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Abstract—This  work  aimed  to  prospect  future  space-borne 
LiDAR sensor capacities for global bathymetry over inland and 
coastal waters. The sensor performances were assessed using a 
methodology based on waveform simulation. A global representa- 
tive simulated waveform database is first built from the Wa-LiD 
(Water LiDAR) waveform simulator and from distributions of 
water parameters assumed to be representative at the global scale. 
A bathymetry detection and estimation process is thus applied 
to each waveform to determine the bathymetric measurement 
probabilities in  coastal  waters,  shallow  lakes,  deep  lakes  and 
rivers for a  range of water depths. Finally, with a  sensitivity 
analysis of waveforms, the accuracy and some limiting factors of 
the bathymetry are identified for the dominant water parameters. 

Two future space-borne LiDAR sensors were explored: an ul- 
traviolet (UV) LiDAR and a green LiDAR. The results show that 
the bathymetric measurement probabilities at a 1 m depth is 63%, 
54%, 24% and 19% with the green LiDAR for deep lakes, coastal 
waters, rivers and shallow lakes, respectively, and 10%, 22%, 1% 
and 0% with the UV LiDAR, respectively. 

The threshold values of dominant water parameters (sediment, 
yellow substance and phytoplankton concentrations) above which 
bathymetry detection fails were identified and mapped. The accu- 
racy on the bathymetry estimates for both LiDAR sensors is 2.8 cm 
for one standard deviation with negligible bias (approximately 

0.5 cm). However, these accuracy statistics only include the errors 
coming from the digitizing resolution and the inversion algorithm. 

 

Index Terms—Accuracy, bathymetry, LiDAR, satellite, wave- 

form model. 
 
 

I.  INTRODUCTION 
 

ATHYMETRY  is the measurement  of underwater depth. 

Bathymetry on coastal and inland waters is important for 

a wide range  of research  topics  and for a variety  of societal 

needs.  In coastal  waters,  these needs  correspond  to maritime 

navigation, ocean circulation modelling [1], ecosystem moni- 

toring [2], tsunami or hurricane risk prevention [3], and marine 

archaeology [4]. In inland waters, bathymetry mapping is im- 

portant for navigation and can help efforts to manage and sustain 

natural  resources  financially  and ecologically  [5], [6]. More- 

over, monitoring the changes in bathymetry in time can be used 

to identify patterns of fluvial or coastal erosion or deposition to 

support a process of sustainable management [7], [8]. 

Water depth can be measured directly with conventional 

methods by dropping a weighted line into the water, or either 

indirectly  with  remote  sensing  methods  [9].  Bathymetric  re- 

mote sensors mainly include single-beam and Doppler echo 

sounders [10], [11] or multi-beam SONAR (Sound Navigation 

And Ranging) (e.g., [12], [13]). Because echo sounder systems 

are not capable of measuring depth in very shallow water, 

bathymetry   coverage   is  usually  incomplete   in  coastal  and 

inland waters [14]. As an alternative, optical imagery has been 

used to estimate water depth, but only in clear water conditions 

[9], [15], [16]. 

Despite   the   use   of   optical   signals,   Airborne   LiDAR 

Bathymetry (ALB) systems have proved to be suitable for 

mapping bathymetry because of their accuracy and high spatial 

density features [17]–[19], and they can penetrate waters up to 

three times deeper than can passive systems [20]. Currently, the 

operational  ALB  systems  are (i) the Scanning  Hydrographic 

Operational Airborne LiDAR Survey system (SHOALS) man- 

ufactured by Optech Inc. and under contract to the U.S. Army 

Corps  of Engineers  [21],  (ii) the HawkEye  system  from  the 

Swedish Navy and Hydrographic Department [18], (iii) the 

Australian  Laser  Airborne  Depth  Sounder  (LADS)  [22], and 

(iv) the Experimental Advanced Airborne Research LiDAR 

(EAARL)  [8]. Most of these ALB detectors  use a green laser 

pulse  in their  emissions  (532  nm)  and  can  register  returned 

waveforms  with contributions  from the water surface, column 

and  bottom  [23]–[25]. A way to estimate water depth from 

LiDAR waveforms is thus to multiply the half time difference 

between the water surface and the bottom peaks by the speed 

of light in the inherent water column [26], [27]. 

Many studies aimed to quantify bathymetry accuracies from 

airborne bathymetric LiDAR systems in coastal waters, lakes 

or rivers. The computed accuracy on the bathymetry estimates 

ranged between 7 cm and 32 cm for one standard deviation [8], 

[17], [19], [28], [29], with a maximal depth penetration ranging 

from 15 to 50 m [19], [29], [30]. 

However, compared to other remote sensing bathymetric 

techniques, LiDAR  systems  have  some  disadvantages.  First, 

the feasibility of measurements is dependent on water clarity. 

Some surveys may need to be repeated if water clarity is too 

low. Secondly, surface waves can generate surface foams 

which can make bathymetry more difficult. Conversely, spec- 

ular reflexion of laser beams in the case of flat water surfaces 

can  cause  distortion  or  saturation  events  and  can  overload



 

the detector  [31].  Consequently,  most  of ALB  sensors  use a 

constant off nadir scan angle that also makes the refraction 

corrections constant. Finally, ALB techniques have limitations 

to map global  near shore  bathymetry  with regard  to reduced 

spatial coverage and costs. This latter disadvantage leads to the 

consideration of space-borne bathymetric LiDAR systems. 

To date, one space-borne  LiDAR sensor has been launched: 

the Geoscience  Laser Altimeter System (GLAS) from ICESat 

(Ice Cloud and Elevation  Satellite).  The first objective  of this 

system  was  to  determine  the  mass  balance  of  the  polar  ice 

sheets and their contributions  to global sea level change. The 

second objective was to measure the cloud heights and aerosols 

in the atmosphere and to map the topography of land surfaces. 

The second generation of the ICESat orbiting laser altimeter is 

scheduled for launch in late 2015. The European Space Agency 

(ESA) plans to launch the Atmospheric Dynamics Mission 

Aeolus (ADM-Aeolus),  based on a Doppler Ultraviolet LiDAR 

system, in 2013 to perform global wind-component-profile 

observations  [32]. These space-borne  LiDAR missions are not 

dedicated to bathymetric uses. 

