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Abstract

Genomic selection (GS) and high-throughput phenotyping have
recently been captivating the interest of the crop breeding com-
munity from both the public and private sectors world-wide. Both
approaches promise to revolutionize the prediction of complex
traits, including growth, yield and adaptation to stress. Whereas
high-throughput phenotyping may help to improve understanding
of crop physiology, most powerful techniques for high-throughput
field phenotyping are empirical rather than analytical and compa-
rable to genomic selection. Despite the fact that the two method-
ological approaches represent the extremes of what is understood
as the breeding process (phenotype versus genome), they both
consider the targeted traits (e.g. grain yield, growth, phenology,
plant adaptation to stress) as a black box instead of dissecting

them as a set of secondary traits (i.e. physiological) putatively related to the target trait. Both GS and
high-throughput phenotyping have in common their empirical approach enabling breeders to use genome
profile or phenotype without understanding the underlying biology. This short review discusses the main
aspects of both approaches and focuses on the case of genomic selection of maize flowering traits and
near-infrared spectroscopy (NIRS) and plant spectral reflectance as high-throughput field phenotyping
methods for complex traits such as crop growth and yield.
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Introduction

Grain yield, plant growth and stress adaptation are complex

traits controlled by many genes, usually with minor effects and

with a high occurrence of epistatic interactions (Li et al. 1997,

2001). This presents limited breeding advances for complex

traits. High-throughput phenotyping and genomic selection

(GS) of complex traits promise to revolutionize the breeding

process by accelerating generation-advance and improving the

precision of selection. On one hand, there is the fast, large-

scale evaluation of plant performance that aims to automatize

and standardize the phenotyping process. On the other hand,

C© 2012 Institute of Botany, Chinese Academy of Sciences
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there is the massive use of low-cost genotyping technologies

powered by advances in genomic sequencing and the advent

of single-nucleotide polymorphism (SNP) markers (Ingvarsson

and Street 2011). However, both methodological approaches

share in common their empirical nature and their strong de-

pendence on the advances in data gathering and processing

(together with the help of robotics). Thus, phenotyping is

evolving quickly from the concept of conventional breeding,

which relies on the direct measurement of the target trait

(e.g. yield) or even from analytical breeding (see Araus et al.

2008), which implies selecting the key secondary trait(s) (i.e.

other than the yield or the targeted trait itself), to the remote

inference of whole-plant growth, water status or even grain

yield using remote sensing approaches. For genotyping, classic

marker-assisted selection (MAS) that relies on the identification

of quantitative trait loci (QTL) for traits of interest has been

found to be far less successful than predicted two decades ago

when the target traits for selection were quantitative, such as

yield and adaptation to drought or other major abiotic stresses

(Maccaferri et al. 2008 and references herein). Phenotyping for

quantitative traits has been relatively ignored (even neglected)

until recently, when molecular biologists and breeders realized

that advances in molecular techniques may only be useful in

breeding for quantitative traits if they are based on reliable

phenotyping (Araus et al. 2003, 2008). In that context, and

taking advantage of the fast development in computing and

robotics, a burst of new technological approaches aimed at

shifting phenotying from an “art to a technology” has arrived

through the development of what are known as high-throughput

phenotyping platforms. That includes not just a large set of

commercially available instruments that allow this work to

be done, but also the emergence of outsourcing services.

Thus, following the steps of genomic analyses and marker-

assisted selection, where outsourcing is a consolidated trend,

high-throughput phenotyping has been offered recently on a

server provider basis (www.phenofab.com; updated January

2012). The possibility to phenotype thousands of individuals,

faster, and with high precision, together with advances and

cost reduction in sequencing technologies (Davey et al. 2011),

allows GS to be applicable to plant breeding programs. GS

promises the power to predict individual genotype adaptability

to a specific environment (Crossa et al. 2010; Aguilar et al.

2011; Resende et al. 2012).

