72).

(2) The mean value of random matrix [Am,n] is such that

E{[Am,n]} = [Am,n] ∈  m,n(!) . (75)

(3) The left pseudo-inverse [Am,n]−1ℓ ∈  n,m(!) of random rectangular matrix [Am,n] is defined

by

[Am,n]−1ℓ = { [Am,n]T [Am,n] }−1 [Am,n]T ∈  n,m(!) . (76)

Since [Am,n]−1ℓ = [ Tn]−1 [Um,n]T , we deduce that

E
{
‖ [Am,n]−1ℓ ‖2

}
≤ C1 ‖ [Um,n]T ‖2 < +∞ , (77)

in which C1 is the constant defined in Eq. (72).

(4) As previously, the dispersion of random matrix [Am,n] is controlled by δA such that

δA =

{
1

n
E{‖ [Gn] − [In] ‖2

F}
}1/2

, (78)

in which δA has to be independent of n and such that 0 < δA <
√

(n + 1)(n + 5)−1.

3. Foundations of the nonparametric probabilistic approach of random uncertainties in

mechanical systems

In this part, we explain the main ideas and the foundations of the nonparametric probabilistic

approach of data uncertainties and model uncertainties in mechanical systems.
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3.1. Mathematical-mechanical modeling of a physical mechanical system

Let us consider a Physical Mechanical System (PMS). This means that the PMS is the mechanical

system for which a predictive model has to be constructed. The mathematical-mechanical modeling

of this PMS leads us to a Boundary Value Problem (BVP). The weak formulation of such a BVP

introduces several linear operators (such as the mass, damping and stiffness operators of a fixed

elastic system occupying a three-dimensional bounded domain). Let  0 be one of these operators

which is assumed to be an unbounded operator in a real Hilbert space ! and having an inverse in

!. By assumption, the unknown field of this BVP is with values in an admissible space " which is

a Hilbert space such that " ⊂ !. It is assumed that the functions belonging to admissible space "

can reasonably approximate any state of the PMS. Let  exp be the operator corresponding to  0 for

the PMS. This operator is unknown.Only an ”approximate” model  0 of  exp can be constructed.

3.2. Mean reduced model

The reduced model is deduced from the BVP by using the Ritz-Galerkin projection on a finite

dimension subspace !n of ". Let {φα}α≥1 be an Hilbertian basis in ! whose functions φα are

in space ". Then !n is spanned by {φ1, . . . , φn} (for instante the eigenmodes). Therefore, the

projection of operator  0 on !n is represented by the real square matrix [A0,n] in #n($). The

mean reduced model is defined as the reduced model constructed by using the nominal values of

the parameters. Matrix [A0,n] corresponding to the nominal mean reduced model is rewritten as

[A0,n].

3.3. Updating the mean reduced model using experimental data

Let [Aexp,n] be the matrix of the projection of  exp on !n (that is to say using the Hibertian

basis {φα}α≥1). Therefore, [Aexp,n] is a matrix in #n($) which is assumed to be experimentally

identified (indirect experimental identification). The biais [B0,n] between the PMS and the mean

reduced model is defined by [B0,n] = [A0,n] − [Aexp,n]. For complex system, it is difficult to

develop an accurate predictive model and consequently, the norm ‖ [B0,n] ‖ of biais [B0,n] is not

small. Therefore, the biais has to be reduced in updating the nominal parameters of the model.

The model updating yields the updated matrix [An ] in #n($) of nominal matrix [A0,n]. The biais

[Bn] = [An] − [Aexp,n] has a norm ‖ [Bn] ‖ < ‖ [B0,n] ‖ which is generally not sufficiently small.
Then, a probabilistic model of uncertainties has to be introduced.
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3.4. Parametric probabilistic approach

The parametric probabilistic model consists in introducing random variables and stochastic fields as

parameters in the BVP in order to model data uncertainties. The statistical reduction methods (such

as the truncated Karhunen-Loeve of stochastic fields (see for instance [12])) allow the stochastic

reduced model to be constructed. In such a stochastic reduced model, [An] becomes a random

matrix [An(X)] in which X is an  m-valued random variable whose support Dm of its probability

measure (probability distribution) PX is such that Dm ⊂  m and where x 7→ [An(x)] is a mapping

from  
m into !n( ). Clearly, the range of mapping x 7→ [An(x)] is a subset "par,n of "n such that

"par,n ⊂ "n ⊂ !n( ) , (79)

in which "n is a subset of !n( ) for which any matrix in "n is assumed to be invertible in order

to simplify the developments. For instance, subset "n will be "n = !+
n ( ). It should be noted

that, if it can be assumed that [Aexp,n] is surely in "n, then due to random uncertainties, [Aexp,n] is

generally not in "par,n. Let [Apar,n] be the random matrix with values in !n( ) corresponding to

the parametric probabilistic model of data uncertainties and defined by

[Apar,n] = [An(X)] . (80)

Then, the mean-square error between the parametric probabilistic model of random uncertainties

and the experimental data is given by

E{ ‖ [Apar,n]−1 − [Aexp,n]−1 ‖2} =

∫

Dm

‖ [An(x)]−1 − [Aexp,n]−1 ‖2PX(dx)

=

∫

 par,n

‖ [an]−1 − [Aexp,n]−1 ‖2 Ppar(d̃an) , (81)

in which d̃an is the volume element on set "par,n and where Ppar is the probability measure on

"par,n defined as the image of PX on Dm by the mapping x 7→ [ An(x)] and which is such that

E{‖ [ Apar,n]−1 ‖2} =

∫

Dm

‖ [An(x)]−1 ‖2PX(dx) =

∫

 par,n

‖ [an]−1 ‖2 Ppar(d̃an) < +∞ .

(82)

In general, Dm and probability measure PX on Dm are given. Due to the model uncertainties, the

mean-square error defined by Eq. (81) is generally not sufficiently small.
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3.5.Introduction of the nonparametric probabilistic approach

The problem is then to introduce a nonparametric probabilistic approach of data and model un-

certainties allowing the mean-square error defined by Eq. (81) to be reduced. The nonparametric

probabilistic approach of random uncertainties consists in substituting random matrix [Apar,n] by a

random matrix [Anonpar,n] such that

E{[Anonpar,n]} = [An] , E{‖ [ Anonpar,n]−1 ‖2} < +∞ . (83)

The probability measure Pnonpar on  n of random matrix [Anonpar,n] is then directly constructed

by using the random matrix theory (see Section 2). Then, the mean-square error between the

nonparametric probabilistic model of random uncertainties and the experimental data is given by

E{ ‖ [Anonpar,n]−1 − [Aexp,n]−1 ‖2} =

∫

 n

‖ [an]−1 − [Aexp,n]−1 ‖2 Pnonpar(d̃an) , (84)

in which d̃an is the volume element on set  n.