Consequently, future bathymetric satellite LiDAR mission 

configurations need to be explored to answer the following 

questions: What percentage of shallow immersed Earth surfaces 

can be viewed by a bathymetric  satellite  LiDAR and at what 

accuracy? How much does it depend on LiDAR parameters? 

One way to investigate these questions is to analyse the per- 

formance of satellite LiDAR configurations for bathymetric ap- 

plications  from  a database  of LiDAR  waveforms  representa- 

tive of the physical conditions of the water encountered all over 

the Earth. However,  to produce  a database  that is representa- 

tive of all possible physical conditions  of the water using dif- 

ferent LiDAR configurations would require a huge investment 

in time, manpower,  and money. For these reasons, the use of 

simulated  waveforms  provided  from LiDAR signal models is 

an interesting alternative. 

Recently, a Water LiDAR simulator (Wa-LiD) was developed 

to generate LiDAR waveforms for any wavelength in the optical 

spectrum  domain between 300 and 1500 nm [33]. This simu- 

lator is based on equations from previous hydrographic LiDAR 

models [23]–[25], [34] but it integrates radiative transfer laws 

governed by the physical properties of water for any wave- 

length. In addition, this simulation model uses a geometrical 

representation of the water surface with the geometric model of 

Cook and Torrance [35], and it takes into account both the char- 

acteristics of detection noise and the signal level due to solar 

radiation. 

The main objective of this study is to propose a framework 

that permits estimation of the overall bathymetric performance 

of satellite LiDAR sensors. Within the proposed framework, 

the performances of sensors on inland and coastal water types 

(coastal, river, shallow lake and deep lake waters) are also anal- 

ysed separately. This framework mainly relies on the exploita- 

tion of a representative database of water parameters that is used 

to simulate LiDAR waveforms according to the distributions of 

water parameter values that are most encountered at the global 

scale and for each water type. 

In this study, two bathymetric LiDAR sensor configurations 

were investigated. The first emits laser beams in the usual green 

wavelength  (532 nm) and the second uses the UV wavelength 

(355 nm). From the usual Nd-YAG lasers (Neodymium-doped 

Yttrium  Aluminium  Garnet),  the green wavelength  is known 

to offer the highest  penetration  performance  and is therefore 

the most often used wavelength in airborne LiDAR bathymetry 

[17], [36]. The UV wavelength  can also penetrate clear water 

despite being more absorbed  than the green wavelength  [37]. 

UV has been  used  to measure  ozone  and aerosols  in the at- 

mosphere, such as the Differential Absorption LiDAR (DIAL) 

of  NASA  [38],  [39],  and  forest  canopy  geometry  [40].  An 

other  example  of  UV  LiDAR  sensor  is  the  ATLID  sensor 

(ESA’s Satellite-borne  Atmospheric  LiDAR sensor), designed 

to provide  satellite  measurements  of cloud-top  height both at 

day and night times [41]. 

The overall  proposed  framework  is divided  into four steps 

corresponding  to the main parts of this paper. 

First, the input parameters of the Wa-LiD model are selected 

and used to generate a simulated LiDAR waveforms database. 

These parameters  are (i) system parameters  depending  on the 

two system configurations (e.g., emitted power, pulse width, re- 

ceiver area, field of view) and (ii) water parameters (e.g., surface 

and bottom slope, surface rugosity, sediment concentration). 

Second, due to the large number of water parameters used in 

the Wa-LiD model and because of a recently proposed method- 

ology [42], a Global Sensitivity Analysis (GSA) of the Wa-LiD 

waveforms  to water  parameters  is performed  to identify  the 

dominant water parameters that highly influence backscattered 

waveforms for each type of water. 

Third,  the  waveforms  that  permit  detection  of  the  water 

bottom are identified through a peak detection method. There- 

fore,   the  detection   probabilities   of  the  water   bottom   are 

computed  for the two LiDAR configurations,  all water types, 

and different water depths. 

Finally, after using adapted mathematical  functions to fit the 

different  contributions  of the LiDAR  signal (surface,  column 

and bottom), the accuracy of the bathymetry estimates for wave- 

forms with a detectable  water bottom is estimated. The signal 

to noise ratio (SNR) and the threshold values of dominant water 

parameters for bathymetry are also identified. 

 
II.  MATERIALS AND METHODS 

 
A.  Waveform Simulation 
 

The simulated waveforms used in this study were generated 

by  the  Wa-LiD model [33]. The  Wa-LiD model integrates 

both noise due to solar radiation and detector noise, making 

this  model  especially suitable  for  satellite  LiDAR  mission 

exploratory studies. 

In the Wa-LiD model, the outputs are simulated waveforms 

received by the LiDAR sensor corresponding to photonic power 

as a function of time  . These waveforms are assumed to be the 

sum of the echo waveforms backscattered from the successive 

media encountered by the laser beam [24]: 
 

(1) 

 
where             denotes  the waveform  recorded  by the detector, 

denotes the water surface contribution  waveform,



 
 

 
TABLE I 

SENSOR  PARAMETER  VALUES  OF THE TWO INVESTIGATED LIDAR SATELLITE 

SENSORS  (UV AND  GREEN) 

 

 
 

 
denotes the water column contribution waveform, and           de- 

notes the bottom contribution waveform. The noise was divided 

into two sources: 

(i)  the shot noise contribution              coming from solar ra- 

diations is defined as a Gaussian white noise with param- 

eters depending  on the solar irradiance and the Field Of 

View (FOV) [34], [43]. The solar irradiance was fixed to 

0.025                 (value for daytime operation [25], [34]). 

(ii)  the detector noise contribution              which is co-linear 

to all other waveform contributions [33]. 

However, Wa-LiD does not take into account the atmospheric 

noise which depends on the attenuation and volume scattering 

by particles and molecules constituting the atmosphere such as 

aerosols, water vapor, etc [44], [45]. 

The equations  and parameters  interacting  in these different 

power  components  can be found  in detail  in Abdallah  et al. 

[33]. The Wa-LiD  model simulates  each waveform  contribu- 

tion, such as the bottom waveform contribution which is the key 

information  to estimate  bathymetry  from  LiDAR  waveforms 

[26]. Wa-LiD was validated by comparing the simulations to 

actual airborne or satellite data in the 532 nm and 1064 nm 

spectra (HawkEye and GLAS): the Wa-LiD model showed a 

good ability to simulate the observed waveforms by fitting un- 

known water parameters [33]. However, the Wa-LiD simula- 

tions depend on many sensor and water parameters. 