In the following discussion, the basics of high-throughput

phenotyping and genomic selection are briefly presented to-

gether with a few examples.

Genomic Selection: A Step Forward from
Marker-assisted Selection

The traditional approach of MAS, based on bi-parental or

association mapping panels, consists of detecting quantitative

trait loci (QTL) to further focus on significant regions for assisted

selection. Briefly, markers linked to genes are detected, the

most favorable alleles and their related effects are determined,

and then these are further validated. Nevertheless, MAS seems

effective only for major QTL effects (Araus et al. 2008; Macca-

ferri et al. 2008; von Zitzewitz et al. 2011), and not for complex

traits controlled by many genes with small effects, such as

grain yield and adaptation to stresses. Further limitations in

MAS are the infrequent use of bi-parental populations for

germplasm improvement, and the statistical methods used for

mapping QTL, which rely on stringent thresholds and single

marker analysis models. On the other hand, genomic selection

(or genome wide selection) is an approach for improving

quantitative (i.e. complex) traits (Meuwissen et al. 2001) that

uses all the available molecular markers across the genome

and allows calculation of estimated genetic (breeding) values.

The following example may illustrate the need for empirical

models effective in capturing a large number of minor QTL.

In human association genetics, a set of 40 significant markers

explained only 5% of the variability in height while a set of

300 000 markers placed simultaneously in a model explained

up to 45% of the heritability for human height (Yang et al.

2010).

GS claims to act in a similar manner and intends to improve

the predictions of economically important traits in complex plant

and animal breeding programs. Instead of focusing on single

marker analysis models with the power to only detect relatively

large effects, GS is centralized in a genotypic characterization

of several markers (at low cost) to integrate simultaneously

(taking into account major and minor effects) in a predictive

model with novel statistical methods (de los Campos et al.

2009; Crossa et al. 2010; Vitezica et al. 2011). GS is based

on a predictive model that has been trained with a number of

individuals ("the training population") that reflects the diversity

of the breeding program being evaluated at the phenotypic

and genotypic level. As the number of markers increases in

the model, the prediction accuracies of genomic estimated

breeding values (GEBV) are expected to increase, whereas

the single marker effect is expected to decrease in absolute

magnitude. Once the model has proven successful, the plant

breeder is able to estimate the GEBVs for the next generation

cycle through the incorporation of only genomic data. These

GEBVs give an ideal criterion for selecting the best performing

lines. Figure 1 shows a simple schematic diagram summariz-

ing the implementation of GS in a plant breeding program.

However, parametric regression models also provide the op-

portunity to examine marker effects and study the possible

differential response of markers in environments, that is, the

gene × environment interaction effect. In general, Bayesian

shrinkage methods do not have an associated test for detecting

chromosome regions; however, they can be routinely used for

QTL detection.



314 Journal of Integrative Plant Biology Vol. 54 No. 5 2012

Figure 1. Schematic diagram depicting the steps involved in

the use of genomic selection in a plant breeding program.

GEBVs, genomic estimated breeding values.

Although GS was first proposed about 10 years ago (Meuwis-

sen et al. 2001), reports on the use of GS in plants are few

and refer mainly to computer simulation studies such as the

research of Bernardo and Yu (2007), who concluded that GS

was superior to marker-assisted selection in maize. This delay

in the application of GS in plant breeding programs can be partly

explained by the high costs in genotyping germplasm with a

high density of markers at the time. It was not until recently that

relatively inexpensive marker technologies have become avail-

able as a service platform (i.e. http://www.diversityarrays.com;

updated January 2012). Further development of genotyping

methods based on direct sequencing of genomic digests have

reduced costs tremendously by relying solely on next genera-

tion sequencing and non-expensive array-based technologies

(Davey et al. 2011; Elshire et al. 2011). The advantage of

these methods is that full gain-of-sequence throughput is taken,

which is advantageous for polyploid species which cause

problems with hybridization, and polymorphism discovery is

simultaneous with genotyping. These last methods are one

step behind direct sequencing of whole genomes, which will be

applicable for GS once prices become affordable.