3.6.Capability of the nonparametric probabilistic approach

Since par,n ⊂  n, we can takePnonpar = Ppar in which the support of probabilitymeasure is par,n.

In this case, we have [Anonpar,n] = [Apar,n] which proves that the nonparametric model has the

capability to take into account data uncertainties. In addition, since the support ofPnonpar is  n with

 par,n ⊂  n, the nonparametric model allows a larger class of random matrices to be constructed

and consequently, has, a priori, the capability to take into account the model uncertainties.

S
n

Experimental

par,n
S

Fig. 4. Set  par,n of the values of random matrices [Apar,n] for the parametric approach, set  n of values of random matrices

[Anonpar,n] for the nonparametric approach, set of matrices [Aexper,n] for experimental physical system.

For instance, let us assume that themodel uncertainties are sufficiently high for that [Aexp,n] 6∈  par,n

but, as we explained above, we have [Aexp,n] ∈  n with  par,n ⊂  n (see Fig. 4). Equation (81)
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shows that the mean-square error cannot be reduced even if probability measure Ppar could be

arbitrary chosen. On the other hand, since [Aexp,n] belongs to  n, Eq. (84) shows that there are

probability measures Pnonpar on  n which allow the mean-square error to be reduced. For instance,

if δ0 is theDiracmeasure on!n("), then the probabilitymeasurePnonpar(d̃an) = δ0([an]−[Aexp,n])

leads the error to be zero because [Aexp,n] belongs to  n. Of course, Pnonpar cannot be arbitrary

chosen on n but has to be constructed using thematrix theory introduced in Section 2. Consequently

and intuitively, there is a probability measure Pnonpar on  n verifying the properties defined by

Eq. (83), such that

∫

 n

‖ [an]−1 − [Aexp,n]−1 ‖2 Pnonpar(d̃an) <

∫

 par,n

‖ [an]−1 − [Aexp,n]−1 ‖2 Ppar(d̃an) , (85)

which means that

E{ ‖ [Anonpar,n]−1 − [Aexp,n]−1 ‖2} < E{ ‖ [Apar,n]−1 − [Aexp,n]−1 ‖2} . (86)

4. Nonparametric model of random uncertainties for linear and nonlinear transient dynamics

In this part, for complex dynamical systems,we summarize the nonparametric probabilistic approach

of data uncertainties and model uncertainties, that we introduced in [27-33] and for which the

foundations have been given in Section 3. The continuous aspects are presented in [29]. In order to

limit the developments, the presentation will be limited to the discrete cases.

4.1. Introduction of the mean finite element model

We consider a nonlinear dynamic system constituted of a three-dimensional damped fixed structure

around a static equilibrium configuration considered as a natural state without prestresses and

subjected to an external load. The basic finite element model of this nonlinear dynamic system is

called the “mean finite element model” (the underlined quantities refer to this “mean finite element

model”) and leads to the following nonlinear differential equation,

[! ] ÿ(t) + [# ] ẏ(t) + [$ ] y(t) + fNL(y(t), ẏ(t)) = f(t) , (87)

in which y = (y
1
, . . . , y

m
) is the unknown time response vector of the m DOFs (displace-

ments and/or rotations); ẏ and ÿ are the velocity and acceleration vectors respectively; f(t) =
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(f1(t), . . . , fm(t)) is the known external load vector of them inputs (forces and/or moments); [ ],

[! ] and [" ] are the mass, damping and stiffness matrices of the linear part of the model, which

are positive-definite symmetric (m×m) real matrices; (y, z) 7→ fNL(y, z) is a nonlinear mapping

from #
m× #

m into #m modeling additional nonlinear damping and restoring forces such that

fNL(0, 0) = 0. The linear case can be derived from Eq. (87) in taking fNL = 0.

4.2. Introduction of the mean reduced model

The generalized eigenvalue problem associated with the mean mass and stiffness matrices of

the mean finite element model is written as [" ] = λ [ ] . Since [" ] is a positive-definite

matrix, we have 0 < λ1 ≤ λ2 ≤ . . . ≤ λm and the associated elastic modes { 
1
, 

2
, . . .} are

such that < [ ] 
α
, 

β
>= µ

α
δαβ and < [" ] 

α
, 

β
>= µ

α
ω2

α δαβ in which ωα =
√

λα is the

eigenfrequency of elastic mode 
α
whose normalization is defined by the generalized mass µ

α
. The

mean reduced model of the dynamic systemwhose mean finite element model is defined by Eq. (87)

is obtained in constructing the projection of the mean finite element model on the subspace Hn of

#m spanned by { 
1
, . . . , 

n
}with n ≪ m. Let [ Φn] be the (m×n) real matrix whose columns are

vectors { 
1
, . . . , 

n
}. The generalized force Fn(t) is an #n-vector such that Fn(t) = [ Φn]T f(t).

The generalized mass, damping and stiffness matrices [ Mn], [ Dn] and [ Kn] are positive-definite

symmetric (n× n) real matrices such that [ Mn]αβ = µ
α

δαβ , [ Dn]αβ =< [! ] 
β
, 

α
> and

[ Kn]αβ = µ
α

ω2
α δαβ , in which, generally, [ Dn] is a full matrix. Consequently, the mean reduced

model of the nonlinear dynamic system is written as the projection yn of y on Hn can be written

as yn(t) = [ Φn] qn(t) in which the vector qn(t) ∈ #n of the generalized coordinates verifies the

mean nonlinear differential equation,

[ Mn] q̈
n(t) + [ Dn] q̇

n(t) + [ Kn] qn(t) + Fn
NL(q

n(t), q̇
n(t)) = Fn(t) , ∀t ≥ 0 , (88)

where, for all q and p in #n,

Fn
NL(q, p) = [ Φn]T fNL([ Φn] q, [ Φn] p) . (89)

4.3. Nonparametric probabilistic approach of random uncertainties

The principle of construction of the nonparametric probabilistic approach of random uncertainties

for the linear and nonlinear dynamic systems whose mean finite element model is defined by
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Eq. (87), is given in Section 3. It consists in substituting the generalized mass, damping and

stiffness matrices of the mean reduced model (see Eq. (88)) by random matrices [Mn], [Dn] and

[Kn]. If the nonlinear forces are uncertain, a usual parametric model can be used for these nonlinear

forces. In this case, a nonparametric-parametric mixed formulation can be constructed (see [5]).