1)  Sensor Parameters of the Wa-LiD Model:  Two bathy- 

metric satellite LiDAR configurations were investigated in this 

study. The first emits laser beams in the usual 532 nm wave- 

length (green). The second uses the UV wavelength (355 nm). 

The  values  of  the  instrumental   parameters  acting  in  the 

Wa-LiD equations may or may not depend on the LiDAR 

wavelength. The  retained  values  of  these  parameters  were 

chosen with the EADS-Astrium company (European Aero- 

nautic Defense and Space Company) and listed in Table I. The 

lowest FOV angle used in simulation reduce highly the solar 

radiation noise. Consequently our simulated waveforms are 

slightly  noised  compared  to actual  waveforms  coming  from 

sensors with higher FOV angles (Fig. 1). 

 
 
 

 
 
Fig. 1.  Simulated 532 nm waveforms with different FOV angles (water depth 

= 5 m). 
 

 
 

2) Water Parameters of the Wa-LiD Model:  Four types of in- 

land and coastal waters were distinguished in this study: coastal, 

river, shallow  lake and deep lake waters. The optical proper- 

ties of water are different  in shallow  and deep lakes because 

shallow waters are richer in suspended sediments and dissolved 

organic matter (yellow substances)  [46]. Table II presents the 

range values and distribution laws for water parameters that do 

not depend on water types. These parameters are connected to 

the water surface or bottom characteristics. Most of shallow wa- 

ters in coastal areas have a small bottom slope [47], the steep 

slope was founded in special case of water bottom for example 

around the Arctic and can reach 39   [48]. Moreover, it has been 

shown that slope distribution in rivers usually follows an expo- 

nential decrease from upstream to downstream  [49]. For these 

reasons,  we used the log-normal  distribution  of       (Table II) 

for all water types centred on a value of 3   that generates little 

number of high slope values. 

Table  III shows  the range  values  and the related  distribu- 

tion laws for the water column parameters  depending  on each 

water type. The distribution  laws and range values of yellow 

substances      , phytoplankton        and sediment    came from 

existing databases collected on water bodies around the world 

(from USGS data collected between 1977 and 1999 and from 

the SeaWiFS Project of NASA/GSFC (Goddard Space Flight 

Centre, 1997). The     parameter, which corresponds to the co- 

efficient of specular light backscattered from the water surface, 

can theoretically vary between 0 and 1, corresponding to to- 

tally diffuse or totally specular surfaces, respectively [35]. In 

this study, a uniform distribution [0.6–0.9] of      was chosen 

arbitrarily in regard to the geometrical representation of the 

water surface, such as small specular  facets in the Cook-Tor- 

rance model. For the     parameter, corresponding to the root 

mean square error of the surface facet slopes in the Cook-Tor- 

rance model, a range of 0.1–0.5 was chosen. This range was 

given by the unique literature of Beckman and Spizzochino [50]. 

The values of the       parameter corresponding to the bottom 

albedo were given by the literature for different types of bot- 

toms: gravel, sand, limestone, periphyton, debris, cobble, algae 

and mud [15], [20], [51], [52].



 
 
 

TABLE II 

RANGE  VALUES   (MINIMUM–MAXIMUM)  OF  WATER  PARAMETERS   FOR  ALL  WATER  TYPES 

(SURFACE   AND   BOTTOM   SURFACE   PARAMETERS).       AND         DENOTE   THE  MEAN 

AND THE STANDARD  DEVIATION  OF THE LOG-NORMAL  DENSITY  FUNCTION 

 

 

 
TABLE III 

RANGE  VALUES  (MINIMUM–MAXIMUM)  OF  CONCENTRATIONS  OF  YELLOW  SUBSTANCES   AY0, PHYTOPLANKTON  CPH 

AND  SEDIMENT  S FOR THE FOUR CONSIDERED  WATER  TYPES 

 

 
 

 
 

Fig. 2.  Yellow substances      , phytoplankton        and sediment    concentration distributions for the four considered water types.    and    denote the mean and 
the standard deviation of the fitted log-normal density function (black curve), respectively. 

 

Fig. 2 shows the collected distributions for all Wa-LiD water 

parameters and for the four types of waters. The sediment con- 

centration varies from 0 to 250 mg/l in the river waters, but only 

from 0 to 15 mg/l in the deep lake water. Similarly, the       his- 

tograms come from data collected worldwide [53]. The empir- 

ical histograms of     and        were thus fitted with log-normal 

density functions (Fig. 2). The fitting process gives the     and 

log-normal law parameter estimates. The phytoplankton con- 

centrations and log-normal distribution parameters (   and 

) were more directly given by [61], [62]. 

The water parameters including all the scene parameters are 

assumed to be homogeneous within the footprint or FOV area.



 
 

 

 
 

Fig. 3.  Simulated LiDAR waveforms in coastal waters for 1, 2, 3 and 5 m water depths. (a) Green wavelength, and (b) UV wavelength. 

 

3)  Wa-LiD Simulation Examples: Fig. 3 shows examples of 

simulated waveforms for the two studied satellite LiDAR sensors 

with the sensor parameter values given in Table I. We used in our 

simulations a simplified theoretical case: the temporal origin of 

our waveforms was fixed arbitrary. It does not simulate the sensor 

orbit. Here, the water surface was considered smooth (              , 

) and the water bottom was sandy                       . The 

water column parameters used in these simulations correspond to 

the mean coastal water conditions: i) a yellow substances concen- 

tration       equal to 0.1         , ii) a phytoplankton  concentration 

equal to 8              and iii) a sediment concentration     equal 

to 9 mg/l. Waveforms were generated for water depths equal to 

1, 2, 3 and 5 m. As shown in Fig. 3, the bottom peak magnitude 

in the received waveforms decreases with water depth due to 

laser beam attenuation along the water column. The green signal 

penetrates deeper into the water column depending on the water 

properties and is reflected from the bottom, showing a significant 

bottom waveform contribution. The UV signal is attenuated 

in the water column, and the bottom waveform contribution is 

low for shallow water and disappears for deep water. 

