
Carlos Fernandez
Jose L. Muñoz

UPC Telematics Department

Software Defined Networking (SDN) with OpenFlow
1.3, Open vSwitch and Ryu

Contents

1 OpenFlow 11

1.1 Introduction to Software-Defined Networking and OpenFlow . 11

1.1.1 Motivation . 11

1.1.2 SDN architecture . 12

1.1.3 OpenFlow . 14

1.1.4 Benefits of OpenFlow-Based Software-Defined Networks 15

1.2 OpenFlow Switches . 16

1.3 OpenFlow Ports . 17

1.3.1 Standard Ports . 17

1.4 OpenFlow Tables . 18

1.4.1 Pipeline Processing . 19

1.4.2 Flow Table . 20

1.4.3 Matching . 20

1.4.4 Instructions . 22

1.4.5 Actions . 23

1.4.6 Table-miss entry . 25

1.5 Group and Meter tables . 26

1.5.1 Group Table . 26

1.5.2 Meter Table . 27

1.6 OpenFlow Switch Protocol . 27

1.6.1 Controller-to-Switch messages . 28

1.6.2 Asynchronous messages . 28

1.6.3 Symmetric messages . 29

1.6.4 OpenFlow Channel Connections . 29

1.6.5 Flow Table Modification Messages . 30

1.6.6 OpenFlow header . 31

2 Open vSwitch 33

2.1 Introduction . 33

2.1.1 Open vSwitch architecture . 33

2.2 The Kernel Module . 34

2.2.1 Datapath flows . 35

2.3 Components and tools of Open vSwitch . 36

2.3.1 ovs-vswitchd . 37

2.3.2 ovsdb-server . 37

2.3.3 ovs-dpctl . 39

2.3.4 ovs-vsctl . 40

2.3.5 ovs-appctl . 40

2.3.6 ovs-ofctl . 41

2.3.7 ovs-pki . 41

2.3.8 Further information . 41

2.4 Practical Examples . 41

2.4.1 Install . 41

2.4.2 Basic Commands . 42

2.4.3 Basic Openflow . 42

2.5 Implementing a MPLS network with OVS and OpenFlow . 45

2.5.1 Basics of MPLS . 45

2.5.2 Setting up the environment . 46

2.5.3 Testing the network . 49

2.5.4 Discussion on alternative implementations . 51

2.6 Final code . 57

3 Ryu 59

3.1 Introduction . 59

3.2 Ryu application programming model . 59

3.2.1 Events and Event Classes . 59

3.2.2 Event handlers . 60

3.2.3 The Datapath class . 60

3.3 OpenFlow protocol implementation . 61

3.3.1 Controller-to-Switch Messages . 61

3.3.2 Asynchronous Messages . 64

3.3.3 Symmetric Messages . 64

3.3.4 Flow Match Structure . 65

3.3.5 Flow Instruction Structures . 66

3.3.6 Action Structures . 66

3.4 REST API . 67

3.4.1 Introduction to REST . 67

3.4.2 Builidng REST APIs with Ryu . 67

3.4.3 Linking REST Controllers with Ryu applications . 68

3.5 Components . 68

3.6 Analysis of a Switch implemented with Ryu . 69

3.6.1 Class Definition and Initialization . 70

3.6.2 Event Handler . 70

3.6.3 Adding Processing of Flow Entry . 73

3.6.4 Testing the application . 74

3.6.5 Discussion on alternative implementations . 78

3.6.6 Source code . 83

4 MPLS Software-Defined Network 87

4.1 Introduction . 87

4.2 First Approach: Simple MPLS network . 87

4.2.1 Mapping the datapaths . 88

4.2.2 Traffic differentiation . 88

4.2.3 Testing the application . 90

4.2.4 Conclusions . 92

4.3 Second approach: Building the MPLS network from an IP network 92

4.3.1 Topology . 92

4.3.2 REST router . 93

4.3.3 IP application walkthrough . 95

4.3.4 Modifications to create a simple MPLS application . 111

4.3.5 Writting data through the REST API . 112

4.3.6 Storing labels and hosts . 115

4.3.7 Handling the packets that enter the network . 116

4.3.8 Handling the packets that enter the LSR . 119

4.3.9 Handling the packets that leave the network . 120

4.3.10 Methods to generate and set the MPLS flows . 122

4.3.11 Testing the MPLS application . 124

4.4 Third approach: Next steps . 127

4.4.1 Simplification . 127

4.4.2 Generalization . 128

4.4.3 Robustness and bug fixing . 128

4.5 Source code . 128

4.5.1 First approach . 128

4.5.2 Second approach . 134

List of Figures

1.1 SDN architecture . 13

1.2 Main components of an OpenFlow Switch . 16

1.3 Packet through the processing pipeline . 19

1.4 Flowchart detailing packet flow through an OpenFlow switch . 21

2.1 OVS architecture . 34

2.2 Open vSwitch packet forwarding . 35

2.3 Core Table relationship . 39

2.4 Topology . 46

2.5 Capture from interface s1-eth1 . 49

2.6 Capture from interface s1-eth2 . 50

2.7 Capture from interface s2-eth3 . 50

2.8 Capture from interface s3-eth1 . 50

2.9 Captuture from s1-eth2 and s3-eth2 . 52

2.10 Capture from s3-eth1 . 53

2.11 Capture from s1-eth1 . 54

2.12 Capture from s3-eth1 . 54

2.13 Capture from s2-eth2 . 55

2.14 Capture from s1-eth2 in kernel mode . 55

2.15 Capture from s2-eth3 . 56

3.1 Wireshark trace . 76

3.2 TCP dump . 77

7

3.3 The wireshark trace shows the message exchange between the controller and the switch 78

3.4 Wireshark trace after removing the table-miss entry . 79

3.5 Wireshark trace without removing the table-miss entry . 80

3.6 Wireshark trace after the match modification . 81

3.7 Result of removing packet_out after flow_mod . 82

4.1 Capture from interface s1-eth1 . 91

4.2 Capture from interface s1-eth2 . 91

4.3 Capture from interface s2-eth3 . 91

4.4 Capture from interface s3-eth1 . 92

4.5 Topology used for the second approach . 93

4.6 Topology after the configuration script . 99

4.7 Capture from interface s1-eth1 . 107

4.8 Capture from interface s1-eth1 . 108

4.9 Capture from interface s4-eth1 . 108

4.10 Capture from interface s4-eth2 . 108

4.11 Capture from interface s2-eth1 . 109

4.12 Complete network setup after the REST configuration . 125

4.13 Capture from interface s2-eth1 . 125

4.14 Capture from interface s4-eth2 . 126

4.15 Capture from interface s4-eth3 . 126

4.16 Capture from interface s3-eth1 . 126

4.17 Capture from interface s4-eth2 . 127

List of Tables

1.1 Match Fields . 22

1.2 Push/pop tag actions . 24

1.3 Change TTL actions . 24

3.1 Controller-to-Switch Messages . 61

3.2 Asynchronous Messages . 64

3.3 Symmetric Messages . 64

3.4 OFPMatch arguments . 65

3.5 Instruction Classes . 66

3.6 Action Classes . 66

3.7 Components of Ryu . 68

9

Chapter 1

OpenFlow

1.1 Introduction to Software-Defined Networking and OpenFlow

The main principle behind Software-Defined Networking (SDN) is the physical separation of the network control
plane from the forwarding plane, where a single control plane controls several devices.

As explained in the White Paper published by the Open Networking Foundation [6], Software-Defined Networking
is an emerging architecture that is dynamic, manageable, cost-effective, and adaptable, making it ideal for the high-
bandwidth, dynamic nature of today’s applications. This architecture decouples the network control and forwarding
functions enabling the network control to become directly programmable and the underlying infrastructure to be
abstracted for applications and network services. The SDN architecture is:

• Directly programmable: Network control is directly programmable because it is decoupled from forwarding
functions.

• Agile: Abstracting control from forwarding lets administrators dynamically adjust network-wide traffic flow to
meet changing needs.

• Centrally managed: Network intelligence is (logically) centralized in software-based SDN controllers that
maintain a global view of the network, which appears to applications and policy engines as a single, logical
switch.

• Programmatically configured: SDN lets network managers configure, manage, secure, and optimize network
resources very quickly via dynamic, automated SDN programs, which they can write themselves because the
programs do not depend on proprietary software.

• Open standards-based and vendor-neutral: When implemented through open standards, SDN simplifies
network design and operation because instructions are provided by SDN controllers instead of multiple, vendor-
specific devices and protocols.

1.1.1 Motivation

SDN addresses the fact that the static architecture of conventional networks is ill-suited to the dynamic computing and
storage needs of today’s data centers, campuses, and carrier environments. The key computing trends driving the need
for a new network paradigm include:

11

• Changing traffic patterns: Applications that commonly access geographically distributed databases and servers
through public and private clouds require extremely flexible traffic management and access to bandwidth on de-
mand.

• The “consumerization of IT”: The Bring Your Own Device (BYOD) trend requires networks that are both
flexible and secure.

• The rise of cloud services: Users expect on-demand access to applications, infrastructure, and other IT re-
sources.

• “Big data” means more bandwidth: Handling today’s mega datasets requires massive parallel processing that
is fueling a constant demand for additional capacity and any-to-any connectivity.

In trying to meet the networking requirements posed by evolving computing trends, network designers find themselves
constrained by the limitations of current networks:

• Complexity that leads to stasis: Adding or moving devices and implementing network-wide policies are
complex, time-consuming, and primarily manual endeavors that risk service disruption, discouraging network
changes.

• Inability to scale: The time-honored approach of link oversubscription to provision scalability is not effective
with the dynamic traffic patterns in virtualized networks—a problem that is even more pronounced in service
provider networks with large-scale parallel processing algorithms and associated datasets across an entire com-
puting pool.

• Vendor dependence: Lengthy vendor equipment product cycles and a lack of standard, open interfaces limit
the ability of network operators to tailor the network to their individual environments.

1.1.2 SDN architecture

The architecture of a Software-Defined network can be divided into three planes [7]: Data Plane, Control Plane and
Application Plane. Figure 1.1 shows the different elements of a Software-Defined Network, distributed through this
three layers:

Figure 1.1: SDN architecture

• SDN Application: SDN Applications are programs that explicitly, directly, and programmatically communicate
their network requirements and desired network behavior to the SDN Controller via a northbound interface
(NBI). In addition they may consume an abstracted view of the network for their internal decision making
purposes. An SDN Application consists of one SDN Application Logic and one or more NBI Drivers. SDN
Applications may themselves expose another layer of abstracted network control, thus offering one or more
higher-level NBIs through respective NBI agents.

• SDN Controller: The SDN Controller is a logically centralized entity in charge of (i) translating the require-
ments from the SDN Application layer down to the SDN Datapaths and (ii) providing the SDN Applications
with an abstract view of the network (which may include statistics and events). An SDN Controller consists
of one or more NBI Agents, the SDN Control Logic, and the Control to Data-Plane Interface (CDPI) driver.
Definition as a logically centralized entity neither prescribes nor precludes implementation details such as the
federation of multiple controllers, the hierarchical connection of controllers, communication interfaces between
controllers, nor virtualization or slicing of network resources. In this project, the SDN Controller used is Ryu
(see chapter 3 for further information).

• SDN Datapath: The SDN Datapath is a logical network device that exposes visibility and uncontended control
over its advertised forwarding and data processing capabilities. The logical representation may encompass all
or a subset of the physical substrate resources. An SDN Datapath comprises a CDPI agent and a set of one or
more traffic forwarding engines and zero or more traffic processing functions. These engines and functions may
include simple forwarding between the datapath’s external interfaces or internal traffic processing or termination
functions. One or more SDN Datapaths may be contained in a single (physical) network element—an integrated
physical combination of communications resources, managed as a unit. An SDN Datapath may also be defined

across multiple physical network elements. This logical definition neither prescribes nor precludes implementa-
tion details such as the logical to physical mapping, management of shared physical resources, virtualization or
slicing of the SDN Datapath, interoperability with non-SDN networking, nor the data processing functionality,
which can include L4-7 functions. In this project, datapaths are implemented using Open vSwitch (see chapter
2) and the network simulator Mininet.

• SDN Control to Data-Plane Interface (CDPI): The SDN CDPI is the interface defined between an SDN
Controller and an SDN Datapath, which provides at least (i) programmatic control of all forwarding operations,
(ii) capabilities advertisement, (iii) statistics reporting, and (iv) event notification. One value of SDN lies in the
expectation that the CDPI is implemented in an open, vendor-neutral and interoperable way. This interface is
implemented using the OpenFlow protocol, which allows the communication between the Controller and the
Datapaths, and specifies how both should handle the information they share.

• SDN Northbound Interfaces (NBI): SDN NBIs are interfaces between SDN Applications and SDN Controllers
and typically provide abstract network views and enable direct expression of network behavior and requirements.
This may occur at any level of abstraction (latitude) and across different sets of functionality (longitude). One
value of SDN lies in the expectation that these interfaces are implemented in an open, vendor-neutral and inter-
operable way. In the case of Ryu, the comunication between the Applications and the Controller is implemented
using a REST API.

1.1.3 OpenFlow

OpenFlow is the first standard communications interface defined between the control and forwarding layers of an SDN
architecture. OpenFlow allows direct access to and manipulation of the forwarding plane of network devices such as
switches and routers, both physical and virtual (hypervisor-based).

OpenFlow can be compared to the instruction set of a CPU.The protocol specifies basic primitives that can be used by
an external software application to program the forwarding plane of network devices, just like the instruction set of a
CPU would program a computer system.

The OpenFlow protocol is implemented on both sides of the interface between network infrastructure devices and
the SDN control software. OpenFlow uses the concept of flows to identify network traffic based on pre-defined
match rules that can be statically or dynamically programmed by the SDN control software. It also allows IT to
define how traffic should flow through network devices based on parameters such as usage patterns, applications, and
cloud resources. Since OpenFlow allows the network to be programmed on a per-flow basis, an OpenFlow-based
SDN architecture provides extremely granular control, enabling the network to respond to real-time changes at the
application, user, and session levels. Current IP- based routing does not provide this level of control, as all flows
between two endpoints must follow the same path through the network, regardless of their different requirements.

The OpenFlow protocol is a key enabler for software-defined networks and currently is the only standardized SDN pro-
tocol that allows direct manipulation of the forwarding plane of network devices. While initially applied to Ethernet-
based networks, OpenFlow switching can extend to a much broader set of use cases. OpenFlow-based SDNs can be
deployed on existing networks, both physical and virtual. Network devices can support OpenFlow-based forwarding
as well as traditional forwarding, which makes it very easy for enterprises and carriers to progressively introduce
OpenFlow-based SDN technologies, even in multi-vendor network environments.

The experiments and information exposed in this document refer to the version 1.3 of this protocol (also known as
0x04 version).

1.1.4 Benefits of OpenFlow-Based Software-Defined Networks

OpenFlow-based SDN technologies enable IT to address the high- bandwidth, dynamic nature of today’s applications,
adapt the network to ever-changing business needs, and significantly reduce operations and management complexity.
The benefits that enterprises and carriers can achieve through an OpenFlow-based SDN architecture include:

• Centralized control of multi-vendor environments: SDN control software can control any OpenFlow-enabled
network device from any vendor, including switches, routers, and virtual switches. Rather than having to man-
age groups of devices from individual vendors, IT can use SDN-based orchestration and management tools to
quickly deploy, configure, and update devices across the entire network.

• Reduced complexity through automation: OpenFlow-based SDN offers a flexible network automation and
management framework, which makes it possible to develop tools that automate many management tasks that
are done manually today. These automation tools will reduce operational overhead, decrease network instability
introduced by operator error, and support emerging IT-as-a-Service and self-service provisioning models. In
addition, with SDN, cloud-based applications can be managed through intelligent orchestration and provisioning
systems, further reducing operational overhead while increasing business agility.

• Higher rate of innovation: SDN adoption accelerates business innovation by allowing IT network operators
to literally program—and reprogram—the network in real time to meet specific business needs and user re-
quirements as they arise. By virtualizing the network infrastructure and abstracting it from individual network
services, for example, SDN and OpenFlow give IT— and potentially even users—the ability to tailor the behav-
ior of the network and introduce new services and network capabilities in a matter of hours.

• Increased network reliability and security: SDN makes it possible for IT to define high-level configuration
and policy statements, which are then translated down to the infrastructure via OpenFlow. An OpenFlow-based
SDN architecture eliminates the need to individually configure network devices each time an end point, service,
or application is added or moved, or a policy changes, which reduces the likelihood of network failures due to
configuration or policy inconsistencies. Because SDN controllers provide complete visibility and control over
the network, they can ensure that access control, traffic engineering, quality of service, security, and other poli-
cies are enforced consistently across the wired and wireless network infrastructures, including branch offices,
campuses, and data centers. Enterprises and carriers benefit from reduced operational expenses, more dynamic
configuration capabilities, fewer errors, and consistent configuration and policy enforcement.

• More granular network control: OpenFlow‘s flow-based control model allows IT to apply policies at a very
granular level, including the session, user, device, and application levels, in a highly abstracted, automated
fashion. This control enables cloud operators to support multi- tenancy while maintaining traffic isolation,
security, and elastic resource management when customers share the same infrastructure.

By decoupling the network control and data planes, OpenFlow-based SDN architecture abstracts the underlying infras-
tructure from the applications that use it, allowing the network to become as programmable and manageable at scale as
the computer infrastructure that it increasingly resembles. An SDN approach fosters network virtualization, enabling
IT staff to manage their servers, applications, storage, and networks with a common approach and tool set. Whether
in a carrier environment or enterprise data center and campus, SDN adoption can improve network manageability,
scalability, and agility.

The future of networking will rely more and more on software, which will accelerate the pace of innovation for net-
works as it has in the computing and storage domains. SDN promises to transform today’s static networks into flexible,
programmable platforms with the intelligence to allocate resources dynamically, the scale to support enormous data
centers and the virtualization needed to support dynamic, highly automated, and secure cloud environments. With its
many advantages and astonishing industry momentum, SDN is on the way to becoming the new norm for networks.

1.2 OpenFlow Switches

The following sections are based on OpenFlow Switch Specification version 1.3.5 [8].

An OpenFlow Switch consists of one or more flow tables and a group table, which perform packet lookups and
forwarding, and an OpenFlow channel to an external controller. The controller manages the switch via the OpenFlow
protocol. Using this protocol, the controller can add, update, and delete flow entries, both reactively (in response to
packets) and proactively. The term ’Datapath’ is used to referr to Openflow Switches as they only implement packet
forwarding in comparison to OpenFlow controllers, which implement the intelligence (control path).

Figure 1.2: Main components of an OpenFlow Switch

Each flow table in the switch contains a set of flow entries; each flow entry consists of match fields, counters, and a set
of instructions to apply to matching packets.

Matching starts at the first flow table and may continue to additional flow tables. Flow entries match packets in
priority order, with the first matching entry in each table being used. If a matching entry is found, the instructions
associated with the specific flow entry are executed. If no match is found in a flow table, the outcome depends on
switch configuration: the packet may be forwarded to the controller over the OpenFlow channel, dropped, or may
continue to the next flow table.

Instructions associated with each flow entry describe packet forwarding, packet modification, group table processing,
and pipeline processing. Pipeline processing instructions allow packets to be sent to subsequent tables for further pro-
cessing and allow information, in the form of metadata, to be communicated between tables. Table pipeline processing
stops when the instruction set associated with a matching flow entry does not specify a next table; at this point the
packet is usually modified and forwarded.

Flow entries may forward to a port. This is usually a physical port, but it may also be a virtual port defined by the
switch or a reserved virtual port defined by the Openflow specification. Reserved virtual ports may specify generic
forwarding actions such as sending to the controller, flooding, or forwarding using non-OpenFlow methods, such
as “normal” switch processing, while switch-defined virtual ports may specify link aggregation groups, tunnels or
loopback interfaces.

Flow entries may also point to a group, which specifies additional processing. Groups resent sets of actions for
flooding, as well as more complex forwarding semantics (e.g. multipath, fast reroute, and link aggregation). As a
general layer of indirection, groups also enable multiple flows to forward to a single identifier (e.g. IP forwarding to a

common next hop). This abstraction allows common output actions across flows to be changed efficiently.

The group table contains group entries; each group entry contains a list of action buckets with specific semantics
dependent on group type. The actions in one or more action buckets are applied to packets sent to the group. Switch
designers are free to implement the internals in any way convenient, provided that correct match and instruction
semantics are preserved. For example, while a flow may use an all group to forward to multiple ports, a switch
designer may choose to implement this as a single bitmask within the hardware forwarding table. Another example
is matching; the pipeline exposed by an OpenFlow switch may be physically implemented with a different number of
hardware tables.

1.3 OpenFlow Ports

OpenFlow ports are the network interfaces for passing packets between OpenFlow processing and the rest of the
network. OpenFlow switches connect logically to each other via their OpenFlow ports, a packet can be forwarded
from one OpenFlow switch to another OpenFlow switch only via an output OpenFlow port on the first switch and an
ingress OpenFlow port on the second switch.

An OpenFlow switch makes a number of OpenFlow ports available for OpenFlow processing. The set of OpenFlow
ports may not be identical to the set of network interfaces provided by the switch hardware, some network interfaces
may be disabled for OpenFlow, and the OpenFlow switch may define additional OpenFlow ports.

OpenFlow packets are received on an ingress port and processed by the OpenFlow pipeline (see Section 1.4.1), which
may forward them to an output port. The packet ingress port is a property of the packet throughout the OpenFlow
pipeline and represents the OpenFlow port on which the packet was received into the OpenFlow switch. The ingress
port can be used when matching packets. The OpenFlow pipeline can decide to send the packet on an output port
using the output action (see Section 1.4.5), which defines how the packet goes back to the network.

1.3.1 Standard Ports

The OpenFlow standard ports are defined as physical ports, logical ports, and the LOCAL reserved port if supported
(excluding other reserved ports). Standard ports can be used as ingress and output ports, they can be used in groups,
they have port counters and they have state and configuration.

Physical Ports

The OpenFlow physical ports are switch defined ports that correspond to a hardware interface of the switch. For
example, on an Ethernet switch, physical ports map one-to-one to the Ethernet interfaces.

In some deployments, the OpenFlow switch may be virtualised as it’s the case of Open vSwitch. In those cases, an
OpenFlow physical port may represent a virtual interface of such virtual switch. switch.

Logical Ports

The OpenFlow logical ports are switch defined ports that don’t correspond directly to a hardware interface of the
switch. Logical ports are higher level abstractions that may be defined in the switch using non-OpenFlow methods
(e.g. link aggregation groups, tunnels, loopback interfaces).

Logical ports may include packet encapsulation and may map to various physical ports. The processing done by
the logical port is implementation dependent and must be transparent to OpenFlow processing, and those ports must
interact with OpenFlow processing like OpenFlow physical ports.

Reserved Ports are some logical ports defined by the OpenFlow Switch Specification. They specify generic forward-
ing actions such as sending to the controller, flooding, or forwarding using non-OpenFlow methods, such as “normal”
switch processing.

A switch is required to support the following reserved ports:

• ALL: Represents all ports the switch can use for forwarding a specific packet. Can be used only as an output
port. In that case a copy of the packet is sent to all standard ports, excluding the packet ingress port and ports
that are configured to not forward.

• CONTROLLER: Represents the control channel with the OpenFlow controllers. Can be used as an ingress
port or as an output port. When used as an output port, encapsulates the packet in a packet-in message and sends
it using the OpenFlow switch protocol. When used as an ingress port, this identifies a packet originating from
the controller.

• TABLE: Represents the start of the OpenFlow pipeline. This port is only valid in an output action in the list of
actions of a packet-out message and submits the packet to the first flow table so that the packet can be processed
through the regular OpenFlow pipeline.

• IN PORT: Represents the packet ingress port. Can be used only as an output port, sends the packet out through
its ingress port.

• ANY: Special value used in some OpenFlow requests when no port is specified (i.e. port is wildcarded). Some
OpenFlow requests contain a reference to a specific port that the request only applies to. Using ANY as the port
number in these requests allows that request instance to apply to any and all ports. Can neither be used as an
ingress port nor as an output port.

The following reserved ports are optional, but supported by Open vSwitch:

• LOCAL: Represents the switch’s local networking stack and its management stack. Can be used as an ingress
port or as an output port. The local port enables remote entities to interact with the switch and its network
services via the OpenFlow network, rather than via a separate control network. With an appropriate set of flow
entries, it can be used to implement an in-band controller connection.

• NORMAL: Represents forwarding using the traditional non-OpenFlow pipeline of the switch. Can be used
only as an output port and processes the packet using the normal pipeline. In general will bridge or route the
packet, however the actual result is implementation dependent.

• FLOOD: Represents flooding using the traditional non-OpenFlow pipeline of the switch. Can be used only as
an output port, actual result is implementation dependent. In general will send the packet out all standard ports,
but not to the ingress port, nor ports that are blocked. The switch may also use the packet VLAN ID or other
criteria to select which ports to use for flooding.

1.4 OpenFlow Tables

This section describes the components of flow tables and group tables, along with the mechanics of matching and
action handling.

1.4.1 Pipeline Processing

OpenFlow-compliant switches come in two types:

• OpenFlow-only switches support only OpenFlow operation, in those switches all packets are processed by the
OpenFlow pipeline, and can not be processed otherwise.

• OpenFlow-hybrid switches support both OpenFlow operation and normal Ethernet switching operation, i.e.
traditional L2 Ethernet switching, VLAN isolation, L3 routing (IPv4 routing, IPv6 routing...), ACL and QoS
processing. Those switches should provide a classification mechanism outside of OpenFlow that routes traffic to
either the OpenFlow pipeline or the normal pipeline. For example, a switch may use the VLAN tag or input port
of the packet to decide whether to process the packet using one pipeline or the other, or it may direct all packets
to the OpenFlow pipeline. An OpenFlow-hybrid switch may also allow a packet to go from the OpenFlow
pipeline to the normal pipeline through the NORMAL and FLOOD reserved ports (see Section 1.3).

An OpenFlow switch is required to have at least one flow table, but it can optionally have more flow tables which is a
nice and common feature of switches. Thus, the OpenFlow pipeline contains one or more flow tables. The OpenFlow
pipeline processing defines how packets interact with those flow tables (see Figure 1.3).

Figure 1.3: Packet through the processing pipeline

As shown, all the packets start their processing at Table 0. At this table, the ingress port and the packet headers are
used for matching. Tables contain multiple flow entries and each flow has a certain priority within its table. The flow
with the highest priority among the possible matches the one selected.

Each flow entry contains a set of instructions that are executed when a packet matches the entry. These instructions
can be used for different purposes. The main ones are to change the pipeline processing or to apply actions to the
packet (like send to a port, decrease a TTL, etc.). In particular, we have instructions to:

• Forward the pipeline processing to another table. However, before executing the Goto-Table instruction, a
table can write a metadata field of 64 bits to made it available to the next table. Therefore, in an intermediate
table, in general, a flow entry is matched using the ingress port, the packet headers and metadata that can be
written and passed from one table to another.

Metadata can be used for example if in a table we make a classification between two types of packets. These
two types of packets can have two different metadata values. Then, we can use the metadata field to pass the
type of packet (i.e. the classification made by the previous table) to the next table.

• Modify the “action set”. The action set is carried between flow tables. Each flow can add actions to the action
set (or clear the action set). When the instruction set of a flow entry does not contain a Goto-Table instruction,
pipeline processing stops and the actions in the action set of the packet are executed. It is important to notice
that actions of the action set are executed in a certain order (see Section 1.4.5), that in general, is different from
the order in which the actions were written in the action set.

• Apply an “action list”. The actions of a list of actions are executed in the order specified by the list, and are
applied immediately to the packet. After the execution of the list of actions, pipeline execution continues on the
modified packet. The action set of the packet is unchanged by the execution of the list of actions.

The previous concepts are further explained in the following sections.

1.4.2 Flow Table

A flow table consists of flow entries. Each flow table entry contains:

• Match fields to match against packets. These consist of the ingress port and packet headers, and optionally
metadata specified by a previous table.

• Priority to indicate the matching precedence of the flow entry (higher numbers mean higher priority).

• Counters to update for matching packets.

• Instructions to modify the action set or pipeline processing.

• Timeouts to indicate the maximum amount of time or idle time before flow is expired by the switch. Each
flow entry is configured with an idle_timeout and a hard_timeout. The hard_timeout causes the flow entry to be
removed after the given number of seconds, regardless of how many packets it has matched. The idle_timeout
causes the flow entry to be removed when it has matched no packets in the given number of seconds.

• Cookie: opaque data value chosen by the controller. May be used by the controller to filter flow statistics, flow
modification and flow deletion, not used when processing packets. For example, the controller could choose to
modify or delete all flows matching a certain cookie.

1.4.3 Matching

On receipt of a packet, an OpenFlow Switch performs the functions shown in Figure 1.4. The switch starts by per-
forming a table lookup in the first flow table, and based on pipeline processing, may perform table lookups in other
flow tables.

Figure 1.4: Flowchart detailing packet flow through an OpenFlow switch

Packet header fields are extracted from the packet, and packet pipeline fields are retrieved. Packet header fields used
for table lookups depend on the packet type, and typically include various protocol header fields, such as Ethernet
source address or IPv4 destination address. In addition to packet headers, matches can also be performed against the
ingress port, the metadata field and other pipeline fields.

A packet matches a flow entry if all the match fields of the flow entry are matching the corresponding header fields and
pipeline fields from the packet. If a match field is omitted in the flow entry (i.e. value ANY), it matches all possible
values in the header field or pipeline field of the packet. If the match field is present and does not include a mask, the
match field is matching the corresponding header field or pipeline field from the packet if it has the same value. If
the switch supports arbitrary bitmasks on specific match fields, these masks can more precisely specify matches, the
match field is matching if it has the same value for the bits which are set in the mask.

The packet is matched against flow entries in the flow table and only the highest priority flow entry that matches the
packet is selected. The counters associated with the selected flow entry are updated and the instruction set included in
the selected flow entry is executed.

Table 1.1 shows the list of match fields supported by OpenFlow 1.3

Table 1.1: Match Fields

Match Field Description
OXM_OF_ETH_DST Ethernet destination MAC address.
OXM_OF_ETH_SRC Ethernet source MAC address.
OXM_OF_ETH_SRC Ethernet type of the OpenFlow packet payload, after VLAN tags.
OXM_OF_VLAN_VID VLAN-ID from 802.1Q header. The CFI bit indicates the presence of a valid VLAN-ID,

see below.
OXM_OF_VLAN_PCP VLAN-PCP from 802.1Q header.
OXM_OF_IP_DSCP Diff Serv Code Point (DSCP). Part of the IPv4 ToS field or the IPv6 Traffic Class field.
OXM_OF_IP_ECN ECN bits of the IP header. Part of the IPv4 ToS field or the IPv6 Traffic Class field.
OXM_OF_IP_PROTO IPv4 or IPv6 protocol number.
OXM_OF_IPV4_SRC IPv4 source address. Can use subnet mask or arbitrary bitmask
OXM_OF_IPV4_DST IPv4 destination address. Can use subnet mask or arbitrary bitmask
OXM_OF_TCP_SRC TCP source port
OXM_OF_TCP_DST TCP destination port
OXM_OF_UDP_SRC UDP source port
OXM_OF_UDP_DST UDP destination port
OXM_OF_SCTP_SRC SCTP source port
OXM_OF_SCTP_DST SCTP destination port
OXM_OF_ICMPV4_TYPE ICMP type
OXM_OF_ICMPV4_CODE ICMP code
OXM_OF_ARP_OP ARP opcode
OXM_OF_ARP_SPA Source IPv4 address in the ARP payload. Can use subnet mask or arbitrary bitmask
OXM_OF_ARP_TPA Target IPv4 address in the ARP payload. Can use subnet mask or arbitrary bitmask
OXM_OF_ARP_SHA Source Ethernet address in the ARP payload.
OXM_OF_ARP_THA Target Ethernet address in the ARP payload.
OXM_OF_IPV6_SRC IPv6 source address. Can use subnet mask or arbitrary bitmask
OXM_OF_IPV6_DST IPv6 destination address. Can use subnet mask or arbitrary bitmask
OXM_OF_IPV6_FLABEL IPv6 flow label.
OXM_OF_ICMPV6_TYPE ICMPv6 type
OXM_OF_ICMPV6_CODE ICMPv6 code
OXM_OF_IPV6_ND_TARGET The target address in an IPv6 Neighbor Discovery message.
OXM_OF_IPV6_ND_SLL The source link-layer address option in an IPv6 Neighbor Discovery message
OXM_OF_IPV6_ND_TLL The target link-layer address option in an IPv6 Neighbor Discovery message.
OXM_OF_MPLS_LABEL The LABEL in the first MPLS shim header.
OXM_OF_MPLS_TC The TC in the first MPLS shim header.
OXM_OF_MPLS_BOS The BoS bit (Bottom of Stack bit) in the first MPLS shim header.
OXM_OF_PBB_ISID The I-SID in the first PBB service instance tag.
OXM_OF_IPV6_EXTHDR IPv6 Extension Header pseudo-field.

1.4.4 Instructions

Each flow entry contains a set of instructions that are executed when a packet matches the entry. These instructions
result in changes to the packet, action set and/or pipeline processing. Supported instructions include:

• Meter meter_id: Direct packet to the specified meter (See 1.5.2). As the result of the metering, the packet may
be dropped (depending on meter configuration and state).

• Apply-Actions action(s): Applies the specific action(s) immediately, without any change to the Action Set (see
1.4.5). This instruction may be used to modify the packet between two tables or to execute multiple actions of
the same type. The actions are specified as an action list (see 1.4.5).

• Clear-Actions: Clears all the actions in the action set immediately.

• Write-Actions action(s): Merges the specified action(s) into the current action set. If an action of the given
type exists in the current set, overwrite it, otherwise add it.

• Write-Metadata metadata / mask: Writes the masked metadata value into the metadata field. The mask
specifies which bits of the metadata register should be modified (i.e. new metadata = old metadata & mask |
value & mask).

• Goto-Table next-table-id: Indicates the next table in the processing pipeline. The table-id must be greater than
the current table-id. The flows of last table of the pipeline can not include this instruction.

In practice, the only constraints are that the Meter instruction is executed before the Apply-Actions instruction, that
the Clear-Actions instruction is executed before the Write-Actions instruction, and that Goto-Table is executed last.

An OpenFlow switch rejects a flow entry if it is unable to execute the instructions or part of the instructions associated
with the flow entry. In this case, the switch returns the error message associated with the issue.

1.4.5 Actions

Actions describe packet forwarding, packet modification and group table processing. There are several actions that
every OpenFlow Switch is required to support:

• Output port_no: The Output action forwards a packet to a specified OpenFlow port. OpenFlow switches must
support forwarding to physical ports, switch-defined logical ports and the required reserved ports.

• Group group_id: Process the packet through the specified group. The exact interpretation depends on group
type.

• Drop: There is no explicit action to represent drops. Instead, packets whose action sets have no output action
and no group action should be dropped. This result could come from empty instruction sets or empty action
buckets in the processing pipeline, or after executing a Clear-Actions instruction.

There are also some optional actions that may be supported by the switch. The controller can query the switch about
which of the optional actions are supported. The optional actions are:

• Set-Queue queue_id: The set-queue action sets the queue id for a packet. When the packet is forwarded to a
port using the output action, the queue id determines which queue attached to this port is used for scheduling
and forwarding the packet. Forwarding behavior is dictated by the configuration of the queue and is used to
provide basic Quality-of-Service (QoS) support.

• Push-Tag/Pop-Tag ethertype: Switches may support the ability to push/pop tags as shown in Table 1.2. To aid
integration with existing networks, supporting the ability to push/pop VLAN tags is strongly suggested.

• Set-Field field_type value: The various Set-Field actions are identified by their field type and modify the values
of respective header fields in the packet. While not strictly required, the support of rewriting various header fields
using Set-Field actions greatly increases the usefulness of an OpenFlow implementation. To aid integration with
existing networks, supporting VLAN modification actions is strongly suggested.

• Change-TTL ttl: The various Change-TTL actions modify the values of the IPv4 TTL, IPv6 Hop Limit or
MPLS TTL in the packet. While not strictly required, the actions shown in Table 1.3 greatly increase the
usefulness of an OpenFlow implementation for implementing routing functions.

Table 1.2: Push/pop tag actions

Action Associated data Description
Push VLAN header Ethertype Push a new VLAN header onto the packet. The Ethertype is used as

the Ethertype for the tag. Only Ethertype 0x8100 and 0x88a8 should be
used.

Pop VLAN header - Pop the outer-most VLAN header from the packet.
Push MPLS header Ethertype Push a new MPLS shim header onto the packet. The Ethertype is used

as the Ethertype for the tag. Only Ethertype 0x8847 and 0x8848 should
be used.

Pop MPLS header Ethertype Pop the outer-most MPLS tag or shim header from the packet. The
Ethertype is used as the Ethertype for the resulting packet (Ethertype
for the MPLS payload).

Push PBB header Ethertype Push a new PBB service instance header (I-TAG TCI) onto the packet.
The Ethertype is used as the Ethertype for the tag. Only Ethertype
0x88E7 should be used.

Pop PBB header - Pop the outer-most PBB service instance header (I-TAG TCI) from the
packet.

Table 1.3: Change TTL actions

Action Associated data Description
Set MPLS TTL 8 bits: New MPLS TTL Replace the existing MPLS TTL. Only applies to packets

with an existing MPLS shim header
Decrement MPLS TTL - Decrement the MPLS TTL. Only applies to packets with an

existing MPLS shim header.
Set IP TTL 8 bits: New IP TTL Replace the existing IPv4 TTL or IPv6 Hop Limit and update

the IP checksum. Only applies to IPv4 and IPv6 packets.
Decrement IP TTL - Decrement the IPv4 TTL or IPv6 Hop Limit field and update

the IP checksum. Only applies to IPv4 and IPv6 packets.
Copy TTL outwards - Copy the TTL from next-to-outermost to outermost header

with TTL. Copy can be IP-to-IP, MPLS-to-MPLS, or IP-to-
MPLS.

Copy TTL inwards - Copy the TTL from outermost to next-to-outermost header
with TTL. Copy can be IP-to-IP, MPLS-to-MPLS, or MPLS-
to-IP.

Action Set

An action set is associated with each packet. This set is empty by default. A flow entry can modify the action set using
a Write-Action instruction or a Clear-Action instruction associated with a particular match. The action set is carried
between flow tables. When the instruction set of a flow entry does not contain a Goto-Table instruction, pipeline
processing stops and the actions in the action set of the packet are executed.

An action set contains a maximum of one action of each type. The set-field actions are identified by their field types,

therefore the action set contains a maximum of one set-field action for each field type (i.e. multiple fields can be
set). The experimenter actions are identified by their experimenter-id and experimenter-type, therefore the action set
may contain a maximum of one experimenter action for each combination of experimenter-id and experimenter-type.
When an action of a specific type is added in the action set, if an action of the same type exists, it is overwritten by the
later action. If multiple actions of the same type are required, e.g. pushing multiple MPLS labels or popping multiple
MPLS labels, the Apply-Actions instruction should be used.

The actions in an action set are applied in the order specified below, regardless of the order that they were added to the
set. If an action set contains a group action, the actions in the appropriate action bucket(s) of the group are also applied
in the order specified below. The switch may support arbitrary action execution order through the list of actions of the
Apply-Actions instruction.

1. copy TTL inwards: apply copy TTL inward actions to the packets

2. pop: apply all tag pop actions to the packet

3. push-MPLS: apply MPLS tag push action to the packet

4. push-PBB: apply PBB tag push action to the packet

5. push-VLAN: apply VLAN tag push action to the packet

6. copy TTL outwards: apply copy TTL outwards action to the packet

7. decrement TTL: apply decrement TTL action to the packet

8. set: apply all set-field actions to the packet

9. qos: apply all QoS actions, such as set queue to the packet

10. group: if a group action is specified, apply the actions of the relevant group bucket(s) in the order specified by
this list.

11. output: if no group action is specified, forward the packet on the port specified by the output action

Action List

The Apply-Actions instruction and the Packet-out message include a list of actions. The actions of a list of actions are
executed in the order specified by the list, and are applied immediately to the packet. The execution of a list of actions
starts with the first action in the list and each action is executed on the packet in sequence. The effect of those actions
is cumulative, if the list of actions contains two Push VLAN actions, two VLAN headers are added to the packet. If
the list of actions contains an output action, a copy of the packet is forwarded in its current state to the desired port.
If the output action references an non-existent port, the copy of the packet is dropped. If the list of actions contains a
group action, a copy of the packet in its current state is processed by the relevant group buckets.

After the execution of the list of actions in an Apply-Actions instruction, pipeline execution continues on the modified
packet. The action set of the packet is unchanged by the execution of the list of actions.

1.4.6 Table-miss entry

Every flow table must support a table-miss flow entry to process table misses. The table-miss flow entry specifies
how to process packets unmatched by other flow entries in the flow table, and may, for example, send packets to the

controller, drop packets or direct packets to a subsequent table. The table-miss flow entry is identified by its match
and its priority, it wildcardsall match fields (all fields omitted) and has the lowest priority (0).

If the table-miss flow entry does not exist, by default packets unmatched by flow entries are dropped (discarded). A
switch configuration, for example using the OpenFlow Configuration Protocol, may override this default and specify
another behaviour.