The construction of the probability model of random matrices [Mn], [Dn] and [Kn] defined on

probability space (A, T ,P), is based on the available information deduced from the fundamental

properties of a dynamical system and from additional properties required in order that a second-

order stochastic solution exists (see [27,28]). It can then be deduced that random matrices [Mn],

[Dn] and [Kn] have to be such that

[Mn] , [Dn] , [Kn] ∈  
+
n (!) a.s. , (90)

E{[Mn]} = [ Mn] , E{[Dn]} = [ Dn] , E{[Kn]} = [ Kn] , (91)

E
{
‖[Mn]−1‖2

F

}
< +∞ , E

{
‖[Dn]−1‖2

F

}
< +∞ , E

{
‖[Kn]−1‖2

F

}
< +∞ , (92)

Since matrices [Mn], [Dn] and [Kn] are in  +
n (!), there are upper triangular matrices [LMn

],

[LDn
] and [LKn

] in  n(!) such that

[Mn] = [LMn
]T [LMn

] , [Dn] = [LDn
]T [LDn

] , [Kn] = [LKn
]T [LKn

] . (93)

From Sections 2.2.2 and 2.2.4, we deduce that random matrices [Mn], [Dn] and [Kn] have to be

in ensemble SE+ and are independent, each one being a random matrix for which the probability

model in defined in Section 2.2.1. Consequently, we have (see Eqs. (30)-(32)),

[Mn] = [LMn
]T [GMn

] [LMn
] , [Dn] = [LDn

]T [GDn
] [LDn

] , [Kn] = [LKn
]T [GKn

] [LKn
] ,

(94)

in which random matrices [GMn
], [GDn

] and [GKn
] are in ensemble SG+ defined in Section 2.1.

The parameters δM , δD and δK allowing the dispersion of random matrices [Mn], [Dn] and [Kn] to

be controlled are defined by Eq. (37) and have to verify Eq. (38). The probability distribution of each

random matrix [GMn
], [GDn

] or [GKn
] is defined in Section 2.1.3 and its algebraic representation

is defined in Section 2.1.7.

The stochastic transient response of the nonlinear dynamic system with the nonparametric proba-

bilistic approach of random uncertainties, whose mean reduced model is defined by Eq. (88), is the
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stochastic process Yn(t), indexed by  +, with values  m, such that Yn(t) = [ Φn] Qn(t) in which

the stochastic process Qn(t), indexed by  +, with values  n, is such that

[Mn] Q̈n(t) + [Dn] Q̇n(t) + [Kn] Qn(t) + Fn
NL(Q

n(t), Q̇n(t)) = Fn(t) , ∀t ≥ 0 , (95)

with the initial conditions, Qn(0) = 0 and Q̇n(0) = 0.

4.4. Stochastic solution as a second-order stochastic process

For any T > 0, it is proved (see [30]) that, under reasonable assumptions concerning the nonlinear

damping and restoring forces, and if
∫ T

0
‖f(t)‖2dt < +∞, then for all t in [0 , T ], we have

E{‖Yn(t)‖2} ≤ C1 < +∞ , E{‖Ẏn(t)‖2} ≤ C2 < +∞ . (96)

in which C1 and C2 are positive constants that are independent of n and t.

4.5. Construction of the stochastic solution

The stochastic solution of Eq. (95) is constructed using the Monte Carlo numerical simulation, the

realizations of random matrix [An], in which [An] represents random matrices [Mn], [Dn] or [Kn],

being constructed by using Eqs. (94) and (23) with properties defined in Section 2.1.7. It should be

noted that the numerical cost is lowwith such a method because Eq. (95) corresponds to a stochastic

reduced model with n ≪ m.

4.6. Example of transient response of a nonlinear stochastic dynamical system

In this section, we consider the stochastic transient response of the nonlinear dynamical system

studied in [28], corresponding to Eq. (95) and that we present herein below as a simple example

for illustrating the nonlinar case. A much more complex dynamical system is analyzed in [5]).

The nonlinear dynamical system under consideration is defined in Figure 5 and is composed of a

linear thin plane in bending mode with a nonlinearity due to a nonlinear restoring force induced

by two stops modeled by high stiffness symmetric barriers which limit the vibration amplitudes

of the plate. The plate is rectangular, homogeneous, isotropic, in bending mode, with constant

thickness 4 × 10−4 m, width 0.40 m, length 0.50 m, mass density 7800 kg/m3, Young’s modulus

2.1 × 1011 N/m2 and Poisson ratio 0.29 . This plate is simply supported on 3 edges and free on

the fourth edge corresponding to x2 = 0. To this plate are attached one point mass having a mass
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of 4 kg and one spring having a stiffness coefficient k = 2.388 × 107 N/m. Consequently, the

dynamical system is not homogeneous. The two stops are located at the free edge. The plate is free

between the stops [−0.002 , 0.002] m and the stiffness of the two symmetric barriers is 25000 N/m.
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Point mass

1
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impulsive
load

External

Simply supported edge

supported
Simply

edge

Free edge x
0.06

0.15

0.23edge
supported

Simply

x
3

x
2

0.31

0.21

0.15

Fig. 5. Geometry of the nonlinear dynamical system

The mean finite element model of the plate is composed of 2000 four-node square plate finite

elements and there are m = 6009 degrees of freedom. The eigenfrequencies calculated with the

mean finite element model of the linear plate without the stops are such that ν1 = 1.94, ν2 = 10.28,

ν3 = 15.47, . . ., ν8 = 53.5, ν9 = 66.1, ν10 = 68.9, . . ., ν30 = 198.3, ν31 = 206.0, ν32 = 208.9,

. . ., ν50 = 330.9, ν51 = 336.3, . . ., ν100 = 670.8, ν120 = 817.6Hz. The excitation is an impulsive

load defined in Figure 5 whose impulse function is defined in Figure 6.
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Fig. 6. Graph of wave impulse function as a function of time
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The main part of the energy of this impulse function is distributed over the [0 , 60] Hz frequency

band in which there are 8 elastic modes for the associated linear underlying dynamical system. The

damping matrix [ ] of the mean finite element model is written as [ ] = a [! ] + b [" ] in which

a and b are defined by a = 2 ξ Ωmax Ωmin/(Ωmax + Ωmin), b = 2 ξ/(Ωmax + Ωmin) in which ξ = 0.04,