Fig. 4 shows the effects of the bottom slope on waveforms. 

For highest slopes, the bottom echo is highly stretched and its 

width becomes larger than the width of other echoes (approxi- 

mately 70 ns for a slope of 35 ).



 
 

 
 

Fig. 4.  Simulated green LiDAR waveforms in coastal waters for different 

bottom slope          at 2 m depth. 

 

 
B.  Sensitivity Analysis of LiDAR Bottom Contribution 

Waveforms 

A sensitivity analysis will be performed to determine the dom- 

inant water parameters  on the bottom contribution  waveforms 

that result from the interaction between the laser beam passing 

through  the  water  surface,  the  water  column  and  the  water 

bottom. Because an analytical analysis of the Wa-LiD model sen- 

sitivity would be difficult, we preferred to use a variance-based 

method using a quasi Monte-Carlo experimental design of model 

parameters and producing synthetic and easily interpretable 

sensitivity indices: the Sobol sensitivity indices [63]. 

1) Experimental Design:  To perform a Sobol sensitivity 

analysis of all water parameters on the bottom contribution 

waveform  (except  water  depth),  we  used  the  quasi-random 

Sobol sampling in the water parameter distributions  (Tables II 

and III), and known  to be one of the best random  sampling 

designs for the Sobol sensitivity analysis framework [64], [65]. 

The design was also stratified among the two sensor configura- 

tions (532 and 355 nm) and the four water types (coastal, river, 

shallow lake and deep lake) for six different depths (1, 2, 3, 5, 

10 and 15 m). Forty-eight strata were thus obtained having a 

set of 10 000 simulated waveforms for each. We thus produced 

a database of 480 000 Wa-LiD simulated waveforms. 

2) Sensitivity Indices: Sobol Indices: To determine the 

dominant water parameters, two Sobol sensitivity indices were 

calculated: the first-order sensitivity index (SI) and the total 

sensitivity index (TS). We retained        as a unique sensitivity 

indicator because it integrates interactions of parameters in 

the Wa-LiD model. For given water parameter      and a scalar 

model output Y, the generic formulation of       is 

 
(2) 

 
where           is the variance of     and           is its expectation. 

     denotes all other parameters but     .                        is the 

variance of the conditional expectation of Y, having frozen all 

sources of variation but     . Consequently,          usually ranges 

from 0 to 1, and the higher the        , the more sensitive the model 

to     . 

Fig. 5.  Example of Wa-LiD waveform smoothed by the Wiener filter with a 

detectable bottom.           and     are the beginning and the end of the time series, 
respectively;       and     are the amplitude and the time position of the surface 
peak;       and    . are the amplitude and the time position of the bottom peak. 

 

 

 

 

 

 
 

 
 

 

 

 

 

 

 

 

 

 

Here,  the       model  output  is           , which  is multidimen- 

sional. Therefore, a multivariate global sensitivity analysis 

method [42] proposed initially by Campbell et al. [66] is used. 

The principle  of this multidimensional  Sobol method  is i) to 

decompose  the model  outputs  (waveforms)  upon  a complete 

orthogonal  basis computed  by Principal  Component  Analysis 

(PCA) and ii) to compute Sobol indices on each component of 

the decomposition.  Then, a unique Sobol index attached  to a 

water parameter result from the scalar product between the first- 

order Sobol indices and related eigenvalues from PCA [42]. 

 
C.  Water Bottom Echo Detection From Wa-LiD Waveforms 
 

The registered LiDAR waveforms          allowing bathymetry 

are usually composed of two main peaks representing  the sur- 

face and the bottom  echoes [17]. To detect the water bottom 

echo, i.e., the peak from Wa-LiD waveforms, a Wiener filtering 

was used in a denoising step [67] to smooth the waveform and 

to facilitate a search of the two peaks (Fig. 5). Second, a peak 

detection method is applied on the smoothed waveform        , 

and it searches the amplitude and the time position of the first 

maximum (the instant where                            ). This maximum 

should be greater than the maximum of           between     and 

(Fig. 5), where           is fixed according to a constant dis- 

tance between the sensor and the water surface. The search for 

the first maximum proceeds in two ways: 

•  Forward, from the beginning of the time series 

to the end of the time series       . The peak found is thus 

considered to be the surface peak, with amplitude      and 

a time position     . 

•  Backward, from     to          to find the bottom peak, giving 

the bottom amplitude      and the time position    . 

When the two peaks are found, the waveform is declared to have 

a detectable bottom. This process permits the identification of 

waveforms with a detectable water bottom from the simulated 

waveform database. 

To  analyse  the  bathymetric  performances   of  each  of  the 

studied sensors, the percentage of waveforms with a detectable



 
 

 
bottom  were calculated  for each water type and for different 

water depths (1, 2, 3, 5, 10 and 15 m). 

 
D.  Bathymetry Estimation From Wa-LiD Waveforms 

 

Waveforms presenting a detectable bottom are fitted by math- 

ematical functions. Several functions have been performed in the 

literature to fit the waveform components, such as two Gaussian 

curves to approximate  both the surface and the bottom returns 

[26] or three Gaussian curves used [68] to fit the water surface, 

the water column and the bottom return. Other functions are also 

used, such as the Weibull distribution and the Burr function, to 

approximate asymmetric waveforms [69]. Moreover, several 

combinations of functions were tested by the work of Ceccaldi 

(Master thesis, 2011) to fit the waveform contributions, but the 

combination  of a Gaussian function, a triangle function and a 

Weibull function to fit the surface, the column and the bottom 

echoes, respectively, showed the best fit. 

Our algorithm uses the same mixture of functions as follows: 

 

 

 
 
Fig. 6.  Fitted simulated waveform with a sum of a Gaussian function (water 
surface peak), a triangle function (water column) and a Weibull function of water 
(bottom peak). The estimated depth is 2.9887 m for an actual depth of 3 m.

 
 

where                             is the Gaussian function defined as: 
 
 
 
 

where        is the scale factor (amplitude)  of the Gaussian, 

 

 
 
(4) 

incidence angle.      depend on the incidence angle of the sensor, 

the water  refractive  index  and the water  surface  and bottom 

slope. 