1.5 Group and Meter tables

1.5.1 Group Table

A group table consists of group entries. The ability for a flow entry to point to a group enables OpenFlow to represent
additional methods of forwarding. Each group entry is identified by its group identifier and contains:

• group identifier: a 32 bit unsigned integer uniquely identifying the group on the OpenFlow switch.

• group type: to determine group semantics.

• counters: updated when packets are processed by a group.

• action buckets: an ordered list of action buckets, where each action bucket contains a set of actions to execute
and associated parameters. The actions in a bucket are always applied as an action set.

A bucket typically contains actions that modify the packet and an output action that forwards it to a port. A bucket
may also include a group action which invokes another group if the switch supports group chaining, in this case packet
processing continues in the group invoked. A bucket with no actions is valid, a bucket with no output or group action
effectively drops the clone of the packet associated with that bucket.

A switch is not required to support all group types, just those marked “Required” below. The controller can also query
the switch about which of the “Optional” group type it supports:

• Required: all: Execute all buckets in the group. This group is used for multicast or broadcast forwarding. The
packet is effectively cloned for each bucket; one packet is processed for each bucket of the group. If a bucket
directs a packet explicitly out the ingress port, this packet clone is dropped. If the controller writer wants to
forward out the ingress port, the group should include an extra bucket which includes an output action to the
OFPP_IN_PORT reserved port.

• Optional: select: Execute one bucket in the group. Packets are processed by a single bucket in the group, based
on a switch-computed selection algorithm (e.g. hash on some user-configured tuple or simple round robin).
All configuration and state for the selection algorithm is external to OpenFlow. The selection algorithm should
implement equal load sharing and can optionally be based on bucket weights. When a port specified in a bucket
in a select group goes down, the switch may restrict bucket selection to the remaining set (those with forwarding
actions to live ports) instead of dropping packets destined to that port. This behavior may reduce the disruption
of a downed link or switch.

• Required: indirect: Execute the one defined bucket in this group. This group supports only a single bucket.
Allows multiple flow entries or groups to point to a common group identifier, supporting faster, more efficient
convergence. An indirect group is typically referenced by multiple flow entries, thereby allowing each of these
entities to have a centralized action that can be easily updated (e.g. next hops for IP forwarding). This group
type is effectively identical to an all group with one bucket.

• Optional: fast failover: Execute the first live bucket. Each action bucket is associated with a specific port and/or
group that controls its liveness. The buckets are evaluated in the order defined by the group, and the first bucket
which is associated with a live port/group is selected. This group type enables the switch to change forwarding
without requiring a round trip to the controller. If no buckets are live, packets are dropped.

1.5.2 Meter Table

A meter table consists of meter entries, defining per-flow meters. Per-flow meters enable OpenFlow to implement
various simple QoS operations, such as rate-limiting, and can be combined with per-port queues to implement complex
QoS frameworks, such as DiffServ.

A meter measures the rate of packets assigned to it and enables controlling the rate of those packets. Meters are
attached directly to flow entries. Any flow entry can specify a meter in its instruction set: the meter measures and
controls the rate of the aggregate of all flow entries to which it is attached. Multiple meters can be used in the same
table, but in an exclusive way (disjoint set of flow entries). Multiple meters can be used on the same set of packets by
using them in successive flow tables.

Each meter entry is identified by its meter identifier and contains:

• meter identifier: a 32 bit unsigned integer uniquely identifying the meter

• meter bands: an unordered list of meter bands, where each meter band specifies the rate of the band and the
way to process the packet

• counters: updated when packets are processed by a meter

1.6 OpenFlow Switch Protocol

The OpenFlow channel is the interface that connects each OpenFlow Logical Switch to an OpenFlow controller.
Through this interface, the controller configures and manages the forwarding plane of a switch, receives events from
the switch, and sends packets out the switch. The Control Channel of a switch may support a single OpenFlow
channel with a single controller, or multiple OpenFlow channels enabling multiple controllers to share management
of the switch.

Between the datapath and the OpenFlow channel, the interface is implementation-specific, however all OpenFlow
channel messages must be formatted according to the OpenFlow Switch Protocol. The OpenFlow channel is usually
encrypted using TLS, but may be run directly over TCP.

The OpenFlow switch protocol supports three message types, controller-to-switch, asynchronous, and symmetric, each
with multiple sub-types.

• Controller-to-switch messages are initiated by the controller and used to directly manage or inspect the state
of the switch.

• Asynchronous messages are initiated by the switch and used to update the controller about network events and
changes to the switch state.

• Symmetric messages are initiated by either the switch or the controller and sent without solicitation.

1.6.1 Controller-to-Switch messages

Controller/switch messages are initiated by the controller and may or may not require a response from the switch.

• Features: The controller may request the identity and the basic capabilities of a switch by sending a features
request; the switch must respond with a features reply that specifies the identity and basic capabilities of the
switch. This is commonly performed upon establishment of the OpenFlow channel.

• Configuration: The controller is able to set and query configuration parameters in the switch. The switch only
responds to a query from the controller.

• Modify-State: Modify-State messages are sent by the controller to manage state on the switches. Their primary
purpose is to add, delete and modify flow/group entries in the OpenFlow tables and to set switch port properties.

• Read-State: Read-State messages are used by the controller to collect various information from the switch,
such as current configuration, statistics and capabilities.

• Packet-out: These are used by the controller to send packets out of a specified port on the switch, and to
forward packets received via Packet-in messages. Packet-out messages must contain a full packet or a buffer ID
referencing a packet stored in the switch. The message must also contain a list of actions to be applied in the
order they are specified; an empty list of actions drops the packet.

• Barrier: Barrier request/reply messages are used by the controller to ensure message dependencies have been
met or to receive notifications for completed operations.

• Role-Request: Role-Request messages are used by the controller to set the role of its OpenFlow channel, or
query that role. This is mostly useful when the switch connects to multiple controllers.

• Asynchronous-Configuration: The Asynchronous-Configuration messages are used by the controller to set a
filter on the asynchronous messages that it wants to receive on its OpenFlow channel, or to query that filter. This
is mostly useful when the switch connects to multiple controllers and commonly performed upon establishment
of the OpenFlow channel.

1.6.2 Asynchronous messages

Asynchronous messages are sent without a controller soliciting them from a switch. Switches send asynchronous
messages to controllers to denote a packet arrival, switch state change, or error. The four main asynchronous message
types are described below.

• Packet-in: Transfer the control of a packet to the controller. For all packets forwarded to the CONTROLLER
reserved port using a flow entry or the table-miss flow entry, a packet-in event is always sent to controllers.
Other processing, such as TTL checking, may also generate packet-in events to send packets to the controller.

Packet-in events can be configured to buffer packets. For packet-in generated by an output action in a flow entry
or group bucket, the packet buffering can be specified individually in the output action itself, for other packet-
in it can be configured in the switch configuration. If the packet-in event is configured to buffer packets and
the switch has sufficient memory to buffer them, the packet-in event contains only some fraction of the packet
header and a buffer ID to be used by a controller when it is ready for the switch to forward the packet. Switches
that do not support internal buffering, are configured to not buffer packets for the packet-in event, or have run
out of internal buffering, must send the full packet to controllers as part of the event.

• Flow-Removed: Inform the controller about the removal of a flow entry from a flow table. Flow-Removed
messages are only sent for flow entries with the OFPFF_SEND_FLOW_REM flag set. They are generated as
the result of a controller flow delete request or the switch flow expiry process when one of the flow timeouts is
exceeded.

• Port-status: Inform the controller of a change on a port. The switch is expected to send port-status messages to
controllers as port configuration or port state changes. These events include change in port configuration events,
for example if it was brought down directly by a user, and port state change events, for example if the link went
down.

• Error: The switch is able to notify controllers of problems using error messages.

1.6.3 Symmetric messages

Symmetric messages are sent without solicitation, in either direction.

• Hello: Hello messages are exchanged between the switch and controller upon connection startup.

• Echo: Echo request/reply messages can be sent from either the switch or the controller, and must return an echo
reply. They are mainly used to verify the liveness of a controller-switch connection, and may as well be used to
measure its latency or bandwidth.

• Experimenter: Experimenter messages provide a standard way for OpenFlow switches to offer additional
functionality within the OpenFlow message type space. This is a staging area for features meant for future
OpenFlow revisions.

1.6.4 OpenFlow Channel Connections

The switch must be able to establish communication with a controller at a user-configurable (but otherwise fixed) IP
address, using a user-specified port. If the switch knows the IP address of the controller, the switch initiates a standard
TLS or TCP connection to the controller. Traffic to and from the OpenFlowchannel is not run through the OpenFlow
pipeline. Therefore, the switch must identify incoming traffic as local before checking it against the flow tables.

When an OpenFlow connection is first established, each side of the connection must immediately send an OFPT_HELLO
message with the version field set to the highest OpenFlow protocol version supported by the sender. Upon receipt
of this message, the recipient may calculate the OpenFlow protocol version to be used as the smaller of the ver-
sion number that it sent and the one that it received. If the negotiated version is supported by the recipient, then
the connection proceeds. Otherwise, the recipient must reply with an OFPT_ERROR message with a type field of
OFPET_HELLO_FAILED, a code field of OFPHFC_COMPATIBLE, and optionally an ASCII string explaining the
situation in data, and then terminate the connection.

After the version has been negotiated, the controller issues a OFPT_FEATURES_REQUEST message which is an-
swered with a OFPT_FEATURES_REPLY by the switch. This reply message contains the number of tables and
buffers (packets that can be buffered at once) supported by the switch and it’s datapath ID. Additionally, can contain a
list of the capabilities of the switch, which can be:

• Flow statistics.
• Table statistics.
• Port statistics.
• Group statistics.

• Can reassemble IP fragments.
• Queue statistics.
• Switch will block looping ports.

This features message exchange is what is called OpenFlow Handshake. After the controller has received the message
OFPT_FEATURES_REPLY, the contrller usally queries the switch about its configuration parameters.

The controller is able to set and query configuration parameters in the switch with the OFPT_SET_CONFIG and
OFPT_GET_CONFIG_REQUEST messages, respectively. The switch responds to a configuration request with an
OFPT_GET_CONFIG_REPLY message (but it does not reply to a request to set the configuration).

Configuration messages carry the information inside a set of configuration flags. This flags indicate whether IP frag-
ments should be treated normally, dropped, or reassembled. “Normal” handling of fragments means that an attempt
should be made to pass the fragments through the OpenFlow tables.

1.6.5 Flow Table Modification Messages

Flow table modification messages can have the following types:

• Add: Add a new flow (OFPFC_ADD). If the OFPFF_CHECK_OVERLAP flag is set, the switch must first check
for any overlapping entries in the requested table. Two flow entries overlap if a single packet may match both,
and both entries have the same priority. If an overlap conflict exists between an existing flow entry and the add re-
quest, the switch must refuse the addition and respond with an ofp_error_msg with OFPET_FLOW_MOD_FAILED
type and OFPFMFC_OVERLAP code.

For non-overlapping add requests, or those with no overlap checking, the switch must insert the flow entry in
the requested table. If a flow entry with identical match fields and priority already resides in the requested table,
then that entry, including its duration, must be cleared from the table, and the new flow entry added. If the
OFPFF_RESET_COUNTS flag is set, the flow entry counters must be cleared, otherwise they should be copied
from the replaced flow entry. No flow-removed message is generated for the flow entry eliminated as part of an
add request; if the controller wants a flow-removed message it should explicitly send a delete request for the old
flow entry prior to adding the new one.

• Modify: For modify requests (OFPFC_MODIFY or OFPFC_MODIFY_STRICT), if a matching entry exists
in the table, the instructions field of this entry is updated with the value from the request, whereas its cookie,
idle_timeout, hard_timeout, flags, counters and duration fields are left unchanged.

If the OFPFF_RESET_COUNTS flag is set, the flow entry counters must be cleared. For modify requests, if no
flow entry currently residing in the requested table matches the request, no error is recorded, and no flow table
modification occurs.

• Delete: For delete requests (OFPFC_DELETE or OFPFC_DELETE_STRICT), if a matching entry exists in the
table, it must be deleted, and if the entry has the OFPFF_SEND_FLOW_REM flag set, it should generate a flow
removed message. For delete requests, if no flow entry currently residing in the requested table matches the
request, no error is recorded, and no flow table modification occurs.

Modify and delete flow mod commands have non-strict versions and strict versions:

• In the strict versions, the set of match fields, all match fields, including their masks, and the priority, are strictly
matched against the entry, and only an identical flow entry is modified or removed.

For example, if a message to remove entries is sent that has no match fields included, the OFPFC_DELETE
command would delete all flow entries from the tables, while the OFPFC_DELETE_STRICT command would

only delete a flow entry that applies to all packets at the specified priority. For non-strict modify and delete
commands, all flow entries that match the flow mod description are modified or removed.

• In the non-strict versions, a match will occur when a flow entry exactly matches or is more specific than the
description in the flow_mod command; in the flow_mod the missing match fields are wildcarded, field masks are
active, and other flow mod fields such as priority are ignored.

For example, if a OFPFC_DELETE command says to delete all flow entries with a destination port of 80, then
a flow entry that wildcards all match fields will not be deleted. However, a OFPFC_DELETE command that
wildcards all match fields will delete an entry that matches all port 80 traffic.

Modify and delete commands can also be filtered by cookie value, if the cookie_mask field contains a value other
than 0.

1.6.6 OpenFlow header

The OpenFlow protocol is implemented using OpenFlow messages transmitted over the OpenFlow channel. Each
message type is described by a specific structure, which starts with the common OpenFlow header. Each structure de-
fines the order in which information is included in the message and may contain other structures, values, enumerations
or bitmasks.

Each OpenFlow message begins with the OpenFlow header:

/* Header on all OpenFlow packets. */
struct ofp_header {

uint8_t version; /* OFP_VERSION. */
uint8_t type; /* One of the OFPT_ constants. */
uint16_t length; /* Length including this ofp_header. */
uint32_t xid; /* Transaction id associated with this packet.

Replies use the same id as was in the request
to facilitate pairing. */

};
OFP_ASSERT(sizeof(struct ofp_header) == 8);

The version field specifies the OpenFlow switch protocol version being used. The most significant bit in the version
field is reserved and must be set to 0. The 7 lower bits indicate the revision number of the protocol. The version of the
protocol described in this chapter is 1.3, and its ofp_version is 0x04

The length field indicates the total length of the message, so no additional framing is used to distinguish one frame
from the next.

The type field specifies the type of message. It Can have the following values:

enum ofp_type {
/* Immutable messages. */
OFPT_HELLO = 0, /* Symmetric message */
OFPT_ERROR = 1, /* Symmetric message */
OFPT_ECHO_REQUEST = 2, /* Symmetric message */
OFPT_ECHO_REPLY = 3, /* Symmetric message */
OFPT_EXPERIMENTER = 4, /* Symmetric message */

/* Switch configuration messages. */
OFPT_FEATURES_REQUEST = 5, /* Controller/switch message */
OFPT_FEATURES_REPLY = 6, /* Controller/switch message */
OFPT_GET_CONFIG_REQUEST = 7, /* Controller/switch message */
OFPT_GET_CONFIG_REPLY = 8, /* Controller/switch message */
OFPT_SET_CONFIG = 9, /* Controller/switch message */

/* Asynchronous messages. */
OFPT_PACKET_IN = 10, /* Async message */
OFPT_FLOW_REMOVED = 11, /* Async message */
OFPT_PORT_STATUS = 12, /* Async message */

/* Controller command messages. */
OFPT_PACKET_OUT = 13, /* Controller/switch message */
OFPT_FLOW_MOD = 14, /* Controller/switch message */
OFPT_GROUP_MOD = 15, /* Controller/switch message */
OFPT_PORT_MOD = 16, /* Controller/switch message */
OFPT_TABLE_MOD = 17, /* Controller/switch message */

/* Multipart messages. */
OFPT_MULTIPART_REQUEST = 18, /* Controller/switch message */
OFPT_MULTIPART_REPLY = 19, /* Controller/switch message */

/* Barrier messages. */
OFPT_BARRIER_REQUEST = 20, /* Controller/switch message */
OFPT_BARRIER_REPLY = 21, /* Controller/switch message */

/* Queue Configuration messages. */
OFPT_QUEUE_GET_CONFIG_REQUEST = 22, /* Controller/switch message */
OFPT_QUEUE_GET_CONFIG_REPLY = 23, /* Controller/switch message */
/* Controller role change request messages. */

OFPT_ROLE_REQUEST = 24, /* Controller/switch message */
OFPT_ROLE_REPLY = 25, /* Controller/switch message */
/* Asynchronous message configuration. */

OFPT_GET_ASYNC_REQUEST = 26, /* Controller/switch message */
OFPT_GET_ASYNC_REPLY = 27, /* Controller/switch message */
OFPT_SET_ASYNC = 28, /* Controller/switch message */

/* Meters and rate limiters configuration messages. */
OFPT_METER_MOD = 29, /* Controller/switch message */

};

Chapter 2

Open vSwitch

2.1 Introduction

Open vSwitch (OVS) is a multilayer software switch licensed under the open source Apache 2 license. The goal of
its developers is to implement a production quality switch platform that supports standard management interfaces and
opens the forwarding functions to programmatic extension and control.

Open vSwitch is well suited to function as a virtual switch in VM environments. In addition to exposing standard
control and visibility interfaces to the virtual networking layer, it was designed to support distribution across multiple
physical servers. Open vSwitch supports multiple Linux-based virtualization technologies including Xen/XenServer,
KVM, and VirtualBox.

The bulk of the code is written in platform-independent C and is easily ported to other environments. The current
release of Open vSwitch, as stated in their GitHub repository [3], supports the following features:

• Standard 802.1Q VLAN model with trunk and access ports
• NIC bonding with or without LACP on upstream switch
• NetFlow, sFlow(R), and mirroring for increased visibility
• QoS (Quality of Service) configuration, plus policing
• Geneve, GRE, GRE over IPSEC, VXLAN, and LISP tunneling
• 802.1ag connectivity fault management
• OpenFlow 1.3 plus numerous extensions
• Transactional configuration database with C and Python bindings
• High-performance forwarding using a Linux kernel module

2.1.1 Open vSwitch architecture

There are three main components in Open vSwitch, according to the documentation provided by its developers [9]:
the database server (ovsdb-server), the daemon (ovs-vswitchd), and the kernel module.

33

Controller

API REST

Remote

Userspace

Kernel Space

ovsdb-server ovs-vswitchd

OVS
Kernel Module

Netlink

Management

Protocol
(6632/TCP)

Management Protocol
(6632/TCP)

OpenFlow (6633/TCP)

Figure 2.1: OVS architecture

• The controller represented in the Figure 2.1 can be an OpenFlow Controller such as Ryu, or an OVS database
manager. All of the components of Open vSwitch are configurable remotely.

• ovsdb-server is the component that has the configuration database, it holds information that will survive a reboot,
for instance, configurations for bridges and interfaces.

• ovs-vswitchd is the core part of Open vSwitch, it does all the handling of flow setups.
• The objective of the kernel module is to improve the performance of OVS.

2.2 The Kernel Module

The OVS Kernel Module (see [2]) has a simple design, aiming to be portable to several systems. It allows flexible
userspace control over flow-level packet processing. Flows allow to implement a plain Ethernet switch, network
device bonding, VLAN processing, network access control, flow-based network control and many other programmable
applications.

The kernel module can be used to implement multiple "datapaths". A datapath is like a physical switch (bridge). Each
datapath can have multiple "vports" (analogous to ports within a switch/bridge). Each datapath also has associated
with it a "flow table" that userspace populates with "flows".

A flow has matching fields, for example the fields of the packet being processed or the port in which the packet was
received. Each flow has also a set of instructions to do when the flow is hit. These instructions may say that a set of
actions has to be executed. Common actions are dropping the packet or forwarding the packet to another vport. Later
we provide some examples about this.

When a packet arrives on a vport, the kernel module processes it by extracting the matching fields and by performing
a look up in the flow table. If there is a matching flow, it executes the associated instructions and actions. If there is no
match, it queues the packet to userspace for processing. As part of its processing, the userspace part of the openvswitch

(ovs-vswitchd) will likely set up a flow to handle further packets of the same type entirely in-kernel.

Figure 2.2: Open vSwitch packet forwarding

As it can be seen in Figure 2.2, the decision about how to process a packet is made in userspace, so the first packet of
a new flow goes to ovs-vswitchd, while the following packets will hit a cached entry in the kernel.

2.2.1 Datapath flows

Open vSwitch uses different kinds of flows for different purposes. OpenFlow flows are the most important kind of
flow. OpenFlow controllers use these flows to define a switch’s policy. OpenFlow flows support wildcards, priorities,
and multiple tables. When in-band control is in use, Open vSwitch sets up a few "hidden" flows, with priority higher
than a controller or the user can configure, that are not visible via OpenFlow.

The Open vSwitch software switch implementation uses a second kind of flow internally. These flows, called "dat-
apath" or "kernel" flows, do not support priorities and comprise only a single table, which makes them suitable for
caching. OpenFlow flows and datapath flows also support different actions and number ports differently. Datapath
flows are an implementation detail that is subject to change in future versions of Open vSwitch. Even with the current
version of Open vSwitch, hardware switch implementations do not necessarily use this architecture.

The following field assignments describe how the current datapath flow matches a packet. If any of these assignments
is omitted from the flow syntax, the field is treated as a wildcard: Thus, if all of them are omitted, the resulting flow
matches all packets. The string * or ANY may be specified a value to explicitly mark any of these fields as a wildcard.

• in_port=port_no: Matches physical port port_no. Switch ports are numbered as displayed by dpctl show.

• dl_vlan=vlan: Matches IEEE 802.1q virtual LAN tag vlan. Specify 0xffff as vlan to match packets that are not
tagged with a virtual LAN; otherwise, specify a number between 0 and 4095, inclusive, as the 12-bit VLAN ID
to match.

• dl_src=mac: Matches Ethernet source address mac, which should be specified as 6 pairs of hexadecimal digits
delimited by colons, e.g. 00:0A:E4:25:6B:B0.

• dl_dst=mac: Matches Ethernet destination address mac.

• dl_type=ethertype: Matches Ethernet protocol type ethertype, which should be specified as a integer between 0
and 65535, inclusive, either in decimal or as a hexadecimal number prefixed by 0x, e.g. 0x0806 to match ARP
packets.

• nw_src=ip[/netmask]: Matches IPv4 source address ip, which should be specified as an IP address or host name,
e.g. 192.168.1.1 or www.example.com. The optional netmask allows matching only on an IPv4 address prefix.
It may be specified as a dotted quad (e.g. 192.168.1.0/255.255.255.0) or as a count of bits (e.g. 192.168.1.0/24).

• nw_dst=ip[/netmask]: Matches IPv4 destination address ip.

• nw_proto=proto: Matches IP protocol type proto, which should be specified as a decimal number between 0 and
255, inclusive, e.g. 6 to match TCP packets.

• nw_tos=tos/dscp: Matches ToS/DSCP (only 6-bits, not modify reserved 2-bits for future use) field of IPv4
header tos/dscp, which should be specified as a decimal number between 0 and 255, inclusive.

• tp_src=port: Matches UDP or TCP source port port, which should be specified as a decimal number between 0
and 65535, inclusive, e.g. 80 to match packets originating from a HTTP server.

• tp_dst=port: Matches UDP or TCP destination port port.

• icmp_type=type: Matches ICMP message with type, which should be specified as a decimal number between 0
and 255, inclusive.

• icmp_code=code: Matches ICMP messages with code.

The actions that the kernel module can perform when a match occurs are explained in section 2.3.3.

It is worth to mention that users and controllers directly control only the OpenFlow flow table. Open vSwitch manages
the datapath flow table itself, so users should not normally be concerned with it.

2.3 Components and tools of Open vSwitch

The OVS distribution comes whith two main components:

• ovs-vswitchd, a daemon that implements the switch, along with a companion Linux kernel module for flow-
based switching.

• ovsdb-server, a lightweight database server that ovs-vswitchd queries to obtain its configuration.

OVS also provides some tools:

• ovs-dpctl, a tool for show and configure datapath flows.

• ovs-vsctl, a high-level utility for querying and updating the configuration of ovs-vswitchd. ovs-dpctl controls
the Fast Path and ovs-vsctl configures the Slow Path. In general, you’ll probably want to use ovs-vsctl to handle
configuration. ovs-dpctl is mostly useful for debugging purposes. Since the datapath is essentially a cache for
the traffic that is occurring on the network, you can use the "ovs-dpctl dump-flows" command to see what traffic
is being processed and what actions are occurring currently.

• ovs-appctl, a utility that sends commands to running OVS daemons.

• ovs-ofctl, a utility for querying and controlling OpenFlow module of OVS switches.

• ovs-pki, a utility for creating and managing the public-key infrastructure for OpenFlow switches.

• ovs-testcontroller, a simple OpenFlow controller that may be useful for testing (though not for production).

• ovsdb-tool, a command-line tool for managing OVS database files.

• ovsdb-client, a command-line client for interacting with a running ovsdb-server process.

2.3.1 ovs-vswitchd

ovs-vswitchd is a daemon that manages and controls any number of OVS switches on the local machine. It is the core
component in the system:

• Communicates with SDN controllers using OpenFlow.

• Communicates with ovsdb-server using OVSDB protocol.

• Communicates its kernel module over netlink.

• Communicates with the hosting system through netdev interface.

Packet classifier supports efficient flow lookup with wildcards and "explodes" these (possibly) wildcard rules for fast
processing by the datapath. It retrieves its configuration from database at startup. It sets up Open vSwitch datapaths
and then operates switching across each bridge described in its configuration files. As the database changes, ovs-
vswitchd automatically updates its configuration to match. Also, this daemon checks datapath flow counters to handle
flow expiration and stats requests.

Only a single instance of ovs-vswitchd is intended to run at a time. A single ovs-vswitchd can manage any number
of switch instances, up to the maximum number of supported Open vSwitch datapaths. ovs-vswitchd does all the
necessary management of Open vSwitch datapaths itself. Thus, external tools, such ovs-dpctl, are not needed for
managing datapaths. In fact, configuring datapath flows with ovs-dpctl when ovs-vswitchd is running can interfere
with its operation. Still, ovs-dpctl may still be useful for diagnostics (use only show commands).

2.3.2 ovsdb-server

The ovsdb-server program provides RPC (Remote Procedure Call) interfaces to one or more Open vSwitch databases
(OVSDBs). It supports JSON-RPC client connections over TCP/IP or Unix domain sockets. These databases hold
switch level configuration such as bridge, interface and tunnel definitions, OVSDB managers and OpenFlow controller
addresses.

This configuration is stored on disk and survives a reboot. The implementaion of this database is log-based, this means
that it does not only stores the states of the database but also stores a change log where all the changes are saved.

The server interacts with OVSDB managers and ovs-vswitchd using the OVSDB protocol, which is intended to allow
programmatic access to the Open vSwitch database.

Database schema

A database with this schema holds the configuration for one Open vSwitch daemon. The top-level configuration for
the daemon is the Open_vSwitch table, which must have exactly one record. Records in other tables are significant
only when they can be reached directly or indirectly from the Open_vSwitch table. Records that are not reachable
from the Open_vSwitch table are automatically deleted from the database, except for records in a few distinguished
"root set" tables.

Table summary

The following list summarizes the purpose of each of the tables in the Open_vSwitch database

• Open_vSwitch: Open vSwitch configuration.

• Bridge: Bridge configuration.

• Port: Port configuration.

• Interface: One physical network device in a Port.

• Flow_Table: OpenFlow table configuration

• QoS: Quality of Service configuration

• Queue: QoS output queue.

• Mirror: Port mirroring.

• Controller: OpenFlow controller configuration.

• Manager: OVSDB management connection.

• NetFlow: NetFlow configuration.

• SSL: SSL configuration.

• sFlow: sFlow configuration.

• IPFIX: IPFIX configuration.

• Flow_Sample_Collector_Set: Flow_Sample_Collector_Set configuration.

However, we don’t usually interact with all of this tables, but with a reduced number of them, which we’ll call Core
Tables. In Figure 2.3 we can see the relationship between theese core tables.

Figure 2.3: Core Table relationship

ovsdb-tool

The ovsdb-tool program is a command-line tool for managing Open vSwitch database files. It does not interact directly
with running Open vSwitch database servers.

For instance, we can use this program to see the change log of the database with:

ovsdb-tool show-log [-mmm] <file>

ovsdb-client

The ovsdb-client program is a command-line client for interacting with a running ovsdb-server process. Each com-
mand connects to an OVSDB server, which is unix:/var/run/openvswitch/db.sock by default.

2.3.3 ovs-dpctl

The ovs-dpctl program can create, modify, and delete Open vSwitch datapaths. A single machine may host any number
of datapaths. This program speaks directly to the kernel module.

A newly created datapath is associated with only one network device, a virtual network device sometimes called the
datapath’s "local port". A newly created datapath is not, however, associated with any of the host’s other network
devices.

If ovs-vswitchd is in use, ovs-vsctl must be used instead of ovs-dpctl.

The ovs-dpctl tool can write datapath flows to the kernel module, using the fields described in section 2.2.1 to build
the desired match. For this purpose, the program has the add-flow and add-flows commands, which have a field
actions=target[,target...]

This field specifies a comma-separated list of actions to take on a packet when the flow entry matches. The target
may be a decimal port number designating the physical port on which to output the packet, or one of the following
keywords:

Keyword Action
output:port Outputs the packet on the port specified by port.
enqueue:port:q-id Enqueue the packet to the queue specified by q-id on the port specified by port.
normal Subjects the packet to the device’s normal L2/L3 processing.
flood Outputs the packet on all switch physical ports other than the port on which it was re-

ceived.
all Outputs the packet on all switch physical ports other than the port on which it was re-

ceived.
controller:max_len Sends the packet to the OpenFlow controller as a "packet in" message. If max_len speci-

fies the maximum number of bytes that should be sent.
local Outputs the packet on the "local port", which corresponds to the ofn network device.
mod_vlan_vid:vlan_vid Modifies the VLAN id on a packet. The VLAN tag is added or modified as necessary to

match the value specified.
mod_vlan_pcp:vlan_pcp Modifies the VLAN priority on a packet. The VLAN tag is added or modified as necessary

to match the value specified.
mod_dl_dst:dst_mac Modifies the destination mac address on a packet, e.g., ac-

tions=mod_dl_dst:12:34:56:78:9a:bc
mod_dl_src:src_mac Modifies the source mac address on a packet, e.g., actions=mod_dl_src:12:34:56:78:9a:bc
mod_nw_tos:tos/dscp Modifies the ToS/DSCP (only 6-bits, not modify reserved 2-bits for future use) field of

IPv4 header on a packet.
strip_vlan Strips the VLAN tag from a packet if it is present.

2.3.4 ovs-vsctl

The ovs-vsctl program configures ovs-vswitchd by providing a high-level interface to its configuration database.

ovs-vsctl connects to an ovsdb-server process that maintains an Open vSwitch configuration database. Using this
connection, it queries and possibly applies changes to the database, depending on the supplied commands. Then, if it
applied any changes, by default it waits until ovs-vswitchd has finished reconfiguring itself before it exits. ovs-vsctl
can perform any number of commands in a single run, implemented as a single atomic transaction against the database.

As an example of this high level interface, here is a list of some of the commands that can be used within this program:

• ovs-vsctl add-br <bridge>

• ovs-vsctl list-br

• ovs-vsctl add-port <bridge><port>

• ovs-vsctl list-ports <bridge>

• ovs-vsctl get-manager <bridge>

• ovs-vsctl get-controller <bridge>

• ovs-vsctl list <table>

2.3.5 ovs-appctl

Open vSwitch daemons accept certain commands at runtime to control their behavior and query their settings. Every
daemon accepts a common set of commands and some daemons may support additional commands. In particular,
ovs-vswitchd accepts a number of additional commands documented in its man page.

The ovs-appctl program provides a simple way to invoke these commands. The command to be sent is specified on
ovs-appctl’s command line as non-option arguments. ovs-appctl sends the command and prints the daemon’s response
on standard output.

By default, ovs-appctl comunicates with ovs-vswitchd, but this can be changed using the target parameter (-t <target>).
All daemons support the following commands:

• help – Lists the commands supported by the target.
• version – Displays the version and compilation date of the target.
• vlog/list – List the known logging modules and their current levels.
• vlog/set [spec] – Sets logging levels.

These features make ovs-appctl an excellent tool for debugging and logging.

2.3.6 ovs-ofctl

The ovs-ofctl program is a command line tool for monitoring and administering OpenFlow switches. It can also show
the current state of an OpenFlow switch, including features, configuration, and table entries. It should work with any
OpenFlow switch, not just Open vSwitch. It’s the tool used to add, delete and dump flows. An example of its usage
can be found on the scripts of section 2.5.

2.3.7 ovs-pki

The ovs-pki program sets up and manages a public key infrastructure for use with OpenFlow. It is intended to be
a simple interface for organizations that do not have an established public key infrastructure. Other PKI tools can
substitute for or supplement the use of ovs-pki.

2.3.8 Further information

For any further information on any of the previous programs, please refer to their respective man pages, which can be
found in http://openvswitch.org/support/dist-docs/

2.4 Practical Examples

2.4.1 Install

To install OVS in Ubuntu:

$ sudo apt-get install openvswitch-datapath-source \
openvswitch-common openvswitch-switch

2.4.2 Basic Commands

Create a Bridge

To create a bridge called br0 just type:

$ sudo ovs-vsctl add-br br0

You can avoid errors if the bridge already exists with the option “may exist”:

$ sudo ovs-vsctl --may-exist add-br br0

Add Ports

To add ports to the bridge (again you can use the may exist option):

$ sudo ovs-vsctl --may-exist add-port br0 eth1

Delete Bridge

To delete an existing bridge we just use the del-br option (you can use it with the if exists option):

$ sudo ovs-vsctl --if-exists del-port br0 eth0

To delete an existing bridge we just use the del-br option:

$ sudo ovs-vsctl del-br br0

An easy way to solve any problem if something goes wrong while configuring Open vSwitch is to stop openvswitch
service, then delete the file /etc/openvswitch/conf.db and finally start the service.

Show Config

To show the configuration of existing OVS:

$ sudo ovs-vsctl show

2.4.3 Basic Openflow

Add Flows

A flow entry primarily contains a set of field=value entries and action entry. The field=value entries are used to identify
the incoming packet and the actions tells the bridge with what to do with the matching traffic.

Table 0 is where packets enter the switch. This table can be used to discard packets that for one reason or another are
invalid. For example, packets with a multicast MAC source address are not valid, so we can add a flow to drop them
at ingress to the switch with the following flow:

$ sudo ovs-ofctl add-flow br0 \
"table=0, dl_src=01:00:00:00:00:00/01:00:00:00:00:00, actions=drop"

Another example to drop all ICMP traffic (nw_proto=1) from 192.168.7.189 to 192.168.1.100 to the switch (LOCAL
port):

$ sudo ovs-ofctl add-flow br0
"in_port=LOCAL,table=0,idle_timeout=60,ip,hard_timeout=60, nw_proto=1,
nw_dst=192.168.1.100, nw_src=192.168.7.189,actions=drop"

Test

OVS has a few specialized testing tools. The most powerful of these tools is "ofproto/trace". Given a switch and the
specification of a flow, "ofproto/trace" shows, step-by-step, how such a flow would be treated as it goes through the
switch. For example:

$ ovs-appctl ofproto/trace br0 in_port=1,dl_dst=01:80:c2:00:00:05 -generate

Flow: metadata=0,in_port=1,vlan_tci=0x0000,dl_src=00:00:00:00:00:00,
dl_dst=01:80:c2:00:00:05,dl_type=0x0000

Rule: table=0 cookie=0 dl_dst=01:80:c2:00:00:00/ff:ff:ff:ff:ff:f0
OpenFlow actions=drop

Final flow: unchanged
Datapath actions: drop

Multiple Tables

To go to another table we have several ways. The action goto_table:<num> sends the openflow pipeline processing to
table num. On the other hand, the action resubmit([port],[table]) makes re-searching the OpenFlow flow table with the
in_port field replaced by port. Or research the table whose number is specified by table. Examples:

$ sudo ovs-ofctl add-flow br0 \
"table=1, priority=99, in_port=1, actions=goto_table:2"

$ sudo ovs-ofctl add-flow br0 \
"table=1, priority=99, in_port=1, actions=resubmit(,2)"

Metadata

Metadata can be passed between tables and it can used as a match field in the form metadata=value[/mask]. For
example:

$ sudo ovs-ofctl add-flow br0 "table=1, metadata=0xffffffff00000000, actions=goto_table:2"

To write metadata you can use the action write_metadata:

$ sudo ovs-ofctl add-flow br0 "in_port=1 actions=write_metadata:0xcafecafe00000000,resubmit(,1)"
$ sudo ovs-ofctl add-flow br0 <match conditions>,actions=write_metadata:3,goto_table:7"

Show OF Configuration

The flows assigned to the bridge can be listed with the following command:

$ sudo ovs-ofctl dump-flows br0 \
cookie=0x0, duration=14.604s, table=0, n_packets=61, n_bytes=7418, idle_timeout=10,
hard_timeout=30,tcp, vlan_tci=0x0000, dl_src=78:2b:cb:4b:db:c5, dl_dst=00:21:9b:8e:36:62,
nw_src=192.168.7.189, nw_dst=192.168.1.150, nw_tos=0, tp_src=22, tp_dst=60221, actions=output:1

The above flow should be self-explanatory. If the traffic comes in from src mac address 78:2b:cb:4b:db:c5, destination
mac address 00:21:9b:8e:36:62, traffic is tcp traffic, src ip=192.168.7.189, dest ip=192.168.1.150, TCP source port 22,
tcp destination port 60221 forward the packet to port 1 (actions:1).

You can also view the OF flows of a particular table:

$ sudo ovs-ofctl dump-flows br0 table=10

On the other hand, the OF ports configured in the bridge can be seen with the following command:

$ sudo ovs-ofctl show br0
OFPT_FEATURES_REPLY (xid=0x1): ver:0x1,
dpid:0000782bcb4bdbc5
n_tables:255, n_buffers:256
features: capabilities:0xc7, actions:0xfff
1(em1): addr:78:2b:cb:4b:db:c5

config: 0
state: 0
current: 1GB-FD COPPER AUTO_NEG
advertised:

10MB-HD 10MB-FD 100MB-HD 100MB-FD 1GB-HD 1GB-FD COPPER AUTO_NEG AUTO_PAUSE
supported: 10MB-HD 10MB-FD
100MB-HD 100MB-FD 1GB-HD 1GB-FD COPPER AUTO_NEG
2(tap0): addr:a6:30:4d:0f:40:49

config: 0
state: LINK_DOWN
current: 10MB-FD COPPER

LOCAL(ovs): addr:78:2b:cb:4b:db:c5
config: 0
state: 0

OFPT_GET_CONFIG_REPLY (xid=0x3): frags=normal
miss_send_len=0

Controller Configuration

In an OVS switch you can set a controller with the following command:

$ sudo ovs-vsctl set-controller br-int tcp:192.168.1.208:6633

On the other hand, we can also set the controller failure settings. When a controller is configured, it is, ordinarily,
responsible for setting up all flows on the switch. Thus, if the connection to the controller fails, no new network

connections can be set up. If the connection to the controller stays down long enough, no packets can pass through the
switch at all.

If the value is standalone, or if neither of these settings is set, ovs-vswitchd will take over responsibility for setting
up flows when no message has been received from the controller for three times the inactivity probe interval. In this
mode, ovs-vswitchd causes the datapath to act like an ordinary MAC-learning switch. ovs-vswitchd will continue to
retry connecting to the controller in the background and, when the connection succeeds, it discontinues its standalone
behavior. If this option is set to secure, ovs-vswitchd will not set up flows on its own when the controller connection
fails. Example:

$ sudo ovs-vsctl set-fail-mode br0 secure

2.5 Implementing a MPLS network with OVS and OpenFlow

The following pages document the experiments performed with Open vSwitch and OpenFlow 1.3 in order to recreate
simple MPLS network functionalities. This experiments aim to give a better understanding of Open vSwitch behavior
and some of its tools.

2.5.1 Basics of MPLS

Multiprotocol Label Switching (MPLS) is a mechanism in high-performance telecommunications networks that di-
rects data from one network node to the next based on short path labels rather than long network addresses, avoiding
complex lookups in a routing table. The labels identify virtual links (paths) between distant nodes rather than end-
points. MPLS can encapsulate packets of various network protocols.

MPLS works by prefixing packets with an MPLS header, containing one or more labels. This is called a label stack.
Each label stack entry contains four fields:

• A 20-bit label value. A label with the value of 1 represents the router alert label.

• A 3-bit Traffic Class field for QoS (quality of service) priority (experimental) and ECN (Explicit Congestion
Notification)..

• A 1-bit bottom of stack flag. If this is set, it signifies that the current label is the last in the stack.

• An 8-bit TTL (time to live) field.

These MPLS-labeled packets are switched after a label lookup/switch instead of a lookup into the IP table.

The presence of such a label, however, has to be indicated to the router/switch. In the case of Ethernet frames this is
done through the use of EtherType values 0x8847 and 0x8848, for unicast and multicast connections respectively.