Ωmin = 2π×2 rad/s and Ωmax = 2π×100 rad/s. Below, we are interested in the normalized

response spectrum with respect to g = 9.81 m/s2, over the [1 , 200] Hz frequency band and for the

observationDOF corresponding to the normal displacement of the mesh node located at coordinates

x1 = 0.37, x2 = 0.15. The dispersion parameters for the random generalized mass, damping and

stiffness matrices are δM = δD = δK = 0.2. The nonlinear transient response of the dynamical

system with random uncertainties is calculated by using the Monte Carlo numerical simulation

method with 500 realizations. For given generalized mass, damping and stiffness matrices , the

nonlinear evolution problem defined by Eq. (95) is solved by using the Newmark implicit step-by-

step integration scheme and an additional numerical iteration procedure for solving the nonlinear

algebraic equations at each time step. The value of the time-step size is ∆t = 1/2000 s and the

number of time steps is 8000. Convergence with respect to the dimensionn of the reducedmodel can

be analyzed in studying the function n 7→ |||Qn||| in which |||Qn||| =
{

E{
∫ T

0
‖Qn(t)‖2 dt

}1/2

is the mean-square norm. Using the usual estimation of the mathematical expectation operator E,

convergence with respect to the dimension n and the number ns of realizations used in the Monte

Carlo numerical method, is studied by constructing the following function,

Conv(ns, n) =

{
1

ns

ns∑

k=1

∫ T

0

‖Qn(t, θk)‖2 dt

}1/2

. (97)

Figure 7 displays the graphs of functions ns 7→ log10{ Conv(ns, n)} from {1, 2, . . . , 500} into #,
for n = 10, 20, 30, 50, 100. Convergence with respect to n and ns is obtained for n = 50 and

ns = 300. Figure 8 corresponds to the transient response of the nonlinear dynamical system with

random uncertainties. This figure corresponds to the base 10 logarithm of the random normalized

response spectrum for the considered observation (vertical axis) as a function of the base 10

logarithm of the frequency in Hertz for the [1 , 200] Hz frequency band. The mid irregular thin solid

line represents the deterministic response of the mean finite element model. The mid smoothed thin

solid line represents the mean value of the model with random uncertainties. The lower and upper

thick solid lines represent the lower and upper envelopes of the confidence region corresponding to

a probability level of 0.95; this confidence region is estimated by using the Chebychev inequality.
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The lower and upper thin solid lines correspond to the extreme value statistics. It can be seen that

the confidence region gives a good estimation of the extreme value statistics.

0 50 100 150 200 250 300 350 400 450 500
0.76

0.78

0.8

0.82

0.84

0.86

0.88

Fig. 7. Convergence in the nonlinear case. Graphs of functions ns 7→log10{Conv(ns,n)} for n=10,20 and 30 (three upper

thin solid lines, for n=50 (lower thin solid line) and for n=100 (lower thick solid line).
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Fig. 8. Random normalized response spectrum in dB versus frequency in Hertz (log scale). Deterministic response of the

mean model (mid irregular thin solid line). Mean value of the model with random uncertainties (mid smoothed thin solid

line). Lower and upper envelopes of the confidence region (lower and upper thick solid lines). Extreme value statistics

(lower and upper thin solid lines).

For the underlying linear dynamical system, since the energy of the impulse input is concentrated

in the [0, 60]Hz frequency band and since there are 8 eigenfrequencies in this frequency band,
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then the dynamics of the transient output is modal type and is concentrated in the same [0, 60]Hz

frequency band. For the nonlinear dynamic system, the energy of the impulse input, which is always

concentrated in the [0, 60]Hz frequency band, is spread out over the [0, 200]Hz broad frequency

band due to the nonlinearity in the dynamical system. This energy is sufficient for exciting the

eigenmodes whose eigenfrequencies belong to the [60, 200]Hz frequency band. These modes are

sensitive to random uncertainties and it should be noted that the size of the confidence region

increases in the [60, 200]Hz frequency band when frequency is increasing. This means that, for the

nonlinear dynamic system studied in the example presented, the role plays by random uncertainties

increases in the upper part of the frequency band which is not directly excited by the impulse input.

4.7. Example of transient response of a linear stochastic dynamical system with non homogeneous

random uncertainties and experimental comparison
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Fig. 9. Geometry of the linear dynamical system
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In this section, we present an example devoted to the transient response of a linear stochastic

dynamical system with non homogeneous random uncertainties. A comparison with experimental

results is given. All the numerical and experimental results are taken from [6]. The design, the

geometry, the dimensions of the plates and of the complex joint, the thicknesses of the plates, the

excitation and observation points of the linear dynamical system are defined in Figure 9. This

dynamical system is constituted of two Dural plates connected together through a complex joint

constituted of 2 smaller Dural plates tightened by 2 lines of 20 bolts. Uncertainties in plates

1 and 2 are very low. In opposite, uncertainties in the complex joint are very high. This is the

reason why uncertainties in this dynamical system are non homogeneous. The methodology used for

implementing the nonparametric probabilistic approach of random uncertainties in such a dynamical

system consists in using a dynamic substructuring method [4], for which every substructure gets

its own uncertainty level which is described by using the nonparametric probabilistic approach

presented in Section 3 (for the details, see [6]). This dynamical system is in free-free conditions

and is excited in bending modes by an impulsive load which is a point force over the [1000 , 1200]

Hz frequency band, applied to node 5 in plate 2(see Figure 9) and whose experimental signals in

frequency and in time domains are displayed in Figure 10.
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Fig. 10. Impulsive load defined as a point force applied to node 5: frequency domain representation (top figure), time

domain representation (down figure).
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Concerning the mean mechanical model, plates 1 and 2 are modeled by homogeneous isotropic thin

plates with 0.003m and the complex joint is modeled by an equivalent homogeneous orthotropic

thin plate with thichness 0.007m. The mean finite element model of each substructure (plate 1,

plate 2 and complex joint) is represented by a uniform finite element model of 4 nodes thin plates

elements with 6222 DOFs for plate 1, 8052 DOFs for plate 2 and 2745 DOFs for the complex joint,

e.g. a total amount of more than 16000 DOFs. The computation of the global-dynamical-system

eigenfrequencies with the mean finite element model yields 65 eigenfrequencies below 1000 Hz

and 13 eigenfrequencies in [1000 , 1200] Hz frequency band. The updating of the first 3 elastic

modes of the mean finite element model with the experimental results has been performed using

the elastic parameters of the orthotropic model of the equivalent plate modeling the complex joint.

The damping ratios of the mean finite element model, deduced from the measurements, is 0.0021.