Diversity Array Technology (DArT) was recently used in

studies at the International Maize and Wheat Improvement

Center (CIMMYT), where de los Campos et al. (2009), Crossa

et al. (2010, 2011), Pérez et al. (2010) and Burgueño et al.

(2012) validated GS in plant breeding using genomic regression

and showed that models using molecular markers were more

accurate in predicting grain yield in wheat and maize than those

based on pedigree only. These were the first comprehensive

studies demonstrating that genomic selection could be useful

in plant breeding. These studies in maize and wheat based on

the multi-environment trials of CIMMYT indicated that models

for GS can have relatively high predictive ability for genetic

values of grain yield and other traits of economic interest under

contrasting environmental conditions. GS selection models with

pedigree and molecular marker information can be used effec-

tively for selecting individuals whose phenotypes for various

traits have yet to be observed under varying environmental

conditions, including for example severe water stress. All these

studies have indicated that the problem of model choice is

population and environment specific and that a ‘one-size-fits-

all’ approach to model choice in GS is not appropriate.

In addition to estimating genetic values, parametric mod-

els also provide information on ‘marker effects’ that can be

used to gain a better understanding of the important genomic

regions underlying the architecture of traits and genotype

× environment interaction. Principal component analysis of

estimated marker effects across environments provides a way

of identifying which markers contribute to positive genetic

correlations between environments, and which markers have

negative responses in other environments and therefore pro-

duce interaction with environments. In the following section, an

example is examined from the ongoing work of CIMMYT on GS

for predicting quantitative traits in plant breeding using dense

molecular markers and pedigree.

A Case Study: Patterns of Co-variability
of Estimated Marker Effects across
Environments for Maize Flowering
Genomic Data

Traits included here were female flowering (FFL) (or days to

silking), male flowering (MFL) (or days to anthesis), as well as

the anthesis-silking interval (ASI) evaluated in 300 maize lines

under severe drought stress (SS) and in well-watered (WW) en-

vironments (Crossa et al. 2010). The first two component axes

of estimated effects of SNP markers in the six trait-environment

combinations (MFL-SS, MFL-WW, FFL-SS, FFL-WW, ASI-SS,

and ASI-WW) are depicted in Figure 2. The correlation between

trait-environment combinations using marker effects and phe-

notypic data shows that some trait-environment combinations

are highly correlated (both phenotypically and genetically). The

pattern of correlations between estimated SNP effects reflects

the patterns of observed phenotypic correlations. Clearly, the

two groups of trait-environment combinations are dominated

more by the trait (ASI vs. FFL and MFL) and less by the en-

vironment (SS and WW). Phenotypic outcomes and estimates

of marker effects for ASI showed relatively small correlations

with those of FFL and MFL; this is because ASI is defined as

the difference between FFL and MFL, and these two traits are

positively correlated.
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Figure 2. Biplot of the first and second principal component axes of the effects of 1 148 SNPs on 3 traits.

Biplot of the first and second principal component axes (Comp. 1 and Comp. 2) of the effects of the 1 148 SNPs on maize female flowering

(FFL), male flowering (MFL) and anthesis-to-silking interval (ASI) estimated from the full data model M-BL of the maize dataset in each

of two environments; severe water stress (SS) and well watered (WW). A total of six trait-environment combinations (FFL-SS, FFL-WW,

MFL-SS, MFL-WW, SS-ASI, and WW-ASI) were formed. Only the effects of the 19 SNPs that are located far from the center of the biplot

were identified with their corresponding SNP name (filled-in circles) (from Crossa et al. 2010).