MPLS concepts

Label switch router: A MPLS router that performs routing based only on the label is called a label switch router
(LSR) or transit router. This is a type of router located in the middle of a MPLS network. It is responsible for
switching the labels used to route packets. When an LSR receives a packet, it uses the label included in the packet

header as an index to determine the next hop on the label-switched path (LSP) and a corresponding label for the packet
from a lookup table. The old label is then removed from the header and replaced with the new label before the packet
is routed forward.

Label edge router: A label edge router (LER, also known as edge LSR) is a router that operates at the edge of an
MPLS network and acts as the entry and exit points for the network. LERs respectively, push an MPLS label onto an
incoming packet and pop it off the outgoing packet. Alternatively, under penultimate hop popping this function may
instead be performed by the LSR directly connected to the LER.

When forwarding IP datagrams into the MPLS domain, a LER uses routing information to determine appropriate labels
to be affixed, labels the packet accordingly, and then forwards the labelled packets into the MPLS domain. Likewise,
upon receiving a labelled packet which is destined to exit the MPLS domain, the LER strips off the label and forwards
the resulting IP packet using normal IP forwarding rules.

Label Distribution Protocol: Labels are distributed between LERs and LSRs using the Label Distribution Proto-
col (LDP). LSRs in an MPLS network regularly exchange label and reachability information with each other using
standardized procedures in order to build a complete picture of the network they can then use to forward packets.

Label-Switched Paths: A label-switched path (LSP) is a path through an MPLS network, set up by a signaling
protocol such as LDP.

2.5.2 Setting up the environment

This experiment is based on the tutorial on MPLS with OpenFlow proposed by the Universita degli Studi Roma Tre.
This tutorial can be found in the following link:
http://tocai.dia.uniroma3.it/compunet-wiki/index.php/MPLS_with_OpenFlow:_howto

We are using Open vSwitch version 2.0.2 and mininet 2.2.0 For this experiment we will use a simple topology,
ilustrated in figure 2.4. Host 2 will not be used in this experiment. The numbers in blue correspond to the label that
the packets carry with them in each link.

Figure 2.4: Topology

As you can see, when packets travel from h1 to h3:

• The switch s1 pushes the label 12 and forwards the packet to switch s2.

• The switch s2 swaps the label 12 for the label 23 and forwards the packet to switch s3

• The switch s3 pops the label 23 and forwards the packet to host h3.

This environment will be set up using only mininet and Open vSwitch. Please note that the label stack of the packets
is just one label deep, this is because currently Open vSwitch only supports one label. The whole experiment will
be performed in userspace, as the OVS kernel module does not support MPLS yet. For this reason we use the option
datapath=user

In order to create the topology, we execute the following command:

$ sudo mn -topo linear,3 -mac -switch ovsk,datapath=user

Using the following script, we can write the OpenFlow Rules to the switches, so the network behaves as an MPLS
network. Each instruction is previously commented for a better understanding of the script.

#!/bin/bash

Configure switch to use OpenFlow 1.3
echo "Setting Switches to work with OpenFlow 1.3"

for i in s1 s2 s3; do
sudo ovs-vsctl set bridge $i protocols=OpenFlow13
done

Clear flow tables
echo "Clearing Flow tables.."

for i in s1 s2 s3; do
sudo ovs-ofctl -O OpenFlow13 del-flows $i
done

Rules at S1
echo "Setting up rules at s1"

TABLE 0
If ethertype is IPv4 (800h) or MPLS unicast (8847h), go to table 1
sudo ovs-ofctl -O OpenFlow13 add-flow s1
"table=0,in_port=1,eth_type=0x0800,actions=goto_table:1"
sudo ovs-ofctl -O OpenFlow13 add-flow s1
"table=0,in_port=2,eth_type=0x8847,actions=goto_table:1"

TABLE 1
If it came in through port 1 & it’s an IPv4 packet:
push label 12 and send it through port 2
sudo ovs-ofctl -O OpenFlow13 add-flow s1
"table=1,in_port=1,eth_type=0x0800,
actions=push_mpls:0x8847,set_field:12->mpls_label, output:2"

If it came in through port 2 & it’s an MPLS unicast & bottom of stack:
pop label and send it through port 1
sudo ovs-ofctl -O OpenFlow13 add-flow s1

"table=1,in_port=2,eth_type=0x8847,mpls_bos=1,
actions=pop_mpls:0x0800,output:1"

Rules at s2
echo "Setting up rules at s2"

Pop old label push new label
sudo ovs-ofctl -O OpenFlow13 add-flow s2

"table=0,in_port=2,eth_type=0x8847,actions=\
pop_mpls:0x800, push_mpls:0x8847,set_field:23->mpls_label,output:3"

sudo ovs-ofctl -O OpenFlow13 add-flow s2
"table=0,in_port=3,eth_type=0x8847,actions=\
pop_mpls:0x800, push_mpls:0x8847,set_field:21->mpls_label,output=2"

Rules at s3
echo "Setting up rules at s3"

TABLE 0
If ethertype is IPv4 (800h) or MPLS unicast (8847h), go to table 1
sudo ovs-ofctl -O OpenFlow13 add-flow s3

"table=0,in_port=1,eth_type=0x0800,actions=goto_table:1"
sudo ovs-ofctl -O OpenFlow13 add-flow s3

"table=0,in_port=2,eth_type=0x8847,actions=goto_table:1"

TABLE 1
If it came in through port 1 & it’s an IPv4 packet:
push label 32 and send it through port 2
sudo ovs-ofctl -O OpenFlow13 add-flow s3

"table=1,in_port=1,eth_type=0x0800,actions=push_mpls:0x8847,
set_field:32->mpls_label,output:2"

If it came in through port 2 & it’s an MPLS unicast & bottom of stack:
pop label and send it through port 1
sudo ovs-ofctl -O OpenFlow13 add-flow s3

"table=1,in_port=2,eth_type=0x8847,mpls_bos=1,
actions=pop_mpls:0x0800,output:1"

Rules for ARP traffic
echo "Setting up rules for ARP traffic"
sudo ovs-ofctl -O OpenFlow13 add-flow s1

"table=0,in_port=1,eth_type=0x806,actions=output:2"
sudo ovs-ofctl -O OpenFlow13 add-flow s1

"table=0,in_port=2,eth_type=0x806,actions=output:1"

sudo ovs-ofctl -O OpenFlow13 add-flow s2
"table=0,in_port=2,eth_type=0x806,actions=output:3"

sudo ovs-ofctl -O OpenFlow13 add-flow s2
"table=0,in_port=3,eth_type=0x806,actions=output:2"

sudo ovs-ofctl -O OpenFlow13 add-flow s3
"table=0,in_port=1,eth_type=0x806,actions=output:2"

sudo ovs-ofctl -O OpenFlow13 add-flow s3
"table=0,in_port=2,eth_type=0x806,actions=output:1"

The script writes rules for ARP, IPV4 and MPLS unicast ethernet packets. Every other packet will be dropped. Two
flow tables have to be used in hosts h1 and h3, as proposed in the tutorial. This implementation is discussed in section
2.5.4

As you can see this is an hibryd application, as it forwards IPV4 traffic through MPLS techniques but it also forwards
ARP traffic in a classic way. Also, there’s only one IP network, which is not the real scenario for MPLS networks,
which were proposed to enable faster packet forwarding between different IP networks.

However, this experiment is a good starting point in order to understand the mechanics of the MPLS protocol and its
relation with OpenFlow and Open vSwitch

2.5.3 Testing the network

With this setup, we expect the host h1 to reach the host h3 and viceversa. Host 2 cannot reach nor be reached by any
other host. When a reachability test is performed with the command pingall on the Mininet Command Line, we obtain
the following result:

mininet> pingall

*** Ping: testing ping reachability
h1 -> X h3
h2 -> X X
h3 -> h1 X

*** Results: 66% dropped (2/6 received)

As expected, only h1 and h3 see each other.

Now that the reachablity has been checked, we will listen to some of the interfaces to capture the traffic and confirm
that the labels are being pushed, swapped, and popped correctly. You can see where each interface is located inside
the topology in figure 2.4

The following captures correspond to an ICMP echo request from h1 to h3 and the associated reply

Figure 2.5: Capture from interface s1-eth1

Figure 2.6: Capture from interface s1-eth2

Figure 2.7: Capture from interface s2-eth3

Figure 2.8: Capture from interface s3-eth1

This captures show that the experiment has performed as expected:

• In figure 2.5 the ICMP request enters the switch s1 without any label.

• In figure 2.6 the packet leaves the switch s1 with the label 12 inserted between layers 2 and 3. Push performed
correctly

• In figure 2.7 the packet leaves switch s2 with the label 23. Swap performed correctly

• In figure 2.8 the packet leaves the switch s3 without any label. Pop performed correctly.

• The captures also show that the reply packet follows a similar process with the labels 32 and 21 (Not shown in
the figures).

This experiment shows the potential of OpenFlow and Open vSwitch for creating MPLS networks.

2.5.4 Discussion on alternative implementations

This section discusses alternative implementations of this experiment, some of them are bad implementations that do
not perform as expected. Some of them behave slightly different from the original experiment.

Simplification

Reducing the number of tables

The experiment proposed in section 2.5.2 writes two flow tables in the switches s1 and s3. But the flows on the first
table only forward to the next stage in the pipeline with the same match that is used in the second table. This is why
we wondered if this two tables could be reduced to one.

For this purpose we remove the first two rules for s1 and s2, and also set the other rules to be in table 0. We dump the
flows on both switches to be sure that the flows have been added properly.

mininet@mininet-vm:~/experiments$ sudo ovs-ofctl -O openflow13 dump-flows s1
OFPST_FLOW reply (OF1.3) (xid=0x2):
cookie=0x0, duration=6.278s, table=0, n_packets=0, n_bytes=0,
mpls,in_port=2,mpls_bos=1 actions=pop_mpls:0x0800,output:1
cookie=0x0, duration=5.768s, table=0, n_packets=0, n_bytes=0, arp,in_port=2
actions=output:1
cookie=0x0, duration=5.827s, table=0, n_packets=0, n_bytes=0, arp,in_port=1
actions=output:2
cookie=0x0, duration=6.336s, table=0, n_packets=0, n_bytes=0, ip,in_port=1
actions=push_mpls:0x8847,set_field:12->mpls_label,output:2
mininet@mininet-vm:~/experiments$ sudo ovs-ofctl -O openflow13 dump-flows s3
OFPST_FLOW reply (OF1.3) (xid=0x2):
cookie=0x0, duration=8.773s, table=0, n_packets=0, n_bytes=0,
mpls,in_port=2,mpls_bos=1 actions=pop_mpls:0x0800,output:1
cookie=0x0, duration=8.413s, table=0, n_packets=0, n_bytes=0, arp,in_port=2
actions=output:1
cookie=0x0, duration=8.472s, table=0, n_packets=0, n_bytes=0, arp,in_port=1
actions=output:2
cookie=0x0, duration=8.84s, table=0, n_packets=0, n_bytes=0, ip,in_port=1
actions=push_mpls:0x8847,set_field:32->mpls_label,output:2

The rules have been added properly to the switches. Sending an ICMP request message from h1 to h3 also performs
well.

PING 10.0.0.3 (10.0.0.3) 56(84) bytes of data.
64 bytes from 10.0.0.3: icmp_seq=1 ttl=64 time=17.0 ms

--- 10.0.0.3 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 17.041/17.041/17.041/0.000 ms

Capture from both s1-eth2 and s3-eth2 shows that the packets have the right label, as shown in figure 2.9

Figure 2.9: Captuture from s1-eth2 and s3-eth2

Sending ARP traffic through MPLS

We can make a more general rule so both IPV4 and ARP packets are sent through MPLS. This should reduce the
number of flows that is written in every switch.

Marking the packets as IPV4

One possible way of approaching this problem could be by only removing the match of IPV4 from the rules in s1 and
s3 so they just care about the input port:

sudo ovs-ofctl -O OpenFlow13 add-flow s3
"table=0,in_port=1,actions=push_mpls:0x8847,
set_field:32->mpls_label,output:2"

But this is a bad implementation as the ARP message will never reach its destination.

When popping a label, the switch must rewrite the ethertype from MPLS unicast to whatever the packet is. If we have
only modified the previous rule, the rule for popping is:

sudo ovs-ofctl -O OpenFlow13 add-flow s1
"table=0,in_port=2,eth_type=0x8847,mpls_bos=1,
actions=pop_mpls:0x0800,output:1"

Which means that every packet with ethertype MPLS unicast will be forwarded as an IPV4 ethernet packet and not an
ARP packet. The packet reaches its destiny but it’s not recognized as an ARP request. This effect can be clearly seen

at figure 2.10, which is a capture from s3-eth1 when the ARP request comes from h1. We have no way to know
if the MPLS packet is an IPV4 or ARP packet so there’s no way that we can write the right ethertype when popping
without additional information.

Figure 2.10: Capture from s3-eth1

Checking the labels

Alternatively, instead of making a wildcard for every incomming packet, we will push a different label for ARP traffic
and for IP traffic, so the LER can know which kind of ethertype has to write to the packet when popping the label. For
this experiment we will not swap the labels of ARP packets. We use the label 111 for h1 ARP packets and label 333
for h3.

This will not reduce the number of flows in each switch, but it should send the ARP traffic trough the MPLS system.
The resulting rules are:

S1:

If it came in through port 1 & it’s an IPv4 packet:
push label 12 and send it through port 2
"table=0,in_port=1,eth_type=0x800,actions=push_mpls:0x8847,
set_field:12->mpls_label, output:2"
If it came in through port 1 & it’s an ARP packet:
push label 01 and send it through port 2
"table=0,in_port=1,eth_type=0x806,actions=push_mpls:0x8847,
set_field:111->mpls_label,output:2"
If it came in through port 2 & it’s an MPLS unicast & label 03:
pop label, set ethertype as ARP and send it through port 1
"table=0,in_port=2,eth_type=0x8847,mpls_bos=1,mpls_label=333,
actions=pop_mpls:0x0806, output:1"
If it came in through port 2 & it’s an MPLS unicast & label 21:
pop label, set ethertype as ARP and send it through port 1
"table=0,in_port=2,eth_type=0x8847,mpls_bos=1,mpls_label=21,
actions=pop_mpls:0x0800, output:1"

S2:

IPV4: Pop old label push new label
"table=0,in_port=2,eth_type=0x8847,mpls_label=12,actions=\

pop_mpls:0x800, push_mpls:0x8847,set_field:23->mpls_label,output:3"
"table=0,in_port=3,eth_type=0x8847,mpls_label=32,actions=\

pop_mpls:0x800, push_mpls:0x8847,set_field:21->mpls_label,output:2"
ARP: Do not swap labels
"table=0,in_port=2,eth_type=0x8847,mpls_label=111,actions=output:3"

"table=0,in_port=3,eth_type=0x8847,mpls_label=333,actions=output:2"

S3:

If it came in through port 1 & it’s an IPv4 packet:
push label 32 and send it through port 2
"table=0,in_port=1,eth_type=0x800,actions=push_mpls:0x8847,
set_field:32->mpls_label, output:2"
If it came in through port 1 & it’s an ARP packet:
push label 03 and send it through port 2
"table=0,in_port=1,eth_type=0x806,actions=push_mpls:0x8847,
set_field:333->mpls_label,output:2"
If it came in through port 2 & it’s an MPLS unicast & label 01:
pop label, set ethertype as ARP and send it through port 1
"table=0,in_port=2,eth_type=0x8847,mpls_bos=1,mpls_label=111,
actions=pop_mpls:0x0806,output:1"
If it came in through port 2 & it’s an MPLS unicast & label 23:
pop label, set ethertype as ARP and send it through port 1
"table=0,in_port=2,eth_type=0x8847,mpls_bos=1,mpls_label=23,
actions=pop_mpls:0x0800,output:1"

After aplying theese rules, there is reachability between h1 and h3. As shown in the figures below, the process is
completely transparent to the hosts:

Figure 2.11: Capture from s1-eth1

Figure 2.12: Capture from s3-eth1

If we capture the packets on the intermediate interfaces we can see that labels have been pushed correctly, although
wireshark sees the ARP labeled packets as malformed packets. For instance, figure 2.13 shows the capture from the
interface s2-eth2

Figure 2.13: Capture from s2-eth2

However, ARP traffic is not meant to go through an MPLS network, and should be handled by the LERs if necessary,
as the MPLS network connects different IP networks, and has no internal IP addresses. This goal of this modification
is to show that we can use different labels to differentiate the traffic.

Kernel mode

When using Open vSwitch in kernel mode, it is impossible to forward a packet after pushing an MPLS header on top
of it. If we try to execute this, the first switch seems to drop the packet.

Using the same rules as in section 2.5.4, the following rule seems to fail. Only ARP traffic is forwarded by the first
switch,as can be seen in figure 2.14.

sudo ovs-ofctl -O OpenFlow13 add-flow s1
"table=0,in_port=1,eth_type=0x800,actions=push_mpls:0x8847,
set_field:12->mpls_label, output:2"

Figure 2.14: Capture from s1-eth2 in kernel mode

We wonder if this is due to pushing an MPLS label and forwarding the packet in the same rules, so we try switching
the previous rule for the following two in swithes s1 and s3:

sudo ovs-ofctl -O OpenFlow13 add-flow s1
"table=0,in_port=1,eth_type=0x0800, actions=push_mpls:0x8847,
set_field:12->mpls_label,goto_table:1"

sudo ovs-ofctl -O OpenFlow13 add-flow s1
"table=1,in_port=1,eth_type=0x08847,mpls_label=12,actions=output:2"

This rules will push the label into IPV4 packets and forward them to the next table, where they’re forwarded to an
uputput port. After confirming that this rules work fine with userspace datapaths, we try to run the network in kernel
mode, but still obtain the same results as before. Although the mininet distribution (Which is the OS running in the
virtual machine where this experiments are performed) does not support kernel mode yet (kernel 3.13), the 3.19 Linux
Kernel has finally added MPLS support for Open vSwitch [10]. Also, the current version of OVS is not compatible
with this new kernel [5].

Trying to push/pop more than one label

The ovs-ofsctl manpage states that the actions of pushing and popping mpls labels have some limitations:

• push_mpls:ethertype Processing of actions will stop if push_mpls follows another push_mpls unless there is a
pop_mpls in between.

• pop_mpls:ethertype The implementation restricts ethertype to a non-MPLS Ethertype and thus pop_mpls should
only be applied to packets with an MPLS label stack depth of one. A further limitation is that processing of
actions will stop if pop_mpls follows another pop_mpls unless there is a push_mpls in between. ethertype can’t
be 0x8847 nor 0x8848.

When we try to pop a label which is not at bottom of stack ans set the ethertype to 0x8847 when popping:

sudo ovs-ofctl -O OpenFlow13 add-flow s1
"table=0,in_port=2,eth_type=0x8847,mpls_bos=0,
mpls_label=21,actions=pop_mpls:0x8847, goto_table:1"

we receive the following error

OFPT_ERROR (OF1.3) (xid=0x2): OFPBAC_BAD_ARGUMENT
OFPT_FLOW_MOD (OF1.3) (xid=0x2):
(***truncated to 64 bytes from 104***)
00000000 04 0e 00 68 00 00 00 02-00 00 00 00 00 00 00 00 |...h............|
00000010 00 00 00 00 00 00 00 00-00 00 00 00 00 00 80 00 |................|
00000020 ff ff ff ff ff ff ff ff-ff ff ff ff 00 00 00 00 |................|
00000030 00 01 00 1f 80 00 00 04-00 00 00 02 80 00 0a 02 |................|

However, ovs-ofctl lets me push more than one label to the same packet, as shown in the figure 2.15, although the last
switch cannot pop them properly later:

In switch s1:
sudo ovs-ofctl -O OpenFlow13 add-flow s1

"table=0,in_port=1,eth_type=0x800,actions=push_mpls:0x8847,
set_field:12->mpls_label,output:2"

In switch s2:
sudo ovs-ofctl -O OpenFlow13 add-flow s2

"table=0,in_port=2,eth_type=0x8847,mpls_label=12,actions=\
push_mpls:0x8847,set_field:23->mpls_label,output:3"

A new label has been pushed in each switch.

Figure 2.15: Capture from s2-eth3

OVS will add suport for pushing/poppping more than one label in version 2.4 [1].

2.6 Final code

Here we provide the final code after the simplifications and modifications. With this configuration, we send all the
traffic using MPLS labels, and have reduced the number of tables.

#!/bin/bash

Configure switch to use OpenFlow 1.3
echo "Setting Switches to work with OpenFlow 1.3"

for i in s1 s2 s3; do
sudo ovs-vsctl set bridge $i protocols=OpenFlow13
done

Clear flow tables
echo "Clearing Flow tables.."

for i in s1 s2 s3; do
sudo ovs-ofctl -O OpenFlow13 del-flows $i
done

Note: Port 1 is connected to a host in each switch
Rules at S1
echo "Setting up rules at s1"

If it came in through port 1 & it’s an IPv4 packet:
push label 12 and send it through port 2
sudo ovs-ofctl -O OpenFlow13 add-flow s1

"table=0,in_port=1,eth_type=0x800,actions=push_mpls:0x8847,
set_field:12->mpls_label,output:2"

If it came in through port 1 & it’s an ARP packet:
push label 01 and send it through port 2
sudo ovs-ofctl -O OpenFlow13 add-flow s1

"table=0,in_port=1,eth_type=0x806,actions=push_mpls:0x8847,
set_field:111->mpls_label,

output:2"
If it came in through port 2 & it’s an MPLS unicast & label 333:
pop label, set ethertype as ARP and send it through port 1
sudo ovs-ofctl -O OpenFlow13 add-flow s1

"table=0,in_port=2,eth_type=0x8847,mpls_bos=1,mpls_label=333,
actions=pop_mpls:0x0806,output:1"

If it came in through port 2 & it’s an MPLS unicast & label 21:
pop label, set ethertype as ARP and send it through port 1
sudo ovs-ofctl -O OpenFlow13 add-flow s1

"table=0,in_port=2,eth_type=0x8847,mpls_bos=1,mpls_label=21,

actions=pop_mpls:0x0800,output:1"

Rules at s2
echo "Setting up rules at s2"

IPV4: Pop old label push new label
sudo ovs-ofctl -O OpenFlow13 add-flow s2
"table=0,in_port=2,eth_type=0x8847,mpls_label=12,actions=\

pop_mpls:0x800, push_mpls:0x8847,set_field:23->mpls_label,output:3"
sudo ovs-ofctl -O OpenFlow13 add-flow s2
"table=0,in_port=3,eth_type=0x8847,mpls_label=32,actions=\

pop_mpls:0x800, push_mpls:0x8847,set_field:21->mpls_label,output:2"
ARP: Do not swap labels
sudo ovs-ofctl -O OpenFlow13 add-flow s2
"table=0,in_port=2,eth_type=0x8847,mpls_label=111,actions=output:3"
sudo ovs-ofctl -O OpenFlow13 add-flow s2
"table=0,in_port=3,eth_type=0x8847,mpls_label=333,actions=output:2"

Rules at s3
echo "Setting up rules at s3"

If it came in through port 1 & it’s an IPv4 packet:
push label 32 and send it through port 2
sudo ovs-ofctl -O OpenFlow13 add-flow s3

"table=0,in_port=1,eth_type=0x800,actions=push_mpls:0x8847,
set_field:32->mpls_label,output:2"

If it came in through port 1 & it’s an ARP packet:
push label 03 and send it through port 2
sudo ovs-ofctl -O OpenFlow13 add-flow s3
"table=0,in_port=1,eth_type=0x806,actions=push_mpls:0x8847,

set_field:333->mpls_label,output:2"
If it came in through port 2 & it’s an MPLS unicast & label 111:
pop label, set ethertype as ARP and send it through port 1
sudo ovs-ofctl -O OpenFlow13 add-flow s3

"table=0,in_port=2,eth_type=0x8847,mpls_bos=1,mpls_label=111,
actions=pop_mpls:0x0806,output:1"

If it came in through port 2 & it’s an MPLS unicast & label 23:
pop label, set ethertype as ARP and send it through port 1
sudo ovs-ofctl -O OpenFlow13 add-flow s3
"table=0,in_port=2,eth_type=0x8847,mpls_bos=1,mpls_label=23,

actions=pop_mpls:0x0800,output:1"

Chapter 3

Ryu

3.1 Introduction

Ryu is a component-based framework for Software-Defined Networking applications. It provides software compo-
nents with well defined API that make it easy to create network management and control applications. Ryu supports
various protocols for managing network devices, such as OpenFlow, Netconf, OF-config, etc.

Ryu supports OpenFlow 1.0, 1.2, 1.3, 1.4. It’s fully developed in Python and all of the code is freely available under
the Apache 2.0 license. It is the tool chosen to develop the Control Plane in the experiments exposed in this document.
All of the scenarios analyzed rely on OpenFlow 1.3, Open vSwitch, Ryu and Mininet.

The resources used to document Ryu are [4] and [11]

3.2 Ryu application programming model

A Ryu application is a python module which defines a subclass of a class called RyuApp, contained in the
ryu.base.app_manager module. Only a single instance of a given Ryu application is supported by the manager.
However, Ryu can run several applications at the same time.

3.2.1 Events and Event Classes

Ryu uses an event-driven programming paradigm in which the flow of the program is determined by events. Ryu
applications listen to events, events are implemented by different classes that by convention, use the prefix "Event"
in their name. Events can be generated either by the Ryu core or also by Ryu applications. Applications generate
their own events through methods provided by the class RyuApp. For example, the method send_event can be used to
generate an event.

On the other hand, a Ryu application can register its interest for a specific type of event by providing a handler method.
In Ryu, this is programmed using a python structure called “decorator”. The decorator defined in Ryu to listen to events
is called set_ev_cls and it is contained in the ryu.controller.handler module (an example of how to handle events is
shown in Section 3.6.2).

59

For Openflow, a module called ryu.controller.ofp_event exports event classes which describe receptions of OpenFlow
messages from connected datapaths (switches).

By convention, openflow messages are named as ryu.controller.ofp_event.EventOFPxxxx where xxxx is the name of the
corresponding OpenFlow message. For example, EventOFPPacketIn is the Event Class that corresponds to packet-in
messages. The OpenFlow controller (which is part of Ryu) automatically decodes OpenFlow messages received from
switches and sends these events to Ryu applications which expressed an interest using the set_ev_cls decorator.

OpenFlow event classes have at least the following attributes:

• msg: An object which describes the corresponding OpenFlow message.

• msg.datapath: A ryu.controller.controller.Datapath instance which describes an OpenFlow switch from which
we received this OpenFlow message.

The msg object has some more additional values which are extracted from the original OpenFlow message (in Section
3.3 we provide further information about this).

3.2.2 Event handlers

As we said previously, the decorator ryu.controller.handler.set_ev_cls(ev_cls, dispatchers=None) is used to declare an
event handler, meaning that the decorated method will become an event handler. Where:

• The parameter ev_cls is an event class whose instances this RyuApp wants to receive.
• The parameter dispatchers specifies one of the negotiation phases between the switch and the controller (or a

list of them) for which events should be generated for this handler. The negotiation phases are:

– ryu.controller.handler.HANDSHAKE_DISPATCHER: Sending and waiting for hello message.

– ryu.controller.handler.CONFIG_DISPATCHER: Version negotiated and sent features-request message.

– ryu.controller.handler.MAIN_DISPATCHER: Switch-features message received and sent set-config mes-
sage.

– ryu.controller.handler.DEAD_DISPATCHER: Disconnect from the peer. Or disconnecting due to some
unrecoverable errors.

3.2.3 The Datapath class

The class Datapath describes an OpenFlow Switch connected to the controller. An instance has the following at-
tributes/methods:

• id: 64-bit OpenFlow Datapath ID. This attribute is only available for ryu.controller.handler.MAIN_DISPATCHER
phase.

• ofproto: A module which exports OpenFlow definitions, mainly constants appeared in the specification, for the
negotiated OpenFlow version.

• ofproto_parser: A module which exports OpenFlow wire message encoder and decoder for the negotiated
OpenFlow version.

• ofproto_parser.OFPxxxx(datapath,): A callable to prepare an OpenFlow message for the given switch
where xxxx is a name of the message. For example OFPFlowMod for flow-mod message. Arguments depend
on the message. The message is sent when Datapath.send_msg() is called.

• set_xid(self, msg): Generate an OpenFlow XID and put it in msg.xid.

• send_msg(self, msg): Queue an OpenFlow message to send to the corresponding switch. If msg.xid is None,
set_xid is automatically called on the message before queueing.

• send_barrier(): Queue an OpenFlow barrier message to send to the switch.

3.3 OpenFlow protocol implementation

In accordance to what is exposed in chapter 1, this section aims to explain the implementation of OpenFlow 1.3 in
Ryu. Ryu has two modules to handle and generate OpenFlow 1.3 messages:

• ofproto_v1_3: Contains OpenFlow definitions, mainly constants appeared in the specification of OpenFlow
1.3.

• ofproto_v1_3_parser: This module is the implementation of OpenFlow1.3 and contains wire message encoder
and decoder for this version.

3.3.1 Controller-to-Switch Messages

The ofproto_v1_3_parser module contains the classes to implement the Controller-to-Switch Messages. Such classes
have been organized in Table 3.1 with a brief description. Some of the classes listed below are Event Classes which Ryu
can be told to listen to. The remaining ones are events that Ryu can generate. Further information about Controller-
to-Switch Messages can be found in section 1.6.1.

Table 3.1: Controller-to-Switch Messages

Class Type Description
OFPFeaturesRequest Handshake Features request message. The controller sends a

feature request to the switch upon session estab-
lishment.

OFPSwitchFeatures Handshake Features reply message. The switch responds with
a features reply message to a features request.

OFPSetConfig Switch configuration The controller sends a set config request message
to set configuraion parameters.

OFPGetConfigRequest Switch configuration Get config request message. The controller sends
a get config request to query configuration param-
eters in the switch.

OFPGetConfigReply Switch configuration Get config reply message. The switch responds
to a configuration request with a get config reply
message.

OFPTableMod Flow Table Configuration Flow table configuration message. The controller
sends this message to configure table state.

OFPFlowMod Modify State Modify Flow entry message. The controller sends
this message to modify the flow table

OFPGroupMod Modify State Modify group entry message. The controller
sends this message to modify the group table

OFPPortMod Modify State Port modification message. The controller sneds
this message to modify the behavior of the port.

OFPMeterMod Modify State Meter modification message. The controller sends
this message to modify the meter.

OFPDescStatsRequest Multipart Description statistics request message. The con-
troller uses this message to query description of
the switch.

OFPDescStatsReply Multipart Description statistics reply message. The switch
responds with this message to a description statis-
tics request.

OFPFlowStatsRequest Multipart Individual flow statistics request message. The
controller uses this message to query individual
flow statistics.

OFPFlowStatsReply Multipart Individual flow statistics reply message. The
switch responds with this message to an individual
flow statistics request.

OFPAggregateStatsRequest Multipart Aggregate flow statistics request message. The
controller uses this message to query aggregate
flow statictic.

OFPAggregateStatsReply Multipart Aggregate flow statistics reply message. The
switch responds with this message to an aggregate
flow statistics request.

OFPTableStatsRequest Multipart Table statistics request message. The controller
uses this message to query flow table statictics.

OFPTableStatsReply Multipart Table statistics reply message. The switch re-
sponds with this message to a table statistics re-
quest.

OFPPortStatsRequest Multipart Port statistics request message. The controller
uses this message to query information about ports
statistics.

OFPPortStatsReply Multipart Port statistics reply message.T he switch responds
with this message to a port statistics request.

OFPPortDescStatsRequest Multipart Port description request message. The controller
uses this message to query description of all the
ports.

OFPPortDescStatsReply Multipart Port description reply message. The switch re-
sponds with this message to a port description re-
quest.

OFPQueueStatsRequest Multipart Queue statistics request message. The controller
uses this message to query queue statictics.

OFPQueueStatsReply Multipart Queue statistics reply message. The switch re-
sponds with this message to an aggregate flow
statistics request.

OFPGroupStatsRequest Multipart Group statistics request message. The controller
uses this message to query statistics of one or
more groups.

OFPGroupStatsReply Multipart Group statistics reply message. The switch re-
sponds with this message to a group statistics re-
quest.

OFPGroupDescStatsRequest Multipart Group description request message. The con-
troller uses this message to list the set of groups
on a switch.

OFPGroupDescStatsReply Multipart Group description reply message. The switch re-
sponds with this message to a group description
request.

OFPGroupFeaturesStatsRequest Multipart Group features request message. The controller
uses this message to list the capabilities of groups
on a switch.

OFPGroupFeaturesStatsReply Multipart Group features reply message. The switch re-
sponds with this message to a group features re-
quest.

OFPMeterStatsRequest Multipart Meter statistics request message. The controller
uses this message to query statistics for one or
more meters.

OFPMeterStatsReply Multipart Meter statistics reply message. The switch re-
sponds with this message to a meter statistics re-
quest.

OFPMeterConfigStatsRequest Multipart Meter configuration statistics request message.
The controller uses this message to query config-
uration for one or more meters.

OFPMeterConfigStatsReply Multipart Meter configuration statistics reply message. The
switch responds with this message to a meter con-
figuration statistics request.

OFPMeterFeaturesStatsRequest Multipart Meter features statistics request message. The
controller uses this message to query the set of
features of the metering subsystem.

OFPMeterFeaturesStatsReply Multipart Meter features statistics reply message. The
switch responds with this message to a meter fea-
tures statistics request.

OFPTableFeaturesStatsRequest Multipart Table features statistics request message. The con-
troller uses this message to query table features.

OFPTableFeaturesStatsReply Multipart Table features statistics reply message. The switch
responds with this message to a table features
statistics request.

OFPQueueGetConfigRequest Queue Configuration Queue configuration request message.
OFPQueueGetConfigRepl Queue Configuration Queue configuration reply message. The switch

responds with this message to a queue configura-
tion request.

OFPPacketOut Packet-Out Packet-Out message. The controller uses this mes-
sage to send a packet out throught the switch.

OFPBarrierRequest Barrier Barrier request message. The controller sends this
message to ensure message dependencies have
been met or receive notifications for completed
operations.

OFPBarrierReply Barrier Barrier reply message. The switch responds with
this message to a barrier request.

OFPRoleRequest Role Request Role request message. The controller uses this
message to change its role.

OFPRoleReply Role Request Role reply message. The switch responds with
this message to a role request.

OFPSetAsync Asynchronous Configuration Set asynchronous configuration message. The
controller sends this message to set the asyn-
chronous messages that it wants to receive on a
given OpneFlow channel.

OFPGetAsyncRequest Asynchronous Configuration Get asynchronous configuration request message.
The controller uses this message to query the
asynchronous message.

OFPGetAsyncReply Asynchronous Configuration Get asynchronous configuration reply message.
The switch responds with this message to a get
asynchronous configuration request.

3.3.2 Asynchronous Messages

The ofproto_v1_3_parser module also contains the classes to implement Asynchronous Messages. Such classes have
been organized in Table 3.2 with a brief description. All the classes listed below correspond to messages that the
switch can generate without the controller soliciting them. Further information about Asynchronous Messages can be
found in section 1.6.2.

Table 3.2: Asynchronous Messages

Class Description
OFPPacketIn Packet-In message. The switch sends the packet that it has received to the controller,

using this message.
OFPFlowRemoved Flow removed message. When flow entries time out or are deleted, the switch notifies

controller with this message.
OFPPortStatus Port status message. The switch notifies the controller of a change in the ports.
OFPErrorMsg Error message. The switch notifies the controller of a problem using this message.

3.3.3 Symmetric Messages

The ofproto_v1_3_parser module also contains the classes to implement Symmetric Messages. Such classes have
been organized in Table 3.3 with a brief description. All the classes listed below correspond to messages that can
be sent in either direction without solicitation. Further information about Asynchronous Messages can be found in
section 1.6.2.

Table 3.3: Symmetric Messages

Class Description
OFPHello Hello message. When connection is started, the hello message is exchanged between a

switch and a controller.
OFPHelloElemVersionBitmap Version bitmap Hello Element
OFPEchoRequest Echo request message.
OFPEchoReply Echo Reply.
OFPExperimenter Experimenter extension message.

3.3.4 Flow Match Structure

Ryu uses a class contained in the ofproto_v1_3_parser module to generate match structures that then can be added to a
FlowMod message(OFPFlowMod), for example. This class is called OFPMatch and can take the arguments listed in
Table 3.4. Further information about OpenFlow Match Fields and the matching process can be found in section 1.4.3.

Table 3.4: OFPMatch arguments

Value Description
in_port Integer 32bit Switch input port
in_phy_port Integer 32bit Switch physical input port
metadata Integer 64bit Metadata passed between tables
eth_dst MAC address Ethernet destination address
eth_src MAC address Ethernet source address
eth_type Integer 16bit Ethernet frame type
vlan_vid Integer 16bit VLAN id
vlan_pcp Integer 8bit VLAN priority
ip_dscp Integer 8bit IP DSCP (6 bits in ToS field)
ip_ecn Integer 8bit IP ECN (2 bits in ToS field)
ip_proto Integer 8bit IP protocol
ipv4_src IPv4 address IPv4 source address
ipv4_dst IPv4 address IPv4 destination address
tcp_src Integer 16bit TCP source port
tcp_dst Integer 16bit TCP destination port
udp_src Integer 16bit UDP source port
udp_dst Integer 16bit UDP destination port
sctp_src Integer 16bit SCTP source port
sctp_dst Integer 16bit SCTP destination port
icmpv4_type Integer 8bit ICMP type
icmpv4_code Integer 8bit ICMP code
arp_op Integer 16bit ARP opcode
arp_spa IPv4 address ARP source IPv4 address
arp_tpa IPv4 address ARP target IPv4 address
arp_sha MAC address ARP source hardware address
arp_tha MAC address ARP target hardware address
ipv6_src IPv6 address IPv6 source address
ipv6_dst IPv6 address IPv6 destination address
ipv6_flabel Integer 32bit IPv6 Flow Label
icmpv6_type Integer 8bit ICMPv6 type
icmpv6_code Integer 8bit ICMPv6 code
ipv6_nd_target IPv6 address Target address for ND
ipv6_nd_sll MAC address Source link-layer for ND
ipv6_nd_tll MAC address Target link-layer for ND
mpls_label Integer 32bit MPLS label
mpls_tc Integer 8bit MPLS TC
mpls_bos Integer 8bit MPLS BoS bit
pbb_isid Integer 24bit PBB I-SID
tunnel_id Integer 64bit Logical Port Metadata
ipv6_exthdr Integer 16bit IPv6 Extension Header pseudo-field

3.3.5 Flow Instruction Structures

Ryu also uses specific classes to build OpenFlow Instructions. The classes listed in the table 3.5 are used for this
purpose. Further information about OpenFlow Instructions can be found in section 1.4.4.

Table 3.5: Instruction Classes

Class Description
OFPInstructionGotoTable Goto table instruction. This instruction indicates the next table in the

processing pipeline.
OFPInstructionWriteMetadata Write metadata instruction. This instruction writes the masked metadata

value into the metadata field.
OFPInstructionActions Actions instruction. This instruction writes/applies/clears the actions.
OFPInstructionMeter Meter instruction. This instruction applies the meter.

3.3.6 Action Structures

Ryu also provides classes to define the actions that can be written into a flow. This classes are listed in the table 3.6.
Further information about OpenFlow Actions can be found in section 1.4.5.

Table 3.6: Action Classes

OFPActionOutput Output action. This action indicates output a packet to the switch port.
OFPActionGroup Group action. This action indicates the group used to process the packet.
OFPActionSetQueue Set queue action. This action sets the queue id that will be used to map

a flow to an already-configured queue on a port.
OFPActionSetMplsTtl Set MPLS TTL action. This action sets the MPLS TTL.
OFPActionDecMplsTtl Decrement MPLS TTL action. This action decrements the MPLS TTL.
OFPActionSetNwTtl Set IP TTL action. This action sets the IP TTL.
OFPActionDecNwTtl Decrement IP TTL action. This action decrements the IP TTL.
OFPActionCopyTtlOut Copy TTL Out action. This action copies the TTL from the next-to-

outermost header with TTL to the outermost header with TTL.
OFPActionCopyTtlIn Copy TTL In action. This action copies the TTL from the outermost

header with TTL to the next-to-outermost header with TTL.
OFPActionPushVlan Push VLAN action. This action pushes a new VLAN tag to the packet.
OFPActionPushMpls Push MPLS action. This action pushes a new MPLS header to the

packet.
OFPActionPopVlan Pop VLAN action. This action pops the outermost VLAN tag from the

packet.
OFPActionPopMpls Pop MPLS action. This action pops the MPLS header from the packet.
OFPActionSetField Set field action. This action modifies a header field in the packet. The

set of keywords available for this is same as OFPMatch.
OFPActionExperimenter Experimenter action. This action is an extensible action for the experi-

menter.

3.4 REST API

3.4.1 Introduction to REST

REST (REpresentational State Transfer) is an architectural style, and an approach to communications that is often
used in the development of Web services. REST, which typically runs over HTTP, is often used in mobile applications,
social networking Web sites, mashup tools, and automated business processes.

The REST style emphasizes that interactions between clients and services is enhanced by having a limited number of
operations (verbs). Flexibility is provided by assigning resources (nouns) their own unique Universal Resource Iden-
tifiers (URIs). Because each verb has a specific meaning (GET, POST, PUT and DELETE), REST avoids ambiguity.

