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ABSTRACT

The quantization of the two-dimensional toric and spherical phase spaces is consid-
ered in analytic coherent state representations. Every pure quantum state admits there a
finite multiplicative parametrization by the zeros of its Husimi function. For eigenstates of
quantized systems, this description explicitly reflects the nature of the underlying classical
dynamics: in the semiclassical regime, the distribution of the zeros in the phase space
becomes one-dimensional for integrable systems, and highly spread out (conceivably uni-
form) for chaotic systems. This multiplicative representation thereby acquires a special
relevance for semiclassical analysis in chaotic systems.
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It is still a basic open problem in semiclassical mechanics to describe the individual
eigenfunctions of a quantum system when the corresponding classical dynamics is chaotic.
The simplest models are found among area-preserving maps on compact phase spaces of
dimension two, of which several have been quantized. However, as far as rigorously proven
chaotic maps are concerned (e.g. the cat and baker’s maps), the torus T? is the only phase
space occurring to date. (See recent reviews by Eckhardt 1988, Voros 1989, and references
therein.)

This letter is inspired by the successes of phase space representations for quantum
eigenstates (Wigner: Hannay and Berry 1980, Husimi: Leboeuf and Saraceno 1990). From
analytic coherent state representations for the torus and the sphere, we extract finite mul-
tiplicative parametrizations of the (pure) quantum states, which reveal distinctive patterns
of semiclassical behaviour for eigenstates of integrable and chaotic systems.

The torus phase space is a periodically repeated unit square in suitable (g, p) coor-
dinates. As its quantum Hilbert space, we can take the space Hy of wave functions |)))
periodic both in position and momentum representations. This space has a finite dimension
N, with the consistency condition

2rNh = Area (= 1). (1)

Usual representations of this quantum mechanics are discrete and labelled by the finite
integer N; N — oo gives the classical limit (Hannay and Berry 1980). We prefer to use
a continuous, actually analytic coherent-state representation of Hp, built out from the
standard (Weyl group) coherent states on the plane R* (Klauder and Skagerstam 1985,
Perelomov 1986).

A non-normalized coherent state of the plane, centered at a point (g, p), is
|z) = " [0), e=2"" (g~ ip); (2)

it has the kernel

1) = (e EE ] (3)

The coherent state decomposition of a wave function |¢)) over the whole line,

+o0
W=l = [ a1 (@)

— 0

is an entire function ¢(z) of order 2, the Bargmann transform of |¢)) (Bargmann 1961,
1967).

The adaptation to the torus is based on two observations:

a) a state 1)) of Hy admits a natural position representation on the infinite coordinate
line as a periodicized sum,
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400 N-1
)= Y. Y ¥ndlg—n/N—v), (5)
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where 1, are the discrete position components: ¢, = ((n[i)), the eigenstate |n)) being
“localized” at ¢ = & mod 1.

b) The original Bargmann transformation directly operates on the representation (5),
which lies in the distribution space F~2 (in the notation of Bargmann 1967). There is
consequently no need to invent a different transformation for Hy. With Eqgs.(1) and (3),
Eq.(4) reduces to

W(z) = (2N)1/4 Z{%( m'N( z—n/N)

Z.ZV) e—TrN[22+(n/N)2—2\/§ Z(n/N)]d)n (6)

where 63 is the Jacobi theta function (Whittaker and Watson 1965),

+ oo

O3(v | 7) = Z pimTv+2ive. (7)

Vr=—0o0

We may also interpret Eq.(6) as a scalar product in Hy, ¢(z) = (z | ¢)) = Z << |n)thn,
thereby defining the H y-coherent state ((z|, which obeys quasi-period relations for v NTEVE
tegers:

<<Z + 2—1/2(1/ N z,u)| _ errN[i;w-I—(y2+u2)/2+\/5(u+iu)z] <<Z| (8)

We now exploit the analytic properties of the representation (4). For |¢)) in Hy, ¢(z)
is a function analytic in the fundamental square [0, 2_1/2] X [0, 2_1/2] with its boundary
I' included, and satisfying the continuation conditions drawn from Eq.(8),

U (24 1/v2) = NET Sy (9a)
g (2 +i/v2) = eV ETVE )y (95)

Such a function has the following general properties (compactness of phase space
enters now).

?7/}/
Ty

like a “polynomial of degree N”, 1(z) has exactly N zeros in the square (zeros will be

1) (27Ti) —dz =N : (10)

counted with their multiplicities).

d)/z— 3/2 ? mo LL
epde =2 d(ﬂﬂ) (a0

giving one constraint among the N zeros,

N .
3 2 =272N(1+4) mod <L%> (12)

i=1

2) (2mi)~!

