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We show that semiclassical methods that are traditionally used to de-
scribe many-body sytems in physics can also be used to describe partitions
that are studied in the number theory within pure mathematics. For the
partitions P (n) of a number n into sums of distinct squares we show that
the smooth asymptotic part Pas(n) can be well reproduced by quantum
statistical methods, and that its oscillating part δP (n) = P (n)− Pas(n) is
well reproduced by the periodic orbit theory in terms of a few “orbits” that
can be related to Pythagorean triples (m, p, q) of integers with m2+p2 = q2.

This article is dedicated to the memory of Rajat Bhaduri who left us in
November 2019. He had been a decisive partner in much of the work re-
ported here and has actually been the driving force for the development of
the study discussed below in more detail. Rajat Bhaduri has been a widely
recognized scientist, a marvellous teacher, and a very dear friend.

1. Introduction

Shell effects are an ubiquitous phenomenon in many-fermion systems
such as nuclei, atoms, metal clusters or nanostructures. Besides selfconsis-
tent microscopic methods such as Hartree-Fock or density functional theory,
they have most effectively and most abundantly been described by the shell-
correction method invented by Strutinsky [1] half a century ago. Krzysztof
Pomorski, whose birthday we are celebrating in this workshop, has also
applied this method successfully to nuclei and contributed to its further
improvement. Not long after Strutinsky’s invention, the semiclassical peri-
odic orbit theory (POT) was developed [2], by which the discrete spectra of
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quantum systems can be related to the periodic orbits of the corresponding
classical systems in terms of so-called trace formulae, both for integrable and
for non-integrable and chaotic systems. The POT has also been successfully
used to describe gross shell effects in finite quantum systems in terms of the
few shortest classical periodic orbits. We refer to the text book [3] for an
overview of semiclassical methods and their applications to many different
physical systems.

In this contribution we shall draw attention to the fact that semiclassical
methods have also been applied successfully to mathematical objects, namely
the so-called partitions of a given integer n into various sums involving other
integer numbers. For an introduction to this topic we refer to [4] and to three
recent articles involving the present authors [5, 6, 7]. In Refs. [4, 5, 7] the
focus was on the smooth asymptotic parts Pas(n) of various partitions P (n)
– which can be obtained by quantum statistical methods that also have
semiclassical character – while in [6] the main result was a trace formula
reproducing the oscillating part δP (n) = P (n)−Pas(n) of the number P (n)
of ways a given integer n can be written as a sum of distinct squares of
integers, in short: of the distinct square partitions.

2. Distinct square partitions

In the following we present a summary of our recent article [6]. We
reproduce only the main ideas and some selected results and refer to the full
paper for all technical and calculational details.

2.1. Definition and oscillatory behaviour

We define the function P (n) that counts the number of ways in which
a given integer n can be written as a sum of distinct squares of positive
integers mi:

n =
In∑

i=1

m2
i , mi 6= mj for i 6= j . (1)

Hereby the number In of summands is not specified. It may start from
In = 1, in which case m1 is the largest integer ≤ √

n. The highest In
is limited by In ≤ (3n)1/3 − 1/2 + O(n−1/3). Each particular sum (1) is
called a partition of n into squares. The word distinct implies that all mi

within each partition must be different. We define P (0) = 1 and, trivially,
one sees that P (1) = 1. The infinite series of numbers given by P (n) for
n = 0, 1, 2, . . . is called the series A033461 in the on-line encyclopedia of
integer sequences (OEIS) [8]. Its first ten members are 1, 1, 0, 0, 1, 1, 0, 0,
0, 1 (see also Fig. 2 below).
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As was pointed out in Ref. [4], the exact function P (n) for distinct square
partitions exhibits pronounced oscillations with a beat-like structure when
the points are joined by a continuous curve, as shown in Fig. 1 and Fig. 2
below.

0

20

40

60

80

100

120

P(
n)

0 100 200 300 400 500
n

Fig. 1. P (n) of the distinct square partitions shown in the low-n region. Note

that P (n) is defined for integer values of n. Here we have joined the points by a

continuous curve to emphasize the beat structure.

Where are these regular oscillations coming from? Consider an integer n
that is a sum of squares: n = m2+p2. If n itself is a square: n = q2, then the
three numbers m, p, q form what is commonly called a Pythagorean triple
(PT) of integers (m, p, q) with m2 + p2 = q2. Such triples can only occur in
square partitions, since Fermat’s last theorem [9] asserts that only squares
of integers may be written as sums of two (or more) other squares. Since an
increasing number of such triples will occur in the counting function P (n)
with increasing n, it is quite plausible that they reflect themselves in the
oscillatory behaviour of P (n).