Markers with relatively large (in absolute value) estimated

effects are identified by name in Figure 2. The marker effects

on these traits should be interpreted differently than their effect

on grain yield, since the favorable marker allele decreases both

female and male flowering times, whereas for ASI, the optimal

marker should give an ASI of 0. The alleles whose estimated

effects are located in the left and upper left corner of the biplot

(i.e., PZA03551.1, PZA03578.1, PZA03222.1, PZA03385.1,

PZB01201.1, and PZB00118.2) increase FFL, MFL, and ASI

(they all have positive effects on all trait-environments combi-

nations), whereas those SNPs located on the opposite side of

the biplot (lower right corner) (i.e., PZA02587.16, PZA00236.7,

PZB0255.1, and PZA00676.2) decrease the value of FFL,

MFL, and ASI. Those SNPs whose presence is expected to

increase or decrease traits across environments can be viewed

as contributing to positive genetic correlations in FFL, MFL, and

ASI between environments.

Despite the high heritability (between 0.74 and 0.87) found

for flowering time and ASI in this maize trial, results show

substantial interaction between molecular marker effects and

environment. The biplot in Figure 2 shows SNPs that had

very contrasting effects across environments. For example, the

minor alleles of SNPs whose estimated effects are located in

the upper right corner of the biplot (PZA03592.3, PZB01077.3,

and PZB02076.1) increase the anthesis-silking interval under

drought and well-watered conditions, but decrease days to

male and female flowering. In contrast, the minor alleles

of SNPs whose estimated effects are located in the oppo-

site quadrant of the biplot (lower left corner) (PZB00592.1,

PHM13183.12, and PZB01964.5) showed a complete rank

reversal with respect to the effects of SNPs PZA03592.3,

PZB01077.3, and PZB01077.3 on those trait-environment com-

binations, i.e., a decrease in ASI under SS and WW, and an

increase in male and female flowering times. These results

are suggestive of an important molecular marker effect ×
environment interaction, which in turn causes a genotype ×
environment interaction.

Genomic Traits with Genome ×
Environment

In a recent comprehensive study, Burgueño et al. (2012)

presented multi-environment (multi-trait) models for GS

and compared the predictive accuracy of these models
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with: (a) multi-environment analysis without pedigree and

marker information, and (b) multi-environment pedigree or/and

marker-based models. The authors described a statistical

framework for incorporating pedigree and molecular marker

information in models for multi-environment data and applied it

to data that originated from wheat multi-environment trials. Two

prediction problems relevant to plant breeders are considered:

predicting the performance of untested genotypes (“newly”

developed lines), and predicting the performance of genotypes

that have been evaluated in some environments, but not in oth-

ers. The results confirmed the superiority of models using both

marker and pedigree information over those based on pedigree

information only. Models with pedigree and/or markers had

better predictive accuracy than simple linear mixed models

that do not include either of these two sources of information.

Burgueño et al. (2012) concluded that the evaluation of such

trials can benefit greatly from using multi-environment GS

models.

Concluding Remarks on the Plant
Genomic Studies

The results of these studies in CIMMYT are encouraging;

they indicate that models for GS can attain high predictive

ability for genetic values of traits of economic interest under

contrasting environmental conditions. Therefore, GS can be

used effectively for selecting individuals whose phenotypes

for various traits and in various environments have yet to be

observed. As the number of available markers increases (as

is expected in the near future), larger gains in predictive ability

may be attained.

An advantage of models that include a parametric regres-

sion on marker covariates is that, in addition to estimating

genetic values, they also provide information on (estimates

of) “marker effects”. This information can be used to attain

a better understanding of the genetic architecture of the traits

under study and examine the patterns of response of marker

effects across environments. In these studies, separate models

were fitted to each trait-environment combination. An alterna-

tive to these single-environment models for genomic selec-

tion is to use multi-environment (or, equivalently, multi-trait)

models where genetic values and marker effects on several

traits/environments are jointly estimated. Multi-environment

models allow the borrowing of information between correlated

environments. Thus it can be speculated that multi-environment

genomic models can yield similar or even better predictions for

individual environments.

