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Preface

This volume is the supplementary volume of the 14th International Conference on
Formal Concept Analysis (ICFCA 2017), held from June 13th to 16th 2017, at IRISA,
Rennes. The ICFCA conference series is one of the major venues for researches from the
field of Formal Concept Analysis and related areas to present and discuss their recent
work with colleagues from all over the world. Since it has been started in 2003 in
Darmstadt, the ICFCA conference series had been held in Europe, Australia, America,
and Africa.

The field of Formal Concept Analysis (FCA) originated in the 1980s in Darmstadt
as a subfield of mathematical order theory, with prior developments in other research
groups. Its original motivation was to consider complete lattices as lattices of concepts,
drawing motivation from philosophy and mathematics alike. FCA has since then devel-
oped into a wide research area with applications much beyond its original motivation,
for example in logic, data mining, learning, and psychology.

The FCA community is mourning the passing of Rudolf Wille on January 22nd 2017
in Bickenbach, Germany. As one of the leading researchers throughout the history of
FCA, he was responsible for inventing and shaping many of the fundamental notions
of this area. Indeed, the publication of his article ”Restructuring Lattice Theory: An
Approach Based on Hierarchies of Concepts” is seen by many as the starting point of
Formal Concept Analysis as an independent direction of research. He was head of the
FCA research group in Darmstadt from 1983 until his retirement in 2003, and remained
an active researcher and contributor thereafter. In 2003, he was among the founding
members of the ICFCA conference series.

For this supplementary volume, 13 papers were chosen to be published: four papers
judged mature enough to be discussed at the conference and nine papers presented in
the demonstration and poster session.

This proceedings volume would not have been possible without the valuable work
by the authors, the members of the Program Committee, and the members of the
Editorial Board. We also want to express our gratitude to the team of local organizers,
who made sure that the conference ran smoothly and was a pleasant experience for all
its participants.

June 2017 Karell Bertet
Daniel Borchmann

Peggy Cellier

Sébastien Ferré
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Abstract. In formal concept analysis (FCA), the problem of obtaining
a concept lattice of appropriate size and structure, that exposes the truly
relevant aspects, is one of the most important problems. Even when the
number of formal concepts is not very large, the essential aspects, those
effectively needed, can be immersed in a maze of irrelevant details. In
order to deal with the complexity of structure obtained, there are many
techniques, with different characteristics, for concept lattice reduction.
Some works apply objective indexes to evaluate their techniques. How-
ever, those objective measures and criteria are generally used only in the
selection of formal concepts. In this work we propose the use of three
indexes to evaluate reduced concept lattice based on proper implications
that represent the original and reduced lattice structure. The informa-
tion content, fidelity and representativeness. The indexes are applied in
three reduction techniques using a small example. The results show the
characteristics of each lattice after the reduction.

Keywords: Formal concept analysis, Lattice reduction, Indexes, Proper
implications.

1 Introduction

Formal concept analysis (FCA) is currently considered an important formalism
for knowledge extraction, representation and analysis from data [35,29] with
applications in several areas [30,44,18,33,22]. The problem of obtaining a concept
lattice of appropriate size and structure, that exposes the really relevant aspects,
is one of the most important problems when using FCA. In fact, FCA induces
a potentially high combinatorial complexity and the structures obtained, even
from a small dataset, may become difficult to manipulate [25]. Moreover, besides
being computationally expensive to compute all formal concepts, their number
and interrelationships can impair an effective analysis [36].

In: K. Bertet, D. Borchmann, P. Cellier, S. Ferré (Eds.): Supplementary Proceedings of ICFCA,
Rennes, France, 2017.
Copyright (© by the paper’s authors. Copying only for private and academic purposes.
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In order to deal with the complexity of structure obtained, many techniques,
with different characteristics, for concept lattice reduction have been given in
the literature [15,26,40,32,17,16,31,9,23,25,36,24]. However, at present there is
a high subjectivity when assessing the quality of a reduction technique. Some
techniques are accompanied by interest measures [26,45,40,28| or criteria [6,39]
which are intended to guarantee the lattice quality. In contrast, specific measures
and criteria for selection of formal concepts have also been widely used [27,28].

Existing objective measures and criteria are generally used only in the se-
lection of formal concepts. In other words, measures evaluate only one formal
concept. Examples are the indexes available in [28]. However, pointing the rel-
evance of formal concepts is of little importance to determine the quality of a
concept lattice or a structure formed by subset of formal concepts. It is necessary
indexes to evaluate all lattice structure (a reduced concept lattice or a selected
subset of formal concepts that not necessary form a concept lattice).

In this work we propose the use of three indexes to evaluate reduced concept
lattices: information content, fidelity and representativeness. The indexes make
use of a set of proper implications [41,7] of the original Z and reduced formal
contexts (or concept lattices) Z,.. The sets Z and Z, represent the knowledge
of original and reduced concept lattice, respectively. Using those sets, the pro-
posed indexes, with different characteristics and purpose, evaluate all the lattice
structure. The indexes are applied in three reduction techniques using a small
example. Among all reduction techniques analyzed in [15,13], we selected mini-
mal set of attributes selection grouping [46], using the technique JBOS [14] and
constraints learned from data [6]. The results show the characteristics of each
lattice after the reduction.