For a quantitative analysis, we start from the generating function Z(β)
which for any given partition P (n) is defined as

Z(β) =

∞∑

n=0

P (n) e−nβ. (2)

For the distinct square partitions it is given by

Z(β) =

∞∏

m=1

[1 + e−m2β] = exp

{
M∑

m=1

ln
[
1 + e−m2β

]}
. (3)
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In principle M is infinity according to the left-hand side of (3). However,
when calculating P (n) with finite n by Eq. (6) below, we have – for the reason
given after Eq. (1) – the restriction M(n) = [

√
n ], where [

√
n ] denotes the

largest integer contained in
√
n. The right-hand side of Eq. (3) was also

used to generate our data base for the P (n) up to n = 160 000.

In the following we take β to be a complex variable

β = x+ iτ , (x, τ ∈ R) , (4)

where x and τ are dimensionless real variables. Note that (3) can be viewed
as a fermionic canonical grand partition function with chemical potential
µ = 0. Therefore there is no constraint on the average particle number N
which may go up to infinity.

The inverse Laplace transform of Z(β) yields the partition density g(E):

g(E) = L−1
E [Z(β)] =

1

2πi

∫

C
Z(β) eEβ dβ =

∞∑

n=0

P (n) δ(E − n) , (5)

where δ(E − n) is the Dirac delta function peaked at E = n. We denote
the dimensionless real argument of g(E) by E because of its relation to the
energy in the context of statistical physics, where g(E) is the level density
(or density of states) of a system of independent particles. The contour C
in (5) runs parallel to the imaginary axis τ with a real part x = ǫ > 0.

In Ref. [6] we have derived the following integral representation for P (n):

P (n)=
1

2π

∫ π

−π
Re einτZ(iτ)dτ =

1

2π

∫ π

−π
Re exp


inτ+

[
√
n ]∑

m=1

ln
(
1+e−im2τ

)

dτ.

(6)
This integral formula is exact and may be used to compute P (n) numerically
for not too large n without much effort.

Figure 2 shows the function g(1)(E) = P (E) obtained from (6) replacing
n by the continuous variable E; it may also be written as

g(1)(E) =
∞∑

m=0

P (m) j0[π(E −m)], (7)

where j0(x) = sin(x)/x is the spherical Bessel function of order zero. As
the figure shows, g(1)(E) is an analytical interpolation function yielding the
exact values of P (n) for integer E = n (shown by the red crosses).
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Fig. 2. Bessel-smoothed partition density g(1)(E) (7) (black line) for small energies

E. The red crosses at integer values E = n show the exact values of P (n).

2.2. Smooth part of P (n)

The smooth asymptotic part of a partition for large n can be obtained
by quantum statistical methods (see also Ref. [10] for an article in number
theory). In [4] the leading asymptotic smooth part of P (n) was shown to be

P (0)
as (n) =

√
λ0

6π
n−5/6 exp

(
3λ0n

1/3
)
, (8)

with λ0 = 0.486227919. Using the same quantum statistical method as in
Refs. [5, 7], we derived in [6] an improved asymptotic expression:

Pas(n) =

√
λ0

6π
n−5/6 e3λ0n1/3

[
1− c1 n

−1/3 − c2 n
−2/3 − c3 n

−1
]
, (9)

with c1 = 0.285645648, c2 = 0.057115405, and c3 = 0.020665371. In Fig.

3 we show the leading approximation P
(0)
as (n) (8) (dashed line) and the

improved result Pas(n) (9) (solid line). The latter is seen to give an excellent
agreement with the average through the exact values of P (n) (red crosses).

2.3. Fourier analysis of the partition density

In order to obain a hint to the quantitative origin of the oscillations in
P (n), we study the Fourier transform (FT) of the partition density g(E):

Fτ [g(E)] =

∫ +∞

−∞

g(E) e−iEτ dE = F (τ) . (10)
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Fig. 3. Exact P (n) by crosses (red), leading-order asymptotic part P
(0)
as (n) (8) by

the dashed (green) line, and corrected asymptotic part Pas(n) (9) by the solid

(blue) line in the large-n region.