[\
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3) Of particular importance is the case N = 1, connected with the lattice representa-
tions of quantum mechanics (reviewed by Perelomov 1986). The Bargmann transform of
the unique state in Hq,

P1(z) = 246 0y (—im/2 2 | ). (13)

is “the monomial”. Its single zero is constrained by Eq.(12) to lie at the center zp of the
square,

20 =2"%%(1+1). (14)

4) The Weierstrass-Hadamard factorization allows the reconstruction of entire func-
tions from their zeros. Here, it reduces to a multiplication formula from elliptic function
theory

G(z) = 2 X G T gy (2420 — 25 (15)

Consequently, ignoring the complex factor Z (required by normalization), we can
represent each quantumn state of Hy as an (N — 1)-parameter family of points in the
fundamental square, the complex zeros {z;} . A similar scheme has been recently used in
a different context, the quantized Hall effect (Arovas et al. 1988).

For the phase space of a spin, the Bloch sphere $%, a similar treatment has also long
existed. If § = %, 1,... is the spin value, the Bargmann space H consists of ordinary
polynomials of degree 25, with dim H = 25 + 1 (Klauder and Skagerstam 1985). These
have 2S5 unconstrained zeros, and Eq.(15) is replaced by the elementary factorization for
polynomials. More generally, the factorization approach can be used with many spaces
of entire functions. In higher dimensions, however, one will run into all the difficulties of
analytic function theory in several variables.

Consider now the Husimi representation of a state |¢)) over the whole plane (see
Kurchan et al. 1989 for the spherical case),

Wy (2,2) = SELOE _ operrmp e (16)

(z12)

For ¢ in Hy, Wy becomes doubly-periodic by Egs.(9), thereby defining a Husimi
distribution over the torus. This Wy is not only positive as usual, but also precisely
vanishing at the N zeros of ¢(z). (Hence, by positivity, an impure state will give strictly
fewer zeros, and generically none). Moreover, Wy, factorizes via Eq.(15), as

Wy(z) = C [ W (2 4 20 — 25) (17)

where Wy, is the Husimi function of the “monomial” ¢y with N = 1 (C > 0 sets the
normalization).
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We have thus arrived at the conclusion that by itself, the set of zeros of Wy, encodes
the full quantum information, which is retrieved via Eq.(15). We therefore suggest that
semiclassical analysis itself can be directly based upon the zeros of the Husimi function
(rather than on the high density regions of Wy, or scars). Here, as in the WKB method,
log ¢ (or ¢’ /1, or log Wy) appear to be the relevant functions.

The most immediate semiclassical property of the zeros is a global one: their number
is precisely N (in the square), and N — oo. Further semiclassical properties must then
translate themselves upon the asymptotic distribution of the zeros as N — oco. We now
confirm this idea by showing a sample of eigenstates in the Husimi representation, for
various systems on the torus and the sphere.

Each Husimi function Wy is plotted twice: the top plot, on a linear density scale,
stresses in dark the peaks of Wy, (classical features, scars), while the bottom plot, on a
logarithmic density scale with an adjusted contrast factor, stresses as white spots the zeros
of Wy (quantum features).

Fig.1la shows the “monomial” ¢y (N = 1), given by Eq.(13), which is also the elemen-
tary factor in Eq.(15), while Fig.1b shows the coherent state |0)) for N = 16.

Fig.2 shows eigenstates of Hamiltonians, this being the classically integrable case.

The Harper Hamiltonian is H = 2 — cos 27p — cos 2mwq (on the torus). Its ground state
looks very similar to the coherent state |0)) having the same N (cf. Fig.1b). Fig.2a shows
the 15-th state for N = 31, lying just below the classical separatrix energy (coordinates are
shifted). The zeros are neatly aligned on four straight lines. In fact, all (nondegenerate)
states of the system have this property.

The Lipkin Hamiltonian on the sphere (Lipkin et al. 1965) is H = cos 6+ %x sin?6 cos 2¢;
Fig.2b shows the 2nd state of the quantized model having § = 15 and x = 0.5. Again, the
zeros lie along curves, which depend on the classical energy but seemingly not on dim H.

This is a property we have observed in all integrable examples studied.

Eigenfunctions of chaotic maps are now displayed on Figs.3-4.

Fig.3 shows, on the torus, two states of the quantized baker’s map with N = 64 (Balazs
and Voros 1989, Saraceno 1990), chosen for their distinctive features on the linear scale:
on Fig.3a, an “almost ergodic” state; on Fig.3b, in shifted coordinates, a state strongly
scarred by the unique classical fixed point at the origin. Unlike the former, the latter is
highly concentrated and reminiscent of the integrable separatrix state of Fig.2a. However,
the pictures on the logarithmic scale display a totally different connection: both baker
states have their zeros highly spread out on the square, as opposed to the concentration
along curves of integrable examples. This holds for all baker states; we have only found,
for N = 2%, one isolated (arithmetical ?) exception of a state with a dominantly linear
distribution of zeros.