Web service APIs that adhere to the REST architectural constraints are called RESTful APIs. HTTP based RESTful
APIs (or REST APIs) are defined with these aspects:

• Base URI, such as http://example.com/resources/

• An Internet media type for the data. This is often JSON but can be any other valid Internet media type (e.g.
XML, Atom, microformats, images, etc.).

• Standard HTTP methods. Methods like GET, PUT, POST, or DELETE.

• Hypertext links to reference state.

• hypertext links to reference related resources.

In the case of Ryu, a REST API implements the interface between the Application Plane and the Control Plane. This
interface is known in SDN as Northbound Interface (NBI). See section 1.1.2 for more information about the SDN
architecture.

3.4.2 Builidng REST APIs with Ryu

Ryu’s ControllerBase class is the base class used to generate user defined APIs. It will handle the incoming HTTP
connections through a Web Server Gateway Interface (WSGI). WSGI is a specification for simple and universal
interfaces between web servers and web applications or frameworks for Python.

A class that extends from ControllerBase will be able to handle HTTP Requests that arrive to the WSGI. The requests
will be filtered by their URL and their methods and Ryu will decide which method is called. To indicate which URL
and methods will be matched the class’ methods must be decorated with the route decorator.

The decorator route accepts two positional arguments and two key-word arguments:

• Request name: It’s only an identifier string to name the resource. It doesn’t have any further implications.

• URL: It contains a string defining the URL to match. It doesn’t contain the domain nor the first part of the URI
(protocol://ip_address:port). To define variable URL parts you can use brackets ’{’ and ’}’. Inside this brackets
you have to specify a representative name, it doesn’t matter which one do you use, you’ll use it only to identify
the substring contained. You’ll be able to access the substring wrapped in braces inside the method by calling
’kwargs[’name’]’.

• methods=[]: It contains an array with all the method(s) that this method will listen to.

• requirements={}: It contains a dictionary whose keys are the names are the names defined in the URL (inside the
brackets) and the values are patterns. It forces the substring identified by the key to match the pattern contained
in the value.

The methods decorated with route should take two arguments: a request argument, and a key-word argument. They
have to return a Response object from the ’webob’ package.

3.4.3 Linking REST Controllers with Ryu applications

The rest linkage of a certain Ryu application with a web interface is made outside the RyuApp class. As explained
before, a controller class must be created to handle requests and responses.

To link a controller with an application a WSGI object is used. This object is created by Ryu and stored in the key-
words argument. It is accessible through the key ’wsgi’. This object allows registering controllers for the Application’s
API.

The registered controller will recieve the incoming requests and will have a refrence to the instance of the RyuApp
class. The controller will be able to call the application methods through this reference.

REST API’s are not documented in detail in this document, as it’s out of the scope of this project. However, they are
used in some of the applications discussed in chapter 4

3.5 Components

All the components of Ryu are listed in Table 3.7 with a brief description.

Table 3.7: Components of Ryu

Component Description
ryu.base.app_manager The central management of Ryu applications. Loads Ryu applications.

Provides contexts to Ryu applications. Routes messages among Ryu
applications.

ryu.controller.controller The main component of OpenFlow controller. Handles connections
from switches. Generates and routes events to appropriate entities like
Ryu applications.

ryu.controller.dpset Manages switches. Planned to be replaced by ryu/topology.
ryu.controller.ofp_event OpenFlow event definitions.
ryu.controller.ofp_handler Basic OpenFlow handling including negotiation.
ryu.ofproto.ofproto_v1_0 OpenFlow 1.0 definitions.
ryu.ofproto.ofproto_v1_0_parser Decoder/Encoder implementations of OpenFlow 1.0.
ryu.ofproto.ofproto_v1_2 OpenFlow 1.2 definitions.
ryu.ofproto.ofproto_v1_2_parser Decoder/Encoder implementations of OpenFlow 1.2.
ryu.ofproto.ofproto_v1_3 OpenFlow 1.3 definitions.
ryu.ofproto.ofproto_v1_3_parser This module implements OpenFlow 1.3.x.This module also implements

some of extensions
ryu.ofproto.ofproto_v1_4 OpenFlow 1.4 definitions.
ryu.ofproto.ofproto_v1_4_parser Decoder/Encoder implementations of OpenFlow 1.4.

ryu.topology Switch and link discovery module. Planned to replace ryu/con-
troller/dpset.

ryu.lib.packet Ryu packet library. Decoder/Encoder implementations of popular pro-
tocols like TCP/IP.

ryu.lib.ovs ovsdb interaction library.
ryu.lib.of_config OF-Config implementation.
ryu.lib.netconf NETCONF definitions used by ryu/lib/of_config.
ryu.lib.xflow An implementation of sFlow and NetFlow.
ryu.contrib.ovs Open vSwitch python binding. Used by ryu.lib.ovs.
ryu.contrib.oslo.config Oslo configuration library. Used for ryu-manager’s command-line op-

tions and configuration files.
ryu.contrib.ncclient Python library for NETCONF client. Used by ryu.lib.of_config.

Besides this components, Ryu als provides some useful applications contained in ryu.app

3.6 Analysis of a Switch implemented with Ryu

The purpose of this section is to analyze, explain and test a simple learning switch implemented on Ryu, using Open-
Flow 1.3. In addition, we will cover some of the important aspects of Ryu applications, so the code can be better
understood.

A switching hub (also called switch) has the following functionalities:

• Learns the MAC address of the host connected to a port and retains it in the MAC address table.
• When receiving packets addressed to a host already learned, transfers them to the port connected to the host.
• When receiving packets addressed to an unknown host, performs flooding.

It is possible to achieve a learning switch using OpenFlow, an OpenFlow controller and an OpenFlow switch (We use
Open vSwitch).

First of all, the Packet-In function is used to learn MAC addresses. The controller can use the Packet-In function
to receive packets from the switch. Then, it analyzes the received packets to learn the MAC address of the host and
information about the connected port.

After learning, the controller transfers the received packets. The controller investigates whether the destination MAC
address of the packets belong to a learned host. Depending on the investigation results, the controller performs the
following processing:

• If the host is already a learned host: Uses the Packet-Out function to transfer the packets to the corresponding
port.

• If the host is unknown host: Use the Packet-Out function to perform flooding.

This section comments different blocks of code used in this implementation. The entire source code can be found in
Section 3.6.6.

3.6.1 Class Definition and Initialization

In order to implement the switch intelligence as a Ryu application, ryu.base.app_manager.RyuApp has to be inherited,
as explained in section 3.2. Also, to use OpenFlow 1.3, the OpenFlow 1.3 version is specified for OFP_VERSIONS.
Also, a table called mac_to_port is defined, in order to relate MAC addresses and OpenFlow ports (corresponding to
switch interfaces as explained in section 1.3.1).

In the OpenFlow protocol, some procedures such as handshake required for communication between the OpenFlow
switch and the controller have been defined. However, Ryu’s framework takes care of those procedures thus it is not
necessary to be aware of those in Ryu applications.

class SimpleSwitch13(app_manager.RyuApp):
OFP_VERSIONS = [ofproto_v1_3.OFP_VERSION]

def __init__(self, *args, **kwargs):
super(SimpleSwitch13, self).__init__(*args, **kwargs)
self.mac_to_port = {}

3.6.2 Event Handler

As explained in section 3.2.2, when an OpenFlow message is received, an event corresponding to the message is gener-
ated. The Ryu application implements an event handler corresponding to the message desired to be received. The event
handler defines a function having the event object for the argument and use the ryu.controller.handler.set_ev_cls dec-
orator to decorate the handler to listen to a certain event. The set_ev_cls decorator specifies the event class supporting
the received message and the state of the OpenFlow switch for the argument.

The event class name is ryu.controller.ofp_event.EventOFP+Message_name. For example, in case of a Packet-In
message, it becomes EventOFPPacketIn. The complete list of OpenFlow messages can be found in section 3.3. The
second argument is the so called dispatcher. Dispatchers argument specifies one of the following negotiation phases
(or a list of them) for which events should be generated for this handler. The list of dispatchers can be found in section
3.2.2. In the following piece of code, we add a decorator to the switch_features_handler function to manage the
table-miss flow entry:

@set_ev_cls(ofp_event.EventOFPSwitchFeatures, CONFIG_DISPATCHER)
def switch_features_handler(self, ev):

datapath = ev.msg.datapath
ofproto = datapath.ofproto
parser = datapath.ofproto_parser
NO BUFFER specified to max_len due to an OVS bug
The bug has been fixed in OVS v2.1.0.
match = parser.OFPMatch()
actions = [parser.OFPActionOutput(ofproto.OFPP_CONTROLLER,

ofproto.OFPCML_NO_BUFFER)]
self.add_flow(datapath, 0, match, actions)

Adding Table-miss Flow Entry

After the handshake with the OpenFlow switch is completed, the Table-miss flow entry (See section 1.4.6) is added
to the flow table to get ready to receive the Packet-In message. Specifically, upon receiving the Switch Features Reply

message, the Table-miss flow entry is added to the switch using the add_flow() method, which is explained in section
3.6.3.

The instance of the OpenFlow message class corresponding to the event (in this case, OFPSwitchFeatures) is stored
in ev.msg. The instance of the ryu.controller.controller.Datapath class corresponding to the OpenFlow switch that
issued this message is stored in msg.datapath.

The Datapath class is used to perform important processing such as actual communication. As we have already
commented, the datapath attribute ofproto indicates the ofproto module of the OpenFlow version being used (this
module exports OpenFlow definitions, mainly OpenFlow constants). On the other hand, the attribute ofproto_parser
indicates the ofproto_parser module of the OpenFlow version being used (this module exports the message encoder
and decoder).

It is worth to mention that this switch does not particularly use the received Switch Features message itself. In fact,
this message is used as an event to obtain a correct timing to add the Table-miss flow entry. Note also that an empty
match is generated to match all packets. The Match is expressed using the OFPMatch class.

Next, an instance of the class OFPActionOutput is generated to configure the Table-miss flow. Instances are cre-
ated using the following parameters: OFPActionOutput(port, max_len). In this case, the port is the controller port
(OFPP_CONTROLLER). The max_len parameter indicates the maximum amount of data from a packet that should
be sent to the controller. In this case, the max_len is set to OFPCML_NO_BUFFER, which means that the entire
packet should be sent to the controller. This is done because in versions of OVS prior to v2.1.0 there is a bug that may
cause that if we specify a lesser number, e.g., 128, OVS will send a packet with an invalid buffer_id and truncated
packet data.

Packet-in Message: Updating the MAC Address Table

The Packet-In event handler processes the packets that match (only) the Table-miss entry at the switch.

@set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)
def _packet_in_handler(self, ev):

If you hit this you might want to increase
the "miss_send_length" of your switch
if ev.msg.msg_len < ev.msg.total_len:

self.logger.debug("packet truncated: only %s of %s bytes",
ev.msg.msg_len, ev.msg.total_len)

msg = ev.msg
datapath = msg.datapath
ofproto = datapath.ofproto
parser = datapath.ofproto_parser
in_port = msg.match[’in_port’]

pkt = packet.Packet(msg.data)
eth = pkt.get_protocols(ethernet.ethernet)[0]

dst = eth.dst
src = eth.src

dpid = datapath.id
self.mac_to_port.setdefault(dpid, {})

self.logger.info("packet in %s %s %s %s", dpid, src, dst, in_port)

learn a mac address to avoid FLOOD next time.
self.mac_to_port[dpid][src] = in_port
...

This code gets the input port (in_port) from the OFPPacketIn match. The destination MAC address and sender
MAC address are obtained from the Ethernet header of the received packets using Ryu’s packet library.

Based on the acquired sender MAC address and received port number, the MAC address table is updated. To support
connection with multiple OpenFlow switches, the MAC address table is designed to be managed for each OpenFlow
switch. The datapath ID is used to identify each OpenFlow switch and its corresponding MAC address table.

Packet-in Message: Judging the Transfer Destination Port

The corresponding port number is used when the destination MAC address exists in the corresponding MAC address
table. If not found, the instance of the OFPActionOutput class specifies flooding (OFPP_FLOOD) as output port.

def _packet_in_handler(self, ev):
...
if dst in self.mac_to_port[dpid]:

out_port = self.mac_to_port[dpid][dst]
else:

out_port = ofproto.OFPP_FLOOD

actions = [parser.OFPActionOutput(out_port)]

install a flow to avoid packet_in next time
if out_port != ofproto.OFPP_FLOOD:

match = parser.OFPMatch(in_port=in_port, eth_dst=dst)
verify if we have a valid buffer_id, if yes avoid to send both
flow_mod & packet_out
if msg.buffer_id != ofproto.OFP_NO_BUFFER:

self.add_flow(datapath, 1, match, actions, msg.buffer_id)
return

else:
self.add_flow(datapath, 1, match, actions)

...

If the destination MAC address is found, an entry is added to the flow table of the OpenFlow switch. As with addition
of the Table-miss flow entry, a match and an action are specified and add_flow() is executed to add a flow entry.

Unlike the Table-miss flow entry, conditions for match are set. In order to implement the switching hub, the receive
port (in_port) and destination MAC address (eth_dst) have been specified.

The priority is specified to 1. The greater the value, the higher the priority, therefore, the flow entry added here will be
evaluated before the Table-miss flow entry.

Packet-in Message: Packet Transfer

Regardless whether the destination MAC address is found on the MAC address table or not, at the end the Packet-Out
message is issued and received packets are transferred.

def _packet_in_handler(self, ev):
...
data = None
if msg.buffer_id == ofproto.OFP_NO_BUFFER:

data = msg.data

out = parser.OFPPacketOut(datapath=datapath, buffer_id=msg.buffer_id,
in_port=in_port, actions=actions, data=data)

datapath.send_msg(out)

The class corresponding to the Packet-Out message is OFPPacketOut class, as explained in section 3.3.6. The argu-
ments of the constructor of OFPPacketOut are as follows:

• datapath: Specifies the instance of the Datapath class corresponding to the OpenFlow switch.

• buffer_id: Specifies the buffer ID of the packets buffered on the OpenFlow. If not buffered, OFP_NO_BUFFER
is specified.

• in_port: Specifies the port that received packets.

• actions: Specifies the list of actions.

• data: Specifies the binary data of packets. This is used when OFP_NO_BUFFER is specified for buffer_id.
When the OpenFlow switch’s buffer is used, this is omitted.

3.6.3 Adding Processing of Flow Entry

For flow entries, the function sets a match that indicates the target packet conditions, and an instruction that indicates
the operation on the packet, entry priority level, and effective time.

In the switching hub implementation, Apply Actions (see section 1.4.4) is used for the instruction to set so that the
specified action is immediately used.

def add_flow(self, datapath, priority, match, actions, buffer_id=None):
ofproto = datapath.ofproto
parser = datapath.ofproto_parser

inst = [parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS,
actions)]

if buffer_id:
mod = parser.OFPFlowMod(datapath=datapath, buffer_id=buffer_id,

priority=priority, match=match,
instructions=inst)

else:
mod = parser.OFPFlowMod(datapath=datapath, priority=priority,

match=match, instructions=inst)

datapath.send_msg(mod)

Finally, the function adds an entry to the flow table by issuing the Flow Mod message. The class corresponding to the
Flow Mod message is the OFPFlowMod class. The instance of the OFPFlowMod class is generated and the message
is sent to the OpenFlow switch using the Datapath.send_msg() method.

There are many arguments in the constructor of the OFPFlowMod class. Many of them generally can be left blank so
default values are used.

The buffer_id refers to a packet buffered at the switch and sent to the controller by a packet-in message. A flow
mod that includes a valid buffer_id is effectively equivalent to sending a two-message sequence of a flow mod and a
packet-out to OFPP_TABLE, with the requirement that the switch must fully process the flow mod before the packet
out. These semantics apply regardless of the table to which the flow mod refers, or the instructions contained in the
flow mod.

3.6.4 Testing the application

Now that the source code has been studied and explained, let’s test the application.
In order to execute it, we will use a mininet Virtual Machine to virtualize the network. For this experiment we will
use a simple topology of 3 hosts connected to an Open vSwitch, controlled by the Ryu Application. we execute the
following command in a terminal to create such network:

sudo mn --topo single,3 --mac --switch ovsk --controller remote

This prompts mininet’s Command Line Interface.
Then, we execute wireshark in another terminal, to analyze its behaviour:

sudo wireshark &

We start capturing packets on the loopback interface, with the of filter to see only OpenFlow messages.
We can get some interesting information about the status of the switch using ovs-vsctl show and ovs-dpctl show
commands:

sudo ovs-vsctl show

8945dad2-35b4-4549-9122-23d5558992e7
Bridge "s1"

Controller "ptcp:6634"
Controller "tcp:127.0.0.1:6633"
fail_mode: secure
Port "s1-eth1"

Interface "s1-eth1"
Port "s1"

Interface "s1"
type: internal

Port "s1-eth3"
Interface "s1-eth3"

Port "s1-eth2"
Interface "s1-eth2"

ovs_version: "2.0.2"

sudo ovs-dpctl show
system@ovs-system:

lookups: hit:11 missed:6 lost:0
flows: 0
port 0: ovs-system (internal)
port 1: s1-eth3
port 2: s1-eth1
port 3: s1 (internal)
port 4: s1-eth2

We can see the version of the switch, number of flows and the interface assigned to each port.

In order to force the switch to use OpenFlow 1.3 we must run the following command:

sudo ovs-vsctl set Bridge s1 protocols=OpenFlow13

This line is really important if we want the application to work with the 1.3 version.
It is time to sart the Ryu application:

ryu-manager --verbose ~/apps/switching_hub.py

The application starts its execution and returns the following messages

loading app /home/mininet/apps/switching_hub.py
loading app ryu.controller.ofp_handler
instantiating app /home/mininet/apps/switching_hub.py of SimpleSwitch13
instantiating app ryu.controller.ofp_handler of OFPHandler
BRICK SimpleSwitch13

CONSUMES EventOFPPacketIn
CONSUMES EventOFPSwitchFeatures

BRICK ofp_event
PROVIDES EventOFPPacketIn TO {’SimpleSwitch13’: set([’main’])}
PROVIDES EventOFPSwitchFeatures TO {’SimpleSwitch13’: set([’config’])}
CONSUMES EventOFPEchoRequest
CONSUMES EventOFPErrorMsg
CONSUMES EventOFPSwitchFeatures
CONSUMES EventOFPHello
CONSUMES EventOFPPortDescStatsReply

connected socket:<eventlet.greenio.base.GreenSocket object at 0xb672348c>
address:(’127.0.0.1’, 32891)

hello ev <ryu.controller.ofp_event.EventOFPHello object at 0xb672376c>
move onto config mode
EVENT ofp_event->SimpleSwitch13 EventOFPSwitchFeatures
switch features ev version: 0x4 msg_type 0x6 xid 0xcf40c658

OFPSwitchFeatures(auxiliary_id=0,capabilities=71,datapath_id=1,
n_buffers=256,n_tables=254)

move onto main mode

Figure 3.1: Wireshark trace

As it can be seen in the figure 3.1, the application has succesfully completed the handshake and the exchange of config-
uration information with the switch. Note that the Table-miss flow entry has already been added during this process, as
expected. Further information about the messages exchanged between the SDN Controller and the OpenFlow Switch
can be found in section 1.6.

As the switch and the controller exchange echo requests/replies every few seconds, we will filter this messages in order
to better analyze the application. For this purpose we use of and not(of13.echo_request.type or of13.echo_reply.type)
expression as a filter.

Simple ping

As a demonstration of the application let’s make one host send an ICMP echo request (ping) to other host. The process
should go as follows:

• Host h1 sends a broadcast ARP request to discover the MAC address of h2.

• Host h2 answers the ARP request.

• Host h1 sends ICMP echo request to h2.

• Host h2 sends ICMP echo reply to h1.

• Host h1 sends a unicast ARP request to h2 for ARP cache validation.

• Host h2 answers with an ARP reply to h1.

Before running the experiment let’s open an xterm for each host from mininet’s CLI:

mininet> xterm h1 h2 h3

Now we run the following command in each host to analyze the traffic. For instance, in h1:

tcpdump -XX -n -i h1-eth0

This will show which packets sees each host. Now, from mininet’s CLI we send a ping from h1 to h2

mininet> h1 ping -c 1 h2

Figure 3.2: TCP dump

As shown in Figure 3.2, the application is transparent to the hosts. Hosts h1 and h2 see the whole process while host
h3 only sees the broadcast message. It seems that the application works just like a classic swhitch. Now let’s take a
look at the flows that have been added to the switch:

sudo ovs-ofctl -O openflow13 dump-flows s1
OFPST_FLOW reply (OF1.3) (xid=0x2):
cookie=0x0, duration=456.818s, table=0, n_packets=2, n_bytes=140,

priority=1,in_port=2, dl_dst=00:00:00:00:00:01 actions=output:1
cookie=0x0, duration=456.81s, table=0, n_packets=1, n_bytes=42,

priority=1,in_port=1, dl_dst=00:00:00:00:00:02 actions=output:2
cookie=0x0, duration=1652.403s, table=0, n_packets=3, n_bytes=182,

priority=0 actions=CONTROLLER:65535

Three flows have been added to the switch: The Table-miss flow entry, with priority 0; and one for each of the hosts
with priority 1. The two flows with the higher priority correspond to the packets that come from h1 and target h2 and
viceversa.

Figure 3.3: The wireshark trace shows the message exchange between the controller and the switch

In Figure 3.3 we can see the following process:

• Packets 3598 through 3607: OpenFlow 1.3 handshake and configuration messages.

• Packet 3608: Table-miss FLOW_MOD message. This flow matches every packet and has the lowest priority.

• Packet 5811: The switch received a broadcast packet from h1 (ARP request) that only matches the Table-miss
flow. Sends the packet to the controller.

• Packet 5812: The controller returns the package and tells the switch to broadcast it.

• Packet 5814: The switch received a packet from h2 (ARP reply) that only matches the Table-miss flow. The
destination of this packet is h1. Sends the packet to the controller.

• Packet 5815: The controller sends a flow_mod message, telling the switch to write a flow that matches the
packets comming from port 2 targeting h1’s MAC address. This flows indicates that the action to perform when
handling theese packets is to send them through port 1.

• Packet 5816: The controller sends the packet back to the switch and tells it to send it through port 1.

• Packet 5818: The switch received a packet from h1 (ICMP echo request) that only matches the Table-miss flow.
The destination of this packet is h2. Sends the packet to the controller.

• Packet 5819: The controller sends a flow_mod message, telling the switch to write a flow that matches the
packets comming from port 1 targeting h2’s MAC address. This flows indicates that the action to perform when
handling theese packets is to send them through port 2.

• Packet 5820: The controller sends the packet back to the switch and tells it to send it through port 2.

No more communication is required between the controller and the switch for the rest of the experiment, since the
packets left (echo reply and ARP cache validation) match one of the two flows written in the switch flow table.

3.6.5 Discussion on alternative implementations

In this section we will try to simplify the code of the switch maintaining its functionalities.

Removing table-miss flow entry

The OpenFlow 1.3 Switch Specfication document states that every flow table must support a table-miss flow entry to
process table misses. The table-miss flow entry specifies how to process packets unmatched by other flow entries in
the flow table, and may, for example send packets to the controller, drop packets or direct packets to a subsequent
table.

This document also states that if the table-miss flow entry does not exist, by default packets unmatched by flow entries
are dropped (discarded). A switch configuration, for example using the OpenFlow Configuration Protocol, may
override this default and specify another behaviour.

In this experiment we have removed the table-miss flow_mod message from the code, and launched a pingall instruc-
tion on the mininet environment. We can see that the switch asks the controller every time a packet does not match
any flow entry. At the end of the experiment, the switch has enough flow entries to deliver every packet to every host
correctly.

Flow table:

cookie=0x0, duration=6.038s, table=0, n_packets=4, n_bytes=280,
priority=1, in_port=3,dl_dst=00:00:00:00:00:02 actions=output:2

cookie=0x0, duration=6.213s, table=0, n_packets=4, n_bytes=280,
priority=1, in_port=2,dl_dst=00:00:00:00:00:01 actions=output:1

cookie=0x0, duration=6.145s, table=0, n_packets=4, n_bytes=280,
priority=1, in_port=3,dl_dst=00:00:00:00:00:01 actions=output:1

cookie=0x0, duration=6.032s, table=0, n_packets=3, n_bytes=238,
priority=1, in_port=2,dl_dst=00:00:00:00:00:03 actions=output:3

cookie=0x0, duration=6.138s, table=0, n_packets=3, n_bytes=238,
priority=1, in_port=1,dl_dst=00:00:00:00:00:03 actions=output:3

cookie=0x0, duration=6.206s, table=0, n_packets=3, n_bytes=238,
priority=1, in_port=1,dl_dst=00:00:00:00:00:02 actions=output:2

Running a pingall instruction in the mininet command line leaves this trace on wireshark:

Figure 3.4: Wireshark trace after removing the table-miss entry

As you can see, it only sends the packet_out message when a flood has to be performed. In figure 3.5 we show how
the switch performs with the original code.

Figure 3.5: Wireshark trace without removing the table-miss entry

Both traces are the same, but with the above modification we have reduced significantly the amount of packet_out
messages. Theoretically, the Open vSwitch should drop every packet that does not match any of the flows, instead of
sending them to the controller. This means that the configuration of the switch has been changed to behave this way.

Also, it seems that the way Open vSwitch is implemented, it buffers the packet (Creates a buffer_id) so when the
FlowMod message arrives from the controller, it does not need a Packet Out message to forward the packet. Also, the
application is implemented so if a buffer_id is found, no Packet Out message is sent, as it does not contain the
packet where the acions have to be applied (data = None).

Matching only the destination

One thing that we observed is that a new flow is created for each pair of hosts: sender and receiver. We wonder if
the switch could only store the relation between a MAC address and a port. This should reduce de number of flows
significantly.

For this purpose we will modify the match in the Packet-In event handler so the field to match is only the destination
address.

match = parser.OFPMatch(eth_dst=dst)

Then we execute the pingall instruction from mininet command line.

The results are quite different from the expected. There’s a destination that can never be added to the flow table, and
the switch querys the controller every time it gets a packet addressed to it. The controller does not ever write a flow
entry for this destination

As a result, the controller just tells the switch to flood, every time this kind of packets are received. Only two flows
are written to the switch flow table.

Flows:

Figure 3.6: Wireshark trace after the match modification

cookie=0x0, duration=42.125s, table=0, n_packets=11, n_bytes=742,
priority=0 actions=CONTROLLER:65535

cookie=0x0, duration=36.196s, table=0, n_packets=6, n_bytes=420,
priority=1,dl_dst=00:00:00:00:00:02 actions=output:2

cookie=0x0, duration=36.206s, table=0, n_packets=7, n_bytes=518,
priority=1,dl_dst=00:00:00:00:00:01 actions=output:1

The reason why it’s impossible to add a flow for the last host is that every packet that comes from such host already
matches a flow, so it’s never sent to the controller. As the controller needs to relate an origin MAC with an input port,
the flow will never be written to the switch. This is a bad solution.

Another observation is that the original implementation matches the ingress port and the destination MAC, which
means that the switch will have the same issues observed in this section when more than one host is reached through
the same port. Dor instance, in a tree topology.

The solution for this problem would be to match the source and the destination MAC, so the controller can write all
the rules to the switches and learn all the hosts.

Removing packet out instruction

We have observed that after every flow_mod message a packet_out message is also sent to the switch. We wonder if
we can remove this packet_out messages in a way that does not change the switch behaviour.

For this purpose we change the last lines of the Packet-In event handler so the packet_out message is only sent when
the controller has resolved to send a flood instruction, instead of a flow_mod message. In the previous implementation
a packet_out message was sent every Packet-In event.

Note that we have made this modification in the controller that adds the table-miss entry at the beginning.

. . .
if out_port != ofproto.OFPP_FLOOD:

match = parser.OFPMatch(in_port=in_port, eth_dst=dst)
#print "Match created for " + str(dst)
verify if we have a valid buffer_id, if yes avoid to send both
flow_mod & packet_out
if msg.buffer_id != ofproto.OFP_NO_BUFFER:

self.add_flow(datapath, 1, match, actions, msg.buffer_id)
#print "Flow added for " + str(dst)
return

else:
self.add_flow(datapath, 1, match, actions)

else:
data = None
if msg.buffer_id == ofproto.OFP_NO_BUFFER:

data = msg.data
out = parser.OFPPacketOut(datapath=datapath, buffer_id=msg.buffer_id,

in_port=in_port, actions=actions, data=data)
datapath.send_msg(out)

The wireshark trace is very interesting, every flow has been added, but the performance has been affected. The results
of the pingall test are:

*** Ping: testing ping reachability
h1 -> X X
h2 -> h1 X
h3 -> h1 h2

*** Results: 50% dropped (3/6 received)

And the trace:

Figure 3.7: Result of removing packet_out after flow_mod

No packet_out message is sent after each flow_mod message. Six flows have been added, but the reachability test says

that 50% of the packets were dropped.

This means that the packets that didn’t match any flow when they were sent have been sent to the controller, then
the controller has writen the flow, but the switch has not forwarded the packet. So every packet that didn’t match a
flow and was not a broadcast message has been dropped. It seems that in OpenFlow 1.3 the packet_out message is
mandatory after the flow_mod message for a propper behaviour.

The switch does not forward the packet because the action asociated to the table-miss flow entry is to forward the
packet to the controller, so it’s not buffered at the Switch. This means that a buffer_id is not generated for the packet.
If a such packet is not returned to the switch with a Packet Out message containing the actions to be applied, the switch
would not be able to forward it properly.

3.6.6 Source code
from ryu.base import app_manager
from ryu.controller import ofp_event
from ryu.controller.handler import CONFIG_DISPATCHER, MAIN_DISPATCHER
from ryu.controller.handler import set_ev_cls
from ryu.ofproto import ofproto_v1_3
from ryu.lib.packet import packet
from ryu.lib.packet import ethernet

class SimpleSwitch13(app_manager.RyuApp):
OFP_VERSIONS = [ofproto_v1_3.OFP_VERSION]

def __init__(self, *args, **kwargs):
super(SimpleSwitch13, self).__init__(*args, **kwargs)
self.mac_to_port = {}

@set_ev_cls(ofp_event.EventOFPSwitchFeatures, CONFIG_DISPATCHER)
def switch_features_handler(self, ev):

datapath = ev.msg.datapath
ofproto = datapath.ofproto
parser = datapath.ofproto_parser

install table-miss flow entry
#
We specify NO BUFFER to max_len of the output action due to
OVS bug. At this moment, if we specify a lesser number, e.g.,
128, OVS will send Packet-In with invalid buffer_id and
truncated packet data. In that case, we cannot output packets
correctly. The bug has been fixed in OVS v2.1.0.
match = parser.OFPMatch()
actions = [parser.OFPActionOutput(ofproto.OFPP_CONTROLLER,

ofproto.OFPCML_NO_BUFFER)]
self.add_flow(datapath, 0, match, actions)

def add_flow(self, datapath, priority, match, actions, buffer_id=None):
ofproto = datapath.ofproto

parser = datapath.ofproto_parser

inst = [parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS,
actions)]

if buffer_id:
mod = parser.OFPFlowMod(datapath=datapath, buffer_id=buffer_id,

priority=priority, match=match,
instructions=inst)

else:
mod = parser.OFPFlowMod(datapath=datapath, priority=priority,

match=match, instructions=inst)
datapath.send_msg(mod)

@set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)
def _packet_in_handler(self, ev):

If you hit this you might want to increase
the "miss_send_length" of your switch
if ev.msg.msg_len < ev.msg.total_len:

self.logger.debug("packet truncated: only %s of %s bytes",
ev.msg.msg_len, ev.msg.total_len)

msg = ev.msg
datapath = msg.datapath
ofproto = datapath.ofproto
parser = datapath.ofproto_parser
in_port = msg.match[’in_port’]

pkt = packet.Packet(msg.data)
eth = pkt.get_protocols(ethernet.ethernet)[0]

dst = eth.dst
src = eth.src

dpid = datapath.id
self.mac_to_port.setdefault(dpid, {})

self.logger.info("packet in %s %s %s %s", dpid, src, dst, in_port)

learn a mac address to avoid FLOOD next time.
self.mac_to_port[dpid][src] = in_port

if dst in self.mac_to_port[dpid]:
out_port = self.mac_to_port[dpid][dst]

else:
out_port = ofproto.OFPP_FLOOD

actions = [parser.OFPActionOutput(out_port)]

install a flow to avoid packet_in next time
if out_port != ofproto.OFPP_FLOOD:

match = parser.OFPMatch(in_port=in_port, eth_dst=dst)
verify if we have a valid buffer_id, if yes avoid to send both

flow_mod & packet_out
if msg.buffer_id != ofproto.OFP_NO_BUFFER:

self.add_flow(datapath, 1, match, actions, msg.buffer_id)
return

else:
self.add_flow(datapath, 1, match, actions)

data = None
if msg.buffer_id == ofproto.OFP_NO_BUFFER:

data = msg.data

out = parser.OFPPacketOut(datapath=datapath, buffer_id=msg.buffer_id,
in_port=in_port, actions=actions, data=data)

datapath.send_msg(out)

Chapter 4

MPLS Software-Defined Network

4.1 Introduction

This chapter discusses the implementation of a MPLS network using the tools exposed in the previous chapters: Ryu,
Open vSwitch, OpenFlow 1.3 and Mininet. The goal of this implementation is to allow the development of a complete
SDN solution for MPLS networks. For this purpose, an API Rest must be developed, in order to let the network
administrator configure the network at his will.

To know how a MPLS network works, please see section 2.5

4.2 First Approach: Simple MPLS network

In this section we will build a Ryu Application that configures a network to work using MPLS labels. There are some
constraints:

• Fast forwarding cannot be used as kernel mode does not suport MPLS. Current OVS version does not support
the Linux Kernel that allows fast forwarding, which is version 3.19

• Only one label can be used, as the current version of OVS (2.3) does not support popping more than one label

There are also several problems to solve in order to properly implement this network.

• ARP, IPV4 and MPLS traffic need separate rules.
• How the controller discovers and adpats to the network.
• Controller criteria for label allocation.
• How the controller distinguishes LER from LSR.

It is clear now that bulinding this MPLS Software-Defined Network goes several steps further than the simple imple-
mentation shown in section 2.5, which only used the OVS configuration tools to achieve the desired behavior. We will
approach the final solution bit by bit.

In this first approach, we will reproduce the same behavior as in section 2.5, but the flows will be written by the
controller.

87

The features of this first approach are:

• The controller handles the packets in different ways, depending on their ethertypes.
• ARP traffic is forwarded by the network.
• The controller uses ARP traffic to learn where the hosts are, just as the Learning Switch analyzed in section 3.6
• In order tho handle the MPLS traffic correctly, the controller identifies if the datatapath is LSR or LER by its

datapath id, which has been previously configured using a shell script.
• The controller assumes that the IPV4 packets always come from the hosts, therefore, is always handled by the

LERs.

Let’s see this features in more detail.

4.2.1 Mapping the datapaths

The controller must know which routers are LER and LSR as the rules written in each group are completely different.

• LER rules match labels, ports and IP addresses and push or pop the label.

• LSR rules match labels and ports and switch the labels.

As for this first approach we will use the same topology shown in figure 2.4, we will configure the datapath IDs as
follows:

#Configure switches with a unique ID
echo "Setting switches ID"
sudo ovs-vsctl set bridge s1 other-config:datapath-id=0000000000000001
sudo ovs-vsctl set bridge s2 other-config:datapath-id=0000000000000002
sudo ovs-vsctl set bridge s3 other-config:datapath-id=0000000000000003

This way, the controller knows that the IDs 1 and 3 correspond to the LERs and the ID 2 to the LSR. The complete
script can be consulted in section 4.5.1

4.2.2 Traffic differentiation

Every time a Packet-In event happens, the handler discriminates packets by its ethertype. This means that every time
the controller receives a packet, it checks the ethertype and launches a different handler for each type.

@set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)
def _packet_in_handler(self, ev):

...

Ethertype 2054=ARP, 2048=IPV4, 34887=MPLS unicast
ethtype = eth.ethertype
dpid = datapath.id
Set default value for not found keys:
self.mac_to_port.setdefault(dpid, {})
self.dst_to_label.setdefault(dpid, {})

self.logger.info("packet in datapath %s src: %s dst: %s port: %s
Ethertype=%s", dpid, src, dst, in_port, ethtype)

If ARP
if ethtype == 2054:

self.arpHandler(msg)
If IPV4
elif ethtype == 2048:

self.ipv4Handler(msg)
#If MPLS unicast
elif ethtype == 34887:

self.mplsHandler(msg)

ARP Traffic

ARP traffic is handled exactly as in the case of the Switching Hub (Section 3.6). The only difference is that now the
matches include also the source mac address and the ethertype. It is really important to include the source address,
as if it is not included, several different packets could match a flow and the controller would not be able to map some
addresses. This problem is due to the topology used in this approach, where packets with different source addresses
may come through the same port.
...

match = parser.OFPMatch(in_port=in_port, eth_src=src, eth_dst=dst, eth_type=ethtype)

...

The complete source code can be consulted at section 4.5.1

IPV4 Traffic

MPLS labels are pushed to IPV4 packets and forwarded following the mapping learnt thanks to the ARP traffic
forwarding. The label value is increased each type to warantee that labels are not repeated.

def ipv4Handler(self, msg):
...

If the packet is IPV4, it means that the datapath is a LER
IPV4 packets that come trough in_port with this destination
match = parser.OFPMatch(in_port=in_port, eth_dst=dst, eth_type=ethtype)
We relate a label to the destination: We select an unused label
self.label = self.label + 1
self.dst_to_label[dpid][dst] = self.label

Set the out_port using the relation learnt with the ARP packet
out_port = self.mac_to_port[dpid][dst]
Set the action to be performed by the datapath
actions = [parser.OFPActionPushMpls(ethertype=34887,type_=None, len_=None),

parser.OFPActionSetField(mpls_label=self.label),

parser.OFPActionOutput(out_port)]
Install a flow

...

It is particularly important in this case to write the actions to be performed in the correct order. If the action to forward
the packet is written before the push label action, the packet will be forwarded without a label. This is because
OpenFlow Switch specification indicates that an Action List must be executed in the order it is written (see 1.4.5).

MPLS traffic

MPLS unicast packets can arrive to the LERs or to the LSR. The controller must know which kind of datapath is
handling the packet, in order to write the correct rule. In this approach, the controller checks the datapath ID to see if
the datapath is the LSR.

def mplsHandler(self,msg):

...

The switch can be a LSR or a LER, but the match is the same
match = parser.OFPMatch(in_port=in_port, eth_dst=dst, eth_type=ethtype,

mpls_label=mpls_proto.label)
Set the out_port using the relation learnt with the ARP packet
out_port = self.mac_to_port[dpid][dst]
we must check the switch ID in order to decide the propper action
if dpid == 2:

The switch is a LSR
New label
self.label= self.label + 1
Switch labels
actions = [parser.OFPActionPopMpls(),

parser.OFPActionPushMpls(),
parser.OFPActionSetField(mpls_label=self.label),
parser.OFPActionOutput(out_port)]

else:
The switch is a LER
Pop that label!
actions = [parser.OFPActionPopMpls(),

parser.OFPActionOutput(out_port)]

Install a flow

...

4.2.3 Testing the application

With the configuration explained in the previous sections and the code provided in section 4.5.1, only hosts h1 and
h3 should be able to comunicate with each other. We perform a reachability test to see if the application works as
expected.

*** Ping: testing ping reachability
h1 -> X h3
h2 -> X X
h3 -> h1 X

*** Results: 66% dropped (2/6 received)

As we said, only hosts h1 and h3 can reach each other through the network.

Next, we provide the wireshark captures in different interfaces after sending an ICMP message from h1 to h3.

The captures show how the ICMP ethertype goes from IP to MPLS depending on the link it’s traveling, and how the
labels are being switched.

Figure 4.1: Capture from interface s1-eth1

Figure 4.2: Capture from interface s1-eth2

Figure 4.3: Capture from interface s2-eth3

Figure 4.4: Capture from interface s3-eth1

4.2.4 Conclusions

This first approach is still far from being a real MPLS network, but demonstrates how to integrate MPLS, Ryu and
Open vSwitch. We can obtain a very similar behaviour to the experiment in section 2.5 using an SDN controller
instead of manually writting the rules on the switches.

However, in order to obtain a more realistic scenario, a second approach to this problem has been proposed.

4.3 Second approach: Building the MPLS network from an IP network

This second approach aims to create an MPLS Ryu application using an IP router application as a base.

4.3.1 Topology

The topopology used in this experiment is a custom topology, built using a python script and the API of Mininet.
Figure 4.5 shows a representation of this topology. The python script used can be found in section 4.5.2 and is used
for both IP and MPLS application.

In the figure you can observe that MAC and IP addresses have been selected to be easily related to each interface
network and host. Observe that the backbone network, colored in gray, does not have any IP configured. This is made
on purpose, so the Ryu Application run in the control plane can configure this layer as the Network Administrator
wishes. We will use the SDN Northbound Interface (see section 1.1.2), which is implemented in Ryu using REST (see
section 3.4.2) to comunicate the Ryu Application with the Network Administrator.