Note that E and τ are a pair of conjugate dimensionless variables, like energy
and time. The absolute value of F (τ) can be written as

|F (τ)| = exp {Re[lnZ(iτ)]} , (11)

with Z(β) given by the r.h.s. of Eq. (3). In the following we show the ampli-
tude |F (τ)| as a function of the frequency f = 2π/τ in units of the amplitude
I0 = exp(M ln 2).
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Fig. 4. Scaled Fourier transform ln |F (f)| of g(E) on a logarithmic vertical scale.

The horizontal dashed lines give the calculated relative intensities of the first 10

generations.
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Figure 4 shows the Fourier spectrum as a function of f = 2π/τ for
2 ≤ f ≤ 22, plotted on a logarithmical scale. The peaks are very sharp.
We find peaks located exactly at f = 3, 4, 5, 9, 12, 13, 16, 20, and 21;
all other peaks appear at rational frequencies. We can classify the peaks
into “generations ” with decreasing intensities. The vertical scale of Fig. 4
was selected such that the peaks of the generations 1 - 10 can be clearly
differentiated; their (analytically calculated) scaled intensities are shown by
the horizontal dashed lines.

When we first obtained this spectrum up to f = 10, we were struck by
the two highest peaks at f = 4 and 5 (generations 2 and 1, respectively).
Rajat, in his typical intuitive way, noted that these numbers appear in the
smallest PT (3,4,5). Before that time we had not thought of Pythagorean
triples at all. We extended the spectrum to higher frequencies and, indeed,
found the peaks at f = 13 (generation 3, nearly degenerate with generations
4-7) and f = 12 (generation 8). These are members of the second-smallest
PT (5,12,13).
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Fig. 5. Same as Fig. 4 over a larger range of the frequency f .

Figure 5 shows the same for f up to 105. Many more integer-valued
frequencies appear. We notice, in particular, the dominating intensities
of peak pairs with the frequencies (4,5), (12,13), (28,29), (36,37), (60,61),
(84,85), and (100,101). Four of them appear as the largest numbers in PTs,
namely in (3,4,5), (5,12,13), (11,60,61) and (13,84,85). The numbers 28, 29
and 101 appear isolated in other PTs.

We had thus found a strong evidence that the PTs play a dominant role
in the spectrum and hence also the oscillations of P (n). This was confirmed
quantitatively by the semiclassical trace formula presented next.
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2.4. Trace formula for δP (n)

The main idea of our approach is the fact that asymptotic expressions
of oscillating functions can be found from stationary-phase integration over
saddles in the complex plane. Eq. (6) of P (n) can, in fact, be taken as
an integral in the complex β plane, whereby the contour C goes along the
imaginary (τ) axis from −π to +π yielding the exact P (n). Since the in-
tegrand has no singularities for x = Re(β) > 0, we may deform the con-
tour arbitrarily, keeping its end points fixed. We choose it to pass over the
most important saddles in the complex β plane corresponding to the leading
Fourier peaks, and then use stationary-phase integration locally at each sad-
dle. The smooth part Pas(n) is obtained from the real saddle point, while
the summed contributions from the complex saddles yield an approximation
for the oscillating part δP (n).

Fig. 6. Schematic plot of the contour integral (6). The exact contour C (from -π to

+π along the τ axis) is deformed into a new contour C̃ (red) passing over selected

saddles in the complex plane.

Figure 6 shows a sketch of the situation in the complex β plane, with

the deformed contour C̃ chosen to pass over 5 representative saddles. The
exact path between the saddles does not matter, since we only collect the
local contributions near the saddles in the stationary-phase approximation.
Each saddle can be associated to one of the Fourier peaks along the τ axis
and hence to one of their frequencies f . The exact positions of the saddles
in the β plane, and their properties needed for the stationary-phase integra-
tion (direction of the path of steepest descent and curvature at the saddle),
could only be found numerically by scanning the landscape of the complex
integrand of (6). In Ref. [6] we give analytical fits to the corresponding
quantities and calculate the stationary-phase integrals.
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This yielded the following semiclassical trace formula for δP (n):

δP (n) =
∑

τg>0

Ag(n) cos
[
n τg − 3µg n

1/3 + ϕg

]
, τg 6= 2πk, k ∈ N+ (12)

where τg = 2π/fg are the periods of the generations g = 1, 2, ..., and the
amplitudes Ag(n) are given by

Ag(n) =
2

(4πκg)1/2
n−5/6 e3λg n1/3

. (13)

The constants µg, ϕg, κg, and λg are given in [6]. Note that A0(n) (generation

0) is identical with P
(0)
as (n) given in (8).
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Fig. 7. Result of the trace formula (12), shown by blue lines, versus the exact

δP (n) = P (n)− Pas(n), shown by red stars, in two regions of large n.