Next, the bias   , i.e., mean of errors                       and the stan- 

dard deviation (SD) between the estimated depth retrieved from

is the time position of the surface (ns), and       is the standard 

deviation. 

is the triangle function [70] multiplied by an 

amplitude       and defined as: 

waveforms           and the actual depth, denoted as      , was cal- 

culated for each type of water using the usual accuracy statistics:

 
 

(5) 
 

 

denote the time positions of triangle vertices. 

is the Weibull function multiplied by an am- 

plitude       [71]: 

 
 

(6) 

is the scale parameter (time position of the bottom in ns) 

and     is the shape parameter. 

A nonlinear least-squares (NLS) approach using the Lev- 

enberg-Marquardt optimisation algorithm [72], [73] was 

performed to fit the sum of three functions          (Fig. 6). The 

 
detection method for the amplitudes and time positions (i) of 

the Gaussian function               and (ii) of the Weibull function 

. The shapes of the Gaussian         and Weibull func- 

tions         are initialised as                             , where      is the 

emitted pulse width at half maximum. The triangle function 

amplitude is initialised by                   . The triangle vertices   , 

and   are initialised with                           , respectively. 

The NLS fitting provides fitted parameter values. The 

bathymetry estimate      could be calculated as follows: 

 
(7) 

1)  Water Parameter Values Limiting Bathymetry Detection: 

The range values  of the dominant  water parameters  were di- 

vided into regular intervals (logarithmic  scale), and the detec- 

tion probability was mapped for each dominant water parameter 

pair. For each interval pair, the detection probability was defined 

as the ratio between the number of detectable waveforms and the 

total number of waveforms belonging to these intervals. From 

these maps, the threshold values of dominant water parameters 

are identified to delineate detection areas, i.e., areas where the 

detection probability is greater than zero. 

2)  Signal to Noise Ratio (SNR):  The noise in waveforms 

 
bathymetry. Thus, the ratio between the bottom peak amplitude 

and the standard deviation     of the noise (sum of two noise 

contributions:                             ), i.e., the signal to noise ratio, 

was calculated for each Wa-LiD waveform as: 

(8) 

The            distribution of detectable waveforms was calcu- 

lated for each water type and different water depths. The lowest 
values that permit the bathymetry to be detected were also 

identified.



 
 

 

 
 

Fig. 7.  Global bathymetry probabilities. (a) Green configuration. (b) UV con- 

figuration. 

 

 
III.  RESULTS 

 
A.  Global Bathymetry Probability in Coastal and Inland 

Waters 
 

Using   the  peak  detection   method   described   in  method 

Section II-C, Fig. 7 presents the bathymetric probabilities,  i.e., 

the percentage  of waveforms  with a detectable  water bottom, 

we  can  expect  from  the  two  studied  sensors  for  all  coastal 

or inland  water  types.  Obviously,  the bathymetry  probability 

decreases with water depth whatever the water type. With the 

green sensor,  the bathymetry  probability  becomes  lower than 

20% for water depths greater than 5 m in coastal  waters and 

deep lakes (Fig. 7(a)). For rivers and shallow lake waters, the 

bathymetry  probability  is lower  than  10%  for depths  higher 

than  2 m. The  results  obtained  also  show  that  for  all water 

types, the bathymetry  probability  in the green sensor is more 

important  than that in the UV. For example,  the bathymetry 

probability  is 53.5% in the coastal water compared  with 22% 

in the UV (Fig. 7(b)). 

With the UV sensor,  the bathymetry  probability  is low for 

all water types and becomes lower than 10% for water depths 

greater  than 3 m. Moreover,  the highest  probabilities  are ob- 

tained for coastal waters, decreasing from 22% at a 1 m water 

depth down to 3% at 5 m. For river waters and shallow lakes, 

the bathymetry  probability  is close  to 0 for any water  depth 

(Fig. 7(b)). In deep lakes, the bathymetry probability varies from 

10% at 1 m to 1.4% at 3 m. 
 

B.  Sensitivity Analysis of Simulated Bottom Echoes 
 

Figs. 8 and 9 present the total sensitivity (TS) indices of the 

water parameters for the green and UV sensors. The TSs for 

each of the two system configurations were assessed for the four 

water types and for six different depths (1, 2, 3, 5, 10 and 15 

m). For all water types and for the two system configurations, 

three water parameters have a negligible impact on the bottom 

waveforms with TS indices close to 0: the surface slope     , the 

bottom slope       and the specular bidirectional reflectance    . 

The results can be summarised as follows (Figs. 8 and 9): 

•  for  coastal  waters  and  with  the  green  LiDAR  sensor 

(Fig. 8(a)), the sediment concentration    is the dominant 

(the most impacting) parameter for all water depths. How- 

ever, the TS index of the phytoplankton concentration 

increases  with  water  depth  and  shows  a  higher 

impact  from  a 10 to 15 m depth.  With  the UV LiDAR 

sensor (Fig. 9(a)), the TS indices of     are the highest for 

 

 

 
 
Fig. 8.  Total Sobol indices related to water parameter variability for green 
sensor (532 nm) configuration across coastal water, river, deep and shallow 
lakes and for different depths (1, 2, 3, 5, 10 and 15 m).     : surface slope;     : 
bottom slope;    : specular bidirectional reflectance;  : root mean square of facet 
slope (water surface roughness);      : yellow substances concentration;   : sedi- 
ment concentration;       : phytoplankton concentration and     : bottom albedo. 
(a) Coastal water; (b) river; (c) deep lake; (d) shallow lake. 
 

 

 
 
Fig. 9.  Total Sobol indices related to water parameter variability for UV sensor 
(355 nm) across coastal water, river, deep and shallow lakes and for different 
depths (1, 2, 3, 5, 10 and 15 m).     : surface slope;     : bottom slope;     : spec- 
ular bidirectional reflectance;  : root mean square of facet slope (water surface 
roughness);       : yellow substances concentration;   : sediment concentration; 

: phytoplankton concentration and      : bottom albedo. (a) Coastal water; 
(b) river; (c) deep lake; (d) shallow lake. 

 

 
all water depths (greater than 0.8 in Fig. 8(a)). For       , 

the TS index increases strongly with the water depth and 

reaches  high  values  for  depths  greater  than  10  m.  For 

the yellow substances concentration         , the TS index 

decreases with water depth from 0.5 at a 1 m depth to 0 for 

water depths greater than 5 m. The other water parameters 

(roughness  , bottom reflectance     ) show negligible 

impacts in the UV and green configurations. 