Interestingly, the results of these studies can also be used to

generate a better design for field evaluations. For example, they

show that prediction of unobserved lines in any of the correlated

environments should be relatively accurate, and the scheme

for testing these lines in any of those environments should be

planned accordingly. It can be speculated that only one of the

sets of correlated environments should be included in the trial,

because any information lacking for the other environments

can be borrowed from the one in use. However, unobserved

lines in low correlated environments are expected to be poorly

predicted.

High-throughput Phenotyping

Whereas genomic selection has shown to be useful to predict

genetic values of traits of interest, its success in breeding for

quantitative traits largely depends on a reliable phenotyping

process. In such a way, high-throughput phenotyping plat-

forms (HTPP) could be particularly useful for obtaining detailed

measurements of plant characteristics that collectively provide

reliable estimates of phenotypic traits (Finkle 2009). These

platforms are also useful in modeling for predicting genotypic

performance in different climate scenarios. HTPP operations

are based on high capacity for data recording/scoring, speed

of data collection and processing, and non-destructive, non-

invasive and remote sensing phenotyping nature (Prasanna

et al. 2012). Whereas HTTPs may help to improve under-

standing of crop physiology, most powerful techniques for high-

throughput phenotyping are empirical (comparable to genomic

selection) and founded on a huge capacity for data acquisition

and further processing merely based in the need for statistical

background but without any need of physiological understand-

ing. We refer to different techniques like near-infrared spec-

troscopy spectral reflectance, photography and sonar, among

others that while already used in the existing HTPPs (mainly

developed for plants under controlled conditions), will no doubt

be deployed more frequently in future field HTPPs to evaluate

complex traits (Montes et al. 2007, 2011). Here we will focus on

spectral techniques like near-infrared spectroscopy (NIRS) and

plant spectral reflectance which are widely used techniques in

plant research that have emerged as promising methods for

field-based high-throughput phenotyping of crops subjected to

abiotic and biotic stresses (Araus et al. 2002, 2008; Lopes et al.

2011; Prasanna et al. 2012).

Basis of NIRS and Plant Spectral
Reflectance

NIRS is a chemometric technique that combines spectroscopy

and mathematics to rapidly produce indirect, quantitative esti-

mates of the concentration of OH-, NH-, CH- or SH- containing

compounds. Owing to the low cost, rapidity, high precision

and repeatability of this technique, NIRS has been largely

implemented in routine laboratory analyses of grain and fod-

der quality traits in several crop species such as maize,

wheat, sorghum and soybean for assessing several plant traits
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Figure 3. Methodological scheme showing the strategies for the use of spectroradiometrical and near-infrared spectroscopy (NIRS)

techniques in plant breeding.

including nitrogen, moisture, fiber, carbohydrates, amino acids,

minerals and a number of other plant compounds (see Foley

et al. 1998 for a review; Rosales et al. 2011). However, the

use of these techniques for indirect assessment of crop growth

and yield performance under potential yield and stress condi-

tions has been addressed more recently. In fact NIRS is not

just limited to analyzing any specific compound or metabolite

relevant for adaptation to abiotic stresses such the stable

isotope signatures of carbon (Ferrio et al. 2001) and oxygen

(Cabrera-Bosquet et al. 2011a) in a fast, albeit non-destructive

and comparatively inexpensive manner; NIRS measurement

of kernels has also been used to infer genotypic variability in

wheat yield (Ferrio et al. 2004).

Plant spectral reflectance or hyperspectral reflectance spec-

troscopy is based on the different pattern of light reflectance on

leaves at different wavelengths through the photosynthetically

active radiation (PAR, 400-700 nm), near infrared radiation

(NIR, 700-1 200 nm) and shortwave infrared (up to 2 500 nm)

regions of the electromagnetic spectrum. Spectral reflectance

information from leaves or canopies is used to build vegeta-

tion indices (VIs), which are simple operations (e.g., ratios

and differences) between spectral reflectance data at given

wavelengths. Vegetation indices are related to different plant

characteristics such as photosynthetic active biomass, pigment

content and water status (see Araus et al. 2001, 2002; Ollinger

2008 for a review). Thus vegetation indices have been used

to predict green biomass, leaf area, chlorophyll content and

yield in wheat and maize under field conditions (Aparicio et

al. 2000; Araus et al. 2001; Babar et al. 2006; Marti et al.