Figure 4.5: Topology used for the second approach

Three IP networks are defined, with seven total hosts. The pyton script used to generate this topology also configures
each host default gateway as the router present in each of this networks. The script also indicates to mininet that OVS
switches should be used, and specifies the protocol version to OpenFlow 1.3.

In the following sections we will try to establish the communication between remote hosts using IP routing in the
backbone network. After we have understood the basic behaviour of the Ryu Application that implements this, we
will modify it in order to make the backbone network forward the packets using MPLS.

4.3.2 REST router

The REST router is a Ryu Application that is included in Ryu. This application allows IP routing between different
IP networks. This application is also way more complex than the previous applications discussed in this document,
so the full code will not be completely analized, as it’s 1900 lines long and not every piece of code is fundamental to
understand and analyze its behaviour.

The complete source code is available online on the Git repository of Ryu:

https://github.com/osrg/ryu/blob/master/ryu/app/rest_router.py

Classes

As the REST Router application complexity is higher, it takes advantadge of Object Oriented Programming to encap-
sulate the different stakeholders of an openflow controller. The main classes are the following

• RestRouterAPI: It’s the main class, the one that inherits from RyuApp. This class contains four event handlers
for the following events: EventOFPPacketIn, EventOFPFlowStatsReply, EventOFPStatsReply and EventDP
which is a non-OpenFlow event contaied in the ryu.controller.dpset module. This last event refers to the discov-
ery of a datapath by the controller. See more about the OpenFlow messages that can generate events in section
3.3

• RouterController: This class inherits from ryu.controller.ControllerBase class, and aims to extend its function-
ality, focused on the scenario of an IP router. Implements the methods to add, delete and access to the routers
listed by the Ryu OpenFlow Controller. Also implements the methods for REST commands handling.

• Router: Dictionary class. Contains at least one VlanRouter object. An instance of this class corresponds directly
to one of the OpenFlow Switches of the network. This class implements several methods for writting, reading
or deleting data on the VlanRouters, such as routes or Vlan tags.

• VlanRouter: This class implements the intelligence of an Vlan Router for a particular Vlan tag (vlan_id). If
it’s the case, as it is ours, that no Vlan tags are being used, the vlan_id is zero. This is the most important
class from control perspective. It contains information about the router’s IP addresses, static and default routes,
and implements all the methods for handling that data. Also, implements a packetin method that discriminates
packets by tipe (ARP, ICMP or TCP/UDP), and all the methods in order to handle those kind of packets.

• OfCtl: This class implements methods to write and delete flows with different OpenFlow versions. Also imple-
ments methods to send ARP and ICMP messages.

• Data structure classes: Classes that encapsulate IP addresses, routing tables, Ports, etc. These classes are
Route, RoutingTable, Address, AddressData, SuspendPacket, SuspendPacketList, Port and PortData

The module also contains several useful functions such as string to number transformations or mask application to IP
addresses.

REST API

Networks administrators can get, set and delete data from each router using the REST API that is defined in the
controller. Administrators can use HTTP commands GET, POST and DELETE to do this.

In order to get the data (addresses and routes) from a particular router:

• No Vlan: GET /router/{switch_id}

• Specific Vlan group: GET /router/{switch_id}/{vlan_id}

In order to set address or routing data:

• No Vlan: POST /router/{switch_id}

• Specific Vlan group: POST /router/{switch_id}/{vlan_id}

The POST command parameter is used to introduce the data we want to write in the targeted router:

• Case 1. Set address data: parameter = {"address": "A.B.C.D/M"}

• Case 2. Set static route: parameter = {"destination": "A.B.C.D/M", "gateway": "E.F.G.H"}

• Case 3. Set default route: parameter = {"gateway": "E.F.G.H"}

In order to delete data:

• No Vlan: DELETE /router/{switch_id}

• Specific Vlan Group: DELETE /router/{switch_id}/{vlan_id}

The DELETE command parameter is used to indicate the data we want to delete in the targeted router:

• Case 1. Delete address data: parameter = {"address_id": "[int]"} or {"address_id":
"all"}

• Case 2: Delete routing data: parameter = {"route_id": "[int]"} or {"route_id": "all"}

More information about how Ryu implements REST API can be found in section 3.4.2

4.3.3 IP application walkthrough

In order to better ilustrate this application behaviour and how it has been implemented, we will run and test it, showing
the resoults and explaining the blocks of code involved. We first create the topology with mininet. A script has been
created for this purpose, the commented code is in Section 4.5.2. We start this topology by running this script:

sudo python topology.py

Next, we start the ryu application with:

ryu-manager ryu.app.rest_router

Startup

When we start the application, it displays messages through the command interface, explaining that Routers with IDs
0000000000000001, 0000000000000002, 0000000000000003 and 0000000000000004 have joined. Also displays
messages that informs that some flows have been installed. Let’s take a look at those flows:

mininet@mininet-vm:~$ sudo ovs-ofctl -O OpenFlow13 dump-flows s1
OFPST_FLOW reply (OF1.3) (xid=0x2):
cookie=0x0, duration=211.990s, table=0, n_packets=0, n_bytes=0, priority=1,
arp actions=CONTROLLER:65535
cookie=0x0, duration=211.986s, table=0, n_packets=0, n_bytes=0, priority=1,
ip actions=drop

cookie=0x0, duration=211.987s, table=0, n_packets=0, n_bytes=0, priority=0
actions=NORMAL

Three flows have been written:

• A flow with priority 1 (low) that matches all ARP packets, where the associated action is to send the packet to
the controller.

• A flow with priority 1 (low) that matches all IPv4 packets, where the associated action is to drop the packet.

• A flow with priority 0 (lowest) that matches every packet, where the associated action is to perform normal L2
switching through the non-OpenFlow pipeline. This is the table-miss flow.

The ARP handling flow and table-miss flow are written when a Router object is created. It sends the FlowMod
messages when its constructor method is executed:

...

Set flow: ARP handling (packet in)
priority = get_priority(PRIORITY_ARP_HANDLING)
ofctl.set_packetin_flow(cookie, priority, dl_type=ether.ETH_TYPE_ARP)
self.logger.info(’Set ARP handling (packet in) flow [cookie=0x%x]’,

cookie, extra=self.sw_id)

Set flow: L2 switching (normal)
priority = get_priority(PRIORITY_NORMAL)
ofctl.set_normal_flow(cookie, priority)
self.logger.info(’Set L2 switching (normal) flow [cookie=0x%x]’,

cookie, extra=self.sw_id)

...

The methods set_packetin_flow and set_normal_flow contained in the OfCtl class use the method set_flow to generate
and send the FlowMod message that will be sent to the controller. They represent a particular match associated to a
particular action:

def set_normal_flow(self, cookie, priority):
out_port = self.dp.ofproto.OFPP_NORMAL
actions = [self.dp.ofproto_parser.OFPActionOutput(out_port, 0)]
self.set_flow(cookie, priority, actions=actions)

def set_packetin_flow(self, cookie, priority, dl_type=0, dl_dst=0,
dl_vlan=0, dst_ip=0, dst_mask=32, nw_proto=0):

miss_send_len = UINT16_MAX
actions = [self.dp.ofproto_parser.OFPActionOutput(

self.dp.ofproto.OFPP_CONTROLLER, miss_send_len)]
self.set_flow(cookie, priority, dl_type=dl_type, dl_dst=dl_dst,

dl_vlan=dl_vlan, nw_dst=dst_ip, dst_mask=dst_mask,
nw_proto=nw_proto, actions=actions)

The dl_type field corresponds to the ethertype field of the packet, just as dl_src and dl_dst correspond to the source
and destination MAC addresses. This nomenclature is the one that was used in previous versions of OpenFlow, which
are also suppoted by this application.

The set_flow method is a method designed to allow other methods implement particular flows without additional code.
Actions, cookie and priority are passed as a parameter and the match is constructed inside the method with the other
values probided, with a limited set of match fields.

At the end, an OFPFlowMod message is generated and sent.

def set_flow(self, cookie, priority, dl_type=0, dl_dst=0, dl_vlan=0,
nw_src=0, src_mask=32, nw_dst=0, dst_mask=32,
nw_proto=0, idle_timeout=0, actions=None):

ofp = self.dp.ofproto
ofp_parser = self.dp.ofproto_parser
cmd = ofp.OFPFC_ADD

Match
match = ofp_parser.OFPMatch()
if dl_type:

match.set_dl_type(dl_type)
if dl_dst:

match.set_dl_dst(dl_dst)
if dl_vlan:

match.set_vlan_vid(dl_vlan)
if nw_src:

match.set_ipv4_src_masked(ipv4_text_to_int(nw_src),
mask_ntob(src_mask))

if nw_dst:
match.set_ipv4_dst_masked(ipv4_text_to_int(nw_dst),

mask_ntob(dst_mask))
if nw_proto:

if dl_type == ether.ETH_TYPE_IP:
match.set_ip_proto(nw_proto)

elif dl_type == ether.ETH_TYPE_ARP:
match.set_arp_opcode(nw_proto)

Instructions
actions = actions or []
inst = [ofp_parser.OFPInstructionActions(ofp.OFPIT_APPLY_ACTIONS,

actions)]

m = ofp_parser.OFPFlowMod(self.dp, cookie, 0, 0, cmd, idle_timeout,
0, priority, UINT32_MAX, ofp.OFPP_ANY,
ofp.OFPG_ANY, 0, match, inst)

self.dp.send_msg(m)

When the Router constructor has created this flows, then creates a VlanRouter object with the parameter vlan_id set
to 0. The constructor of this last object sets the flow with the lowest priority, called "Default Route Drop flow"

Setting up the routers

As seen in section 4.3.2 some information is not provided neither by the controller nor the switches, but the Network
Administrator. The network administrator would probably use an application with a graphical interface, that comu-

nicates with the controller trough the NBI, but as this is out of the scope of this project, we will simulate it with the
messages that such application would use.

For this purpose, we use the program curl, which allows us to generate custom HTTP petitions. With this commands
we will interact with the REST API of the Ryu application

This part is very straightforward, we write a configuration script simualting the commands an Administration Appli-
cation would send. See section 4.3.2 to see the commands available.

The script performs the following commands:

#!/bin/bash
Configuration script for the topology under the name topology.py

Setting router IP addresses using the REST API

Addresses for router s1
Network 1
curl -X POST -d ’{"address":"10.0.1.100/24"}’
http://localhost:8080/router/0000000000000001
Backbone
curl -X POST -d ’{"address": "10.10.10.1/24"}’
http://localhost:8080/router/0000000000000001

Addresses for router s2
Network 2
curl -X POST -d ’{"address":"10.0.2.100/24"}’
http://localhost:8080/router/0000000000000002
Backbone
curl -X POST -d ’{"address": "10.10.10.2/24"}’
http://localhost:8080/router/0000000000000002

Addresses for router s3
Network 3
curl -X POST -d ’{"address":"10.0.3.100/24"}’
http://localhost:8080/router/0000000000000003
Backbone
curl -X POST -d ’{"address": "10.10.10.3/24"}’
http://localhost:8080/router/0000000000000003

Addresses for router s4
Backbone
curl -X POST -d ’{"address": "10.10.10.4/24"}’
http://localhost:8080/router/0000000000000004

Default route for s1: s4
curl -X POST -d ’{"gateway": "10.10.10.4"}’
http://localhost:8080/router/0000000000000001

Default route for s2: s4
curl -X POST -d ’{"gateway": "10.10.10.4"}’
http://localhost:8080/router/0000000000000002

Default route for s3: s4
curl -X POST -d ’{"gateway": "10.10.10.4"}’
http://localhost:8080/router/0000000000000003

Static routes for s4

curl -X POST -d ’{"destination": "10.0.1.0/24", "gateway": "10.10.10.1"}’
http://localhost:8080/router/0000000000000004
curl -X POST -d ’{"destination": "10.0.2.0/24", "gateway": "10.10.10.2"}’
http://localhost:8080/router/0000000000000004
curl -X POST -d ’{"destination": "10.0.3.0/24", "gateway": "10.10.10.3"}’
http://localhost:8080/router/0000000000000004

With this configuration script we achieve the topology displayed in Figure 4.6, where the default route for each Edge
Router is s4 and s4 has the route of each prefix in its routing table.

Figure 4.6: Topology after the configuration script

When receiving this REST commands, the RouterController passes them to the VlanRouter object, through the apro-
priate Router. The VlanRouter extracts the data, stores it, and sends the corresponding FlowMod messages, depending
on which data is received.

We can see that several flows have been added to the Edge Routers. As an example, here are s1’s new flows:

cookie=0x1, duration=303.304s, table=0, n_packets=0, n_bytes=0,
priority=1037,ip,nw_dst=10.0.1.100 actions=CONTROLLER:65535

cookie=0x2, duration=303.180s, table=0, n_packets=0, n_bytes=0,
priority=1037,ip,nw_dst=10.10.10.1 actions=CONTROLLER:65535

cookie=0x2, duration=302.846s, table=0, n_packets=0, n_bytes=0,
idle_timeout=1800, priority=35,ip,nw_dst=10.10.10.4
actions=dec_ttl,set_field:00:00:00:11:11:11->eth_src,
set_field:00:00:00:44:44:01->eth_dst,output:3

cookie=0x1, duration=303.302s, table=0, n_packets=0, n_bytes=0,
priority=36,ip,nw_src=10.0.1.0/24,nw_dst=10.0.1.0/24 actions=NORMAL

cookie=0x2, duration=303.179s, table=0, n_packets=0, n_bytes=0,
priority=36,ip,nw_src=10.10.10.0/24,nw_dst=10.10.10.0/24 actions=NORMAL

cookie=0x1, duration=303.306s, table=0, n_packets=0, n_bytes=0,
priority=2,ip,nw_dst=10.0.1.0/24 actions=CONTROLLER:65535

cookie=0x2, duration=303.185s, table=0, n_packets=0, n_bytes=0,
priority=2,ip,nw_dst=10.10.10.0/24 actions=CONTROLLER:65535

The new flows are:

• A flow with priority 1037 that matches IPv4 packets which destination is 10.0.1.100 (one of the router’s IP
addresses). The associated action is to send the packet to the controller.

• A flow with priority 1037 that matches IPv4 packets which destination is 10.10.10.1 (one of the router’s IP
addresses). The associated action is to send the packet to the controller.

• A flow with priority 35 that matches IPv4 packets with destination 10.10.10.4 (router s4). The associated actions
are to decrement packet’s TTL, to set new values for source and destination MAC addresses and then send the
packet through port 3.

• A flow with priority 36 that matches IPv4 packets with source and destination within the network 10.0.1.0/24.
The associated action is to apply normal L2 switching.

• A flow with priority 36 that matches IPv4 packets with source and destination within the network 10.10.10/24.
The associated action is to apply normal L2 switching.

• A flow with priority 2 that matches IPv4 packets with destination 10.0.1.0/24. The associated action is to send
the packet to the controller.

• A flow with priority 2 that matches IPv4 packets with destination 10.10.10.0/24. The associated action is to
send the packet to the controller.

Some particular flows have also been added to router s4:

cookie=0x1, duration=306.272s, table=0, n_packets=0, n_bytes=0,
priority=1037,ip,nw_dst=10.10.10.4 actions=CONTROLLER:65535

cookie=0x1, duration=306.175s, table=0, n_packets=0, n_bytes=0,
idle_timeout=1800, priority=35,ip,nw_dst=10.10.10.1
actions=dec_ttl,set_field:00:00:00:44:44:01->eth_src,
set_field:00:00:00:11:11:11->eth_dst,output:1

cookie=0x1, duration=306.111s, table=0, n_packets=0, n_bytes=0,
idle_timeout=1800, priority=35,ip,nw_dst=10.10.10.2
actions=dec_ttl,set_field:00:00:00:44:44:02->eth_src,
set_field:00:00:00:22:22:22->eth_dst,output:2

cookie=0x1, duration=306.043s, table=0, n_packets=0, n_bytes=0,
idle_timeout=1800, priority=35,ip,nw_dst=10.10.10.3
actions=dec_ttl,set_field:00:00:00:44:44:03->eth_src,
set_field:00:00:00:33:33:33->eth_dst,output:3

cookie=0x1, duration=306.269s, table=0, n_packets=0, n_bytes=0,
priority=36,ip,nw_src=10.10.10.0/24,nw_dst=10.10.10.0/24 actions=NORMAL

cookie=0x1, duration=306.277s, table=0, n_packets=0, n_bytes=0,
priority=2,ip,nw_dst=10.10.10.0/24 actions=CONTROLLER:65535

cookie=0x10000, duration=305.946s, table=0, n_packets=0, n_bytes=0,
priority=26,ip,nw_dst=10.0.1.0/24
actions=dec_ttl,set_field:00:00:00:44:44:01->eth_src,
set_field:00:00:00:11:11:11->eth_dst,output:1

cookie=0x20000, duration=305.874s, table=0, n_packets=0, n_bytes=0,
priority=26,ip,nw_dst=10.0.2.0/24
actions=dec_ttl,set_field:00:00:00:44:44:02->eth_src,
set_field:00:00:00:22:22:22->eth_dst,output:2

cookie=0x30000, duration=305.816s, table=0, n_packets=0, n_bytes=0,
priority=26,ip,nw_dst=10.0.3.0/24
actions=dec_ttl,set_field:00:00:00:44:44:03->eth_src,
set_field:00:00:00:33:33:33->eth_dst,output:3

This flows are very similar to the ones added to router s1, but also three special flows, corresponing to the static routes
have been added:

• A flow with priority 26 (cookie 0x10000) that matches all IPv4 packets wich destination is within the network
10.0.1.0/24. The associated action is to change the values of the source and destination MAC addresses and
send the packet through port 1.

• A flow with priority 26 (cookie 0x20000) that matches all IPv4 packets wich destination is within the network
10.0.2.0/24. The associated action is to change the values of the source and destination MAC addresses and
send the packet through port 2.

• A flow with priority 26 (cookie 0x30000) that matches all IPv4 packets wich destination is within the network
10.0.3.0/24. The associated action is to change the values of the source and destination MAC addresses and
send the packet through port 3.

Now, let’s take a look at the code of VlanRouter, to understand how the application has processed the REST commands
in order to add these flows. A VlanRouter object extracts the data from a REST command using the method set_data,
get_data or delete_data, depending on the type of command: POST, GET or DELETE. We will focus on the set_data
method as it’s the one that the application is invoking when receiving the commands launched with our script.

def set_data(self, data):
details = None

try:
Set address data
if REST_ADDRESS in data:

address = data[REST_ADDRESS]
address_id = self._set_address_data(address)
details = ’Add address [address_id=%d]’ % address_id

Set routing data
elif REST_GATEWAY in data:

gateway = data[REST_GATEWAY]
if REST_DESTINATION in data:

destination = data[REST_DESTINATION]
else:

destination = DEFAULT_ROUTE
route_id = self._set_routing_data(destination, gateway)
details = ’Add route [route_id=%d]’ % route_id

except CommandFailure as err_msg:
msg = {REST_RESULT: REST_NG, REST_DETAILS: str(err_msg)}
return self._response(msg)

if details is not None:
msg = {REST_RESULT: REST_OK, REST_DETAILS: details}
return self._response(msg)

else:
raise ValueError(’Invalid parameter.’)

The method looks for certain fields, stored in constants beginning with the prefix REST_ that correspond to the fields
introduced in the parameter of the POST command. Depending on which field it finds, it launches another method to
process the data. This method can be _set_address_data or _set_routing_data.

The method _set_address_data is launched when the POST parameter contains an IP address and mask of the router.
The method stores the address/mask information in an AddressData object and then sets three flows:

• A flow that matches IPv4 packets which destination and mask is the one that has been registered. This flow is
created with the method of the OfCtl class set_packetin_flow which creates a flow where the action is to send
the packet to the controller.

• A flow that matches IPv4 packets which destination is within the registered address network. This flow is also
crated with the set_packetin_flow method, which makes the associated action: send the packet to the controller.

• A flow that matches IPv4 packets which destination is within the same network as the registered address. This
flow is created with the method set_routing_flow where the output port is passed as an argument. In this case,
the output port is set to NORMAL (see section 1.3)

After setting the flows, this method tells the switch to send an ARP request to the default gateway with the method
ofctl.send_arp_request

On the other hand, the method _set_routing_data is launched when the POST parameter contains a route, either default
or static. The method stores the destination/gateway relation in an RoutingTable object and then proceeds to send an

ARP request to the gateway. No flow is written directly in this method. The flow is written when the ARP reply
arrives.

ARP handling

When an ARP packet arrives, an event EventOFPPacketIn (see Section 3.3) is generated. The message associated to
the event is passed through the objects to the packet_in_handler which looks at the packet header and discriminates
the packets for its Ethertype:

def packet_in_handler(self, msg, header_list):
Check invalid TTL (for OpenFlow V1.2/1.3)
ofproto = self.dp.ofproto
if ofproto.OFP_VERSION == ofproto_v1_2.OFP_VERSION or \

ofproto.OFP_VERSION == ofproto_v1_3.OFP_VERSION:
if msg.reason == ofproto.OFPR_INVALID_TTL:

self._packetin_invalid_ttl(msg, header_list)
return

Analyze event type.
if ARP in header_list:

self._packetin_arp(msg, header_list)
return

if IPV4 in header_list:
rt_ports = self.address_data.get_default_gw()
if header_list[IPV4].dst in rt_ports:

Packet to router’s port.
if ICMP in header_list:

if header_list[ICMP].type == icmp.ICMP_ECHO_REQUEST:
self._packetin_icmp_req(msg, header_list)
return

elif TCP in header_list or UDP in header_list:
self._packetin_tcp_udp(msg, header_list)
return

else:
Packet to internal host or gateway router.
self._packetin_to_node(msg, header_list)
return

The header_list argument is extracted from the message in the packet_in_handler contained in the Router object and
passed as a parameter to the packet_in_handler in VlanRouter. As can be seen in the code above, if the message is
ARP, the method _packetin_arp is launched. This is a large method so we’ll chunk it down for a better analysis:

def _packetin_arp(self, msg, header_list):
src_addr = self.address_data.get_data(ip=header_list[ARP].src_ip)
if src_addr is None:

return

case: Receive ARP from the gateway
Update routing table.

case: Receive ARP from an internal host
Learning host MAC.
gw_flg = self._update_routing_tbl(msg, header_list)
if gw_flg is False:

self._learning_host_mac(msg, header_list)

...

This is the part of the code that writes the rest of the flows to the switches. Specifically the _update_routing_tbl method
checks if the source IP address correspond to one of the gateways listed in the routing table. If so, it uses the method
set_routing_flow to write a flow, after updating the MAC address of the gateway in its routing table.

• Ethertype (Match): IPv4

• Destination IP (Match): Source IP of the ARP packet.

• Destination MAC address to be set (Action): Source MAC address of the ARP packet.

• Source MAC address to be set(Action): MAC address from the ingress port of the ARP packet.

• Decrement time to live (Action)

• Output Port (Action): Ingress port of the ARP packet.

This way, the application uses ARP traffic to write the entries of its routing table to the switches, relating them to MAC
addresses and ports.

The method _learning_host_mac is launched when the source IP address of the ARP packet does not correspond to a
gateway. In this case, the application writes a flow to the switch, so it "learns" the host. The flow has the following
fields:

• Ethertype (Match): IPv4

• Destination IP (Match): Source IP of the ARP packet.

• Destination MAC address to be set (Action): Source MAC address of the ARP packet.

• Source MAC address to be set(Action): MAC address from the ingress port of the ARP packet.

• Decrement time to live (Action)

• Output Port (Action): Ingress port of the ARP packet.

This is what the Application calls an Implicit routing flow.
...

ARP packet handling.
in_port = self.ofctl.get_packetin_inport(msg)
src_ip = header_list[ARP].src_ip
dst_ip = header_list[ARP].dst_ip
srcip = ip_addr_ntoa(src_ip)
dstip = ip_addr_ntoa(dst_ip)
rt_ports = self.address_data.get_default_gw()

if src_ip == dst_ip:
GARP -> packet forward (normal)
output = self.ofctl.dp.ofproto.OFPP_NORMAL
self.ofctl.send_packet_out(in_port, output, msg.data)

self.logger.info(’Receive GARP from [%s].’, srcip,
extra=self.sw_id)

self.logger.info(’Send GARP (normal).’, extra=self.sw_id)

...

If the source and destination IP of the ARP are the same, the packet is identified as a Gratouitous ARP request (GARP).
A gratuitous ARP request is an AddressResolutionProtocol request packet where the source and destination IP are
both set to the IP of the machine issuing the packet and the destination MAC is the broadcast address ff:ff:ff:ff:ff:ff. A
gratuitous ARP reply is a reply to which no request has been made.

In the case of detecting a GARP, the controller sets the output port to NORMAL (see section 1.3) and send the packet
back to the switch with a PAcket Out message.

...

elif dst_ip not in rt_ports:
dst_addr = self.address_data.get_data(ip=dst_ip)
if (dst_addr is not None and

src_addr.address_id == dst_addr.address_id):
ARP from internal host -> packet forward (normal)
output = self.ofctl.dp.ofproto.OFPP_NORMAL
self.ofctl.send_packet_out(in_port, output, msg.data)

self.logger.info(’Receive ARP from an internal host [%s].’,
srcip, extra=self.sw_id)

self.logger.info(’Send ARP (normal)’, extra=self.sw_id)

...

The variable rt_ports is the list of default gateways plus the networks (the result of aplying the mask to the address)
to where the router is connected. If the destination IP address is not in this list, the application checks if the address
is contained in the dictionary object address_data which is an instance of AddressData and contains a list of known
addresses with an associated gateway and mask, encapsulated inside Address objects.

If the destination address is contained in this dictionary, and both destination and source addresses belong to the same
network, the controller sends a Packet Out instruction to the switch with output port set to NORMAL. The switch then
will perform L2 switching.

...

else:
if header_list[ARP].opcode == arp.ARP_REQUEST:

ARP request to router port -> send ARP reply
src_mac = header_list[ARP].src_mac
dst_mac = self.port_data[in_port].mac
arp_target_mac = dst_mac

output = in_port
in_port = self.ofctl.dp.ofproto.OFPP_CONTROLLER

self.ofctl.send_arp(arp.ARP_REPLY, self.vlan_id,
dst_mac, src_mac, dst_ip, src_ip,
arp_target_mac, in_port, output)

log_msg = ’Receive ARP request from [%s] to router port [%s].’
self.logger.info(log_msg, srcip, dstip, extra=self.sw_id)
self.logger.info(’Send ARP reply to [%s]’, srcip,

extra=self.sw_id)

elif header_list[ARP].opcode == arp.ARP_REPLY:
ARP reply to router port -> suspend packets forward
log_msg = ’Receive ARP reply from [%s] to router port [%s].’
self.logger.info(log_msg, srcip, dstip, extra=self.sw_id)

packet_list = self.packet_buffer.get_data(src_ip)
if packet_list:

stop ARP reply wait thread.
for suspend_packet in packet_list:

self.packet_buffer.delete(pkt=suspend_packet)

send suspend packet.
output = self.ofctl.dp.ofproto.OFPP_TABLE
for suspend_packet in packet_list:

self.ofctl.send_packet_out(suspend_packet.in_port,
output,
suspend_packet.data)

self.logger.info(’Send suspend packet to [%s].’,
srcip, extra=self.sw_id)

The last case, checks if the ARP is a request or a reply. If the packet is an ARP request, the controller tells the switch
to send an ARP reply.

If the packet is an ARP reply, the application checks its buffer to see if there’s a packet which destination IP address
matches the source IP address of the ARP reply. If there’s a match, deletes the packet from the buffer and proceeds
to send the packet to the switch where the output port is OFPP_TABLE. This means that the controller is telling the
switch to apply the Flow Table again to the packet contained in the Packet Out message

Now that we have seen how these new flows have been written to the switches, let’s see how the controller handels
ICMP messages between hosts.

Case 1: ICMP messages between internal hosts

For example, let’s test what happens if we send an ICMP request from host h1 to host h2. Both hosts are inside the
same network, so the router should act as an L2 switch.

When we execute the following command from the Mininet CLI:

mininet> h1 ping -c1 h2

We get the wireshark capture of Figure 4.7 and the following messages are displayed in the terminal where the Ryu
Application is running:

[RT][INFO] switch_id=0000000000000001: Set implicit routing flow [cookie=0x1]
[RT][INFO] switch_id=0000000000000001:

Receive ARP from an internal host [10.0.1.1].
[RT][INFO] switch_id=0000000000000001: Send ARP (normal)
[RT][INFO] switch_id=0000000000000001: Set implicit routing flow [cookie=0x1]
[RT][INFO] switch_id=0000000000000001:

Receive ARP from an internal host [10.0.1.2].
[RT][INFO] switch_id=0000000000000001: Send ARP (normal)
[RT][INFO] switch_id=0000000000000001: Set implicit routing flow [cookie=0x1]
[RT][INFO] switch_id=0000000000000001:

Receive ARP from an internal host [10.0.1.2].
[RT][INFO] switch_id=0000000000000001: Send ARP (normal)
[RT][INFO] switch_id=0000000000000001: Set implicit routing flow [cookie=0x1]
[RT][INFO] switch_id=0000000000000001:

Receive ARP from an internal host [10.0.1.1].
[RT][INFO] switch_id=0000000000000001: Send ARP (normal)

Figure 4.7: Capture from interface s1-eth1

According to these results, the hosts reach each other and the controller has set four new implicit routing flows in
router s1. The new flows found on the Flow Table are:

1
cookie=0x1, duration=875.220s, table=0, n_packets=0, n_bytes=0,
idle_timeout=1800, priority=35,ip,nw_dst=10.0.1.1
actions=dec_ttl,set_field:5a:5e:70:64:60:0a->eth_src,
set_field:00:00:00:00:01:01->eth_dst,output:1

2
cookie=0x1, duration=875.227s, table=0, n_packets=0, n_bytes=0,
idle_timeout=1800, priority=35,ip,nw_dst=10.0.1.2
actions=dec_ttl,set_field:e6:6e:36:53:26:0a->eth_src,
set_field:00:00:00:00:01:02->eth_dst,output:2

It seems that only two flows have been added to the Flow Table. The second two flows that appear in the log of the
Ryu Application are set when the ARP cache validation messages are transmitted to the controller after the ICMP
exchange. This two flows are escactly the same as the ones before, so the switch does not write them again. The
controller has writes these flows with the _learning_host_mac method commented previously. As can be seen above,
matches consist on the destination IP address and actions consist on decrementing the TTL, changing the source and
destination MAC addresses and sending the packet through the port learnt thanks to the ARP packet.

Here we can see that as this match only affects to IPv4 packets, matching only the destination does not lead to a
problem, as ARP packets are always forwarded to the controller. This would be a good and simple solution to the
problem proposed in Section 3.6.5, where we concluded that if only the destination is matched, there is a host that
never get its flows written.

As we can see, the controller only has to deal with ARP traffic for an internal ICMP message exchange.

Case 2: ICMP messages between remote hosts

Now, let’s see what happens if we send an ICMP request from host h1 to host h2. In this case, hosts are in different
netowrks, so the packets will go through three different networks before they reach it’s destiny.

When introducing the following command in the Mininet CLI: mininet> h1 ping -c1 h3 We get the wire-
shark captures of Figures 4.8, 4.9, 4.10 and 4.11. This captures correspond to the interfaces the ICMP request travels
in chronological order. We can observe how the edge routers handle ARP traffic in the capilar networks. There are no
ARP messages in the backbone network during this transmition. This is because the ICMP packet matches one of the
flows written during the address and route setup through the REST API.

Observe that the MAC addresses are different in each capture, as the rules in each router tell them to change it.

Figure 4.8: Capture from interface s1-eth1

Figure 4.9: Capture from interface s4-eth1

Figure 4.10: Capture from interface s4-eth2

Figure 4.11: Capture from interface s2-eth1

The following messages are displayed in the terminal where the Ryu Application is running:

[RT][INFO] switch_id=0000000000000001: Set implicit routing flow [cookie=0x1]
[RT][INFO] switch_id=0000000000000001:

Receive ARP request from [10.0.1.1] to router port [10.0.1.100].
[RT][INFO] switch_id=0000000000000001: Send ARP reply to [10.0.1.1]
[RT][INFO] switch_id=0000000000000002:

Receive IP packet from [10.0.1.1] to an internal host [10.0.2.3].
[RT][INFO] switch_id=0000000000000002: Send ARP request (flood)
[RT][INFO] switch_id=0000000000000002: Set implicit routing flow [cookie=0x1]
[RT][INFO] switch_id=0000000000000002:

Receive ARP reply from [10.0.2.3] to router port [10.0.2.100].
[RT][INFO] switch_id=0000000000000002: Send suspend packet to [10.0.2.3].
[RT][INFO] switch_id=0000000000000002: Set implicit routing flow [cookie=0x1]
[RT][INFO] switch_id=0000000000000002:

Receive ARP request from [10.0.2.3] to router port [10.0.2.100].
[RT][INFO] switch_id=0000000000000002: Send ARP reply to [10.0.2.3]

The first three messages refer to the process explained in the previous section, where the controller learns the host
through the ARP handler method. The flow that results from this is the following:

cookie=0x1, duration=102.754s, table=0, n_packets=1, n_bytes=98,
idle_timeout=1800, priority=35,ip,nw_dst=10.0.1.1
actions=dec_ttl,set_field:c2:ae:4d:33:79:3a->eth_src,
set_field:00:00:00:00:01:01->eth_dst,output:1}

The ICMP request that follows the ARP request, matches one of the low priority flows. The one corresponding to the
default route for IP packets:

cookie=0x10000, duration=110.731s, table=0, n_packets=1, n_bytes=98,
priority=1,ip actions=dec_ttl,set_field:00:00:00:11:11:11->eth_src,
set_field:00:00:00:44:44:01->eth_dst,output:3

Therefore, the MAC addresses are changed and the packet is sent through port 3, which corresponds to the interface
s1-eth3 which is conected to the interface s4-eth1.
Once the packet enters router s4, the packet matches one of the static-route flows, therefore the router changes the
MAC addresses and forwards the packet to router s2:

cookie=0x20000, duration=621.906s, table=0, n_packets=1, n_bytes=98,
priority=26,ip,nw_dst=10.0.2.0/24
actions=dec_ttl,set_field:00:00:00:44:44:02->eth_src,
set_field:00:00:00:22:22:22->eth_dst,output:2

The packet then enters router s2, and matches the following flow:

cookie=0x1, duration=744.569s, table=0, n_packets=1, n_bytes=98,
priority=2,ip,nw_dst=10.0.2.0/24 actions=CONTROLLER:65535

The packet is sent to the controller as it’s specified in the flow. The message is passed through the objects in the
Ryu Application to the packet_in_handler method in the VlanRouter object associated to the router s2. The Packet-In
handler checks that the packet is an IPv4 packet and it’s not directed to any of the default gateways. Then, method
_packetin_to_node is launched to handle this situation.

def _packetin_to_node(self, msg, header_list):
if len(self.packet_buffer) >= MAX_SUSPENDPACKETS:

self.logger.info(’Packet is dropped, MAX_SUSPENDPACKETS exceeded.’,
extra=self.sw_id)

return

Send ARP request to get node MAC address.
in_port = self.ofctl.get_packetin_inport(msg)
src_ip = None
dst_ip = header_list[IPV4].dst
srcip = ip_addr_ntoa(header_list[IPV4].src)
dstip = ip_addr_ntoa(dst_ip)

address = self.address_data.get_data(ip=dst_ip)
if address is not None:

log_msg = ’Receive IP packet from [%s] to an internal host [%s].’
self.logger.info(log_msg, srcip, dstip, extra=self.sw_id)
src_ip = address.default_gw

else:
route = self.routing_tbl.get_data(dst_ip=dst_ip)
if route is not None:

log_msg = ’Receive IP packet from [%s] to [%s].’
self.logger.info(log_msg, srcip, dstip, extra=self.sw_id)
gw_address = self.address_data.get_data(ip=route.gateway_ip)
if gw_address is not None:

src_ip = gw_address.default_gw
dst_ip = route.gateway_ip

if src_ip is not None:
self.packet_buffer.add(in_port, header_list, msg.data)
self.send_arp_request(src_ip, dst_ip, in_port=in_port)
self.logger.info(’Send ARP request (flood)’, extra=self.sw_id)

This method stores the packet in a buffer and sends an ARP request to discover destination host’s MAC address. When
the reply arrives, the ARP handler will write the flow, look for the packet in the buffer, delete it and send it to the host.
This is what is displayed as Send suspend packet to [10.0.2.3] in the Ryu Application’s log.

4.3.4 Modifications to create a simple MPLS application

Now that the basics of the IP application have been explained, let’s create a MPLS network adding some modifications
to the rest_router application.

If we want the backbone network to behave as an MPLS network, we have to take in consideration what this behavior
will be.

When the first packet travels from one host to another after the setup the following events should happen:

• The host sends an ARP request to discover the gateway MAC address.

• The gateway forwards the packet to the controller.

• The controller writes a flow to the gateway to learn the host, and tells it to send an ARP reply.

• The host receives the ARP reply and sends an ICMP packet.

• The packet enters the default gateway (LER) of the host.

• The packet matches one of the flows and is sent to the controller.

• The controller chooses a label and stores the relationship between the label, the source IP and the destination IP.

• The controller writes a flow to the LER that matches the source and destination IP address, pushes a MPLS label
to the packet and sends it through the port that is connected to the LSR.

• The packet is sent back to the LER, and matches the last written flow.

• The packet enters the LSR, matches a flow and it’s sent to the controller.

• The controller examines the label, looks up the destination address that is associated to that label. Chooses a
new label, stores the relation between the label and the source and destination addresses. Writes a flow to the
LSR matching the ingress pot and the label, that pops the MPLS label, pushes a new one, and sends it through
the port connected to the LER that belongs to the destination network.

• The packet is sent back to the LSR, and matches the last written flow.

• The packet enters the LER, matches a flow and it’s sent to the controller.

• The controller examines the label and looks up the destination address that is associated to that label. Checks if
the destination is a known host, if not, buffers the packet and sends an ARP request to learn the host. When (or
once) the host is known, the controller writes a flow that matches the label and forwards the packet through the
port connected to the destination.

Here is the list of problems that have to be solved:

• Routers have no IP addresses inside the MPLS network, so routing tables are not useful here. The administrator
has to be able to pass a relation between the destination network and the output port (corresponding to an
interface) to the routers.

• LER and LSR behave differently and the controller should treat them in different ways. The administrator
should be able to tell the controller which routers ar LER and which routers are LSR

• The controller needs a mapping relating labels to its destination, so it knows what flow to set when a router
sends a packetin message with a MPLS packet in it. New classes have to be created to store those values.

• The controller needs a list of the known hosts, to know which port must be used when a packet is leaving the
MPLS network.

• New handlers have to be implemented for the different scenarios of a MPLS network: When a packet enters the
network, when a packet travels through a LSR and when a packet leaves the network.

• New methods for flow writting have to be implemented, as the ones provided in the OfCtl class don’t consider
all the fields needed for the flows we will need to write.

In this particular implementation each label will be associated to a virtual circuit between remote hosts.

More than 400 lines of code have been added to the original Ryu Application in order to achieve the desired behavior
(Total lines: 2319). Every modification is preluded by a comment starting with the tag MPLSmod. The complete
source code can be found in section 4.5.2

4.3.5 Writting data through the REST API

The first thing that needs to be done is modifying the REST API of this application so the administrator can properly
configure LERs and LSRs

We want to be able to pass the following messages to the controller:

• Network address/Mask and Output port for a given router

• Router type (LER/LSR)

So, for instance, if we want to configure router s4 as a LSR, and set up the information about the distantion networks
and ports, we would send the controller the following messages:

curl -X POST -d ’{"prefix":"10.0.1.0/24", "port":"1"}’
http://localhost:8080/router/0000000000000004

curl -X POST -d ’{"prefix":"10.0.2.0/24", "port":"2"}’
http://localhost:8080/router/0000000000000004

curl -X POST -d ’{"prefix":"10.0.3.0/24", "port":"3"}’
http://localhost:8080/router/0000000000000004

curl -X POST -d ’{"router":"lsr"}’
http://localhost:8080/router/0000000000000004

As we want the controller to be able to store and process this data, we modify the set_data method in the VlanRouter
class, leaving it as follows:

def set_data(self, data):
details = None

try:
Set address data
if REST_ADDRESS in data:

address = data[REST_ADDRESS]

address_id = self._set_address_data(address)
details = ’Add address [address_id=%d]’ % address_id

Set routing data
elif REST_GATEWAY in data:

gateway = data[REST_GATEWAY]
if REST_DESTINATION in data:

destination = data[REST_DESTINATION]
else:

destination = DEFAULT_ROUTE
route_id = self._set_routing_data(destination, gateway)
details = ’Add route [route_id=%d]’ % route_id

MPLSmod: set prefix-port mapping data
elif REST_PREFIX in data:

prefix = data[REST_PREFIX]
port = data[REST_PORT]
prefix_id = self._set_prefix_data(prefix, port)
details = ’Add prefix to port [prefix_id=%d]’ % prefix_id

MPLSmod: set router type
elif REST_ROUTER in data:

router = data[REST_ROUTER]
self._set_router_type(router)
details = ’Add router type: %s’ % router

except CommandFailure as err_msg:
msg = {REST_RESULT: REST_NG, REST_DETAILS: str(err_msg)}
return self._response(msg)

if details is not None:
msg = {REST_RESULT: REST_OK, REST_DETAILS: details}
return self._response(msg)

else:
raise ValueError(’Invalid parameter.’)