•  in rivers,        and      have the highest  TS indices  for all 

depths with both UV and green sensor configurations. The 

TS index of        increases with water depth and reaches the



 
 

 
highest values for depths greater than 5 m with the green 

sensor (Fig. 8(b)) and greater than 2 m with the UV sensor 

(Fig. 9(b)). The bottom reflectance       shows moderate TS 

indices  (between  0.1 and 0.4 for the green and approxi- 

mately 0.4 for the UV). The sensitivity of other parameters 

is very low. 

•   in deep lakes and for the green configuration  (Fig. 8(c)), 

and show a higher impact on the bottom wave- 

forms for all depths. Moreover,     and    show high sensi- 

tivity indices only for high water depths (   10 m). For the 

UV sensor configuration  (Fig. 9(c)),         shows the most 

important TS for any depth. For depths greater than 2 m, 

and      show  higher  values  of TS. The parameter 

shows remarkable values of TS for depths greater than 3 m. 

The bottom reflectance       shows a negligible impact in the 

two configurations and for all depths. 

•   in shallow lakes and for both green and UV LiDAR config- 

urations, the TS indices of        ,        and     are the highest 

for all depths and they increase  with water depth. In the 

UV configuration, the TS values of these three parameters 

are more important than the        values in the green con- 

figuration. The roughness    and the bottom reflectance 

show negligible impacts. 

 
C.  Water Parameters Limiting Bathymetry 

 

The sensitivity analysis showed that three of the eight water 

parameters                        have the highest impact on the bottom 

waveforms.  We therefore  hypothesised  that these three domi- 

nant parameters  are the most limiting to bathymetry.  Maps of 

the bathymetry detection were thus produced for dominant pa- 

rameter pairs for each water type, for each depth and for both 

sensors  using the same simulated  waveform  database  as pre- 

viously. In the proposed sensitivity  analysis study, the bottom 

slope       did not appear as an impacting parameter although it 

is known that the bottom slope influences strongly the bottom 

echoes (Fig. 4). Indeed, this is due to the log-normal distribution 

of       used for the waveforms  simulations  that limit effects of 

high slopes                being lowly probable. Moreover,        was 

performed  for a fixed and limited range time in the waveform 

scale that did not permit to completely take into account the 

stretching effect of slopes on the bottom echo. For this reason we 

chose here to also consider bottom slope as a dominant factor. 

 
bility in function of               parameters,                parameters 

and in function of              parameters in coastal waters. The 

sub-figures present separate results for the green and UV sen- 

sors and for 1, 5 and 10 m water depths. For some intervals of 

water parameters corresponding to low values, the lowest prob- 

abilities (   0.1) are observed. These values are not significant 

because they correspond  to a low number of simulated  wave- 

forms in these intervals of water parameters. 

The shapes of the probability features on these maps in log- 

arithmic scales are identical (circular and concentric shapes), 

and they show the interaction of parameter pairs in bathymetry 

probabilities. The interest of such maps is to identify the pa- 

rameter threshold that delineates the areas where bathymetry 

is possible  (probability  greater  than 0) and those  where  it is 

not. These maps may be seen as guidelines or abaci that permit 

 

 

 
 
Fig. 10.  Maps of bathymetry detection probability according to       and    dis- 
tributions in coastal water for 1, 5 and 10 m water depths for green and UV Li- 
DARs (plotted with logarithmic scale). The black contour corresponds to very 
low probability values                        and delineates the bathymetry detection 
area. 

 

 
the estimation  of bathymetry  probability  from  a space-borne 

LiDAR  sensor  on a particular  river,  lake  or littoral  environ- 

ment. These thresholds of dominant water parameter values 

(sediment, yellow substance and phytoplankton concentra- 

tions), above which bathymetry detection fails, are resumed in 

 
For instance, at a 1 m coastal water depth and with green 

LiDAR, bathymetry cannot be performed when the sediment 

concentration    is higher than 76 mg/l or when the yellow sub- 

stance concentration        is higher than 4.5 mg/l or when the 

bottom slope      is higher than 10 . As a comparison, in 1m 

depth coastal water and with UV LiDAR, bathymetry cannot be 

performed when the sediment concentration    is higher than 30 

mg/l or when the yellow substance concentration       is higher 

than 0.4 mg/l or when the bottom slope      is higher than 8 . 

 
D.  Bathymetry Accuracy 
 

The waveforms with a detectable bottom were used to 

determine the water depth using the process detailed in the 

method  section.  The  errors,  i.e., the differences  between  the 

water depths retrieved from the fitted waveforms and the actual



 
 
 

TABLE IV 

MAXIMUM  OF DOMINANT  WATER PARAMETERS  (S,      ,        ) CORRESPONDING TO WAVEFORMS  WITH DETECTABLE  BOTTOMS  (--=NO WAVEFORM  AVAILABLE 

WITH A DETECTABLE  BOTTOM  WAS FOUND). MAXIMA  ARE PRESENTED  FOR THE TWO STUDIED  LIDAR SENSORS  (UV AND GREEN) FOR EACH WATER TYPE 

(COASTAL  WATERS, RIVERS, DEEP LAKES AND SHALLOW  LAKES) AND FOR DIFFERENT  WATER DEPTHS  (1, 2, 3, 5, 10 AND 15 m) 

 

 
 

 

Fig. 11.  Maps of bathymetry detection probability according to          and 
distributions in coastal water for 1, 5 and 10 m water depths for green and UV 
LiDARs (plotted with logarithmic scale). The black contour corresponds to very 
low probability values                        and delineates the bathymetry detection 
area. 

 
depths  used  for  simulation,  were  calculated.  Therefore,  the 

usual error statistics, that is, the mean of errors (bias) and the 

 
Fig. 12.  Maps of bathymetry detection probability according to     and    distri- 
butions in coastal water for 1, 5 and 10 m water depths for green and UV LiDARs 
(plotted with logarithmic scale). The black contour corresponds to very low prob- 
ability values                      and delineates the bathymetry detection area. 

 
standard  deviation  of errors (SD) were also computed.  These 

statistics can be summarised as follows (Fig. 13).