2007; Cabrera-Bosquet et al. 2011b). Other VIs such as the

photochemical reflectance index (PRI) and the water index (WI)

may allow inference in photosynthetic efficiency and plant water

status (Araus et al. 2001, 2002; Babar et al. 2006).

Both NIRS spectroscopy and plant spectral reflectance tech-

niques rely on the development of calibration models relat-

ing spectral information and reference data (i.e. traditional

laboratory analyses) of the trait. Usually, a sub-sample of a

complete data set representing the entire population in terms of

range of spectral variation is used for calibration development

using the appropriate mathematical treatments and algorithms

to build robust prediction models (Shenk and Westerhaus

1993; Montes et al. 2007). Once calibration models have

been successfully validated, they can be later employed in

routine analyses to predict phenotypic values on external data

sets using spectral data and further used in combination with

environmental and genotypic data to make breeding decisions

(Figure 3). Nevertheless, in the case of laboratory-based NIRS,

canopy spectral reflectance data has also been proposed for

measuring complex traits such as grain yield for crops like

durum wheat (Ferrio et al. 2005) and maize (Weber et al. 2012).

In that case, instead of formulating indices, the approach is

similar to NIRS in the sense that whole spectra are used in

an empirical basis (without aprioristic assumptions taken for

VI) to fit the best model predicting the trait of interest. In fact,

hyperspectral field spectroradiometers may be comparable to

a portable NIRS in terms of range and density of wavelengths

measured, especially if they are equipped with their own

light source (i.e. active sensors), which largely reduces the

difficulties associated with changes in solar radiation and the

angle experienced during measurements (Weber et al. 2012).

NIRS and Plant Spectral Reflectance
when Phenotyping for Complex Traits

Spectroradiometric techniques can be efficiently used in

breeding programs where thousands of individuals must be

screened. For example, spectral reflectance may provide a

fast and non-destructive evaluation of dynamic traits in C3

and C4 crops such as biomass accumulation (Babar et al.

2006), radiation use efficiency (Jørgensen et al. 2002) and

yield (Ferrio et al. 2005). For instance, predictions of yield

and other plant traits at early stages (e.g. before flowering)
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may speed-up design of test crosses at anthesis, saving time

and costs (Weber et al. 2012). NIRS can be very useful as a

fast, cost-effective and non-destructive method for screening

genotypes in breeding nurseries or in the initial stages of

breeding programs where seed availability is a major constraint.

In recent work, Cabrera-Bosquet et al. (2011a) used NIRS

to accurately predict genotypic differences in kernel and leaf

ash content and nitrogen in maize grown under different water

treatments (Figure 3). Using the same rationale as for spectral

reflectance, NIRS has also been proposed to predict traits re-

lated to genotypic adaptation to water stress such as the stable

isotope composition of carbon (Ferrio et al. 2001) and oxygen

(Cabrera-Bosquet et al. 2011a) in mature kernels. Besides

phenotyping, these techniques and particularly the evaluation

of VI are very promising for a fast non-destructive evaluation

of soil heterogeneity (Masuka et al. 2012; Prasanna et al.

2012) as well as for crop management related to conservation

agriculture, for example see Verhulst and Govaerts (2010).