The remaining sections of this paper are organized as follows. Section 2 in-
troduce some core concepts of FCA, clarifies what is a technique for concept
lattice reduction and discuss the use of proper implications. Section 3 presents
the proposed indexes. Section 4 applies the tree indexes in a small example.
Finally, Section 5 draws some conclusions.

2 Formal concept analysis: short review

This short review presents the notions and terminology which are important for
the understanding of our work. The notions and terminology are based in [19].

In FCA the initial data are presented as a formal context, a triplet (G, M, I),
where G is a set of elements called objects, M is a set of elements called attributes
and I C G x M is called an incidence relation. If (g,m) € I, one says that “the
object g has the attribute m”.

Given a set of objects A C G from a formal context (G, M, T), the set of
attributes that is common to all those objects is termed A’. Similarly, for a set
B C M, B’ is the set of objects that have all the attributes from B. That is to
say A’ = {m € M|Vg € A: (g9,m) € I} and B' = {g € G|Ym € B: (g,m) € I}*.

* The notation z’ will be used as abbreviation {z}’, whether z is an object or an
attribute.
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By using such derivation operators, the notion of formal concept is defined as a
pair (A, B) € P(G) x P(M) such that A’ = B and B’ = A, where A is called
the extent and B the intent of the concept.

Given a formal context with attributes M, the set of generators of a formal
concept (A, B) is ger(A,B) = {D C M|D’ = A}; and the set of minimum
generators of (A, B) is mger(A, B) = {D € ger(A, B)|#m € D(D\ {m})' = A}.

The set of formal concepts is ordered by the partial order < such that for
any two formal concepts (A1, B1) and (Asq, Bs), (A1, B1) = (A2, Bs) iff A; C Ay
(equivalently, By C By). The set of concepts ordered by < constitutes a complete
lattice [12], so it’s called concept lattice. The concept lattice obtained from a
formal context (G, M, I) is denoted B(G, M, I).

The first part of the basic theorem on concept lattices [42] says that a con-
cept lattice B(G, M, I) is a complete lattice in which for any arbitrary set C' C
B(G, M, I) the infimum and supremum are given by A C = (N X, (UY)"”) and
VC=((UX).NY), where X ={A|(A,B)e C} and Y = {B| (4, B) € C}.

2.1 Concept lattice reduction

As the complexity of concept lattices is considered a limitation for an effec-
tive use of FCA in many situations, several techniques have been proposed
[31,11,43,3,40,26,36,45,4]. Such techniques are called concept lattice reduction
[15,13].

Definition 1 A technique for concept lattice reduction is one that aims to
reduce the complexity of a concept lattice, both in terms of magnitude and of
inter-relationships, while maintaining relevant information. O

Here, note that, “relevant information” is subjective and dependent on the
user’s interpretation [5].

In [15,13], we identified three classes of techniques for concept lattice reduc-
tion when we consider classical FCA:

— The techniques of redundant information removal modify the formal con-
text, but the resulting concept lattice is isomorphic to the original one
[46,34,19,31].

— A simplification technique is one that, from a formal context or a concept
lattice, abstracts some non-essential differences (in accordance with some
criteria) between concepts, objects or attributes [2,20,14,10].

— Finally, a selection technique is one that, from a formal context or concept
lattice, selects a subset of formal concepts, objects or attributes that satisfy
a set of constraints [26,36,5,3,45].

In our work, we considered only those techniques that presuppose a formal
context already built. Moreover, only works of classical FCA were taken into
account - extensions of FCA were not considered.
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2.2 Implication rules

Given a formal context (G, M, I) or a concept lattice B(G, M, I), from them can
be extracted exact implication rules (from now on named as implications). The
definition of an implication is given as follows[19]:

Definition 1. Being a formal context whose attributes set is M. An implication
is an expression P — @, which P,Q C M. O

An implication P — @, extracted from a formal context, or respective con-
cept lattice, have to be such that P’ C @Q’. In other words: every object wich has
the attributes of P, it also have the attributes of Q.

Note that, if X is a set of attributes, then X respects an implication P — @
it PZ X or Q@ C X. An implication P — @ holds in aset {X1,...,X,,} C M iff
each X; respects P — Q; and P — Q is an implication of the context (G, M, T)
iff it holds in its set of object intents (an object intent is the set of its attributes).
An implication P — @ follows from a set of implications Z, iff for every set of
attributes X if X respects Z, then it respects P — @Q. A set of implications Z is
said to be complete in (G, M, I) iff every implication of (G, M, I) follows from Z.
A set of implications Z is said to be redundant iff it contains an implication P —
Q@ that follows from Z\{P — @}. Finally, an implication P — @ is considered
superfluous iff PN Q # 0.