The same property holds for the cat map (also defined on the torus). One “irregu-
lar” (typical) state, and a very regular one (there are a few of them), are shown on Figs.4a-b,
for the quantized cat map with N = 64 (Hannay and Berry 1980).

Thus, irrespectively of the superficial features of the Husimi distribution (irregular or
regular, heavily scarred or not), the zeros seem to fill, like a gas, the whole phase space
area left out by the high density regions. We view this behavior as a characteristic quantal
signature of classical chaos.
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Finally, we have examined a kicked spin map on the sphere, which classically exhibits
the generic regular-to-chaotic transition as a coupling constant 5 = pB is increased: for
B = 0.2 the phase space has a mixed structure, while for 5 = 1 the classical motion looks
totally chaotic (Nakamura et al. 1986). In the quantized version (S = 30), this transition
seems to reflect itself in the organization of the zeros. For the eigenfunction of Fig.ba
(8 = 0.2) some zeros are aligned and others spread out, while in Fig.5b (8 = 1) the zeros
diffuse over the whole sphere. All of this clearly requires further study.

The linear concentration of zeros for integrable systems has a semiclassical explana-

tion. As h — 0, an eigenstate admits a finite WKB expression, ¢(z) ~ Ei;l Ap exp [Sk(z)/R],

where {S};} are branches of the classical complex action in the z variable (Kurchan et al.
1989, Voros 1989). The vanishing of such ¢ generically requires Re S; = Re S > Re Sy for
two branches j, k (¢ running over all other branches involved). Each such equality defines
a classical curve (a sort of anti-Stokes line), upon which the zeros are selected by a further
condition, Im (S; — Si) = (2mn 4 const)h, which makes them regularly distributed with

spacing 2wh [Im (S; — S;C)]_l =0 (N_l) . Conversely, the product formula (15) over a
distribution of zeros of this type will become equivalent to a WKB expression in the large
N limit.

By contrast, the observed distribution of zeros in all chaotic examples is roughly bidi-
mensional, implying an average spacing O (N_l/Q:). This is the signature of an altogether
different semiclassical regime.

We risk an explanation connected with the ergodicity of the classical motion. This,
and the correspondence principle, suggest that the quantum phase space distributions
must tend to the microcanonical (i.e. uniform) density in the classical limit (see Eckhardt
1988). With the Wigner distribution, this can only happen after some smoothing (its
wild oscillations do not tend to vanish as h — 0). The Husimi function is precisely a

Wigner function smoothed over widths O (\/ﬁ) =0 (N_l/Q) : can 1t tend pointwise to

the flat density? Now, the mere presence of the zeros, and their proliferation as N —»
0o, demonstrate that this smoothing is not sufficient. However, the spreading of those
zeros should make the Husimi distribution more amenable to uniformization upon further
smoothing. Indeed, for identical N we have observed a much lower global contrast (before
adjustment) in chaotic Husimi functions than in integrable ones.

In conclusion, the zeros of Husimi functions offer new opportunities to semiclassical
analysis in chaotic systems. First, we have yet to understand the dynamical significance of
the zeros, and also to unveil their possible limit distributions (could these be uniform ? or
fractal 7). Two approaches suggest themselves next: use Eq.(15) as a basis for semiclassical
descriptions, thus generalizing the WKB method; or apply the techniques of random matrix
theory to the set of zeros, treating it as if it were the spectrum of a non-Hermitian operator.

Acknowledgments: We are very grateful to N.L. Balazs and Th. Paul for seminal
discussions, and to G. Mantica for supplying us cat map eigenfunctions.
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(@) (b)

Husimi function plots. Top half: linear density scale; bottom half: a logarithmic
density scale stressing the location of the zeros.

Fig.1: a) The monomial ¢y (N = 1); b) The coherent state |0)) (N = 16).
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Husimi function plots. Top half: linear density scale; bottom half: a logarithmic
density scale stressing the location of the zeros.

Fig.2 : Eigenstates of integrable systems. a) Harper’s equation (N = 31); b) Lipkin model
(S =15).
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(b)

Husimi function plots. Top half: linear density scale; bottom half: a logarithmic
density scale stressing the location of the zeros.

Fig.3: Two eigenstates of the baker’s map (N = 64).
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(@) (b)

Husimi function plots. Top half: linear density scale; bottom half: a logarithmic
density scale stressing the location of the zeros.

Fig.4: Two eigenstates of the cat map (N = 64).
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Husimi function plots. Top half: linear density scale; bottom half: a logarithmic
density scale stressing the location of the zeros.

Fig.5 : Eigenstates of a kicked spin model (S = 30). a) Mixed classical regime; b) Chaotic

classical regime.
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