Let δM , δD and δK be the dispersion parameters of the nonparametric probabilistic approach

for mass, damping and stiffness uncertainties of each substructure (plate1, plate 2 and complex

joint). The mass of the mean model has been updated with experiments and consequently, there

are practically no mass uncertainties in each substructure. Consequently, the mass dispersion

parameters for plates 1 and 2 are such that δplates
M = 0 and for the complex joint is such that

δCJ
M = 0. In order to evaluate the role played by the non homogeneity of damping and stiffness

uncertainties through the three substructures, which are assumed to be larger in the complex joint

than in plates 1 and 2, a sensitivity analysis with respect to the dispersion parameters has been

carried out. Since the impulsive load excites the superior elastic modes belonging to [1000 , 1200]

Hz frequency band, the damping and stiffness model uncertainties are not zero for plates 1 and 2.

Finally, the results displayed below correspond to the following values of the damping and stiffness

dispersion parameters for plates 1 and 2: δplates
D = 0.3 and δplates

K = 0.15, and for the complex

joint: δCJ
D = 0.8 and δCJ

K = 0.8.

The experimental data base is made with 29 accelerometers for 21 experimental configurations

corresponding to 21 random distributions of bolt-prestresses having the same mean values. The

experimental results are expressed in terms of Shock Response Spectra (SRS) calculated for the

acceleration reponses, normalized with respect to g = 9.81m.s−2 and denoted by s(ω) with a fixed

damping ratio 0.001. For a given observation, the results given by the nonparametric probabilistic

approach of random uncertainties are displayed by an SRS confidence region described with an

upper (S+(ω)) and a lower (S−(ω)) envelope of the SRS related to a given probability level
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Pc = 0.95. Let m1(ω) = E{s(ω)}, m2(ω) = E{s2(ω)} and σ(ω) =
√

m2(ω) − m2
1(ω)

be the moments estimated by the usual mathematical statistics. Three curves are defined: (1)

S0(ω) = 10 log10(m1(ω)), which is related to the mean function of the stochastic response,

(2) S+(ω) = 10 log10

(
m1(ω) + σ(ω)√

1−Pc

)
, which is the the upper envelope of the SRS, and (3)

S−(ω) = 2 S0(ω) − S+(ω), which is the lower envelope of the SRS. The calculations are carried

out using 1000 realizations in the Monte-Carlo numerical method. A convergence analysis with

respect to the dimension of the reduced stochastic model of each substructure has been performed.

The results presented below correspond to dimensions n1 = 50 for plate 1, n2 = 67 for plate 2 and

nCJ = 8 for the complex joint. For observation 2 located in plate 1 while the excitation is applied in

plate 2 (see Figure 9), Figure 11 shows the experimental SRS compared with the confidence region

constructed with nonparametric probabilistic approach. The thick dashed line represents the mean

model. The solid lines are relative to the 21 experimental configurations. The gray region is the

95% confidence region of the stochastic response, computed with the nonparametric probabilistic

approach of random uncertainties.
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Fig. 11. Shock Response Spectrum at observation point 2 in plate 1 with a point force excitation applied in plate 2.

The comparison of the developed probabilistic model with the experiments shows the capability

of the nonparametric probabilistic approach to predict the shock-induced transient response in the
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medium-frequency ranges. In spite of a rather large number of DOFs used in the mean finite element

model, significant errors appear between experiment and numerical prediction although the mean

finite element model of the complex joint has been updated using experiments (compare the dashed

line with the solid lines in Figure 11). These errors are mainly due to the simplified model used

for modeling the complex joint, that is to say, are due to model uncertainties mainly located in the

complex joint.

5. Identification of the dispersion parameters of the nonparametric probabilistic approach

for linear dynamical systems with data uncertainties and model uncertainties

In this section, we present a methodology for the experimental identification of the dispersion

parameters of the nonparametric probabilistic approach in linear structural dynamics.

5.1. Experimental modal analysis

Let us consider r realizations S(θ1), . . . ,S(θr) of a complex structure S. The modal properties of
each realization S(θα) are experimentally identified by using the usual experimental modal analysis

[7,18]. Letmin be the number ofmeasuredDOFs andmout be the number of excitedDOFswhich are

assumed to be the same for all the realizationsS(θ1), . . . ,S(θr). The Frequency Response Function

(FRF) [hexp(ω, θα)] of the MIMO system with the min inputs and the mout outputs associated with

structure S(θα) is experimentally identified over the frequency band B =]0 , ωmax],

B −→  mout,m in(!) : ω 7→ [hexp(ω, θα)] . (98)

From the measured FRF ω 7→ [hexp(ω, θα)] identified over frequency band B, the experimental

modal analysis allows the following information to be constructed:

1. The n first eigenfrequencies 0 < ωexp
1 (θα) ≤ . . . ≤ ωexp

n (θα) of the elastic modes lying in

frequency band B.

2. The matrix [Ψexp
n (θα)] ∈  mout,n(") of the n elastic modes of vibration associated with the n

first eigenfrequencies ω
exp
1 (θα), . . . , ω

exp
n (θα).

3. The diagonal matrix [M̃ exp
n (θα)] ∈  +

n (") of the generalized masses such that [M̃ exp
n (θα)]jk =

µ̃
exp

k (θα) δjk in which µ̃
exp

k (θα) is the generalized mass of elastic mode k and where δkk = 1 and

δjk = 0 for j 6= k.
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4. The diagonal matrix [K̃
exp
n (θα)] ∈  +

n (!) of the generalized stiffnesses such that [K̃
exp
n (θα)]jk =

µ̃exp
k (θα) ωexp

k (θα)2 δjk.

5. The matrix [D̃
exp
n (θα)] ∈  +

n (!) of the generalized dampings. In general, this matrix is

not diagonal but is full. If the diagonal terms are only experimentally identified, then we have

[D̃exp
n (θα)]jk = 2 ξ̃expk (θα) µ̃exp

k (θα) ωexp
k (θα) δjk, in which ξ̃expk (θα) is the modal damping rate of

elastic mode k.

Finally, from the experimental modal analysis perfomed for each structure S(θα), it can be deduced

the experimental reduced matrices,

[M̃ exp
n (θα)] ∈  +

n (!) , [D̃exp
n (θα)] ∈  +

n (!) , [K̃exp
n (θα)] ∈  +

n (!) , (99)

relative to the "n-valued vector of the experimental generalized coordinates Q̃exp(ω, θα) such that

Zexp(ω, θα) ≃ [Ψexp
n (θα)] Q̃exp(ω, θα)

= [hexp(ω, θα)] fexp(ω) , (100)

in which Zexp(ω, θα) ∈ "
mout is the frequency response of the mout output DOFs induced by the

complex vector fexp(θα) ∈ "m in of the min input DOFs, and where vector Q̃exp(ω, θα) has to verify

the following matrix equation,

(−ω2 [M̃ exp
n (θα)] + iω [D̃exp

n (θα)] + [K̃exp
n (θα)]) Q̃exp(ω, θα) = Fexp(ω, θα) , (101)

with Fexp(ω, θα) = [Ψ
exp
n (θα)]T fexp(ω) is the "n-valued vector of the experimental generalized

forces.