The constants REST_PORT, REST_PREFIX and REST_ROUTER correspond to the keywords ’port’, ’prefix’ and
’router’ used in the parameter of the POST command.

If the message is a ’set prefix data’ message, _set_prefix_data method is launched. If it’s a ’set router type’ message,
_set_router_type is launched.

#MPLSmod: set router type
def _set_router_type(self, router):

self.router_type = router

MPLSmod: set port data method
def _set_prefix_data(self, prefix, port):

cookie = 0x800
prefix = self.prefix_data.add(prefix, port)
Set flow: IP packets aiming this
prefix are sent to the controller

priority = self._get_priority(PRIORITY_MPLS_PREFIX)
self.ofctl.set_packetin_flow(cookie, priority,

dl_type=ether.ETH_TYPE_IP,
dst_ip=prefix.address,
dst_mask=prefix.netmask)

return prefix.prefix_id

As can be seen in the code above the ’set router type’ method only sets the attribute router_type to the message passed
throug the REST API, which can be ’ler’ or ’lsr’. When the VlanRouter object is cretaed this attribute is set to ’ler’ by
default.

The method _set_prefix_data stores the prefix (network/mask) and port values in the attribute prefix_data and then
writes a flow.

The attribute prefix_data is a PrefixData object, which is a class that has been created when modifying the original
code. This object stores Prefix objects, which encapsulate the prefix/port relation and contain a method to calculate if
an IP address corresponds to that prefix:

MPLSmod: class to store the prefix-port info
class PrefixData(dict):

def __init__(self):
super(PrefixData, self).__init__()
self.prefix_id = 1

Does not check for overlaps yet

def add(self, prefix, port):
err_msg = ’Invalid [%s] value.’ % REST_PREFIX
nw_addr, mask, default_gw = nw_addr_aton(prefix, err_msg=err_msg)
prefix = Prefix(nw_addr, mask, port, self.prefix_id)
ip_str = ip_addr_ntoa(nw_addr)
key = ’%s/%d’ % (ip_str, mask)
self[key] = prefix
self.prefix_id = self.prefix_id + 1
return prefix

MPLSmod: class to encapsulate the prefix-port relation
class Prefix(object):

def __init__(self, address, netmask, port, prefix_id):
self.prefix_id = prefix_id
self.address = address
self.netmask = netmask
self.port = port

def compare(self, ip):
if ipv4_apply_mask(ip, self.netmask) == self.address:

return True
else:

return False

The flows written by the method set_prefix_data in the case of router s4, using the REST commands shown previously,

would be the following:

cookie=0x800, duration=72.914s, table=0, n_packets=0, n_bytes=0,
priority=1,ip,nw_dst=10.0.1.0/24 actions=CONTROLLER:65535

cookie=0x800, duration=72.862s, table=0, n_packets=0, n_bytes=0,
priority=1,ip,nw_dst=10.0.2.0/24 actions=CONTROLLER:65535

cookie=0x800, duration=72.812s, table=0, n_packets=0, n_bytes=0,
priority=1,ip,nw_dst=10.0.3.0/24 actions=CONTROLLER:65535

This flows match the IPv4 packets heading to a certain network. When there’s a match, the datapath sends the packets
to the controller for further processing.

4.3.6 Storing labels and hosts

Information about labels and hosts should be stored in the controller if we want the system to perform as described in
section 4.3.4.

Labels

In order to store the labels properly, two classes have been defined: MplsLabel and MplsData. The second class is a
dictionary class, which functionality is to store MplsLabel objects.

MPLSmod: class mapping IP addresses to labels
class MplsData(dict):

def __init__(self):
super(MplsData, self).__init__()

def add(self, dpid, label_value, dst_ip):
self[dpid][label_value] = dst_ip

MPLSmod: class to encapsulate labels
class MplsLabel(object):

def __init__(self, value=20):
self.value = value

def increase(self):
self.value = self.value + 1

The VlanRouter class will have two extra attributes: one MplsLabel object that will allow to generate Labels, and a
MplsData object to store them. The MplsLabel object will be created (with a default value of 20) in the contructor
method while the MplsData object will be passed to the constructor as an argument. This last action is really important,
as there’s a VlanRouter object for each Router object, and each Router object is associated to one of the datapaths of
the network. All of them should share the same MplsData object in order to access the information stored by the other
VlanRouter objects. For this purpose, the constructor methods of VlanRouter and Router classes have been modified

to take the MplsData object as an argument. The MplsData object is cretated in the constructor of the RestRouterAPI
class, and passed to each new Router object that is created.

Hosts

Another necessary modifaction is to make the Ryu Application store relevant information about hosts. It is true that
the original application has a method called _learning_host_mac, but it only writes a flow in the OpenFlow Switch,
and the information about the host is not stored.

To change this, we have created the classes Host and HostDict so the controller can store the data in a structured
manner.

MPLSmod: classes to store host data
class HostDict(dict):

def __init__(self):
super(HostDict, self).__init__()

def add(self, ip, port, mac):
self[ip] = Host(ip, port, mac)

class Host(object):

def __init__(self, ip, port, mac):
self.ip = ip
self.port = port
self.mac = mac

A HostDict object is added as an attribute to the VlanRouter constructor. We have also modified the method _learn-
ing_host_mac so it stores the relevant data (IP, port, MAC) in the HostDict object before the flow is written.

4.3.7 Handling the packets that enter the network

The question that we want to answer in this section is: What should the controller do when it receives a Packet-in
message from one of the LERs, containing an IP packet that needs to go through the MPLS network?

We will supose, in order to ilustrate this issue better, that host h1 (network 10.0.1.0/24) sends an ICMP message to
host h3 (network 10.0.2.0/24).

After the ARP handling, the ICMP packet enters the router s1 and matches one of the flows written during the REST
setup:

cookie=0x800, duration=4.121s, table=0, n_packets=0, n_bytes=0,
priority=1,ip,nw_dst=10.0.2.0/24 actions=CONTROLLER:65535

The packet is sent to the controller inside a Packet-In message, which is passed until the packet_in_handler method of
the VlanRouter object associated to the datapath s1. To handle this packets properly, the packet_in_handler method
has been modified as follows:

def packet_in_handler(self, msg, header_list):
Check invalid TTL (for OpenFlow V1.2/1.3)
ofproto = self.dp.ofproto
if ofproto.OFP_VERSION == ofproto_v1_2.OFP_VERSION or \

ofproto.OFP_VERSION == ofproto_v1_3.OFP_VERSION:
if msg.reason == ofproto.OFPR_INVALID_TTL:

self._packetin_invalid_ttl(msg, header_list)
return

Analyze event type.

if ARP in header_list:
self._packetin_arp(msg, header_list)
return

MPLSmod: If packetin is an MPLS packet
if MPLS in header_list:

if self.router_type == ROUTER_TYPE_LER:
LER method
self.logger.info(’MPLS packet entering LER’, extra=self.sw_id)
self._packetin_from_mpls_network(msg, header_list)

elif self.router_type == ROUTER_TYPE_LSR:
LSR method
self.logger.info(’MPLS packet entering LSR’, extra=self.sw_id)
self._packetin_to_lsr(msg, header_list)

elif IPV4 in header_list:
self.logger.info(’IPV4 packet’,

extra=self.sw_id)
rt_ports = self.address_data.get_default_gw()
if header_list[IPV4].dst in rt_ports:

self.logger.info(’Packet in: dst in rt ports’,
extra=self.sw_id)

Packet to router’s port.
if ICMP in header_list:

if header_list[ICMP].type == icmp.ICMP_ECHO_REQUEST:
self._packetin_icmp_req(msg, header_list)
return

elif TCP in header_list or UDP in header_list:
self._packetin_tcp_udp(msg, header_list)
return

else:
OLDCODE: Packet to internal host or gateway router.
self._packetin_to_node(msg, header_list)

MPLSmod: Packets to be routed into the MPLS network
self._packetin_to_mpls_network(msg, header_list)
return

This method has been modified in several ways. If the packet is a MPLS packet then the method checks if the datapath
is a LER or a LSR, and then launches the corresponding method.

In the case we are discussing (IPv4 packet entering the MPLS network) the modification that makes the label being
pushed to the packet, and the packet being forwarded to the LSR is in the last lines of the method. The _pack-
etin_to_node method has been substitued by the _packetin_to_mpls_network method, which is in charge oh handling
the packet.

MPLSmod: method for IP to MPLS handling
def _packetin_to_mpls_network(self, msg, header_list):

self.logger.info(’Launching packetin_to_mpls_network method.’,
extra=self.sw_id)

if len(self.packet_buffer) >= MAX_SUSPENDPACKETS:
self.logger.info(’Packet is dropped, MAX_SUSPENDPACKETS exceeded.’,

extra=self.sw_id)
return

in_port = self.ofctl.get_packetin_inport(msg)
dst_ip = header_list[IPV4].dst
src_ip = header_list[IPV4].src

for key in self.prefix_data:
prefix = self.prefix_data[key]
if prefix.compare(dst_ip):

Write flow & packet out
priority = self._get_priority(PRIORITY_PUSH_MPLS)
cookie = 0x810
out_port = int(prefix.port)
self.ofctl.set_mpls_flow(cookie, priority, self.mpls_label.value,

in_port, out_port, MPLS_PUSH_LABEL, nw_dst=dst_ip,
nw_src=src_ip)

self.ofctl.send_mpls_packet_out(in_port,
out_port, msg.data, self.mpls_label.value, MPLS_PUSH_LABEL)

self.mpls_data.add(self.dpid, self.mpls_label.value, dst_ip)
self.mpls_label.increase()
break

Else drop

The first thing this method does is to extract relevant information from the packet, such as the ingress port, source
IP and destination IP. Then, it looks up in its PrefixData object the network the destination IP address belongs to.
When a match is found, a flow is constructed with the output port found in the Prefix object that matched. This flow is
constructed and set into the datapath with the method set_mpls_flow and then, the packet is processed and sent back to
the switch with the method send_mpls_packet_out. The implementation of these two methods is explained in section
4.3.10. Note that the label value that is passed to this methods is the current value of the mpls_label attribute, which is
a MplsLabel object.

After the Packet Out message has been sent, the controller stores the information related to the label and the datapath
that pushes it in the MplsData object. After this is done, the value of the mpls_label is increased, so a different label
will be pushed into the next packet that comes through this method for this datapath.

The resulting flow is:

cookie=0x810, duration=5.229s, table=0, n_packets=0, n_bytes=0,
priority=2,ip,nw_src=10.0.1.1,nw_dst=10.0.2.3

actions=push_mpls:0x8847,set_field:20->mpls_label,output:3

This flow relates a source and a destination IP address to a MPLS label. In this case label 20.

4.3.8 Handling the packets that enter the LSR

Once the packet is sent through the right port it enters the LSR and matches the following flow:

cookie=0x24, duration=149.726s, table=0, n_packets=0,
n_bytes=0, priority=1,mpls actions=CONTROLLER:65535

This flow has been installed when the VlanRouter object has been created. This is a modification we added to the
application so every MPLS packet that enters a router is sent to the controller. The method used to install this flow is
the set_packetin_flow with the ethertype set to MPLS. The action associated to this flow is to send the packet to the
controller.

The datapath generates a Packet-In message and sends it to the controller. The controller passes this message to the
modified packet_in_handler method explained in section 4.3.7.

As this packet is a MPLS packet and the Packet-In message was issued by a LSR, the method _packetin_to_lsr is
launched. Let’s analize this method in detail:

MPLSmod: When packet enters LSR
def _packetin_to_lsr(self, msg, header_list):

in_port = self.ofctl.get_packetin_inport(msg)
dst_ip = header_list[IPV4].dst
src_ip = header_list[IPV4].src
label_in = self.ofctl.get_packetin_mplslabel(msg)
self.logger.info(’packet_in label: %s’ % label_in,

extra=self.sw_id)

address = 0
orig_id = self.get_origin_id_lsr(in_port)
self.logger.info(’Origin ID: %s’ % orig_id,

extra=self.sw_id)
for label in self.mpls_data[orig_id]:

if label == label_in:
self.logger.info(’Label match: %s’ % str(label),

extra=self.sw_id)
address = self.mpls_data[orig_id][label]
break

...

First, the method extracts the relevant data from the packet: ingress port, destination IP, source IP and MPLS label.
Using the ingress port as a reference the method get_origin_id finds the ID of the datapath that pushed the MPLS
label. The method then checks in the MplsData object if the label of the packet matches any of the labels pushed by
the datapath. This lines where wrote down for debugging reasons, but we use them to get the destination IP of the
packet (again). We could safely remove them and set address = dst_ip

...

for key in self.prefix_data:
prefix = self.prefix_data[key]
if address == 0:

self.logger.info(’No label match! Dropping packet...’,
extra=self.sw_id)

break
if prefix.compare(address):

self.logger.info(’Label match! Swapping label...’,
extra=self.sw_id)

Create a new label:
self.mpls_label.increase()
Write flow & packet out
priority = self._get_priority(PRIORITY_SWAP_MPLS)
cookie = 0x820
out_port = int(prefix.port)

self.ofctl.set_mpls_flow(cookie, priority, self.mpls_label.value,
in_port, out_port, MPLS_SWAP_LABEL, nw_dst=dst_ip,
nw_src=src_ip, oldlabel=label_in)

self.ofctl.send_mpls_packet_out(in_port,
out_port, msg.data, self.mpls_label.value, MPLS_SWAP_LABEL)

self.mpls_data.add(self.dpid, self.mpls_label, dst_ip)
break

In this piece of code, the application checks if the destination IP address belongs to one of the prefixes stored in the
PrefixData object. When a match is found, a new label is created, a new flow implemnting the label swap is set, and a
Packet Out message is issued to the datapath. The resulting flow is:

cookie=0x820, duration=7.494s, table=0, n_packets=0, n_bytes=0,
priority=2,mpls,in_port=1,mpls_label=20
actions=pop_mpls:0x0800,push_mpls:0x8847,
set_field:21->mpls_label,output:2

The switch will swap the label 20 for the label 21 and send the packet through port 2.

4.3.9 Handling the packets that leave the network

Once the packet leaves the LSR, it enters another LER, and it’s ready to leave the MPLS network. Once inside the
LER (s2 in this case), the packet matches the following flow:

cookie=0x24, duration=385.890s, table=0, n_packets=0,
n_bytes=0, priority=1,mpls actions=CONTROLLER:65535

Therefore, a Packet-In message is generated by the datapath and sent to the controller, with the mpls packet inside.
The controller passes this message to the modified packet_in_handler method explained in section 4.3.7.

As this packet is a MPLS packet and the Packet-In message was issued by a LSR, the method _packetin_from_mpls_network
is launched. Let’s analize this method in detail:

def _packetin_from_mpls_network(self, msg, header_list):
Extract data
in_port = self.ofctl.get_packetin_inport(msg)
dst_ip = header_list[IPV4].dst
src_ip = header_list[IPV4].src
srcip = ip_addr_ntoa(header_list[IPV4].src)
dstip = ip_addr_ntoa(dst_ip)
label_in = self.ofctl.get_packetin_mplslabel(msg)

if dst_ip not in self.hosts:

Send ARP to learn the MAC address
address = self.address_data.get_data(ip=dst_ip)

if address is not None:
log_msg = ’Receive IP packet from [%s] to an internal host [%s].’
self.logger.info(log_msg, srcip, dstip, extra=self.sw_id)
src_ip = address.default_gw

if src_ip is not None:
self.packet_buffer.add(in_port, header_list, msg.data)
self.send_arp_request(src_ip, dst_ip, in_port=in_port)
self.logger.info(’Send ARP request (flood)’, extra=self.sw_id)

...

This piece of code extracts some relevant data from the packet, such as the ingress port, the destination IP, the source
IP and the MPLS label. If the destination IP address is not in the known hosts table, then the MPLS packet is buffered
and an ARP packet is generated to discover the host.

...

else:
Write flow & packet out
priority = self._get_priority(PRIORITY_POP_MPLS)
cookie = 0x830
out_port = self.hosts[dst_ip].port
dl_src = self.port_data[out_port].mac
dl_dst = self.hosts[dst_ip].mac
self.ofctl.set_mpls_flow(cookie, priority, self.mpls_label.value,

in_port, out_port, MPLS_POP_LABEL, nw_dst=dst_ip,
dst_mac=dl_dst, src_mac=dl_src, oldlabel=label_in)

self.ofctl.send_mpls_packet_out(in_port, out_port, msg.data,
self.mpls_label.value, MPLS_POP_LABEL, dst_mac=dl_dst,
src_mac=dl_src)

If the destination IP is in the known hosts table, the port is extracted from such table to build the action of the flow that
will be installed. A flow is set and a Packet Out message is issued to the datapath. The flow written to the datapath
is:

cookie=0x830, duration=271.066s, table=0, n_packets=0, n_bytes=0,
priority=2,mpls,mpls_label=21
actions=pop_mpls:0x0800,set_field:0e:8e:39:5f:7b:d9->eth_src,
set_field:00:00:00:00:02:03->eth_dst,output:1

In this particular case, the flows matches MPLS packets with label 21. When there’s a match, the datapath pops the
MPLS label, changes the source and destination MAC addresses and forwards the packet through port 1.

To understand better how this part works, we’ll make a simple walkthrough:

• A MPLS packet with certain label enters the LER.

• The packet is sent to the controller, and passed to the _packetin_from_mpls_network method

• The destination is an unknown host so the packet is buffered and an ARP request is generated and sent to the
destination network.

• An ARP reply enters the datapath, and it’s forwarded to the controller.

• The controller learns the host, removes the MPLS packet from the buffer and sends it again through the pipeline
of the OpenFlow switch. The switch sends the packet again to the controller, which passes it again to the
_packetin_from_mpls_network method

• This time, the destination is a known host, so a FlowMod and a Packet Out message are generated ans sent to
the datapath.

4.3.10 Methods to generate and set the MPLS flows

A few new methods of the class OfCtl have been shown in the previous section. We will see them in detail in this
section. This methods are:

• set_mpls_flow(self, cookie, priority, label, in_port, out_port, action, dl_vlan=0, nw_src=0, src_mask=32, nw_dst=0,
dst_mask=32, src_mac=0, dst_mac=0, idle_timeout=0, oldlabel=0)

• send_mpls_packet_out(self, in_port, out_port, data, label, action, dst_mac=0, src_mac=0)

The method set_mpls_flow has been implemented in order to provide a function that handels flow writting in a similar
way to the set_routing_flow or set_packetin_flow methods. The code of this method is:

MPLSmod: method to add mpls flows
def set_mpls_flow(self, cookie, priority, label, in_port, out_port, action,

dl_vlan=0, nw_src=0, src_mask=32, nw_dst=0, dst_mask=32,
src_mac=0, dst_mac=0, idle_timeout=0, oldlabel=0):

parser = self.dp.ofproto_parser
if action == MPLS_PUSH_LABEL:

dl_type = ether.ETH_TYPE_IP
actions = [parser.OFPActionPushMpls(ethertype=34887),

parser.OFPActionSetField(mpls_label=label),
parser.OFPActionOutput(out_port)]

self.set_flow(cookie, priority, dl_type=dl_type, dl_vlan=dl_vlan,
nw_src=nw_src, src_mask=src_mask,
nw_dst=nw_dst, dst_mask=dst_mask,
idle_timeout=idle_timeout, actions=actions)

elif action == MPLS_SWAP_LABEL:
dl_type = ether.ETH_TYPE_MPLS
actions = [parser.OFPActionPopMpls(),

parser.OFPActionPushMpls(ethertype=34887),
parser.OFPActionSetField(mpls_label=label),
parser.OFPActionOutput(out_port)]

match = parser.OFPMatch(in_port=in_port,
eth_type=dl_type, mpls_label=oldlabel)

self.set_my_flow(cookie, priority, match,
idle_timeout=idle_timeout, actions=actions)

elif action == MPLS_POP_LABEL:
dl_type = ether.ETH_TYPE_MPLS
actions = [parser.OFPActionPopMpls(),

parser.OFPActionSetField(eth_src=src_mac),
parser.OFPActionSetField(eth_dst=dst_mac),
parser.OFPActionOutput(out_port)]

match = parser.OFPMatch(eth_type=dl_type, mpls_label=oldlabel)
self.set_my_flow(cookie, priority, match,

idle_timeout=idle_timeout, actions=actions)

The method checks if the action to be performed is to push, swap or pop a label, takes the parameters it needs to
generate a match and an action and passes them to another custom method called set_my_flow. The exception to this
is the case of the ’push’ action, which only generates an action and uses the method set_flow to generate the match
and set the flow.

This is the code of the method set_my_flow:

MPLSmod: custom flow method
def set_my_flow(self, cookie, priority, match, idle_timeout=0, actions=None):

ofp = self.dp.ofproto
ofp_parser = self.dp.ofproto_parser
cmd = ofp.OFPFC_ADD

inst = [ofp_parser.OFPInstructionActions(ofp.OFPIT_APPLY_ACTIONS,
actions)]

m = ofp_parser.OFPFlowMod(self.dp, cookie, 0, 0, cmd, idle_timeout,
0, priority, UINT32_MAX, ofp.OFPP_ANY,
ofp.OFPG_ANY, 0, match, inst)

self.dp.send_msg(m)

The method creates an ’Apply-Actions’ instruction with the provided actions and generates a FlowMod message with
such instructions plus the match passed as an argument.

The method send_mpls_packet_out creates list of actions to be applied to the packet and sends it back to the datapath
in a PAcket Out message. When the datapath receives such message, it applies the list of actions.

def send_mpls_packet_out(self, in_port, out_port, data, label, action,
dst_mac=0, src_mac=0):

parser = self.dp.ofproto_parser
if action == MPLS_PUSH_LABEL:

actions = [parser.OFPActionPushMpls(ethertype=34887),
parser.OFPActionSetField(mpls_label=label),
parser.OFPActionOutput(out_port)]

elif action == MPLS_SWAP_LABEL:
actions = [parser.OFPActionPopMpls(),

parser.OFPActionPushMpls(ethertype=34887),
parser.OFPActionSetField(mpls_label=label),
parser.OFPActionOutput(out_port)]

elif action == MPLS_POP_LABEL:
actions = [parser.OFPActionPopMpls(),

parser.OFPActionSetField(eth_src=src_mac),
parser.OFPActionSetField(eth_dst=dst_mac),
parser.OFPActionOutput(out_port)]

self.dp.send_packet_out(buffer_id=UINT32_MAX, in_port=in_port,
actions=actions, data=data)

Depending on the action to be performed (push,pop or swap) it builds a different Action List. Then, uses the method
send_packet_out to forward the packet and the actions to the datapath.

4.3.11 Testing the MPLS application

Now that the main pieces of code have been reviewed, let’s test the application and see the results of the wireshark
captures to make sure everything works as planned.

To load everything, we first launch the topology using the pyhton script for mininet (complete code in section 4.5.2):

$ sudo python topology

Then we execute our application with the following command:

$ ryu-manager rest_MPLS_router.py

The complete source code of the application can be found on section 4.5.2

Once the application is running, and the routers have joined the controller, it’s time to launch the script that configures
the network through REST API. The code of the script can be found in section 4.5.2 and configures the network as
shown in Figure 4.12. We would launch the scriot with something like:

$./MPLSconfig.sh

Figure 4.12: Complete network setup after the REST configuration

Simple ping

If we send an ICMP message from host h3 (network 10.0.2.0/24) to host h6 (network 10.0.3.0/24), we instantly see
that there’s reachability:

mininet> h3 ping -c1 h6
PING 10.0.3.6 (10.0.3.6) 56(84) bytes of data.
64 bytes from 10.0.3.6: icmp_seq=1 ttl=64 time=105 ms

--- 10.0.3.6 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 105.148/105.148/105.148/0.000 ms

The captures show that labels have been pushed, swapped and popped, correctly. In figure 4.13, we can see the ICMP
request and reply. The label has been correctly popped from the reply, and the packet has been forwarded to the right
host.

Figure 4.13: Capture from interface s2-eth1

In figure 4.14, we can see the ICMP request and reply inside the MPLS network. The request just left the LER and
carries the label 20. The reply comes from the LSR and carries the label 22.

Figure 4.14: Capture from interface s4-eth2

In figure 4.15, we can see the ICMP request and reply inside the MPLS network. The request just left the LSR and
carries the label 21. The reply comes from the LER and carries the label 20. We can confirm that label swapping has
been don correctly.

Figure 4.15: Capture from interface s4-eth3

In figure 4.16, we can see the ICMP request and reply inside the 10.0.3.0/24 network. The label has been correctly
popped from the request, and the packet has been forwarded to the right host.

Figure 4.16: Capture from interface s3-eth1

Reachability

We can also see that all the hosts reach each other. If we perform a reachability test:

mininet> pingall

*** Ping: testing ping reachability
h1 -> h2 h3 h4 h5 h6 h7
h2 -> h1 h3 h4 h5 h6 h7
h3 -> h1 h2 h4 h5 h6 h7
h4 -> h1 h2 h3 h5 h6 h7
h5 -> h1 h2 h3 h4 h6 h7
h6 -> h1 h2 h3 h4 h5 h7
h7 -> h1 h2 h3 h4 h5 h6

*** Results: 0% dropped (42/42 received)

If we capture the packets in one of the interfaces of the LSR (for instance, s4-eth2) we can see that every packet
coming from the LSR has a different label. Also we see that every packet coming from the LER (s2) have different
labels as well. In figure 4.17 we see such capture, highliting an ICMP request traveling from host h2 to host h4 with
label 33.

Figure 4.17: Capture from interface s4-eth2

4.4 Third approach: Next steps

In this section we will discuss how a third approach for building a robust ryu application for MPLS networks shoud
be.

4.4.1 Simplification

We will begin with some simplifications that could be done to the application. This application works but some things
could be done in a different way:

• When setting the prefix data through the API rest there’s no need to write a flow each time. A single low priority
flow matching all IP packets with an associated action of sending the packets to the controller will be enough.
This flow could be installed when the VlanRouter object associated to a certain datapath is cretated.

• Also, writing flows for IP packets in the LSR does not make a much sense. This could also be simplified.

• The MplsData object could be avoided, as all the information needed for packet processing is already in the
packet header. This object can be useful however, for a network adminsitrator who wants to extract information
about the labels being used in the network through the REST API

4.4.2 Generalization

This application is too specific, it could be genralized in some ways:

• Some of the methods have been specified for this topology for simplicity, such methods are get_lsr_id and
get_origin_id_lsr. Changing the code contained in this methods will probably be necessary if a different topol-
ogy is used.

• Although being based on the IP router application, this new application modifies some methods that make the
application not compatible with IP routing, even if it can process routing information. The ideal application
(What we were originally seeking for) is an application that can configure some routers to work as classic IP
routers with routes, and some others like MPLS LER or LSR.

• Testing the application in diferent scenarios will also improve its adapatability: adding more networks, adding
more LSRs, etc.

4.4.3 Robustness and bug fixing

There are also a couple of things that could be done to improve the application’s robustness.

• The simple application discussed in previous section only suports POST commands for its MPLS capabilities.
GET and DELETE commands should also be implemented in order to make a robust application

• In some of the captures a message is displayed in the ARP replies: ’Duplicate use of xxx.xxx.xxx.xxx detected!
This is a bug that was included in the original application and should be fixed.

4.5 Source code

This section provides the source code of every application analyzed and explained during this chapter.

4.5.1 First approach

Configuration script

#!/bin/bash
Topology: sudo mn --topo linear,3 --mac --switch ovsk,datapath=user
--controller remote
Configure switch to use OpenFlow 1.3
echo "Setting Switches to work with OpenFlow 1.3"

for i in s1 s2 s3; do

sudo ovs-vsctl set bridge $i protocols=OpenFlow13
done

Clear flow tables
echo "Clearing Flow tables.."

for i in s1 s2 s3; do
sudo ovs-ofctl -O OpenFlow13 del-flows $i
done

#Configure switches with a unique ID
echo "Setting switches ID"
sudo ovs-vsctl set bridge s1 other-config:datapath-id=0000000000000001
sudo ovs-vsctl set bridge s2 other-config:datapath-id=0000000000000002
sudo ovs-vsctl set bridge s3 other-config:datapath-id=0000000000000003

Launch the application
echo "Launching the MPLS application..."
ryu-manager --verbose mpls_controller.py

Application

from ryu.base import app_manager
from ryu.controller import ofp_event
from ryu.controller.handler import CONFIG_DISPATCHER, MAIN_DISPATCHER
from ryu.controller.handler import set_ev_cls
from ryu.ofproto import ofproto_v1_3
from ryu.lib.packet import packet
from ryu.lib.packet import ethernet
from ryu.lib.packet import mpls

class SimpleSwitch13(app_manager.RyuApp):
OFP_VERSIONS = [ofproto_v1_3.OFP_VERSION]

def __init__(self, *args, **kwargs):
super(SimpleSwitch13, self).__init__(*args, **kwargs)
self.mac_to_port = {}
self.label = 20
self.dst_to_label = {}

@set_ev_cls(ofp_event.EventOFPSwitchFeatures, CONFIG_DISPATCHER)
def switch_features_handler(self, ev):

datapath = ev.msg.datapath
ofproto = datapath.ofproto
parser = datapath.ofproto_parser

install table-miss flow entry
#
We specify NO BUFFER to max_len of the output action due to

OVS bug. At this moment, if we specify a lesser number, e.g.,
128, OVS will send Packet-In with invalid buffer_id and
truncated packet data. In that case, we cannot output packets
correctly. The bug has been fixed in OVS v2.1.0.
match = parser.OFPMatch()
actions = [parser.OFPActionOutput(ofproto.OFPP_CONTROLLER,

ofproto.OFPCML_NO_BUFFER)]
self.add_flow(datapath, 0, match, actions)

def add_flow(self, datapath, priority, match, actions, buffer_id=None):
ofproto = datapath.ofproto
parser = datapath.ofproto_parser

inst = [parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS,
actions)]

if buffer_id:
mod = parser.OFPFlowMod(datapath=datapath, buffer_id=buffer_id,

priority=priority, match=match,
instructions=inst)

else:
mod = parser.OFPFlowMod(datapath=datapath, priority=priority,

match=match, instructions=inst)
datapath.send_msg(mod)

@set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)
def _packet_in_handler(self, ev):

If you hit this you might want to increase
the "miss_send_length" of your switch
if ev.msg.msg_len < ev.msg.total_len:

self.logger.debug("packet truncated: only %s of %s bytes",
ev.msg.msg_len, ev.msg.total_len)

msg = ev.msg
datapath = msg.datapath
#ofproto = datapath.ofproto
#parser = datapath.ofproto_parser
in_port = msg.match[’in_port’]

pkt = packet.Packet(msg.data)
eth = pkt.get_protocols(ethernet.ethernet)[0]

dst = eth.dst
src = eth.src
Ethertype 2054=ARP, 2048=IPV4, 34887=MPLS unicast
ethtype = eth.ethertype
Revisar estas lineas
dpid = datapath.id
self.mac_to_port.setdefault(dpid, {})
self.dst_to_label.setdefault(dpid, {})

self.logger.info("packet in switch %s src: %s dst: %s port: %s Ethertype=%s",
dpid, src, dst, in_port, ethtype)

If ARP
if ethtype == 2054:

self.arpHandler(msg)
If IPV4
elif ethtype == 2048:

self.ipv4Handler(msg)
#If MPLS unicast
elif ethtype == 34887:

self.mplsHandler(msg)

def arpHandler(self, msg):
datapath = msg.datapath
ofproto = datapath.ofproto
parser = datapath.ofproto_parser
in_port = msg.match[’in_port’]
dpid = datapath.id
self.logger.info("Launching ARP handler for datatpath %s", dpid)
pkt = packet.Packet(msg.data)
eth = pkt.get_protocols(ethernet.ethernet)[0]

dst = eth.dst
src = eth.src
ethtype = eth.ethertype
learn a mac address to avoid FLOOD next time.
self.mac_to_port[dpid][src] = in_port

if dst in self.mac_to_port[dpid]:
out_port = self.mac_to_port[dpid][dst]

else:
out_port = ofproto.OFPP_FLOOD

actions = [parser.OFPActionOutput(out_port)]

install a flow to avoid packet_in next time
if out_port != ofproto.OFPP_FLOOD:

match = parser.OFPMatch(in_port=in_port, eth_src=src, eth_dst=dst,
eth_type=ethtype)

self.logger.info("Flow match: in_port=%s, src=%s, dst=%s, type=ARP",
in_port, src, dst)

self.logger.info("Flow actions: out_port=%s",
out_port)

verify if we have a valid buffer_id, if yes avoid to send both
flow_mod & packet_out
if msg.buffer_id != ofproto.OFP_NO_BUFFER:

self.add_flow(datapath, 1, match, actions, msg.buffer_id)
return

else:
self.add_flow(datapath, 1, match, actions)

data = None
if msg.buffer_id == ofproto.OFP_NO_BUFFER:

data = msg.data

out = parser.OFPPacketOut(datapath=datapath, buffer_id=msg.buffer_id,
in_port=in_port, actions=actions, data=data)

datapath.send_msg(out)

def ipv4Handler(self, msg):
Variables needed:
datapath = msg.datapath
ofproto = datapath.ofproto
parser = datapath.ofproto_parser
in_port = msg.match[’in_port’]
dpid = datapath.id
self.logger.info("Launching IPV4 handler for datatpath %s", dpid)
pkt = packet.Packet(msg.data)
eth = pkt.get_protocols(ethernet.ethernet)[0]
dst = eth.dst
#src = eth.src
ethtype = eth.ethertype
If the packet is IPV4, it means that the datapath is a LER
IPV4 packets that come trough in_port with this destination
match = parser.OFPMatch(in_port=in_port, eth_dst=dst, eth_type=ethtype)
We relate a label to the destination: We select an unused label
self.label = self.label + 1
self.dst_to_label[dpid][dst] = self.label

Set the out_port using the relation learnt with the ARP packet
out_port = self.mac_to_port[dpid][dst]
Set the action to be performed by the datapath
actions = [parser.OFPActionPushMpls(ethertype=34887,type_=None, len_=None),

parser.OFPActionSetField(mpls_label=self.label),
parser.OFPActionOutput(out_port)]

self.logger.info("Flow match: in_port=%s, dst=%s, type=IP",
in_port, dst)

self.logger.info("Flow actions: pushMPLS=%s, out_port=%s",
self.label, out_port)

Install a flow
verify if we have a valid buffer_id, if yes avoid to send both
flow_mod & packet_out
if msg.buffer_id != ofproto.OFP_NO_BUFFER:

self.add_flow(datapath, 1, match, actions, msg.buffer_id)
return

else:
self.add_flow(datapath, 1, match, actions)

data = None
if msg.buffer_id == ofproto.OFP_NO_BUFFER:

data = msg.data
out = parser.OFPPacketOut(datapath=datapath, buffer_id=msg.buffer_id,

in_port=in_port, actions=actions, data=data)
datapath.send_msg(out)

def mplsHandler(self,msg):

Variables needed:
datapath = msg.datapath
ofproto = datapath.ofproto
parser = datapath.ofproto_parser
in_port = msg.match[’in_port’]
dpid = datapath.id
self.logger.info("Launching MPLS Handler for datatpath %s", dpid)
pkt = packet.Packet(msg.data)
eth = pkt.get_protocols(ethernet.ethernet)[0]
mpls_proto = pkt.get_protocol(mpls.mpls)
dst = eth.dst
#src = eth.src
ethtype = eth.ethertype
The switch can be a LSR or a LER, but the match is the same
match = parser.OFPMatch(in_port=in_port, eth_dst=dst, eth_type=ethtype,

mpls_label=mpls_proto.label)
self.logger.info("Flow match: in_port=%s, dst=%s, type=IP, label=%s",

in_port, dst, mpls_proto.label)
Set the out_port using the relation learnt with the ARP packet
out_port = self.mac_to_port[dpid][dst]
we must check the switch ID in order to decide the propper action
if dpid == 2:

The switch is a LSR
New label
self.label = self.label + 1
Switch labels
actions = [parser.OFPActionPopMpls(),

parser.OFPActionPushMpls(),
parser.OFPActionSetField(mpls_label=self.label),
parser.OFPActionOutput(out_port)]

self.logger.info("Flow actions: switchMPLS=%s, out_port=%s",
self.label, out_port)

else:
The switch is a LER
Pop that label!
actions = [parser.OFPActionPopMpls(),

parser.OFPActionOutput(out_port)]
self.logger.info("Flow actions: popMPLS, out_port=%s", out_port)

Install a flow
verify if we have a valid buffer_id, if yes avoid to send both
flow_mod & packet_out
if msg.buffer_id != ofproto.OFP_NO_BUFFER:

self.add_flow(datapath, 1, match, actions, msg.buffer_id)
return

else:
self.add_flow(datapath, 1, match, actions)

data = None
if msg.buffer_id == ofproto.OFP_NO_BUFFER:

data = msg.data
out = parser.OFPPacketOut(datapath=datapath, buffer_id=msg.buffer_id,

in_port=in_port, actions=actions, data=data)
datapath.send_msg(out)

4.5.2 Second approach

Topology script

#!/usr/bin/python
The goal of this scrupt is to define the topology to develop the second
approach of

from mininet.topo import Topo
from mininet.net import Mininet
from mininet.log import setLogLevel
from mininet.cli import CLI
from mininet.node import RemoteController
from functools import partial
from mininet.node import OVSSwitch

class Approach2Topo(Topo):

def __init__(self, cpu=.1, max_queue_size=None, **params):

Initialize topo
Topo.__init__(self, **params)

Hosts and switches
s1 = self.addSwitch(’s1’)
s2 = self.addSwitch(’s2’)
s3 = self.addSwitch(’s3’)
s4 = self.addSwitch(’s4’)

h1 = self.addHost(’h1’)
h2 = self.addHost(’h2’)
h3 = self.addHost(’h3’)
h4 = self.addHost(’h4’)
h5 = self.addHost(’h5’)
h6 = self.addHost(’h6’)
h7 = self.addHost(’h7’)

Wire h1 and h2 to s1
self.addLink(h1, s1)
self.addLink(h2, s1)

Wire h3, h4 and h5 to s2
self.addLink(h3, s2)
self.addLink(h4, s2)

self.addLink(h5, s2)

Wire h6 and h7 to s3
self.addLink(h6, s3)
self.addLink(h7, s3)

Wire switches
self.addLink(s4, s1)
self.addLink(s4, s2)
self.addLink(s4, s3)

def setup():
topo = Approach2Topo()
We use Open vSwitch and OpenFlow 1.3
switch = partial(OVSSwitch, protocols=’OpenFlow13’, datapath=’user’)
#controller
net = Mininet(topo, controller=RemoteController,

switch=switch, cleanup=True)

Setting up hosts
net[’h1’].setIP(’10.0.1.1/24’)
net[’h1’].setMAC(’00:00:00:00:01:01’)
net[’h1’].cmd(’route add default gw 10.0.1.100’)

net[’h2’].setIP(’10.0.1.2/24’)
net[’h2’].setMAC(’00:00:00:00:01:02’)
net[’h2’].cmd(’route add default gw 10.0.1.100’)

net[’h3’].setIP(’10.0.2.3/24’)
net[’h3’].setMAC(’00:00:00:00:02:03’)
net[’h3’].cmd(’route add default gw 10.0.2.100’)

net[’h4’].setIP(’10.0.2.4/24’)
net[’h4’].setMAC(’00:00:00:00:02:04’)
net[’h4’].cmd(’route add default gw 10.0.2.100’)

net[’h5’].setIP(’10.0.2.5/24’)
net[’h5’].setMAC(’00:00:00:00:02:05’)
net[’h5’].cmd(’route add default gw 10.0.2.100’)

net[’h6’].setIP(’10.0.3.6/24’)
net[’h6’].setMAC(’00:00:00:00:03:06’)
net[’h6’].cmd(’route add default gw 10.0.3.100’)

net[’h7’].setIP(’10.0.3.7/24’)
net[’h7’].setMAC(’00:00:00:00:03:07’)
net[’h7’].cmd(’route add default gw 10.0.3.100’)

Setting up routers
net[’s1’].cmd(’ifconfig s1-eth3 hw ether 00:00:00:11:11:11’)

net[’s2’].cmd(’ifconfig s2-eth4 hw ether 00:00:00:22:22:22’)
net[’s3’].cmd(’ifconfig s3-eth3 hw ether 00:00:00:33:33:33’)
net[’s4’].cmd(’ifconfig s4-eth1 hw ether 00:00:00:44:44:01’)
net[’s4’].cmd(’ifconfig s4-eth2 hw ether 00:00:00:44:44:02’)
net[’s4’].cmd(’ifconfig s4-eth3 hw ether 00:00:00:44:44:03’)

net.start()
CLI(net)
net.stop

if __name__ == ’__main__’:
Tell mininet to print useful information
setLogLevel(’info’)
setup()

MPLS REST configuration script

#!/bin/bash
MPLSconfig.sh

Setting router IP addresses using the REST API

Addresses for router s1
Network 1
curl -X POST -d ’{"address":"10.0.1.100/24"}’
http://localhost:8080/router/0000000000000001

Addresses for router s2
Network 2
curl -X POST -d ’{"address":"10.0.2.100/24"}’
http://localhost:8080/router/0000000000000002

Addresses for router s3
Network 3
curl -X POST -d ’{"address":"10.0.3.100/24"}’
http://localhost:8080/router/0000000000000003

Prefix mapping for router s1
curl -X POST -d ’{"prefix":"10.0.2.0/24", "port":"3"}’
http://localhost:8080/router/0000000000000001

curl -X POST -d ’{"prefix":"10.0.3.0/24", "port":"3"}’
http://localhost:8080/router/0000000000000001

Prefix mapping for router s2
curl -X POST -d ’{"prefix":"10.0.1.0/24", "port":"4"}’
http://localhost:8080/router/0000000000000002

curl -X POST -d ’{"prefix":"10.0.3.0/24", "port":"4"}’
http://localhost:8080/router/0000000000000002

Prefix mapping for router s3
curl -X POST -d ’{"prefix":"10.0.1.0/24", "port":"3"}’
http://localhost:8080/router/0000000000000003

curl -X POST -d ’{"prefix":"10.0.2.0/24", "port":"3"}’
http://localhost:8080/router/0000000000000003

Prefix mapping for router s4
curl -X POST -d ’{"prefix":"10.0.1.0/24", "port":"1"}’
http://localhost:8080/router/0000000000000004

curl -X POST -d ’{"prefix":"10.0.2.0/24", "port":"2"}’
http://localhost:8080/router/0000000000000004

curl -X POST -d ’{"prefix":"10.0.3.0/24", "port":"3"}’
http://localhost:8080/router/0000000000000004

Setting router s4 as LSR
curl -X POST -d ’{"router":"lsr"}’
http://localhost:8080/router/0000000000000004

MPLS Ryu Application Code

import logging
import numbers
import socket
import struct

import json
from webob import Response

from ryu.app.wsgi import ControllerBase
from ryu.app.wsgi import WSGIApplication
from ryu.base import app_manager
from ryu.controller import dpset
from ryu.controller import ofp_event
from ryu.controller.handler import set_ev_cls
from ryu.controller.handler import MAIN_DISPATCHER
from ryu.exception import OFPUnknownVersion
from ryu.exception import RyuException
from ryu.lib import dpid as dpid_lib
from ryu.lib import hub
from ryu.lib import mac as mac_lib
from ryu.lib import addrconv
from ryu.lib.packet import arp
from ryu.lib.packet import ethernet
from ryu.lib.packet import icmp
from ryu.lib.packet import ipv4
from ryu.lib.packet import packet

from ryu.lib.packet import tcp
from ryu.lib.packet import udp
from ryu.lib.packet import vlan
from ryu.ofproto import ether
from ryu.ofproto import inet
from ryu.ofproto import ofproto_v1_0
from ryu.ofproto import ofproto_v1_2
from ryu.ofproto import ofproto_v1_3
MPLSmod: library for mpls
from ryu.lib.packet import mpls

=============================
REST API
=============================
#
Note: specify switch and vlan group, as follows.
{switch_id} : ’all’ or switchID
{vlan_id} : ’all’ or vlanID
#

1. get address data and routing data.
#
* get data of no vlan
GET /router/{switch_id}
#
* get data of specific vlan group
GET /router/{switch_id}/{vlan_id}
#

2. set address data or routing data.
#
* set data of no vlan
POST /router/{switch_id}
#
* set data of specific vlan group
POST /router/{switch_id}/{vlan_id}
#
case1: set address data.
parameter = {"address": "A.B.C.D/M"}
case2-1: set static route.
parameter = {"destination": "A.B.C.D/M", "gateway": "E.F.G.H"}
case2-2: set default route.
parameter = {"gateway": "E.F.G.H"}

MPLSmod case3: set mapping for mpls routers:
parameter = {"prefix": "A.B.C.D/M", "port":"N"}

3. delete address data or routing data.
#
* delete data of no vlan
DELETE /router/{switch_id}

#
* delete data of specific vlan group
DELETE /router/{switch_id}/{vlan_id}
#
case1: delete address data.
parameter = {"address_id": "<int>"} or {"address_id": "all"}
case2: delete routing data.
parameter = {"route_id": "<int>"} or {"route_id": "all"}
#
#
4. MPLSmod: Identify the router as LER or LSR
#
case1: LER.
parameter = {"router"": "ler"}
case2: LSR
parameter = {"router": "lsr"}

UINT16_MAX = 0xffff
UINT32_MAX = 0xffffffff
UINT64_MAX = 0xffffffffffffffff

ETHERNET = ethernet.ethernet.__name__
VLAN = vlan.vlan.__name__
IPV4 = ipv4.ipv4.__name__
ARP = arp.arp.__name__
ICMP = icmp.icmp.__name__
TCP = tcp.tcp.__name__
UDP = udp.udp.__name__
MPLSmod
MPLS = mpls.mpls.__name__

MAX_SUSPENDPACKETS = 50 # Threshold of the packet suspends thread count.