 
 

 

 
 

Fig. 13.  Statistics on the bathymetry estimation errors: bias and standard devi- 
ations. (a) Green configuration; (b) green configuration; (c) UV configuration; 
(d) UV configuration. 

 

 
 

For the green  configuration,  the bias ranges  from     0.1 to 

1.2  cm  (Fig.  13(a)),  with  an  SD  between  1.7  and  5.0  cm 

(Fig. 13(b)). The over-estimations  of the bathymetry  observed 

in the river water at a 10 m depth and in the shallow lake water 

at a 5 m depth correspond to two cases where the percentage of 

detectable  waveforms  is very low (0.30% and 0.33%, respec- 

tively).  Therefore,  this overestimation  related  to low number 

of data is not significant. 

For  the  UV  sensor,  the  bias  ranges  from     0.4  to     2.0 

cm  (Fig.  13(c)),  with  SD  values  between  1.0  and  4.7  cm 

(Fig. 13(d)). An underestimation  of the water depth was also 

observed for all water types and at all depths except in coastal 

water at a 10 m depth. The overestimation  of the bathymetry 

observed  for coastal water at a 10 m depth due to the lowest 

percentage  (0.9%) of detectable waveforms  is also considered 

non-significant. 

 
E.  Signal to Noise Ratio (SNR) of Bottom Echoes in Waveforms 

With a Detectable Bottom 
 

The signal to noise ratio (SNR) for bathymetry is defined here 

by the ratio of the bottom peak amplitude in the waveforms 

to the noise amplitude. To determine the distribution of SNRs 

for each water type and water depth, it was calculated for each 

simulated waveform with a detectable bottom. The minimum 

and maximum SNRs were calculated for each case in using the 

two studied LiDAR sensors (Table V). 

The SNR values obviously decrease with water depth in the 

green and the UV configurations for all water types. 

Fig. 14 shows a sample of SNR boxplots in coastal water. 

For the green waveforms, the median of the SNR decreases with 

water depth from 358 at a 1 m water depth up to 21 at a 15 m 

water depth (Fig. 14(a)). For the UV waveforms, the median 

SNR decreases from 155 at a 1 m water depth up to 0 at a 15 

m water depth (Fig. 14(b)). However, the most important task 

from the SNR calculation is to identify the lowest SNR values 

allowing bathymetry. 

 

 
 

TABLE V 

MINIMUM  AND MAXIMUM  OF SNRS CORRESPONDING TO WAVEFORMS  WITH 

DETECTABLE  BOTTOMS. (--=NO WAVEFORM  WITH DETECTABLE  BOTTOM  WAS 

FOUND  AT THIS DEPTH FOR THIS WATER TYPE) 
 

 
 

 

 
 
Fig. 14.  Boxplots of SNRs (logarithmic scale) for waveforms with detectable 
bottoms at 1, 2, 3, 5, 10 and 15 m water depths in coastal waters for the green 
and UV sensors. (a) Green configuration; (b) UV configuration. 

 

 
IV.  DISCUSSIONS 

 

A.  Green or UV Space-Borne LiDAR Mission 

The two sensor configurations used in this study are ap- 

proachable with advanced technologies in the next few years 

(personal communication from the Astrium-EADS company, 

a European company in space transportation, satellite systems 

and services). All ALB systems use the 532 nm wavelength be- 

cause it is the Nd-YAG derivative wavelength that most deeply 

penetrates turbid waters. Obviously, this is the space-borne 

sensor that gave the best overall performance. In comparison, 

to date the UV was not used for bathymetry in coastal and 

inland waters. However, with the used configuration in this 

study, the results show the interest of the UV configuration in 

clear coastal waters and deep lakes and for very shallow water 

depths. Moreover, these results on the UV sensor capacities 

could be improved by using higher laser emitted power since 

there is still room to increase this emitted power according to 

eye safety regulation.



 
 

Regarding   the  SNR  values,  the  bottom  peak  amplitude 

without  noise in the UV is lower than that in the green (ap- 

proximately  40 times at a 1 m water depth). At the opposite, 

the  noise  power  defined  as  the  sum  of  the  solar  radiation 

noise and the detector noise is five times greater in the green 

than in the UV configuration.  Consequently,  the SNR values 

corresponding  to LiDAR green waveforms  are also obviously 

higher than those for the UV. 

The main advantage of the UV sensor is its ability to be used 

for multiple  applications,  including  bathymetry,  forestry  [40] 

and atmospheric sciences [74]. However, if future technologies 

with other high frequency  pumped laser emerges,  blue wave- 

length LiDAR (450 nm) should also be an interesting  alterna- 

tive for bathymetry [75]. 

 

B.  Other Factors Affecting Space-Borne Bathymetry 

First, the bed morphology of all water types used in simula- 

tions is considered as a sloped plane with various slope values. 

Indeed, more complex morphologies of the bed (micro-ge- 

ometry, algae presence, etc) within laser footprints may occur 

which provide additional uncertainty in bathymetry estimation 

and decrease the overall bathymetry probability results. 

In addition,  we assumed  that the distributions  of water pa- 

rameters were consistent across the depth of water (one layer) 

and independent of each other. 

Second, future works should include the atmospheric effects 

in the LiDAR signal simulations. 

Third, the main limitation of spaceborne LiDARs is the 

mission’s  lifetime  related to the laser shot number  emitted in 

the operational period of LiDAR. Therefore, it will be difficult 

to obtain  data  with  a high  spatial  density  and  a high  revisit 

time from spaceborne LiDAR. In coastal waters, where the 

bathymetry varies very strongly with distance from the coast, a 

low spacing between successive footprints is necessary for cor- 

rectly mapping  the bathymetry.  However,  these other aspects 

of the LiDAR mission configuration should also be explored in 

future works. 

 

C.  Bathymetry Accuracy From Space-Borne LiDARs 

Firstly, the used digitizing frequency is of 1 GHz which cor- 

responds to a depth resolution of about 11.4 cm. This is the usual 

digitizing frequency of airborne sensors and GLAS sensors. The 

magnitude of errors due to this digitizing resolution for the ex- 

plored depths (1 m, 2 m, 3 m, 5 m, 10 m, 15 m) is of the same 

order that the computed accuracy. Consequently, the obtained 

accuracy statistics on the bathymetry estimations (standard de- 

viation of random error and bias) mainly corresponds to the er- 

rors due to digitizing resolution and fitting method errors (inver- 

sion). These accuracy statistics are also depending on the distri- 

bution of explored depths. 