Although the use of NIRS and spectral reflectance tech-

niques as a high-throughput phenotyping tool is very promising,

its application is in its infancy and requires further technical and

logistic advances. Technical solutions have been proposed,

like the use of NIRS on agricultural harvesters and canopy

spectroradiometers mounted on tractors (Montes et al. 2007,

2011), decreasing the manpower and costs and making the

acquisition of spectral information in a large number of plots

much faster and more precise. Aerial platforms are also very

suited for field phenotyping. These include different options

from remote controlled helicopters and ‘policopters’, airplanes

to balloons or cranes and conveyers.

Conversely, one limitation of the application of these tech-

niques in high-throughput phenotyping is handling the exten-

sive data produced. This may be extended to other of the more

successful phenotyping approaches, such fully-automated digi-

tal imaging systems that precisely measure the growth of a crop

plant throughout its lifecycle using 3D color digital imaging,

which is one of the key developments of the current HTPPs

designed for potted plants (Golzarian et al. 2011; Hartmann

et al. 2011).

Manipulation and analyses of huge datasets generated dur-

ing the phenotyping of thousands of individuals largely benefits

from the availability of robust databases and novel statistical

and mathematical tools. A suitable database must essentially

allow storage, visualization and analysis of phenotypic data,

but it must be also able to hold associated metadata such

as genetic, molecular and metabolic profiling information, with

appropriate tools for genetic analyses and association with

phenotypic values. In addition, a precise characterization of

environmental and growing conditions is crucial for the inter-

pretation and analysis of the G×E interaction of complex traits

(Chenu et al. 2009). The development of mathematical and

statistical methods is also necessary for the analysis and inter-

pretation of complex dynamic multi-temporal and multi-scale

phenotypic characters such as biomass accumulation, devel-

opmental processes and temperature-dependent traits (Yin et

al. 2004). Finally, an adequate structure to the database includ-

ing the use of standards, comprehensive metadata descrip-

tion and plant ontologies enables interconnection with other

available biological databases and resources (Ilic et al. 2007;

Furbank and Tester 2011; http://www.plantontology.org/). Sev-

eral initiatives such as the PHENOPSIS DB (Fabre et al.

2011), Xeml Lab (Hannemann et al. 2009) and PODD

(http://www.plantphenomics.org.au/PODDProject) are publicly

available, and these contain phenotypic data and experimental

and environmental metadata generated by phenotyping plat-

forms and multi-laboratory experiments.

The Way Ahead

The accurate prediction of complex traits will highly depend

on the quality of the phenotypic data collected. Geno-

typing by direct sequencing is already affordable for GS

(http://www.maizegenetics.net/gbs-overview; updated Jan-

uary 2012) and can only be expected to become more

affordable and more informative. GS suggests substantial

progress in the efficiency of selection combining field char-

acterization and selection with the addition of thousands of

markers simultaneously in a prediction model (Meuwissen

et al. 2001). There is already evidence in plant species with

model predictions showing a high efficiency of selection

compared with phenotypic selection, including characteris-

tics of complex inheritance (Crossa et al. 2010; Heffner et al.

2011; Resende et al. 2011). This challenges the paradigms

that sustain the current designs in plant breeding programs.

Phenotyping still remains the weak point in the breeding

process. High-throughput phenotyping platforms are in their

infancy, and will succeed when high-throughput platforms

for field conditions become reliable in accuracy, in capacity,

and become affordable. Phenotyping technologies need to

tackle selected traits and methodologies, and also the spa-

tial and temporal variability inherent in field testing (Masuka

et al. 2012; Prasanna et al. 2012). Moreover, the future

also implies using more sophisticated crop models, which

will allow the deciphering and even the designing of traits

involved in the genetic variability for quantitative traits (Yin

et al. 2004; Chenu et al. 2009). In addition, the models used

for the integration of complex gene-phenotype relationships

in breeding are becoming increasingly effective (Messina

et al. 2011). Physiological understanding will remain a

cornerstone for phenotyping, and by default, for breeding.

Moreover, linking both the phenotypic and the genotypic

boundaries of the breeding process will rely more heavily

than in the past on data analysis.
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