5.2. The mean finite element model

In the frequency domain, the mean reduced model of structure S constructed from its mean finite

element model (see Section 4.2) is written as

y(ω) = [Φn] q(ω) , (102)

in which y(ω) ∈ "m is the complex vector of them DOFs of the mean finite element model, where

q(ω) ∈ "n is the complex vector of the n generalized coordinates of the mean reduced model and

where [Φn] ∈  m,n(!) is the matrix of the n elastic modes of vibration associated with the n first
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eigenfrequencies 0 < ω1 ≤ . . . ≤ ωn and which are computed with the mean finite element model.

Vector q(ω) has to verify the following matrix equation

(−ω2 [ Mn] + iω [ Dn] + [ Kn]) q(ω) = Fn(ω) , ∀ω ∈ B , (103)

in which Fn(ω) ∈  n is the complex vector of the generalized external forces and where the mean

reduced matrices [ Mn], [ Dn] and [ Kn] are such that

[ Mn] ∈ !+
n (") , [ Dn] ∈ !+

n (") , [ Kn] ∈ !+
n (") . (104)

It should be noted that the number m of DOFs of the mean finite element model is such that

m ≫ mout and m ≫ n.

5.3. Nonparametric probabilistic model

The nonparametric probabilistic model of random unceratinties associated with the mean reduced

model defined by Eqs. (102) to (104) is constructed as explained in Section 4.3 and is then written

as

Y(ω) = [Φn] Q(ω) , (105)

(−ω2 [Mn] + iω [Dn] + [Kn]) Q(ω) = Fn(ω) , ∀ω ∈ B , (106)

in which the random reduced matrices with values in !+
n (") are written as

[Mn]=[LMn
]T [GMn

][LMn
] , [Dn]=[LDn

]T [GDn
][LDn

] , [Kn]=[LKn
]T [GKn

][LKn
] , (107)

where random matrices [GMn
], [GDn

] and [GKn
] are in ensemble SG+ defined in Section 2.1 and

where the upper triangular matrices [LMn
], [LDn

] and [LKn
] in !n(") are such

[Mn] = [LMn
]T [LMn

] , [Dn] = [LDn
]T [LDn

] , [Kn] = [LKn
]T [LKn

] . (108)

The probability distribution of each random matrix [GMn
], [GDn

] or [GKn
] is defined in Section

2.1.3 and its algebraic representation is defined in Section 2.1.7. These probability distributions

depends on the dispersion parameters δM , δD and δK which are defined by Eq. (37) and which are

the parameters which have to be identified using the experimental data.
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5.4. Transformation of the experimental reduced matrices

In order to identify the dispersion parameters δM , δD and δK of the nonparametric probabilistic

model using experimental data, we have to construct experimental realizations of random reduced

matrices [Mn], [Dn] and [Kn]. It should be noted that experimental realizations [M̃ exp
n (θα)],

[D̃
exp
n (θα)] and [K̃

exp
n (θα)] cannot directly be used as realizations of random reduced matrices [Mn],

[Dn] and [Kn] because these two sets of matrices do not correspond to the same basis (i.e. to

the same generalized coordinates). We then have to transform the experimental reduced matrices

utilizing an adapted change of basis in order to get experimental realizations of the random reduced

matrices.

The  m-valued random vector Y(ω) of the DOFs of the stochastic dynamical system is defined

by Eq. (105). If all these m DOFs were measured, then the  m-valued vector Yexp(ω, θα) could

be measured for each realization S(θα) of structure S. In point of fact, only a small number of

DOFs can be measured and this is the  mout -valued vector Zexp(ω, θα) introduced in Eq. (100) with

m ≫ mout. Consequently, there is a matrix [P ] ∈ !mout,m(") constituted of 0 and 1 such that

Zexp(ω, θα) = [P ] Yexp(ω, θα) . (109)

Taken into account Eq. (105), the vector of the generalized coordinates associated with Yexp(ω, θα)

is then Qexp(ω, θα) ∈  
n such that

Yexp(ω, θα) = [Φn] Qexp(ω, θα) . (110)

Substituting Eq. (110) into Eq. (109) yields

Zexp(ω, θα) = [P ] [Φn] Qexp(ω, θα) . (111)

From Eqs. (100) and (111), we deduced that

[Ψexp
n (θα)] Q̃exp(ω, θα) = [P ] [Φn] Qexp(ω, θα) . (112)

By construction, the matrix [Ψexp
n (θα)]T [Ψexp

n (θα)] ∈ !n(") is invertible. Introducing the left

pseudo-inverse
(
[Ψexp

n (θα)]T [Ψexp
n (θα)]

)−1
[Ψexp

n (θα)]T ∈ !n, mout(") of [Ψexp
n (θα)] ∈ !mout,n("),

Eq. (112) yields

Q̃exp(ω, θα) = [Sexp
n (θα)] Qexp(ω, θα) , (113)
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in which the matrix [S
exp
n (θα)] ∈  n(!) is given by

[Sexp
n (θα)] =

(
[Ψexp

n (θα)]T [Ψexp
n (θα)]

)−1
[Ψexp

n (θα)]T [P ] [Φn] . (114)

Substituting Eq. (113) into Eq. (101) yields

(−ω2 [M̃ exp
n (θα)] [Sexp

n (θα)] + iω [D̃exp
n (θα)] [Sexp

n (θα)] + [K̃exp
n (θα)] [Sexp

n (θα)]) Qexp(ω, θα)

= Fexp(ω, θα) . (115)

The left multiplication of Eq. (115) by [S
exp
n (θα)]T yields

(−ω2 [M exp
n (θα)]+iω [Dexp

n (θα)]+[Kexp
n (θα)]) Qexp(ω, θα) = [Sexp

n (θα)]T Fexp(ω, θα) , (116)

in which the matrices [M
exp
n (θα)], [D

exp
n (θα)] and [K

exp
n (θα)] are defined by

[M exp
n (θα)] = [Sexp

n (θα)]T [M̃ exp
n (θα)] [Sexp

n (θα)] ∈  +
n (!)

[Dexp
n (θα)] = [Sexp

n (θα)]T [D̃exp
n (θα)] [Sexp

n (θα)] ∈  +
n (!)