Figs. 7 and 8 show the results of the trace formula (12) by blue lines,
compared to the exact δP (n) = P (n)− Pas(n) (red stars) in four ranges of
n. The agreement between the two curves is excellent in all regions of n, the
semiclassical results reproducing perfectly both the rapid oscillations of the
exact δP (n) and their beating amplitude.
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In the calculations for these results, the generations 1-10 have been in-
cluded. However, nothing changes visibly in the results for n & 4 000 if we
only include the two leading generations 1 and 2. While this might be a
surprise at first sight, it can be explained by the values of the constants λg

which regulate the exponential growth of the amplitudes Ag(n). These are
clearly higher for generations 1 and 2 than for the others.
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Fig. 8. Same as Fig. 7 in two regions of small n.

The relative weights of the generations can be understood from Fig.
9, where we plot the amplitudes Ag(n) on a logarithmic scale. The dash-
dotteed top line gives the amplitude of generation zero, which is identical

with P
(0)
as (n). The solid (s) and dotted (d) lines give, from top to bottom, the

amplitudes of the generations 2 (s), 1 (s), 6+7 (d), 3+4+5 (s), 8 (d), 10 (s),
and 9 (d). Note that these amplitudes follow a slightly different ordering
than those of the Fourier peaks in Figs. 4 and 5. The amplitudes of the
generations 3 and higher are seen to be smaller than those of generations 1
and 2 by 2-3 orders of magnitudes for n & 5 000. These in turn are smaller
than Pas(n) by 2-3 orders of magnitude, demonstrating the relative smallness
of the oscillating part.
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Fig. 9. Semiclassical amplitudes Ag(n) for the generations (from top to bottom) 0

(giving the smooth part), 2, 1, 6+7, 3+4+5, 8, 10, 9 (see text for details).

The relative importance of the higher generations for small n around
∼ 80 can be studied in Fig. 10. Even here, the generations 1 and 2 produce
the essential beating part of δP (n). The inclusion of higher generations
successively improves the semiclassical values of δP (n), although their con-
tributions are rather small and the convergence to the exact values is not as
good as for n & 500 (see Fig. 8). Together, these two figures demonstrate
the overall rapid convergence of the trace formula upon summing over the
generations g.
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Fig. 10. Result of trace formula (12) around n = 80 for increasing numbers of

generations included. Dashed line (red): generations 1 and 2; dotted line (green):

generations 1-7; solid line (blue): generations 1-10. The stars (black) show the

exact δP (n).
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We conclude that the oscillations in δP (n) are dominated everywhere
by the orbits of generations 1 and 2 with frequencies 4 and 5, which are
members of the PT (3,4,5). The contributions from all higher generations
are practically negligible for n & 4000 and still very small around n ∼ 500. In
order to understand the beat structure, one must realize that when studying
δP (n) as a function of n, the periods τg and frequencies (2π/τg) interchange
their roles. The terms cos(nτg + . . .) in (12) have, as functions of n, the
(approximate) periods 2π/τg and hence frequencies τg. In the region where
the beat structure is dominant, the period of the rapid oscillations is roughly
that of the orbit with the largest amplitude (i.e., τ2 with frequency 4),
while the beat comes from the difference in their frequencies: the period
∆n = 20 of the beat is nothing but one over the inverse frequency difference
1/f2 − 1/f1 = 1/4 − 1/5 = 1/20.

For n & 100 000, the beat structure fades away and the oscillations are
practically given by the orbits of frequency 4 alone, as shown in Fig. 11 for n
near 160 000. The exact values δP (n), shown by the stars, exhibit no more
beats. This is due to the fact that the amplitude of generation 2 here is
nearly 2 orders of magnitude larger than that of generation 1.
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Fig. 11. Result of (12), shown by the blue line, using only the pair of orbits of

generation 2 (with f2 = 4), in the region near n = 160, 000. The exact δP (n) =

P (n) − Pas(n) are shown by the red stars. Note that the beat structure in the

exact δP (n) has practically disappeared.
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3. Summary

In summary, we have shown that a semiclassical trace formula, derived
using the periodic orbit theory, is capable of reproducing the counting func-
tion P (n) of the distinct square partitions not only qualitatively, but nearly
quantitatively, in particular in the asymptotic domain of large n. This
demonstrates that semiclassical methods developed in physics can be suc-
cessfully applied to number theory.
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