ARP_REPLY_TIMER = 2 # sec
OFP_REPLY_TIMER = 1.0 # sec
CHK_ROUTING_TBL_INTERVAL = 1800 # sec

SWITCHID_PATTERN = dpid_lib.DPID_PATTERN + r’|all’
VLANID_PATTERN = r’[0-9]{1,4}|all’

VLANID_NONE = 0
VLANID_MIN = 2
VLANID_MAX = 4094

COOKIE_DEFAULT_ID = 0
COOKIE_SHIFT_VLANID = 32
COOKIE_SHIFT_ROUTEID = 16

DEFAULT_ROUTE = ’0.0.0.0/0’
IDLE_TIMEOUT = 1800 # sec
DEFAULT_TTL = 64

REST_COMMAND_RESULT = ’command_result’
REST_RESULT = ’result’
REST_DETAILS = ’details’
REST_OK = ’success’
REST_NG = ’failure’
REST_ALL = ’all’
REST_SWITCHID = ’switch_id’
REST_VLANID = ’vlan_id’
REST_NW = ’internal_network’
REST_ADDRESSID = ’address_id’
REST_ADDRESS = ’address’
REST_ROUTEID = ’route_id’
REST_ROUTE = ’route’
REST_DESTINATION = ’destination’
REST_GATEWAY = ’gateway’
MPLSmod: mpls REST parameters
REST_PREFIX = ’prefix’
REST_PORT = ’port’
REST_ROUTER = ’router’

PRIORITY_VLAN_SHIFT = 1000
PRIORITY_NETMASK_SHIFT = 32

PRIORITY_NORMAL = 0
PRIORITY_ARP_HANDLING = 1
PRIORITY_DEFAULT_ROUTING = 1
PRIORITY_MAC_LEARNING = 2
PRIORITY_STATIC_ROUTING = 2
PRIORITY_IMPLICIT_ROUTING = 3
PRIORITY_L2_SWITCHING = 4
PRIORITY_IP_HANDLING = 5
MPLSmod: mpls priority values
PRIORITY_MPLS_PREFIX = 1
PRIORITY_PUSH_MPLS = 2
PRIORITY_POP_MPLS = 2
PRIORITY_SWAP_MPLS = 2

MPLSmod: Tags for actions
MPLS_PUSH_LABEL = 1
MPLS_POP_LABEL = 2
MPLS_SWAP_LABEL = 3

MPLSmod: Router types
ROUTER_TYPE_LER = ’ler’
ROUTER_TYPE_LSR = ’lsr’

MPLSmod: Hardcoded LSR Datapath ID
LSR_DPID = ’0000000000000004’

PRIORITY_TYPE_ROUTE = ’priority_route’

def get_priority(priority_type, vid=0, route=None):
log_msg = None
priority = priority_type

if priority_type == PRIORITY_TYPE_ROUTE:
assert route is not None
if route.dst_ip:

priority_type = PRIORITY_STATIC_ROUTING
priority = priority_type + route.netmask
log_msg = ’static routing’

else:
priority_type = PRIORITY_DEFAULT_ROUTING
priority = priority_type
log_msg = ’default routing’

if vid or priority_type == PRIORITY_IP_HANDLING:
priority += PRIORITY_VLAN_SHIFT

if priority_type > PRIORITY_STATIC_ROUTING:
priority += PRIORITY_NETMASK_SHIFT

if log_msg is None:
return priority

else:
return priority, log_msg

def get_priority_type(priority, vid):
if vid:

priority -= PRIORITY_VLAN_SHIFT
return priority

class NotFoundError(RyuException):
message = ’Router SW is not connected. : switch_id=%(switch_id)s’

class CommandFailure(RyuException):
pass

class RestRouterAPI(app_manager.RyuApp):

OFP_VERSIONS = [ofproto_v1_0.OFP_VERSION,
ofproto_v1_2.OFP_VERSION,
ofproto_v1_3.OFP_VERSION]

_CONTEXTS = {’dpset’: dpset.DPSet,
’wsgi’: WSGIApplication}

def __init__(self, *args, **kwargs):

super(RestRouterAPI, self).__init__(*args, **kwargs)

MPLSmod: Object to allow all routers access mpls data
self.mpls_data = MplsData()
logger configure
RouterController.set_logger(self.logger)

wsgi = kwargs[’wsgi’]
self.waiters = {}
self.data = {’waiters’: self.waiters}

mapper = wsgi.mapper
wsgi.registory[’RouterController’] = self.data
requirements = {’switch_id’: SWITCHID_PATTERN,

’vlan_id’: VLANID_PATTERN}

For no vlan data
path = ’/router/{switch_id}’
mapper.connect(’router’, path, controller=RouterController,

requirements=requirements,
action=’get_data’,
conditions=dict(method=[’GET’]))

mapper.connect(’router’, path, controller=RouterController,
requirements=requirements,
action=’set_data’,
conditions=dict(method=[’POST’]))

mapper.connect(’router’, path, controller=RouterController,
requirements=requirements,
action=’delete_data’,
conditions=dict(method=[’DELETE’]))

For vlan data
path = ’/router/{switch_id}/{vlan_id}’
mapper.connect(’router’, path, controller=RouterController,

requirements=requirements,
action=’get_vlan_data’,
conditions=dict(method=[’GET’]))

mapper.connect(’router’, path, controller=RouterController,
requirements=requirements,
action=’set_vlan_data’,
conditions=dict(method=[’POST’]))

mapper.connect(’router’, path, controller=RouterController,
requirements=requirements,
action=’delete_vlan_data’,
conditions=dict(method=[’DELETE’]))

@set_ev_cls(dpset.EventDP, dpset.DPSET_EV_DISPATCHER)
def datapath_handler(self, ev):

if ev.enter:
MPLSmod: added mpls_data parameter
RouterController.register_router(ev.dp, self.mpls_data)

else:
RouterController.unregister_router(ev.dp)

@set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)
def packet_in_handler(self, ev):

RouterController.packet_in_handler(ev.msg)

def _stats_reply_handler(self, ev):
msg = ev.msg
dp = msg.datapath

if (dp.id not in self.waiters
or msg.xid not in self.waiters[dp.id]):

return
event, msgs = self.waiters[dp.id][msg.xid]
msgs.append(msg)

if ofproto_v1_3.OFP_VERSION == dp.ofproto.OFP_VERSION:
more = dp.ofproto.OFPMPF_REPLY_MORE

else:
more = dp.ofproto.OFPSF_REPLY_MORE

if msg.flags & more:
return

del self.waiters[dp.id][msg.xid]
event.set()

for OpenFlow version1.0
@set_ev_cls(ofp_event.EventOFPFlowStatsReply, MAIN_DISPATCHER)
def stats_reply_handler_v1_0(self, ev):

self._stats_reply_handler(ev)

for OpenFlow version1.2/1.3
@set_ev_cls(ofp_event.EventOFPStatsReply, MAIN_DISPATCHER)
def stats_reply_handler_v1_2(self, ev):

self._stats_reply_handler(ev)

TODO: Update routing table when port status is changed.

REST command template
def rest_command(func):

def _rest_command(*args, **kwargs):
try:

msg = func(*args, **kwargs)
return Response(content_type=’application/json’,

body=json.dumps(msg))

except SyntaxError as e:
status = 400
details = e.msg

except (ValueError, NameError) as e:
status = 400
details = e.message

except NotFoundError as msg:
status = 404
details = str(msg)

msg = {REST_RESULT: REST_NG,
REST_DETAILS: details}

return Response(status=status, body=json.dumps(msg))

return _rest_command

class RouterController(ControllerBase):

_ROUTER_LIST = {}
_LOGGER = None

def __init__(self, req, link, data, **config):
super(RouterController, self).__init__(req, link, data, **config)
self.waiters = data[’waiters’]

@classmethod
def set_logger(cls, logger):

cls._LOGGER = logger
cls._LOGGER.propagate = False
hdlr = logging.StreamHandler()
fmt_str = ’[RT][%(levelname)s] switch_id=%(sw_id)s: %(message)s’
hdlr.setFormatter(logging.Formatter(fmt_str))
cls._LOGGER.addHandler(hdlr)

MPLSmod: adding mpls_data parameter
@classmethod
def register_router(cls, dp, mpls_data):

dpid = {’sw_id’: dpid_lib.dpid_to_str(dp.id)}
try:

router = Router(dp, cls._LOGGER, mpls_data)
except OFPUnknownVersion as message:

cls._LOGGER.error(str(message), extra=dpid)
return

cls._ROUTER_LIST.setdefault(dp.id, router)
cls._LOGGER.info(’Join as router.’, extra=dpid)

@classmethod
def unregister_router(cls, dp):

if dp.id in cls._ROUTER_LIST:
cls._ROUTER_LIST[dp.id].delete()
del cls._ROUTER_LIST[dp.id]

dpid = {’sw_id’: dpid_lib.dpid_to_str(dp.id)}
cls._LOGGER.info(’Leave router.’, extra=dpid)

@classmethod

def packet_in_handler(cls, msg):
dp_id = msg.datapath.id
if dp_id in cls._ROUTER_LIST:

router = cls._ROUTER_LIST[dp_id]
router.packet_in_handler(msg)

GET /router/{switch_id}
@rest_command
def get_data(self, req, switch_id, **_kwargs):

return self._access_router(switch_id, VLANID_NONE,
’get_data’, req.body)

GET /router/{switch_id}/{vlan_id}
@rest_command
def get_vlan_data(self, req, switch_id, vlan_id, **_kwargs):

return self._access_router(switch_id, vlan_id,
’get_data’, req.body)

POST /router/{switch_id}
@rest_command
def set_data(self, req, switch_id, **_kwargs):

return self._access_router(switch_id, VLANID_NONE,
’set_data’, req.body)

POST /router/{switch_id}/{vlan_id}
@rest_command
def set_vlan_data(self, req, switch_id, vlan_id, **_kwargs):

return self._access_router(switch_id, vlan_id,
’set_data’, req.body)

DELETE /router/{switch_id}
@rest_command
def delete_data(self, req, switch_id, **_kwargs):

return self._access_router(switch_id, VLANID_NONE,
’delete_data’, req.body)

DELETE /router/{switch_id}/{vlan_id}
@rest_command
def delete_vlan_data(self, req, switch_id, vlan_id, **_kwargs):

return self._access_router(switch_id, vlan_id,
’delete_data’, req.body)

def _access_router(self, switch_id, vlan_id, func, rest_param):
rest_message = []
routers = self._get_router(switch_id)
param = json.loads(rest_param) if rest_param else {}
for router in routers.values():

function = getattr(router, func)
data = function(vlan_id, param, self.waiters)
rest_message.append(data)

return rest_message

def _get_router(self, switch_id):
routers = {}

if switch_id == REST_ALL:
routers = self._ROUTER_LIST

else:
sw_id = dpid_lib.str_to_dpid(switch_id)
if sw_id in self._ROUTER_LIST:

routers = {sw_id: self._ROUTER_LIST[sw_id]}

if routers:
return routers

else:
raise NotFoundError(switch_id=switch_id)

class Router(dict):
def __init__(self, dp, logger, mpls_data):

super(Router, self).__init__()
self.dp = dp
self.dpid_str = dpid_lib.dpid_to_str(dp.id)
self.sw_id = {’sw_id’: self.dpid_str}
self.logger = logger

self.port_data = PortData(dp.ports)

MPLSmod: object to store all MPLS data (Modified constructor)
self.mpls_data = mpls_data
ofctl = OfCtl.factory(dp, logger)
cookie = COOKIE_DEFAULT_ID

Set SW config: TTL error packet in (for OFPv1.2/1.3)
ofctl.set_sw_config_for_ttl()

Set flow: ARP handling (packet in)
priority = get_priority(PRIORITY_ARP_HANDLING)
ofctl.set_packetin_flow(cookie, priority, dl_type=ether.ETH_TYPE_ARP)
self.logger.info(’Set ARP handling (packet in) flow [cookie=0x%x]’,

cookie, extra=self.sw_id)

Set flow: L2 switching (normal)
priority = get_priority(PRIORITY_NORMAL)
ofctl.set_normal_flow(cookie, priority)
self.logger.info(’Set L2 switching (normal) flow [cookie=0x%x]’,

cookie, extra=self.sw_id)

Set VlanRouter for vid=None.
vlan_router = VlanRouter(VLANID_NONE, dp, self.port_data, logger,

self.mpls_data)
self[VLANID_NONE] = vlan_router

Start cyclic routing table check.
self.thread = hub.spawn(self._cyclic_update_routing_tbl)
self.logger.info(’Start cyclic routing table update.’,

extra=self.sw_id)

def delete(self):
hub.kill(self.thread)
self.thread.wait()
self.logger.info(’Stop cyclic routing table update.’,

extra=self.sw_id)

def _get_vlan_router(self, vlan_id):
vlan_routers = []

if vlan_id == REST_ALL:
vlan_routers = self.values()

else:
vlan_id = int(vlan_id)
if (vlan_id != VLANID_NONE and

(vlan_id < VLANID_MIN or VLANID_MAX < vlan_id)):
msg = ’Invalid {vlan_id} value. Set [%d-%d]’
raise ValueError(msg % (VLANID_MIN, VLANID_MAX))

elif vlan_id in self:
vlan_routers = [self[vlan_id]]

return vlan_routers

def _add_vlan_router(self, vlan_id):
vlan_id = int(vlan_id)
if vlan_id not in self:

vlan_router = VlanRouter(vlan_id, self.dp, self.port_data,
self.logger, self.mpls_data)

self[vlan_id] = vlan_router
return self[vlan_id]

def _del_vlan_router(self, vlan_id, waiters):
Remove unnecessary VlanRouter.
if vlan_id == VLANID_NONE:

return

vlan_router = self[vlan_id]
if (len(vlan_router.address_data) == 0

and len(vlan_router.routing_tbl) == 0):
vlan_router.delete(waiters)
del self[vlan_id]

def get_data(self, vlan_id, dummy1, dummy2):
vlan_routers = self._get_vlan_router(vlan_id)
if vlan_routers:

msgs = [vlan_router.get_data() for vlan_router in vlan_routers]
else:

msgs = [{REST_VLANID: vlan_id}]

return {REST_SWITCHID: self.dpid_str,
REST_NW: msgs}

def set_data(self, vlan_id, param, waiters):
vlan_routers = self._get_vlan_router(vlan_id)
if not vlan_routers:

vlan_routers = [self._add_vlan_router(vlan_id)]

msgs = []
for vlan_router in vlan_routers:

try:
msg = vlan_router.set_data(param)
msgs.append(msg)
if msg[REST_RESULT] == REST_NG:

Data setting is failure.
self._del_vlan_router(vlan_router.vlan_id, waiters)

except ValueError as err_msg:
Data setting is failure.
self._del_vlan_router(vlan_router.vlan_id, waiters)
raise err_msg

return {REST_SWITCHID: self.dpid_str,
REST_COMMAND_RESULT: msgs}

def delete_data(self, vlan_id, param, waiters):
msgs = []
vlan_routers = self._get_vlan_router(vlan_id)
if vlan_routers:

for vlan_router in vlan_routers:
msg = vlan_router.delete_data(param, waiters)
if msg:

msgs.append(msg)
Check unnecessary VlanRouter.
self._del_vlan_router(vlan_router.vlan_id, waiters)

if not msgs:
msgs = [{REST_RESULT: REST_NG,

REST_DETAILS: ’Data is nothing.’}]

return {REST_SWITCHID: self.dpid_str,
REST_COMMAND_RESULT: msgs}

def packet_in_handler(self, msg):
pkt = packet.Packet(msg.data)
TODO: Packet library convert to string
self.logger.debug(’Packet in = %s’, str(pkt), self.sw_id)
header_list = dict((p.protocol_name, p)

for p in pkt.protocols if type(p) != str)

print("****HEADER LIST**** %s", str(header_list))
if header_list:

Check vlan-tag

vlan_id = VLANID_NONE
if VLAN in header_list:

vlan_id = header_list[VLAN].vid

Event dispatch
if vlan_id in self:

self.logger.info(’Launching Vlan_router PacketIn handler’,
extra=self.sw_id)

self[vlan_id].packet_in_handler(msg, header_list)
else:

self.logger.info(’Drop unknown vlan packet. [vlan_id=%d]’,
vlan_id, extra=self.sw_id)

def _cyclic_update_routing_tbl(self):
while True:

send ARP to all gateways.
for vlan_router in self.values():

vlan_router.send_arp_all_gw()
hub.sleep(1)

hub.sleep(CHK_ROUTING_TBL_INTERVAL)

class VlanRouter(object):
def __init__(self, vlan_id, dp, port_data, logger, mpls_data):

super(VlanRouter, self).__init__()
self.vlan_id = vlan_id
self.dp = dp
self.sw_id = {’sw_id’: dpid_lib.dpid_to_str(dp.id)}
self.logger = logger

self.port_data = port_data
self.address_data = AddressData()
self.routing_tbl = RoutingTable()
self.packet_buffer = SuspendPacketList(self.send_icmp_unreach_error)
self.ofctl = OfCtl.factory(dp, logger)

MPLSmod: attribute relating prefixes to ports
self.prefix_data = PrefixData()
MPLSmod: objects containing mpls labels
self.mpls_label = MplsLabel()
self.mpls_data = mpls_data
self.dpid = dpid_lib.dpid_to_str(dp.id)
self.mpls_data.setdefault(self.dpid, {})
MPLSmod: Router type. LER by default
self.router_type = ROUTER_TYPE_LER
#MPLSmod: Object to store info abut hosts, by IP
self.hosts = HostDict()
OLDCODE: Set flow: default route (drop)
self._set_defaultroute_drop()

Mplsmod:

Set flow: MPLS packets are sent to the controller
self.ofctl.set_packetin_flow(0x24, PRIORITY_MPLS_PREFIX,

dl_type=ether.ETH_TYPE_MPLS)

def delete(self, waiters):
Delete flow.
msgs = self.ofctl.get_all_flow(waiters)
for msg in msgs:

for stats in msg.body:
vlan_id = VlanRouter._cookie_to_id(REST_VLANID, stats.cookie)
if vlan_id == self.vlan_id:

self.ofctl.delete_flow(stats)

assert len(self.packet_buffer) == 0

@staticmethod
def _cookie_to_id(id_type, cookie):

if id_type == REST_VLANID:
rest_id = cookie >> COOKIE_SHIFT_VLANID

elif id_type == REST_ADDRESSID:
rest_id = cookie & UINT32_MAX

else:
assert id_type == REST_ROUTEID
rest_id = (cookie & UINT32_MAX) >> COOKIE_SHIFT_ROUTEID

return rest_id

def _id_to_cookie(self, id_type, rest_id):
vid = self.vlan_id << COOKIE_SHIFT_VLANID

if id_type == REST_VLANID:
cookie = rest_id << COOKIE_SHIFT_VLANID

elif id_type == REST_ADDRESSID:
cookie = vid + rest_id

else:
assert id_type == REST_ROUTEID
cookie = vid + (rest_id << COOKIE_SHIFT_ROUTEID)

return cookie

def _get_priority(self, priority_type, route=None):
return get_priority(priority_type, vid=self.vlan_id, route=route)

def _response(self, msg):
if msg and self.vlan_id:

msg.setdefault(REST_VLANID, self.vlan_id)
return msg

def get_data(self):
address_data = self._get_address_data()
routing_data = self._get_routing_data()
MPLSmod: Port data for the MPLS network

#prefix_data = self._get_prefix_data()

data = {}
if address_data[REST_ADDRESS]:

data.update(address_data)
if routing_data[REST_ROUTE]:

data.update(routing_data)

MPLSmod: Update data
#if prefix_data[REST_PREFIX]:
data.update(prefix_data)

return self._response(data)

#MPLSmod: get prefix data method
def _get_prefix_data(self):

Yet to implement
pass

def _get_address_data(self):
address_data = []
for value in self.address_data.values():

default_gw = ip_addr_ntoa(value.default_gw)
address = ’%s/%d’ % (default_gw, value.netmask)
data = {REST_ADDRESSID: value.address_id,

REST_ADDRESS: address}
address_data.append(data)

return {REST_ADDRESS: address_data}

def _get_routing_data(self):
routing_data = []
for key, value in self.routing_tbl.items():

if value.gateway_mac is not None:
gateway = ip_addr_ntoa(value.gateway_ip)
data = {REST_ROUTEID: value.route_id,

REST_DESTINATION: key,
REST_GATEWAY: gateway}

routing_data.append(data)
return {REST_ROUTE: routing_data}

def set_data(self, data):
details = None

try:
Set address data
if REST_ADDRESS in data:

address = data[REST_ADDRESS]
address_id = self._set_address_data(address)
details = ’Add address [address_id=%d]’ % address_id

Set routing data
elif REST_GATEWAY in data:

gateway = data[REST_GATEWAY]

if REST_DESTINATION in data:
destination = data[REST_DESTINATION]

else:
destination = DEFAULT_ROUTE

route_id = self._set_routing_data(destination, gateway)
details = ’Add route [route_id=%d]’ % route_id

MPLSmod: set prefix-port mapping data
elif REST_PREFIX in data:

prefix = data[REST_PREFIX]
port = data[REST_PORT]
prefix_id = self._set_prefix_data(prefix, port)
details = ’Add prefix to port [prefix_id=%d]’ % prefix_id

MPLSmod: set router type
elif REST_ROUTER in data:

router = data[REST_ROUTER]
self._set_router_type(router)
details = ’Add router type: %s’ % router

except CommandFailure as err_msg:
msg = {REST_RESULT: REST_NG, REST_DETAILS: str(err_msg)}
return self._response(msg)

if details is not None:
msg = {REST_RESULT: REST_OK, REST_DETAILS: details}
return self._response(msg)

else:
raise ValueError(’Invalid parameter.’)

#MPLSmod: set router type
def _set_router_type(self, router):

self.router_type = router

MPLSmod: set port data method
def _set_prefix_data(self, prefix, port):

cookie = 0x800
prefix = self.prefix_data.add(prefix, port)
Set flow: IP packets aiming this prefix are sent to the controller
priority = self._get_priority(PRIORITY_MPLS_PREFIX)
self.ofctl.set_packetin_flow(cookie, priority,

dl_type=ether.ETH_TYPE_IP,
dst_ip=prefix.address,
dst_mask=prefix.netmask)

return prefix.prefix_id

def _set_address_data(self, address):
address = self.address_data.add(address)

cookie = self._id_to_cookie(REST_ADDRESSID, address.address_id)

Set flow: host MAC learning (packet in)
priority = self._get_priority(PRIORITY_MAC_LEARNING)
self.ofctl.set_packetin_flow(cookie, priority,

dl_type=ether.ETH_TYPE_IP,
dl_vlan=self.vlan_id,
dst_ip=address.nw_addr,
dst_mask=address.netmask)

log_msg = ’Set host MAC learning (packet in) flow [cookie=0x%x]’
self.logger.info(log_msg, cookie, extra=self.sw_id)

set Flow: IP handling(PacketIn)
priority = self._get_priority(PRIORITY_IP_HANDLING)
self.ofctl.set_packetin_flow(cookie, priority,

dl_type=ether.ETH_TYPE_IP,
dl_vlan=self.vlan_id,
dst_ip=address.default_gw)

self.logger.info(’Set IP handling (packet in) flow [cookie=0x%x]’,
cookie, extra=self.sw_id)

Set flow: L2 switching (normal)
outport = self.ofctl.dp.ofproto.OFPP_NORMAL
priority = self._get_priority(PRIORITY_L2_SWITCHING)
self.ofctl.set_routing_flow(

cookie, priority, outport, dl_vlan=self.vlan_id,
nw_src=address.nw_addr, src_mask=address.netmask,
nw_dst=address.nw_addr, dst_mask=address.netmask)

self.logger.info(’Set L2 switching (normal) flow [cookie=0x%x]’,
cookie, extra=self.sw_id)

Send GARP
self.send_arp_request(address.default_gw, address.default_gw)

return address.address_id

def _set_routing_data(self, destination, gateway):
err_msg = ’Invalid [%s] value.’ % REST_GATEWAY
dst_ip = ip_addr_aton(gateway, err_msg=err_msg)
address = self.address_data.get_data(ip=dst_ip)
if address is None:

msg = ’Gateway=%s\’s address is not registered.’ % gateway
raise CommandFailure(msg=msg)

elif dst_ip == address.default_gw:
msg = ’Gateway=%s is used as default gateway of address_id=%d’\

% (gateway, address.address_id)
raise CommandFailure(msg=msg)

else:
src_ip = address.default_gw
route = self.routing_tbl.add(destination, gateway)
self._set_route_packetin(route)
self.send_arp_request(src_ip, dst_ip)
return route.route_id

def _set_defaultroute_drop(self):
cookie = self._id_to_cookie(REST_VLANID, self.vlan_id)
priority = self._get_priority(PRIORITY_DEFAULT_ROUTING)

outport = None # for drop
self.ofctl.set_routing_flow(cookie, priority, outport,

dl_vlan=self.vlan_id)
self.logger.info(’Set default route (drop) flow [cookie=0x%x]’,

cookie, extra=self.sw_id)

def _set_route_packetin(self, route):
cookie = self._id_to_cookie(REST_ROUTEID, route.route_id)
priority, log_msg = self._get_priority(PRIORITY_TYPE_ROUTE,

route=route)
self.ofctl.set_packetin_flow(cookie, priority,

dl_type=ether.ETH_TYPE_IP,
dl_vlan=self.vlan_id,
dst_ip=route.dst_ip,
dst_mask=route.netmask)

self.logger.info(’Set %s (packet in) flow [cookie=0x%x]’, log_msg,
cookie, extra=self.sw_id)

def delete_data(self, data, waiters):
if REST_ROUTEID in data:

route_id = data[REST_ROUTEID]
msg = self._delete_routing_data(route_id, waiters)

elif REST_ADDRESSID in data:
address_id = data[REST_ADDRESSID]
msg = self._delete_address_data(address_id, waiters)

else:
raise ValueError(’Invalid parameter.’)

return self._response(msg)

def _delete_address_data(self, address_id, waiters):
if address_id != REST_ALL:

try:
address_id = int(address_id)

except ValueError as e:
err_msg = ’Invalid [%s] value. %s’
raise ValueError(err_msg % (REST_ADDRESSID, e.message))

skip_ids = self._chk_addr_relation_route(address_id)

Get all flow.
delete_list = []
msgs = self.ofctl.get_all_flow(waiters)
max_id = UINT16_MAX
for msg in msgs:

for stats in msg.body:
vlan_id = VlanRouter._cookie_to_id(REST_VLANID, stats.cookie)
if vlan_id != self.vlan_id:

continue
addr_id = VlanRouter._cookie_to_id(REST_ADDRESSID,

stats.cookie)
if addr_id in skip_ids:

continue
elif address_id == REST_ALL:

if addr_id <= COOKIE_DEFAULT_ID or max_id < addr_id:
continue

elif address_id != addr_id:
continue

delete_list.append(stats)

delete_ids = []
for flow_stats in delete_list:

Delete flow
self.ofctl.delete_flow(flow_stats)
address_id = VlanRouter._cookie_to_id(REST_ADDRESSID,

flow_stats.cookie)

del_address = self.address_data.get_data(addr_id=address_id)
if del_address is not None:

Clean up suspend packet threads.
self.packet_buffer.delete(del_addr=del_address)

Delete data.
self.address_data.delete(address_id)
if address_id not in delete_ids:

delete_ids.append(address_id)

msg = {}
if delete_ids:

delete_ids = ’,’.join(str(addr_id) for addr_id in delete_ids)
details = ’Delete address [address_id=%s]’ % delete_ids
msg = {REST_RESULT: REST_OK, REST_DETAILS: details}

if skip_ids:
skip_ids = ’,’.join(str(addr_id) for addr_id in skip_ids)
details = ’Skip delete (related route exist) [address_id=%s]’\

% skip_ids
if msg:

msg[REST_DETAILS] += ’, %s’ % details
else:

msg = {REST_RESULT: REST_NG, REST_DETAILS: details}

return msg

def _delete_routing_data(self, route_id, waiters):
if route_id != REST_ALL:

try:
route_id = int(route_id)

except ValueError as e:
err_msg = ’Invalid [%s] value. %s’
raise ValueError(err_msg % (REST_ROUTEID, e.message))

Get all flow.
msgs = self.ofctl.get_all_flow(waiters)

delete_list = []
for msg in msgs:

for stats in msg.body:
vlan_id = VlanRouter._cookie_to_id(REST_VLANID, stats.cookie)
if vlan_id != self.vlan_id:

continue
rt_id = VlanRouter._cookie_to_id(REST_ROUTEID, stats.cookie)
if route_id == REST_ALL:

if rt_id == COOKIE_DEFAULT_ID:
continue

elif route_id != rt_id:
continue

delete_list.append(stats)

Delete flow.
delete_ids = []
for flow_stats in delete_list:

self.ofctl.delete_flow(flow_stats)
route_id = VlanRouter._cookie_to_id(REST_ROUTEID,

flow_stats.cookie)
self.routing_tbl.delete(route_id)
if route_id not in delete_ids:

delete_ids.append(route_id)

case: Default route deleted. -> set flow (drop)
route_type = get_priority_type(flow_stats.priority,

vid=self.vlan_id)
if route_type == PRIORITY_DEFAULT_ROUTING:

self._set_defaultroute_drop()

msg = {}
if delete_ids:

delete_ids = ’,’.join(str(route_id) for route_id in delete_ids)
details = ’Delete route [route_id=%s]’ % delete_ids
msg = {REST_RESULT: REST_OK, REST_DETAILS: details}

return msg

def _chk_addr_relation_route(self, address_id):
Check exist of related routing data.
relate_list = []
gateways = self.routing_tbl.get_gateways()
for gateway in gateways:

address = self.address_data.get_data(ip=gateway)
if address is not None:

if (address_id == REST_ALL
and address.address_id not in relate_list):

relate_list.append(address.address_id)
elif address.address_id == address_id:

relate_list = [address_id]
break

return relate_list

def packet_in_handler(self, msg, header_list):
Check invalid TTL (for OpenFlow V1.2/1.3)
ofproto = self.dp.ofproto
if ofproto.OFP_VERSION == ofproto_v1_2.OFP_VERSION or \

ofproto.OFP_VERSION == ofproto_v1_3.OFP_VERSION:
if msg.reason == ofproto.OFPR_INVALID_TTL:

self._packetin_invalid_ttl(msg, header_list)
return

Analyze event type.

if ARP in header_list:
self._packetin_arp(msg, header_list)
return

MPLSmod: If packetin is an MPLS packet
if MPLS in header_list:

if self.router_type == ROUTER_TYPE_LER:
LER method
self.logger.info(’MPLS packet entering LER’, extra=self.sw_id)
self._packetin_from_mpls_network(msg, header_list)

elif self.router_type == ROUTER_TYPE_LSR:
LSR method
self.logger.info(’MPLS packet entering LSR’, extra=self.sw_id)
self._packetin_to_lsr(msg, header_list)

elif IPV4 in header_list:
self.logger.info(’IPV4 packet’,

extra=self.sw_id)
rt_ports = self.address_data.get_default_gw()
if header_list[IPV4].dst in rt_ports:

self.logger.info(’Packet in: dst in rt ports’,
extra=self.sw_id)

Packet to router’s port.
if ICMP in header_list:

if header_list[ICMP].type == icmp.ICMP_ECHO_REQUEST:
self._packetin_icmp_req(msg, header_list)
return

elif TCP in header_list or UDP in header_list:
self._packetin_tcp_udp(msg, header_list)
return

else:
OLDCODE: Packet to internal host or gateway router.
self._packetin_to_node(msg, header_list)

MPLSmod: Packets to be routed into the MPLS network
self._packetin_to_mpls_network(msg, header_list)
return

MPLSmod: function for IP to MPLS handling

def _packetin_to_mpls_network(self, msg, header_list):
self.logger.info(’Launching packetin_to_mpls_network method.’,

extra=self.sw_id)
if len(self.packet_buffer) >= MAX_SUSPENDPACKETS:

self.logger.info(’Packet is dropped, MAX_SUSPENDPACKETS exceeded.’,
extra=self.sw_id)

return

in_port = self.ofctl.get_packetin_inport(msg)
dst_ip = header_list[IPV4].dst
src_ip = header_list[IPV4].src

for key in self.prefix_data:
prefix = self.prefix_data[key]
if prefix.compare(dst_ip):

Write flow & packet out
priority = self._get_priority(PRIORITY_PUSH_MPLS)
cookie = 0x810
out_port = int(prefix.port)
self.ofctl.set_mpls_flow(cookie, priority, self.mpls_label.value,

in_port, out_port, MPLS_PUSH_LABEL, nw_dst=dst_ip,
nw_src=src_ip)

self.ofctl.send_mpls_packet_out(in_port,
out_port, msg.data, self.mpls_label.value, MPLS_PUSH_LABEL)

self.mpls_data.add(self.dpid, self.mpls_label.value, dst_ip)
self.mpls_label.increase()
break

Else drop

MPLSmod: When packet enters LSR
def _packetin_to_lsr(self, msg, header_list):

in_port = self.ofctl.get_packetin_inport(msg)
dst_ip = header_list[IPV4].dst
src_ip = header_list[IPV4].src
label_in = self.ofctl.get_packetin_mplslabel(msg)
self.logger.info(’packet_in label: %s’ % label_in,

extra=self.sw_id)

address = 0
orig_id = self.get_origin_id_lsr(in_port)
self.logger.info(’Origin ID: %s’ % orig_id,

extra=self.sw_id)
for label in self.mpls_data[orig_id]:

self.logger.info(’Labels pushed by origin: %s’ % str(label),
extra=self.sw_id)

if label == label_in:
self.logger.info(’Label match: %s’ % str(label),

extra=self.sw_id)
address = self.mpls_data[orig_id][label]
break

for key in self.prefix_data:
prefix = self.prefix_data[key]
if address == 0:

self.logger.info(’No label match! Dropping packet...’,
extra=self.sw_id)

break
if prefix.compare(address):

self.logger.info(’Label match! Swapping label...’,
extra=self.sw_id)

Create a new label:
self.mpls_label.increase()
Write flow & packet out
priority = self._get_priority(PRIORITY_SWAP_MPLS)
cookie = 0x820
out_port = int(prefix.port)

self.ofctl.set_mpls_flow(cookie, priority, self.mpls_label.value,
in_port, out_port, MPLS_SWAP_LABEL, nw_dst=dst_ip,
nw_src=src_ip, oldlabel=label_in)

self.ofctl.send_mpls_packet_out(in_port,
out_port, msg.data, self.mpls_label.value, MPLS_SWAP_LABEL)

self.mpls_data.add(self.dpid, self.mpls_label, dst_ip)
break

MPLSmod: When packet enters a LER from the LSR
def _packetin_from_mpls_network(self, msg, header_list):

Extract data
in_port = self.ofctl.get_packetin_inport(msg)
dst_ip = header_list[IPV4].dst
src_ip = header_list[IPV4].src
srcip = ip_addr_ntoa(header_list[IPV4].src)
dstip = ip_addr_ntoa(dst_ip)
label_in = self.ofctl.get_packetin_mplslabel(msg)

if dst_ip not in self.hosts:

Send ARP to learn the MAC address
address = self.address_data.get_data(ip=dst_ip)
if address is not None:

log_msg = ’Receive IP packet from [%s] to an internal host [%s].’
self.logger.info(log_msg, srcip, dstip, extra=self.sw_id)
src_ip = address.default_gw

if src_ip is not None:
self.packet_buffer.add(in_port, header_list, msg.data)
self.send_arp_request(src_ip, dst_ip, in_port=in_port)
self.logger.info(’Send ARP request (flood)’, extra=self.sw_id)

else:
Write flow & packet out
priority = self._get_priority(PRIORITY_POP_MPLS)
cookie = 0x830
out_port = self.hosts[dst_ip].port

dl_src = self.port_data[out_port].mac
dl_dst = self.hosts[dst_ip].mac
self.ofctl.set_mpls_flow(cookie, priority, self.mpls_label.value,

in_port, out_port, MPLS_POP_LABEL, nw_dst=dst_ip,
dst_mac=dl_dst, src_mac=dl_src, oldlabel=label_in)

self.ofctl.send_mpls_packet_out(in_port, out_port, msg.data,
self.mpls_label.value, MPLS_POP_LABEL, dst_mac=dl_dst,
src_mac=dl_src)

MPLSmod: Get origin LSR ID, quick and dirty method
def get_lsr_id(self, ler_id):

if ler_id is not None:
return LSR_DPID

MPLSmod: Get origin ID, quick and dirty method
def get_origin_id_lsr(self, in_port):

return "000000000000000" + str(in_port)

def _packetin_arp(self, msg, header_list):
src_addr = self.address_data.get_data(ip=header_list[ARP].src_ip)
if src_addr is None:

return

case: Receive ARP from the gateway
Update routing table.
case: Receive ARP from an internal host
Learning host MAC.
gw_flg = self._update_routing_tbl(msg, header_list)
if gw_flg is False:

self._learning_host_mac(msg, header_list)