[Kexp
n (θα)] = [Sexp

n (θα)]T [K̃exp
n (θα)] [Sexp

n (θα)] ∈  +
n (!) . (117)

Comparing Eqs.(105)-(106) with Eqs. (110)-(116), we deduce that matrices [M
exp
n (θα)], [D

exp
n (θα)]

and [Kexp
n (θα)] defined by Eq. (117) can be considered as experimental realizations of random

matrices [Mn], [Dn] and [Kn] defined by Eq. (107).

5.5. Experimental identification of the dispersion parameters of the nonparametric probabilistic

model

The problem solved in this section is the experimental identification of the dispersion parameters

δM , δD and δK of the nonparametric probabilistic model using experimental data and two types of

estimators: (1) the natural estimator deduced from Eq. (37) and (2) the estimator constructed with

themaximum likelihoodmethod. Let [A
exp
n (θα)] representing [M

exp
n (θα)], [D

exp
n (θα)] or [K

exp
n (θα)],

let [An] representing [Mn], [Dn] and [Kn] and let δA representing δM , δD and δK . Consequently, we

have to identify dispersion parameter δA of randommatrix [An] knowing r experimental realizations

[A
exp
n (θ1)], . . . , [A

exp
n (θr)] of random matrix [An].
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5.5.1. Experimental realizations of the normalized factorized random matrix

Since [An] belongs to ensemble SE+, from Section 2.2, we deduced that random matrix [An] with

values in  +
n (!) is written as [An] = [LAn

]T [Gn] [LAn
] in which the invertible upper triangular

matrix [LAn
] ∈  n(!) is such that [An] = [LAn

]T [LAn
] ∈  

+
n (!) and where random matrix

[Gn] belonging to ensemble SG+ is written (see Eq. (23)) as [Gn] = [Ln]T [Ln] with [Ln] the

random matrix defined in Section 2.1.7. The objective of this section is to construct r experimental

realizations [Lexp
n (θ1)] , . . . , [Lexp

n (θr)] of random matrix [Ln]. We then introduce the matrix

[Gexp
n (θα)] ∈  

+
n (!) such that [Aexp

n (θα)] = [LAn
]T [Gexp

n (θα)] [LAn
]. Since matrix [LAn

] is

invertible, matrix [G
exp
n (θα)] is then given by the equation,

[Gexp
n (θα)] = [LAn

]−T [Aexp
n (θα)] [LAn

]−1 ∈  
+
n (!) . (118)

Matrix [Gexp
n (θα)] can then be written as

[Gexp
n (θα] = [Lexp

n (θα)]T [Lexp
n (θα)] , (119)

in which the upper triangular matrix [Lexp
An

(θα)] is calculated by the Cholesky factorization of

positive-definite matrix [G
exp
n (θα)]. Consequently, we have effectively constructed r realizations

[Lexp
n (θ1)] , . . . , [Lexp

n (θr)] of random matrix [Ln].

5.5.2. Probability density function of random matrix [Ln]

Let σA be the parameter defined in Section 2.1.7 such that

σA =
δA√
n + 1

. (120)

Therefore, it is equivalent to identified σA or δA. From Section 2.1.7 and since the random variables

{[Ln]jj′ , j ≤ j′} are independent, the probability density function p[Ln]([Ln] ; σA) of random upper

triangular matrix [Ln], with respect to the measure dLn = Π1≤j≤j′≤n d[Ln]jj′ , is written as

p[Ln]([Ln] ; σA) = {Π1≤j<j′≤n pjj′([Ln]jj′ ; σA)} {Π1≤j≤n pj([Ln]jj ; σA)} , (121)

in which

pjj′([Ln]jj′ ; σA) =
1√

2πσA

exp

{
− 1

2σ2
A

[Ln]2jj′

}
, (122)

pj([Ln]jj ; σA) = " +([Ln]jj) ×
2

Γ
(

1
2σ2

A

+ 1−j
2

)

× (2σ2
A)−1/(2σ2

A)−(1−j)/2 [Ln]
σ−2

A
−j

jj exp

{
− 1

2σ2
A

[Ln]2jj

}
. (123)
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5.5.3. Independent copies of random matrix [L
exp
n ]

Let [L
exp,1
n ], . . . , [L

exp,r
n ] be r independent copies of randommatrix [L

exp
n ]. A realization [L

exp,1
n (θ)],

. . . , [L
exp,r
n (θ)] of the r random matrices [L

exp,1
n ], . . . , [L

exp,r
n ] can be constructed in using the r

known independent realizations [Lexp
n (θ1)], . . . , [L

exp
n (θr)] of randommatrix [Ln]whose probability

density function p[Ln]([Ln] ; σA) is defined by Eq. (121). For α = 1, . . . , r, we then take

[Lexp,α
n (θ)] = [Lexp

n (θα)] . (124)

5.5.4. Estimation of δA by using the natural method

From Eq. (37), the natural estimator δ̂0
r of δA is the random variable δ̂0

r = dr([L
exp,1
n ], . . . , [Lexp,r

n ])

which is defined by

δ̂0
r = dr([L

exp,1
n ], . . . , [Lexp,r

n ])

=

{
1

nr

r∑

α=1

‖ [Lexp,α
n ]T [Lexp,α

n ] − [In] ‖2
F

}1/2

. (125)

The mean value m
δ̂0

r

and the standard deviation σ
δ̂0

r

of estimator δ̂0
r are usually defined by

m
δ̂0

r

= E{δ̂0
r} , σ2

δ̂0
r

= E
{
(δ̂0

r − m
δ̂0

r

)2
}

. (126)

The estimation of δA is given as the realization δ̂0
r(θ) = dr([L

exp,1
n (θ)], . . . , [L

exp,r
n (θ)]) of random

variable δ̂0
r and can then be written as

δ̂0
r(θ) = dr([L

exp
n (θ1)], . . . , [L

exp
n (θr)]) . (127)

5.5.5. Estimation of δA by the maximum likelihood method

From Eq. (120), we deduce that it is equivalent to estimate δA or σA. The unknown parameter

which has to be estimated can then be chosen as σA. The likelihood function is the random variable

Lr(σA ; [Lexp,1
n ], . . . , [Lexp,r

n ]) depending on parameter σA such that

Lr(σA ; [Lexp,1
n ], . . . , [Lexp,r

n ]) = Πr
α=1 p[Ln]([L

exp,α
n ] ; σA) . (128)

From Eqs (121) to (123), we deduce that

log{Lr(σA ; [Lexp,1
n ], . . . , [Lexp,r

n ])} =

r∑

α=1

log{p[Ln]([L
exp,α
n ] ; σA)} , (129)