Moreover, in actual data, there are other error budget items 

to consider which are neglected here. These additional errors 

come from GPS positioning of the satellite, the geometry of the 

laser beam, atmospheric conditions, scene complexity (presence 

of vegetation), etc [76], [77]. Indeed, the overall accuracy (here 

standard deviation of the random error) of the bathymetry re- 

sults on the addition of variances of these different error items. 

For instance, these error items are: 

— Errors of about 5 cm due to GPS positioning of the sensor 

[78]. 

— Errors of about 2 cm due to pointing error of the laser beam 

which are for satellite at 600 km height and a near nadir 

laser beam [79]. 

— Errors of about 4 cm due to atmosphere which acts to dis- 

tort the path of the laser pulse as it travels to the target and 

back again and produce timing errors [78], [80]. 

The sum of these some error budget items is coherent with 

accuracy studies on ICESat errors founded in literature on flat 

and non-complex  surfaces [81], [82]. 

For ALB, larger errors may come from higher pointing errors 

due to higher incidence angles, and higher platform positioning 

errors. Accuracy from for ALB manufacturers  is about 25 cm 

[18]. However, the lower noise in the waveforms due to space 

detector  technology  allows  to expect  more accurate  statistics 

than the one observed  in experiments  from ALB sensors  [8], 

[19], [26]. 

Another limitation in this study comes from the peak detec- 

tion method, which is not suitable for very shallow waters (   1 

m) or more noisy waveforms  whatever  the depth is. For very 

shallow waters or other sensor configurations (higher FOV an- 

gles for example), other waveform processing methods should 

be developed. 

The proposed algorithm is not generic and would surely fail 

to estimate bathymetry  from more noisy waveforms.  But, the 

lowest SNR values allowing bathymetry  is approximately  1.1, 

which corresponds to theory [44] and proves that the proposed 

the algorithm is efficient for slightly noised LiDAR waveforms. 

Moreover, the slight underestimation of the bathymetry 

observed  for both the green and the UV may be also due to 

the triangle mathematical function used to fit the water column 

that slightly translates the positioning of the Gaussian function 

used to fit the bottom echo. Finally, the highest         observed 

in coastal water at a depth greater than 2 m should be related 

to the low number of data. 

 
V.  CONCLUSIONS AND PERSPECTIVES 

This work aimed to prospect future space-borne LiDAR sen- 

sors capacities for global bathymetry over inland and coastal 

waters. Two future space-borne LiDAR sensors were explored: 

an ultraviolet (UV) LiDAR and a green LiDAR emitting at 355 

and 532 nm, respectively. The sensor performances were as- 

sessed from a methodology based only on waveform simula- 

tion. A wide waveform database was first built from the ex- 

isting Wa-LID waveform simulator and from an experimental 

design representing observed distributions of water parameters 

from the literature assumed to be representative at the global 

scale. A bathymetry detection and estimation process based on 

Wiener filter and mathematical  function fitting were applied to 

each waveform to determine i) the bathymetry detection rate 

(bathymetry probability) in coastal waters, shallow lakes, deep 

lakes and rivers for a range of water depths and ii) the expected 

bathymetry accuracies. Finally, by using a sensitivity analysis 

of waveforms, some limiting factors in bathymetry were identi- 

fied and mapped for the most dominant water parameters. 

The results show that the bathymetry probabilities (i.e., 

bathymetry detection rates) at a 1 m depth are 63%, 54%, 24%



 
 

and 19% with the green LiDAR for deep lakes, coastal waters, 

rivers and shallow lakes, respectively,  and 10%, 22%, 1% and 

0%, respectively, with the UV LiDAR. Obviously, the detection 

rates for UV LiDAR are always lower than for green LiDAR, 

and the rates  decrease  when  the water  depth  increases.  At a 

10 m depth, the bathymetry  probability  becomes 5%, 8%, 0% 

and 0% with the green LiDAR for deep lakes, coastal waters, 

rivers and shallow lakes, respectively. When the bathymetry is 

detectable,  its accuracy  for both sensors is approximately  2.8 

cm  for one  standard  deviation  with  a small  underestimation 

(approximately      0.5  cm).  These  accuracy  statistics  only  in- 

clude the errors coming from the digitizing resolution and the 

inversion algorithm. 

The sensitivity analysis results indicate three dominant water 

parameters,  which are all related to water column  properties: 

sediment, yellow substances and phytoplankton concentrations. 

Maps of bathymetry probability were made for each dominant 

water parameter  pair, each water type, and each water depth. 

These  maps  allow  us to identify  the thresholds  of dominant 

water parameters above which bathymetry detection fails. These 

maps are thus guidelines to estimating  bathymetry  probability 

from a space-borne LiDAR sensor on a particular river, lake or 

littoral environment. 

The  innovation  of this paper  mainly  comes  from  the pro- 

posed global methodology chaining different compartments: 

signal modelling, experimental  design, sensitivity analysis and 

signal inversion. This methodology  should be considered  as a 

starting point to explore the global performances  and limiting 

factors of any future space-borne LiDAR sensor totally or 

partially  dedicated  to  bathymetry.  Of  course,  it  still  exists 

many  limitations   in  each  methodological   compartment   but 

the global results permit to identify and rank these limitations 

which  should  be the points  to be improved  in future  works. 

For instance,  the sensor  performances  are strongly  related  to 

the representativeness  of the waveform  database at the global 

scale and, thus, to water parameter distributions. Here, we 

assumed  that  the  distributions  of the  water  parameters  were 

homogeneous for any water depth. This assumption is certainly 

not  entirely  true,  and  it  should  be  refined  in  future  works. 

For other water parameters, such as water surface roughness 

or water specular coefficients, experiments and ground data 

acquisition are needed for a better estimation of distributions. 

This is true for all other parameters: there is a need to build 

or  feed global databases on these parameters that will en- 

sure better performance assessments. However, the proposed 

methodology in this paper is already capable of exploring other 

sensor configurations (e.g., the blue wavelength) for future 

bathymetric satellite LiDAR mission exploration. 
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