ARP packet handling.
in_port = self.ofctl.get_packetin_inport(msg)
src_ip = header_list[ARP].src_ip
dst_ip = header_list[ARP].dst_ip
srcip = ip_addr_ntoa(src_ip)
dstip = ip_addr_ntoa(dst_ip)
rt_ports = self.address_data.get_default_gw()

if src_ip == dst_ip:
GARP -> packet forward (normal)
output = self.ofctl.dp.ofproto.OFPP_NORMAL
self.ofctl.send_packet_out(in_port, output, msg.data)

self.logger.info(’Receive GARP from [%s].’, srcip,
extra=self.sw_id)

self.logger.info(’Send GARP (normal).’, extra=self.sw_id)

elif dst_ip not in rt_ports:
dst_addr = self.address_data.get_data(ip=dst_ip)
if (dst_addr is not None and

src_addr.address_id == dst_addr.address_id):

ARP from internal host -> packet forward (normal)
output = self.ofctl.dp.ofproto.OFPP_NORMAL
self.ofctl.send_packet_out(in_port, output, msg.data)

self.logger.info(’Receive ARP from an internal host [%s].’,
srcip, extra=self.sw_id)

self.logger.info(’Send ARP (normal)’, extra=self.sw_id)
else:

if header_list[ARP].opcode == arp.ARP_REQUEST:
ARP request to router port -> send ARP reply
src_mac = header_list[ARP].src_mac
dst_mac = self.port_data[in_port].mac
arp_target_mac = dst_mac
output = in_port
in_port = self.ofctl.dp.ofproto.OFPP_CONTROLLER

self.ofctl.send_arp(arp.ARP_REPLY, self.vlan_id,
dst_mac, src_mac, dst_ip, src_ip,
arp_target_mac, in_port, output)

log_msg = ’Receive ARP request from [%s] to router port [%s].’
self.logger.info(log_msg, srcip, dstip, extra=self.sw_id)
self.logger.info(’Send ARP reply to [%s]’, srcip,

extra=self.sw_id)

elif header_list[ARP].opcode == arp.ARP_REPLY:
ARP reply to router port -> suspend packets forward
log_msg = ’Receive ARP reply from [%s] to router port [%s].’
self.logger.info(log_msg, srcip, dstip, extra=self.sw_id)

packet_list = self.packet_buffer.get_data(src_ip)
if packet_list:

stop ARP reply wait thread.
for suspend_packet in packet_list:

self.packet_buffer.delete(pkt=suspend_packet)

send suspend packet.
output = self.ofctl.dp.ofproto.OFPP_TABLE
for suspend_packet in packet_list:

self.ofctl.send_packet_out(suspend_packet.in_port,
output,
suspend_packet.data)

self.logger.info(’Send suspend packet to [%s].’,
srcip, extra=self.sw_id)

def _packetin_icmp_req(self, msg, header_list):
self.logger.info(’Launching _packetin_icmp_req method’,

extra=self.sw_id)
Send ICMP echo reply.
in_port = self.ofctl.get_packetin_inport(msg)
self.ofctl.send_icmp(in_port, header_list, self.vlan_id,

icmp.ICMP_ECHO_REPLY,

icmp.ICMP_ECHO_REPLY_CODE,
icmp_data=header_list[ICMP].data)

srcip = ip_addr_ntoa(header_list[IPV4].src)
dstip = ip_addr_ntoa(header_list[IPV4].dst)
log_msg = ’Receive ICMP echo request from [%s] to router port [%s].’
self.logger.info(log_msg, srcip, dstip, extra=self.sw_id)
self.logger.info(’Send ICMP echo reply to [%s].’, srcip,

extra=self.sw_id)

def _packetin_tcp_udp(self, msg, header_list):
self.logger.info(’Launching _packetin_tcp_udp method’,

extra=self.sw_id)
Send ICMP port unreach error.
in_port = self.ofctl.get_packetin_inport(msg)
self.ofctl.send_icmp(in_port, header_list, self.vlan_id,

icmp.ICMP_DEST_UNREACH,
icmp.ICMP_PORT_UNREACH_CODE,
msg_data=msg.data)

srcip = ip_addr_ntoa(header_list[IPV4].src)
dstip = ip_addr_ntoa(header_list[IPV4].dst)
self.logger.info(’Receive TCP/UDP from [%s] to router port [%s].’,

srcip, dstip, extra=self.sw_id)
self.logger.info(’Send ICMP destination unreachable to [%s].’, srcip,

extra=self.sw_id)

def _packetin_to_node(self, msg, header_list):
self.logger.info(’Launching _packetin_to_node method’,

extra=self.sw_id)
if len(self.packet_buffer) >= MAX_SUSPENDPACKETS:

self.logger.info(’Packet is dropped, MAX_SUSPENDPACKETS exceeded.’,
extra=self.sw_id)

return
Send ARP request to get node MAC address.
in_port = self.ofctl.get_packetin_inport(msg)
src_ip = None
dst_ip = header_list[IPV4].dst
srcip = ip_addr_ntoa(header_list[IPV4].src)
dstip = ip_addr_ntoa(dst_ip)

address = self.address_data.get_data(ip=dst_ip)
if address is not None:

log_msg = ’Receive IP packet from [%s] to an internal host [%s].’
self.logger.info(log_msg, srcip, dstip, extra=self.sw_id)
src_ip = address.default_gw

else:
route = self.routing_tbl.get_data(dst_ip=dst_ip)
if route is not None:

log_msg = ’Receive IP packet from [%s] to [%s].’
self.logger.info(log_msg, srcip, dstip, extra=self.sw_id)
gw_address = self.address_data.get_data(ip=route.gateway_ip)

if gw_address is not None:
src_ip = gw_address.default_gw
dst_ip = route.gateway_ip0

if src_ip is not None:
self.packet_buffer.add(in_port, header_list, msg.data)
self.send_arp_request(src_ip, dst_ip, in_port=in_port)
self.logger.info(’Send ARP request (flood)’, extra=self.sw_id)

def _packetin_invalid_ttl(self, msg, header_list):
Send ICMP TTL error.
srcip = ip_addr_ntoa(header_list[IPV4].src)
self.logger.info(’Receive invalid ttl packet from [%s].’, srcip,

extra=self.sw_id)

in_port = self.ofctl.get_packetin_inport(msg)
src_ip = self._get_send_port_ip(header_list)
if src_ip is not None:

self.ofctl.send_icmp(in_port, header_list, self.vlan_id,
icmp.ICMP_TIME_EXCEEDED,
icmp.ICMP_TTL_EXPIRED_CODE,
msg_data=msg.data, src_ip=src_ip)

self.logger.info(’Send ICMP time exceeded to [%s].’, srcip,
extra=self.sw_id)

def send_arp_all_gw(self):
gateways = self.routing_tbl.get_gateways()
for gateway in gateways:

address = self.address_data.get_data(ip=gateway)
self.send_arp_request(address.default_gw, gateway)

def send_arp_request(self, src_ip, dst_ip, in_port=None):
Send ARP request from all ports.
for send_port in self.port_data.values():

print "SENDING"
if in_port is None or in_port != send_port.port_no:

src_mac = send_port.mac
dst_mac = mac_lib.BROADCAST_STR
arp_target_mac = mac_lib.DONTCARE_STR
inport = self.ofctl.dp.ofproto.OFPP_CONTROLLER
output = send_port.port_no
self.ofctl.send_arp(arp.ARP_REQUEST, self.vlan_id,

src_mac, dst_mac, src_ip, dst_ip,
arp_target_mac, inport, output)

def send_icmp_unreach_error(self, packet_buffer):
Send ICMP host unreach error.
self.logger.info(’ARP reply wait timer was timed out.’,

extra=self.sw_id)
src_ip = self._get_send_port_ip(packet_buffer.header_list)
if src_ip is not None:

self.ofctl.send_icmp(packet_buffer.in_port,

packet_buffer.header_list,
self.vlan_id,
icmp.ICMP_DEST_UNREACH,
icmp.ICMP_HOST_UNREACH_CODE,
msg_data=packet_buffer.data,
src_ip=src_ip)

dstip = ip_addr_ntoa(packet_buffer.dst_ip)
self.logger.info(’Send ICMP destination unreachable to [%s].’,

dstip, extra=self.sw_id)

def _update_routing_tbl(self, msg, header_list):
Set flow: routing to gateway.
out_port = self.ofctl.get_packetin_inport(msg)
src_mac = header_list[ARP].src_mac
dst_mac = self.port_data[out_port].mac
src_ip = header_list[ARP].src_ip

gateway_flg = False
for key, value in self.routing_tbl.items():

if value.gateway_ip == src_ip:
gateway_flg = True
if value.gateway_mac == src_mac:

continue
self.routing_tbl[key].gateway_mac = src_mac

cookie = self._id_to_cookie(REST_ROUTEID, value.route_id)
priority, log_msg = self._get_priority(PRIORITY_TYPE_ROUTE,

route=value)
self.ofctl.set_routing_flow(cookie, priority, out_port,

dl_vlan=self.vlan_id,
src_mac=dst_mac,
dst_mac=src_mac,
nw_dst=value.dst_ip,
dst_mask=value.netmask,
dec_ttl=True)

self.logger.info(’Set %s flow [cookie=0x%x]’, log_msg, cookie,
extra=self.sw_id)

return gateway_flg

def _learning_host_mac(self, msg, header_list):
Set flow: routing to internal Host.
out_port = self.ofctl.get_packetin_inport(msg)
src_mac = header_list[ARP].src_mac
dst_mac = self.port_data[out_port].mac
src_ip = header_list[ARP].src_ip

MPLSmod: store values
self.hosts.add(src_ip, out_port, src_mac)

gateways = self.routing_tbl.get_gateways()
if src_ip not in gateways:

address = self.address_data.get_data(ip=src_ip)
if address is not None:

cookie = self._id_to_cookie(REST_ADDRESSID, address.address_id)
priority = self._get_priority(PRIORITY_IMPLICIT_ROUTING)

self.ofctl.set_routing_flow(cookie, priority,
out_port, dl_vlan=self.vlan_id,
src_mac=dst_mac, dst_mac=src_mac,
nw_dst=src_ip,
idle_timeout=IDLE_TIMEOUT,
dec_ttl=True)

self.logger.info(’Set implicit routing flow [cookie=0x%x]’,
cookie, extra=self.sw_id)

def _get_send_port_ip(self, header_list):
try:

src_mac = header_list[ETHERNET].src
if IPV4 in header_list:

src_ip = header_list[IPV4].src
else:

src_ip = header_list[ARP].src_ip
except KeyError:

self.logger.debug(’Receive unsupported packet.’, extra=self.sw_id)
return None

address = self.address_data.get_data(ip=src_ip)
if address is not None:

return address.default_gw
else:

route = self.routing_tbl.get_data(gw_mac=src_mac)
if route is not None:

address = self.address_data.get_data(ip=route.gateway_ip)
if address is not None:

return address.default_gw

self.logger.debug(’Receive packet from unknown IP[%s].’,
ip_addr_ntoa(src_ip), extra=self.sw_id)

return None

class PortData(dict):
def __init__(self, ports):

super(PortData, self).__init__()
for port in ports.values():

data = Port(port.port_no, port.hw_addr)
self[port.port_no] = data

class Port(object):
def __init__(self, port_no, hw_addr):

super(Port, self).__init__()

self.port_no = port_no
self.mac = hw_addr

MPLSmod: classes to store host data
class HostDict(dict):

def __init__(self):
super(HostDict, self).__init__()

def add(self, ip, port, mac):
self[ip] = Host(ip, port, mac)

class Host(object):

def __init__(self, ip, port, mac):
self.ip = ip
self.port = port
self.mac = mac

MPLSmod: class to store the prefix-port info
class PrefixData(dict):

def __init__(self):
super(PrefixData, self).__init__()
self.prefix_id = 1

Does not check for overlaps yet

def add(self, prefix, port):
err_msg = ’Invalid [%s] value.’ % REST_PREFIX
nw_addr, mask, default_gw = nw_addr_aton(prefix, err_msg=err_msg)
prefix = Prefix(nw_addr, mask, port, self.prefix_id)
ip_str = ip_addr_ntoa(nw_addr)
key = ’%s/%d’ % (ip_str, mask)
self[key] = prefix
self.prefix_id = self.prefix_id + 1
return prefix

MPLSmod: class to encapsulate the prefix-port relation
class Prefix(object):

def __init__(self, address, netmask, port, prefix_id):
self.prefix_id = prefix_id
self.address = address
self.netmask = netmask
self.port = port

def compare(self, ip):
if ipv4_apply_mask(ip, self.netmask) == self.address:

return True

else:
return False

MPLSmod: class mapping IP addresses to labels
class MplsData(dict):

def __init__(self):
super(MplsData, self).__init__()

def add(self, dpid, label_value, dst_ip):
self[dpid][label_value] = dst_ip

MPLSmod: class to encapsulate labels
class MplsLabel(object):

def __init__(self, value=20):
self.value = value

def increase(self):
self.value = self.value + 1

class AddressData(dict):
def __init__(self):

super(AddressData, self).__init__()
self.address_id = 1

def add(self, address):
err_msg = ’Invalid [%s] value.’ % REST_ADDRESS
nw_addr, mask, default_gw = nw_addr_aton(address, err_msg=err_msg)

Check overlaps
for other in self.values():

other_mask = mask_ntob(other.netmask)
add_mask = mask_ntob(mask, err_msg=err_msg)
if (other.nw_addr == ipv4_apply_mask(default_gw, other.netmask) or

nw_addr == ipv4_apply_mask(other.default_gw, mask,
err_msg)):

msg = ’Address overlaps [address_id=%d]’ % other.address_id
raise CommandFailure(msg=msg)

address = Address(self.address_id, nw_addr, mask, default_gw)
ip_str = ip_addr_ntoa(nw_addr)
key = ’%s/%d’ % (ip_str, mask)
self[key] = address

self.address_id += 1
self.address_id &= UINT32_MAX
if self.address_id == COOKIE_DEFAULT_ID:

self.address_id = 1

return address

def delete(self, address_id):
for key, value in self.items():

if value.address_id == address_id:
del self[key]
return

def get_default_gw(self):
return [address.default_gw for address in self.values()]

def get_data(self, addr_id=None, ip=None):
for address in self.values():

if addr_id is not None:
if addr_id == address.address_id:

return address
else:

assert ip is not None
if ipv4_apply_mask(ip, address.netmask) == address.nw_addr:

return address
return None

class Address(object):
def __init__(self, address_id, nw_addr, netmask, default_gw):

super(Address, self).__init__()
self.address_id = address_id
self.nw_addr = nw_addr
self.netmask = netmask
self.default_gw = default_gw

def __contains__(self, ip):
return bool(ipv4_apply_mask(ip, self.netmask) == self.nw_addr)

class RoutingTable(dict):
def __init__(self):

super(RoutingTable, self).__init__()
self.route_id = 1

def add(self, dst_nw_addr, gateway_ip):
err_msg = ’Invalid [%s] value.’

if dst_nw_addr == DEFAULT_ROUTE:
dst_ip = 0
netmask = 0

else:
dst_ip, netmask, dummy = nw_addr_aton(

dst_nw_addr, err_msg=err_msg % REST_DESTINATION)

gateway_ip = ip_addr_aton(gateway_ip, err_msg=err_msg % REST_GATEWAY)

Check overlaps

overlap_route = None
if dst_nw_addr == DEFAULT_ROUTE:

if DEFAULT_ROUTE in self:
overlap_route = self[DEFAULT_ROUTE].route_id

elif dst_nw_addr in self:
overlap_route = self[dst_nw_addr].route_id

if overlap_route is not None:
msg = ’Destination overlaps [route_id=%d]’ % overlap_route
raise CommandFailure(msg=msg)

routing_data = Route(self.route_id, dst_ip, netmask, gateway_ip)
ip_str = ip_addr_ntoa(dst_ip)
key = ’%s/%d’ % (ip_str, netmask)
self[key] = routing_data

self.route_id += 1
self.route_id &= UINT32_MAX
if self.route_id == COOKIE_DEFAULT_ID:

self.route_id = 1

return routing_data

def delete(self, route_id):
for key, value in self.items():

if value.route_id == route_id:
del self[key]
return

def get_gateways(self):
return [routing_data.gateway_ip for routing_data in self.values()]

def get_data(self, gw_mac=None, dst_ip=None):
if gw_mac is not None:

for route in self.values():
if gw_mac == route.gateway_mac:

return route
return None

elif dst_ip is not None:
get_route = None
mask = 0
for route in self.values():

if ipv4_apply_mask(dst_ip, route.netmask) == route.dst_ip:
For longest match
if mask < route.netmask:

get_route = route
mask = route.netmask

if get_route is None:
get_route = self.get(DEFAULT_ROUTE, None)

return get_route

else:
return None

class Route(object):
def __init__(self, route_id, dst_ip, netmask, gateway_ip):

super(Route, self).__init__()
self.route_id = route_id
self.dst_ip = dst_ip
self.netmask = netmask
self.gateway_ip = gateway_ip
self.gateway_mac = None

class SuspendPacketList(list):
def __init__(self, timeout_function):

super(SuspendPacketList, self).__init__()
self.timeout_function = timeout_function

def add(self, in_port, header_list, data):
suspend_pkt = SuspendPacket(in_port, header_list, data,

self.wait_arp_reply_timer)
self.append(suspend_pkt)

def delete(self, pkt=None, del_addr=None):
if pkt is not None:

del_list = [pkt]
else:

assert del_addr is not None
del_list = [pkt for pkt in self if pkt.dst_ip in del_addr]

for pkt in del_list:
self.remove(pkt)
hub.kill(pkt.wait_thread)
pkt.wait_thread.wait()

def get_data(self, dst_ip):
return [pkt for pkt in self if pkt.dst_ip == dst_ip]

def wait_arp_reply_timer(self, suspend_pkt):
hub.sleep(ARP_REPLY_TIMER)
if suspend_pkt in self:

self.timeout_function(suspend_pkt)
self.delete(pkt=suspend_pkt)

class SuspendPacket(object):
def __init__(self, in_port, header_list, data, timer):

super(SuspendPacket, self).__init__()
self.in_port = in_port
self.dst_ip = header_list[IPV4].dst
self.header_list = header_list

self.data = data
Start ARP reply wait timer.
self.wait_thread = hub.spawn(timer, self)

class OfCtl(object):
_OF_VERSIONS = {}

@staticmethod
def register_of_version(version):

def _register_of_version(cls):
OfCtl._OF_VERSIONS.setdefault(version, cls)
return cls

return _register_of_version

@staticmethod
def factory(dp, logger):

of_version = dp.ofproto.OFP_VERSION
if of_version in OfCtl._OF_VERSIONS:

ofctl = OfCtl._OF_VERSIONS[of_version](dp, logger)
else:

raise OFPUnknownVersion(version=of_version)

return ofctl

def __init__(self, dp, logger):
super(OfCtl, self).__init__()
self.dp = dp
self.sw_id = {’sw_id’: dpid_lib.dpid_to_str(dp.id)}
self.logger = logger

def set_sw_config_for_ttl(self):
OpenFlow v1_2/1_3.
pass

def set_flow(self, cookie, priority, dl_type=0, dl_dst=0, dl_vlan=0,
nw_src=0, src_mask=32, nw_dst=0, dst_mask=32,
nw_proto=0, idle_timeout=0, actions=None):

Abstract method
raise NotImplementedError()

def send_arp(self, arp_opcode, vlan_id, src_mac, dst_mac,
src_ip, dst_ip, arp_target_mac, in_port, output):

Generate ARP packet
if vlan_id != VLANID_NONE:

ether_proto = ether.ETH_TYPE_8021Q
pcp = 0
cfi = 0
vlan_ether = ether.ETH_TYPE_ARP
v = vlan.vlan(pcp, cfi, vlan_id, vlan_ether)

else:
ether_proto = ether.ETH_TYPE_ARP

hwtype = 1
arp_proto = ether.ETH_TYPE_IP
hlen = 6
plen = 4

pkt = packet.Packet()
e = ethernet.ethernet(dst_mac, src_mac, ether_proto)
a = arp.arp(hwtype, arp_proto, hlen, plen, arp_opcode,

src_mac, src_ip, arp_target_mac, dst_ip)
pkt.add_protocol(e)
if vlan_id != VLANID_NONE:

pkt.add_protocol(v)
pkt.add_protocol(a)
pkt.serialize()

Send packet out
self.send_packet_out(in_port, output, pkt.data, data_str=str(pkt))

def send_icmp(self, in_port, protocol_list, vlan_id, icmp_type,
icmp_code, icmp_data=None, msg_data=None, src_ip=None):

Generate ICMP reply packet
csum = 0
offset = ethernet.ethernet._MIN_LEN

if vlan_id != VLANID_NONE:
ether_proto = ether.ETH_TYPE_8021Q
pcp = 0
cfi = 0
vlan_ether = ether.ETH_TYPE_IP
v = vlan.vlan(pcp, cfi, vlan_id, vlan_ether)
offset += vlan.vlan._MIN_LEN

else:
ether_proto = ether.ETH_TYPE_IP

eth = protocol_list[ETHERNET]
e = ethernet.ethernet(eth.src, eth.dst, ether_proto)

if icmp_data is None and msg_data is not None:
ip_datagram = msg_data[offset:]
if icmp_type == icmp.ICMP_DEST_UNREACH:

icmp_data = icmp.dest_unreach(data_len=len(ip_datagram),
data=ip_datagram)

elif icmp_type == icmp.ICMP_TIME_EXCEEDED:
icmp_data = icmp.TimeExceeded(data_len=len(ip_datagram),

data=ip_datagram)

ic = icmp.icmp(icmp_type, icmp_code, csum, data=icmp_data)

ip = protocol_list[IPV4]
if src_ip is None:

src_ip = ip.dst
ip_total_length = ip.header_length * 4 + ic._MIN_LEN

if ic.data is not None:
ip_total_length += ic.data._MIN_LEN
if ic.data.data is not None:

ip_total_length += + len(ic.data.data)
i = ipv4.ipv4(ip.version, ip.header_length, ip.tos,

ip_total_length, ip.identification, ip.flags,
ip.offset, DEFAULT_TTL, inet.IPPROTO_ICMP, csum,
src_ip, ip.src)

pkt = packet.Packet()
pkt.add_protocol(e)
if vlan_id != VLANID_NONE:

pkt.add_protocol(v)
pkt.add_protocol(i)
pkt.add_protocol(ic)
pkt.serialize()

Send packet out
self.send_packet_out(in_port, self.dp.ofproto.OFPP_IN_PORT,

pkt.data, data_str=str(pkt))

MPLSmod: push label and send
def send_mpls_packet_out(self, in_port, out_port, data, label, action,

dst_mac=0, src_mac=0):

parser = self.dp.ofproto_parser
if action == MPLS_PUSH_LABEL:

actions = [parser.OFPActionPushMpls(ethertype=34887),
parser.OFPActionSetField(mpls_label=label),
parser.OFPActionOutput(out_port)]

elif action == MPLS_SWAP_LABEL:
actions = [parser.OFPActionPopMpls(),

parser.OFPActionPushMpls(ethertype=34887),
parser.OFPActionSetField(mpls_label=label),
parser.OFPActionOutput(out_port)]

elif action == MPLS_POP_LABEL:
actions = [parser.OFPActionPopMpls(),

parser.OFPActionSetField(eth_src=src_mac),
parser.OFPActionSetField(eth_dst=dst_mac),
parser.OFPActionOutput(out_port)]

self.dp.send_packet_out(buffer_id=UINT32_MAX, in_port=in_port,
actions=actions, data=data)

def send_packet_out(self, in_port, output, data, data_str=None):
actions = [self.dp.ofproto_parser.OFPActionOutput(output, 0)]
self.dp.send_packet_out(buffer_id=UINT32_MAX, in_port=in_port,

actions=actions, data=data)
TODO: Packet library convert to string
if data_str is None:
data_str = str(packet.Packet(data))
self.logger.debug(’Packet out = %s’, data_str, extra=self.sw_id)

def set_normal_flow(self, cookie, priority):
out_port = self.dp.ofproto.OFPP_NORMAL
actions = [self.dp.ofproto_parser.OFPActionOutput(out_port, 0)]
self.set_flow(cookie, priority, actions=actions)

def set_packetin_flow(self, cookie, priority, dl_type=0, dl_dst=0,
dl_vlan=0, dst_ip=0, dst_mask=32, nw_proto=0):

miss_send_len = UINT16_MAX
actions = [self.dp.ofproto_parser.OFPActionOutput(

self.dp.ofproto.OFPP_CONTROLLER, miss_send_len)]
self.set_flow(cookie, priority, dl_type=dl_type, dl_dst=dl_dst,

dl_vlan=dl_vlan, nw_dst=dst_ip, dst_mask=dst_mask,
nw_proto=nw_proto, actions=actions)

def send_stats_request(self, stats, waiters):
self.dp.set_xid(stats)
waiters_per_dp = waiters.setdefault(self.dp.id, {})
event = hub.Event()
msgs = []
waiters_per_dp[stats.xid] = (event, msgs)
self.dp.send_msg(stats)

try:
event.wait(timeout=OFP_REPLY_TIMER)

except hub.Timeout:
del waiters_per_dp[stats.xid]

return msgs

@OfCtl.register_of_version(ofproto_v1_0.OFP_VERSION)
class OfCtl_v1_0(OfCtl):

def __init__(self, dp, logger):
super(OfCtl_v1_0, self).__init__(dp, logger)

def get_packetin_inport(self, msg):
return msg.in_port

def get_all_flow(self, waiters):
ofp = self.dp.ofproto
ofp_parser = self.dp.ofproto_parser

match = ofp_parser.OFPMatch(ofp.OFPFW_ALL, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0)

stats = ofp_parser.OFPFlowStatsRequest(self.dp, 0, match,
0xff, ofp.OFPP_NONE)

return self.send_stats_request(stats, waiters)

def set_flow(self, cookie, priority, dl_type=0, dl_dst=0, dl_vlan=0,
nw_src=0, src_mask=32, nw_dst=0, dst_mask=32,
nw_proto=0, idle_timeout=0, actions=None):

ofp = self.dp.ofproto
ofp_parser = self.dp.ofproto_parser
cmd = ofp.OFPFC_ADD

Match
wildcards = ofp.OFPFW_ALL
if dl_type:

wildcards &= ~ofp.OFPFW_DL_TYPE
if dl_dst:

wildcards &= ~ofp.OFPFW_DL_DST
if dl_vlan:

wildcards &= ~ofp.OFPFW_DL_VLAN
if nw_src:

v = (32 - src_mask) << ofp.OFPFW_NW_SRC_SHIFT | \
~ofp.OFPFW_NW_SRC_MASK

wildcards &= v
nw_src = ipv4_text_to_int(nw_src)

if nw_dst:
v = (32 - dst_mask) << ofp.OFPFW_NW_DST_SHIFT | \

~ofp.OFPFW_NW_DST_MASK
wildcards &= v
nw_dst = ipv4_text_to_int(nw_dst)

if nw_proto:
wildcards &= ~ofp.OFPFW_NW_PROTO

match = ofp_parser.OFPMatch(wildcards, 0, 0, dl_dst, dl_vlan, 0,
dl_type, 0, nw_proto,
nw_src, nw_dst, 0, 0)

actions = actions or []

m = ofp_parser.OFPFlowMod(self.dp, match, cookie, cmd,
idle_timeout=idle_timeout,
priority=priority, actions=actions)

self.dp.send_msg(m)

def set_routing_flow(self, cookie, priority, outport, dl_vlan=0,
nw_src=0, src_mask=32, nw_dst=0, dst_mask=32,
src_mac=0, dst_mac=0, idle_timeout=0, **dummy):

ofp_parser = self.dp.ofproto_parser

dl_type = ether.ETH_TYPE_IP

Decrement TTL value is not supported at OpenFlow V1.0
actions = []
if src_mac:

actions.append(ofp_parser.OFPActionSetDlSrc(
mac_lib.haddr_to_bin(src_mac)))

if dst_mac:
actions.append(ofp_parser.OFPActionSetDlDst(

mac_lib.haddr_to_bin(dst_mac)))
if outport is not None:

actions.append(ofp_parser.OFPActionOutput(outport))

self.set_flow(cookie, priority, dl_type=dl_type, dl_vlan=dl_vlan,
nw_src=nw_src, src_mask=src_mask,
nw_dst=nw_dst, dst_mask=dst_mask,
idle_timeout=idle_timeout, actions=actions)

def delete_flow(self, flow_stats):
match = flow_stats.match
cookie = flow_stats.cookie
cmd = self.dp.ofproto.OFPFC_DELETE_STRICT
priority = flow_stats.priority
actions = []

flow_mod = self.dp.ofproto_parser.OFPFlowMod(
self.dp, match, cookie, cmd, priority=priority, actions=actions)

self.dp.send_msg(flow_mod)
self.logger.info(’Delete flow [cookie=0x%x]’, cookie, extra=self.sw_id)

class OfCtl_after_v1_2(OfCtl):

def __init__(self, dp, logger):
super(OfCtl_after_v1_2, self).__init__(dp, logger)

def set_sw_config_for_ttl(self):
pass

def get_packetin_inport(self, msg):
in_port = self.dp.ofproto.OFPP_ANY
for match_field in msg.match.fields:

if match_field.header == self.dp.ofproto.OXM_OF_IN_PORT:
in_port = match_field.value
break

return in_port

def get_all_flow(self, waiters):
pass

MPLSmod: custom flow method
def set_my_flow(self, cookie, priority, match, idle_timeout=0, actions=None):

ofp = self.dp.ofproto
ofp_parser = self.dp.ofproto_parser
cmd = ofp.OFPFC_ADD

inst = [ofp_parser.OFPInstructionActions(ofp.OFPIT_APPLY_ACTIONS,
actions)]

m = ofp_parser.OFPFlowMod(self.dp, cookie, 0, 0, cmd, idle_timeout,
0, priority, UINT32_MAX, ofp.OFPP_ANY,
ofp.OFPG_ANY, 0, match, inst)

self.dp.send_msg(m)

def set_flow(self, cookie, priority, dl_type=0, dl_dst=0, dl_vlan=0,
nw_src=0, src_mask=32, nw_dst=0, dst_mask=32,
nw_proto=0, idle_timeout=0, actions=None):

ofp = self.dp.ofproto
ofp_parser = self.dp.ofproto_parser
cmd = ofp.OFPFC_ADD

Match
match = ofp_parser.OFPMatch()
if dl_type:

match.set_dl_type(dl_type)
if dl_dst:

match.set_dl_dst(dl_dst)
if dl_vlan:

match.set_vlan_vid(dl_vlan)
if nw_src:

match.set_ipv4_src_masked(ipv4_text_to_int(nw_src),
mask_ntob(src_mask))

if nw_dst:
match.set_ipv4_dst_masked(ipv4_text_to_int(nw_dst),

mask_ntob(dst_mask))
if nw_proto:

if dl_type == ether.ETH_TYPE_IP:
match.set_ip_proto(nw_proto)

elif dl_type == ether.ETH_TYPE_ARP:
match.set_arp_opcode(nw_proto)

Instructions
actions = actions or []
inst = [ofp_parser.OFPInstructionActions(ofp.OFPIT_APPLY_ACTIONS,

actions)]

m = ofp_parser.OFPFlowMod(self.dp, cookie, 0, 0, cmd, idle_timeout,
0, priority, UINT32_MAX, ofp.OFPP_ANY,
ofp.OFPG_ANY, 0, match, inst)

self.dp.send_msg(m)

def set_routing_flow(self, cookie, priority, outport, dl_vlan=0,
nw_src=0, src_mask=32, nw_dst=0, dst_mask=32,
src_mac=0, dst_mac=0, idle_timeout=0, dec_ttl=False):

ofp = self.dp.ofproto
ofp_parser = self.dp.ofproto_parser

dl_type = ether.ETH_TYPE_IP

actions = []
if dec_ttl:

actions.append(ofp_parser.OFPActionDecNwTtl())
if src_mac:

actions.append(ofp_parser.OFPActionSetField(eth_src=src_mac))
if dst_mac:

actions.append(ofp_parser.OFPActionSetField(eth_dst=dst_mac))
if outport is not None:

actions.append(ofp_parser.OFPActionOutput(outport, 0))

self.set_flow(cookie, priority, dl_type=dl_type, dl_vlan=dl_vlan,
nw_src=nw_src, src_mask=src_mask,
nw_dst=nw_dst, dst_mask=dst_mask,
idle_timeout=idle_timeout, actions=actions)

def delete_flow(self, flow_stats):
ofp = self.dp.ofproto
ofp_parser = self.dp.ofproto_parser

cmd = ofp.OFPFC_DELETE
cookie = flow_stats.cookie
cookie_mask = UINT64_MAX
match = ofp_parser.OFPMatch()
inst = []

flow_mod = ofp_parser.OFPFlowMod(self.dp, cookie, cookie_mask, 0, cmd,
0, 0, 0, UINT32_MAX, ofp.OFPP_ANY,
ofp.OFPG_ANY, 0, match, inst)

self.dp.send_msg(flow_mod)
self.logger.info(’Delete flow [cookie=0x%x]’, cookie, extra=self.sw_id)

@OfCtl.register_of_version(ofproto_v1_2.OFP_VERSION)
class OfCtl_v1_2(OfCtl_after_v1_2):

def __init__(self, dp, logger):
super(OfCtl_v1_2, self).__init__(dp, logger)

def set_sw_config_for_ttl(self):
flags = self.dp.ofproto.OFPC_INVALID_TTL_TO_CONTROLLER
miss_send_len = UINT16_MAX
m = self.dp.ofproto_parser.OFPSetConfig(self.dp, flags,

miss_send_len)
self.dp.send_msg(m)
self.logger.info(’Set SW config for TTL error packet in.’,

extra=self.sw_id)

def get_all_flow(self, waiters):
ofp = self.dp.ofproto
ofp_parser = self.dp.ofproto_parser

match = ofp_parser.OFPMatch()
stats = ofp_parser.OFPFlowStatsRequest(self.dp, 0, ofp.OFPP_ANY,

ofp.OFPG_ANY, 0, 0, match)
return self.send_stats_request(stats, waiters)

@OfCtl.register_of_version(ofproto_v1_3.OFP_VERSION)

class OfCtl_v1_3(OfCtl_after_v1_2):

def __init__(self, dp, logger):
super(OfCtl_v1_3, self).__init__(dp, logger)

def set_sw_config_for_ttl(self):
packet_in_mask = (1 << self.dp.ofproto.OFPR_ACTION |

1 << self.dp.ofproto.OFPR_INVALID_TTL)
port_status_mask = (1 << self.dp.ofproto.OFPPR_ADD |

1 << self.dp.ofproto.OFPPR_DELETE |
1 << self.dp.ofproto.OFPPR_MODIFY)

flow_removed_mask = (1 << self.dp.ofproto.OFPRR_IDLE_TIMEOUT |
1 << self.dp.ofproto.OFPRR_HARD_TIMEOUT |
1 << self.dp.ofproto.OFPRR_DELETE)

m = self.dp.ofproto_parser.OFPSetAsync(
self.dp, [packet_in_mask, 0], [port_status_mask, 0],
[flow_removed_mask, 0])

self.dp.send_msg(m)
self.logger.info(’Set SW config for TTL error packet in.’,

extra=self.sw_id)

def get_all_flow(self, waiters):
ofp = self.dp.ofproto
ofp_parser = self.dp.ofproto_parser

match = ofp_parser.OFPMatch()
stats = ofp_parser.OFPFlowStatsRequest(self.dp, 0, 0, ofp.OFPP_ANY,

ofp.OFPG_ANY, 0, 0, match)
return self.send_stats_request(stats, waiters)

MPLSmod: method to add mpls flows
def set_mpls_flow(self, cookie, priority, label, in_port, out_port, action,

dl_vlan=0, nw_src=0, src_mask=32, nw_dst=0, dst_mask=32,
src_mac=0, dst_mac=0, idle_timeout=0, oldlabel=0):

parser = self.dp.ofproto_parser
if action == MPLS_PUSH_LABEL:

dl_type = ether.ETH_TYPE_IP
actions = [parser.OFPActionPushMpls(ethertype=34887),

parser.OFPActionSetField(mpls_label=label),
parser.OFPActionOutput(out_port)]

self.set_flow(cookie, priority, dl_type=dl_type, dl_vlan=dl_vlan,
nw_src=nw_src, src_mask=src_mask,
nw_dst=nw_dst, dst_mask=dst_mask,
idle_timeout=idle_timeout, actions=actions)

elif action == MPLS_SWAP_LABEL:
dl_type = ether.ETH_TYPE_MPLS
actions = [parser.OFPActionPopMpls(),

parser.OFPActionPushMpls(ethertype=34887),
parser.OFPActionSetField(mpls_label=label),

parser.OFPActionOutput(out_port)]
match = parser.OFPMatch(in_port=in_port,

eth_type=dl_type, mpls_label=oldlabel)
self.set_my_flow(cookie, priority, match,

idle_timeout=idle_timeout, actions=actions)

elif action == MPLS_POP_LABEL:
dl_type = ether.ETH_TYPE_MPLS
actions = [parser.OFPActionPopMpls(),

parser.OFPActionSetField(eth_src=src_mac),
parser.OFPActionSetField(eth_dst=dst_mac),
parser.OFPActionOutput(out_port)]

match = parser.OFPMatch(eth_type=dl_type, mpls_label=oldlabel)
self.set_my_flow(cookie, priority, match,

idle_timeout=idle_timeout, actions=actions)

MPLSmod: get mpls label
def get_packetin_mplslabel(self, msg):

pkt = packet.Packet(msg.data)
mpls_proto = pkt.get_protocol(mpls.mpls)
return mpls_proto.label

def ip_addr_aton(ip_str, err_msg=None):
try:

return addrconv.ipv4.bin_to_text(socket.inet_aton(ip_str))
except (struct.error, socket.error) as e:

if err_msg is not None:
e.message = ’%s %s’ % (err_msg, e.message)

raise ValueError(e.message)

def ip_addr_ntoa(ip):
return socket.inet_ntoa(addrconv.ipv4.text_to_bin(ip))

def mask_ntob(mask, err_msg=None):
try:

return (UINT32_MAX << (32 - mask)) & UINT32_MAX
except ValueError:

msg = ’illegal netmask’
if err_msg is not None:

msg = ’%s %s’ % (err_msg, msg)
raise ValueError(msg)

def ipv4_apply_mask(address, prefix_len, err_msg=None):
import itertools

assert isinstance(address, str)
address_int = ipv4_text_to_int(address)
return ipv4_int_to_text(address_int & mask_ntob(prefix_len, err_msg))

def ipv4_int_to_text(ip_int):
assert isinstance(ip_int, numbers.Integral)
return addrconv.ipv4.bin_to_text(struct.pack(’!I’, ip_int))

def ipv4_text_to_int(ip_text):
if ip_text == 0:

return ip_text
assert isinstance(ip_text, str)
return struct.unpack(’!I’, addrconv.ipv4.text_to_bin(ip_text))[0]

def nw_addr_aton(nw_addr, err_msg=None):
ip_mask = nw_addr.split(’/’)
default_route = ip_addr_aton(ip_mask[0], err_msg=err_msg)
netmask = 32
if len(ip_mask) == 2:

try:
netmask = int(ip_mask[1])

except ValueError as e:
if err_msg is not None:

e.message = ’%s %s’ % (err_msg, e.message)
raise ValueError(e.message)

if netmask < 0:
msg = ’illegal netmask’
if err_msg is not None:

msg = ’%s %s’ % (err_msg, msg)
raise ValueError(msg)

nw_addr = ipv4_apply_mask(default_route, netmask, err_msg)
return nw_addr, netmask, default_route

Bibliography

[1] Does open vswitch support mpls? https://github.com/openvswitch/ovs/blob/master/FAQ.
md#q-does-open-vswitch-support-mpls.

[2] Open vswitch datapath developer documentation. https://www.kernel.org/doc/Documentation/
networking/openvswitch.txt.

[3] Open vswitch github repository. https://github.com/openvswitch/ovs.

[4] Ryu online documentation. http://ryu.readthedocs.org/en/latest/index.html.

[5] What linux kernel versions does each open vswitch release work with?
https://github.com/openvswitch/ovs/blob/master/FAQ.md#
q-what-linux-kernel-versions-does-each-open-vswitch-release-work-with.

[6] Open Networking Foundation. Software-defined networking: The new norm for networks. onf white paper, 2012.

[7] Open Networking Foundation. Sdn architecture overview, 2013.

[8] Open Networking Foundation. Openflow switch specification. version 1.3.5 (protocol version 0x04), 2015.

[9] Eric Lopez. Openstack: Ovs deep dive. conference at openstack summit, hong kong. https://www.
youtube.com/watch?v=x-F9bDRxjAM, 2013.

[10] Sean Michael. Linux 3.19 release adds mpls support to openvswitch. http://www.linuxplanet.com/
news/linux-3.19-release-adds-mpls-support-to-openvswitch.html.

[11] Ryu project team. Ryu SDN Framework - English Edition. RYU project team, 2014.

183