C. Soize - Computer Methods in Applied Mechanics and Engineering (CMAME) (accepted in March 2004) 41



in which

log{p[Ln]([L
exp,α
n ] ; σA)} =

∑

1≤j<j′≤n

log{pjj′([Lexp,α
n ]jj′ ; σA)}

+
∑

1≤j≤n

log{pj([L
exp,α
n ]jj ; σA)} , (130)

with

log{pjj′([Lexp,α
n ]jj′ ; σA)} = − 1

2σ2
A

[Lexp,α
n ]2jj′ − log{

√
2πσA} , (131)

log{pj([L
exp,α
n ]jj ; σA)} = log{2} − log

{
Γ

(
1

2σ2
A

+
1 − j

2

)}
−

(
1

2σ2
A

+
1 − j

2

)
log{2σ2

A}

+

(
1

σ2
A

− j

)
log{[Lexp,α

n ]jj} −
1

2σ2
A

[Lexp,α
n ]2jj . (132)

The estimator of parameter σA defined by the maximum likelihood method [21] is the random

variable σ̂r = sr([L
exp,1
n ], . . . , [Lexp,r

n ]) which is such that

Lr(σ̂r ; [Lexp,1
n ], . . . , [Lexp,r

n ]) = max
σA

Lr(σA ; [Lexp,1
n ], . . . , [Lexp,r

n ]) , (133)

or equivalently, by

log{Lr(σ̂r) ; [Lexp,1
n ], . . . , [Lexp,r

n ]} = max
σA

log{Lr(σA ; [Lexp,1
n ], . . . , [Lexp,r

n ])} . (134)

The mean value m
σ̂r

and the standard deviation σ
σ̂r

of estimator σ̂r are usually defined by

m
σ̂r

= E{σ̂r} , σ2

σ̂r
= E

{
(σ̂r − m

σ̂r
)2

}
. (135)

Letm
δ̂r
and σ

δ̂r
be the mean and the standard deviation of the estimator δ̂r of δA which is such that

δ̂r = σ̂r

√
n + 1. We then have

m
δ̂r

= m
σ̂r

√
n + 1 , σ

δ̂r
= σ

σ̂r

√
n + 1 . (136)

The estimation of σA is given as the realization σ̂r(θ) = sr([L
exp,1
n (θ)], . . . , [L

exp,r
n (θ)]) of random

variable σ̂r and can then be written as

σ̂r(θ) = sr([L
exp
n (θ1)], . . . , [L

exp
n (θr)]) . (137)

Then, the estimation of δA is given by σ̂r(θ)
√

n + 1.

For a given realization [L
exp
n (θ1)], . . . , [L

exp
n (θr)], the maximum of the function

σA 7→ log{Lr(σA ; [Lexp
n (θ1)], . . . , [L

exp
n (θr)])}

is obtained for σA = σ̂r(θ) and is directly determined in calculating the graph of this function in the

neighborhood of σ0
A = δ̂0

r (θ)/
√

n + 1 in which δ̂0
r (θ) is defined by Eq. (127) and which constitutes

a reasonable estimation of δA.
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5.5.6. Efficiency and convergence of the two estimators

The biais and the efficiency of the estimators δ̂0
r and δ̂r of parameter δA, respectively defined in

Sections 5.5.4 and 5.5.5, can be analyzed (1) in comparing the functions r 7→ δA, r 7→ m
δ̂0

r

and

r 7→ m
δ̂r

and (2) in comparing the functions r 7→ σ
δ̂0

r

and r 7→ σ
δ̂r
, defined by Eqs. (126) and

(136). For n = 10 and δA = 0.5, these functions have been calculated on r ∈ [1 , 20], in using the

Monte Carlo simulation with 5000 realizations. Figure 12 displays the functions r 7→ δA, r 7→ m
δ̂0

r

and r 7→ m
δ̂r
. It can be seen that, for any r fixed in [1 , 20], the biais of estimator δ̂r is less than the

biais of estimator δ̂0
r . Figure 13 displays the functions r 7→ σ

δ̂0
r

and r 7→ σ
δ̂r
. It can be seen that,

for any r fixed in [1 , 20], estimator δ̂r is more efficient than estimator δ̂0
r .
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0.4995
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0.5005

Fig. 12. Graphs of functions r 7→δA (horizontal thin solid line), r 7→m
δ̂0
r

(thin solid line) and r 7→m
δ̂r

(thick solid line).
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Fig. 13. Graphs of functions r 7→σ
δ̂0
r

(thin solid line) and r 7→σ
δ̂r

(thick solid line).
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6. Conclusions

This paper proposes a nonparametric probabilistic approach for taking into account data and model

uncertainties in linear dynamical systems for which the mean model is given and fixed. The

objective of such a nonparametric probabilistic approach is to increase the predictability of a

given and fixed mean model, that is to say, is to increase the predictability without improving

the mean model by introducing additional smaller spatial scales or a hierarchy of models. In

such a nonparametric probabilistic approach, data and model uncertainties can be introduced by

using the random matrix theory. In this context, several useful sets of random matrices have been

introduced and allow uncertainties to be modeled in computational mechanics. Non homogeneous

uncertainties can be modeled with such a nonparametric approach using dynamic substructuring

methods. For this nonparametric approach, the information used does not require the description of

the local parameters of the mathematical-mechanical model. The parametric approaches existing

in literature are very useful when the number of uncertain parameters is not too large and when the

probabilistic model can be constructed for the set of parameters considered. The nonparametric

approach proposed is useful when the number of uncertain parameters is high and/or when the

probabilistic model is difficult to construct for the set of parameters considered. In addition, the

parametric approaches do not allow the model uncertainties to be taken into account (because a

parametric approach is associated with a fixed model exhibiting some parameters), whereas the

nonparametric approach proposed allows the model uncertainties to be taken into account for a

given and fixed mean model. For some nonlinear dynamical systems constituted of a linear system

with additional localized nonlinearities, the nonparametric model is only applied to the linear part

of the reduced model. This nonparametric model of random uncertainties can simultaneously be

used with the usual parametric model of random uncertainties which allows random uncertainties

on nonlinear damping and restoring forces to be taken into account. In this case, a nonparametric-

parametric model of random uncertainties has to be considered. Concerning this nonparametric

model, the probability distribution of each random generalized matrix of the linear part of the

random reduced model depends only on two parameters: the mean generalized matrix associated

with the mean finite element model and corresponding to the design model, and a scalar parameter δ

whose value has to be fixed by the designer in the interval [0 , 1[ in order to give the dispersion level

attached to the random generalized matrix. It seems clear that parameter δ is a global parameter

resulting from expertise or identification. Concerning the identification of parameter δA knowing
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experimental data, a methodology and two estimators are proposed. The first one is very easy to

construct and the second one, which is based on the maximum likelihood method, is more efficient.
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