Here will be convenient that each implication represents a minimal condition;
i.e., the smallest set of attributes that results in one single attribute. For this, we
will require that the complete set of implications Z of a formal context (G, M, T)
have the following characteristics:

— the right hand side (rhs) of each implication is unitary: if P — m € Z, then
m e M;

— superfluous implications are not allowed: if P — m € Z, then m ¢ P;

— specializations are not allowed, i.e. left hand sides (lhs) are minimal: if P —
m € Z, then there is not any Q — m € Z such that @ C P.

A complete set of implications in (G, M, I) with such properties is denoted
set of proper implications [41] or unary implication system (UIS)[7].

Definition 2. Let J be the complete closed set of implications of a formal con-
text (G, M,I). Then the set of proper implications Z for (G, M, 1) is defined as:
{PomeJ|PCMandme M\ P andVZ CP:Z—->m¢J}. |

The proposed indexes to evaluate reduced concept lattice (discussed later)
are based on proper implications, which can be obtained from a formal context
or concept lattice [41,8,7,38].

However, in some cases we extract such implications from a subset of formal
concepts, which forms a given section of a concept lattice, and that section might
not form a complete concept lattice [37]°. That is the case for techniques of the

5 The sets of objects or attributes of the considered concepts are not closure systems.
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selection class which does not have access to the whole original concept lattice
[13]. Thus it might not be possible to obtain a complete (with respect to some
formal context) set of proper implications. Here we discuss how to extract proper
implications with support greater than zero (P — m € J|P # @) from a subset
of formal concepts.

Considering a single formal concept, the set of implications to be obtained
will share the following properties with the original set of proper implications
[41]:

Proposition 1 It will not have specializations of its implications. O
Proposition 2 The rhs of its implications will be unitary. O

Proposition 3 It will be consistent with the original derivation operators when
applied to only the elements of the concept. O

Proposition 4 It will have only implications with support greater than zero. O

Proposition 5 The set of implications must reflect the lattice formed by the
actual set of chosen concepts. O

Propositions 1, 2, 3 and 4 are guaranteed by the proper use of minimum
generators [7] as lhs, and property 5 is guaranteed by ensuring those properties
globally (topological ordering given by the cover relation of the lattice, smallest
intentions first). The order in which the set of concepts is explored is important
to ensure that the lhs of an implication be as small as possible.

Note that, despite the computational cost, minimal generators have gained
prominence recently in FCA. their importance is due, mainly, to the fact that
they favor the principle of minimum description length (MDL), i.e. the best
hypothesis for a given set of data is the one that leads to the best compression
of the data [21].

3 Indexes based on proper implications

Three indexes with distinct characteristics and objectives are discussed here:
information content, fidelity and representativeness.

The information content is an index that aims to measure the information
associated with a logical expression based on the ratio between the number
of truth assignments that make the logical expression false (or true) and the
total number of possible truth assignments [1]; in general, it is assumed that
the assignments are equally likely. This index should say for example that a
set of implications Z plus an implication that does not follow from Z, is more
informative than Z; in the same way, a generalization of a given implication i
should be considered more informative than 1.

The fidelity is an index that aims to measure the success rate when the rules
derived from a reduced formal context (or lattice) are applied to the original



6 S. M. Dias, L. E. Zarate, M. A. J. Song and N. J. Vieira

formal context objects [14]. Note that, when the implications of a reduced formal
context are checked for original objects they may eventually fail, as is to be
expected that such a smaller context contains some inaccuracies. In other words,
modifications in objects, attributes or incidences made by reduction techniques
can produce an implication rules set with inaccuracies when analyzed by means
of original object set.

Finally, the representativeness is an index that aims to measure the success
rate of implications considering only implications with satisfied left hand sides
[15].

3.1 Information content index

Considering implications as logical sentences and attributes in M as sentential
symbols, the set of counter-models of an implication P — m, em(P — m),
consists of every X C M such that P C X and m ¢ X, ie., em(P — m) =
{X|P C X C M\{m}}. Intuitively, it consists of all (the 2/MI=(PI+1)) possibili-
ties of truth values for the attributes in M that makes P — m false. Considering
each of the 2/MI possibilities equally likely, the information content of P — m,
cont(P — m), is cont(P — m) = 2IMI=(PI+1) j9IlM| — 1 /9l PI+1,

A set of attributes does not respect a set Z of implications iff it does not
respect some implication in Z. Consequently, the set of counter-models of 7 =
{Pi = my,...,P, = my} is em(Z) = U, em(P; — m;). To determine the
number of counter-models of Z one have to apply the inclusion-exclusion prin-
ciple (IEP). Defining S; = Y., |em(P; — m;)| and, for 2 < k < n, S, =
Yiciyccip<n lem(Pry = mi ) NN em(By, — my, )|, it follows, by IEP, that
the number of counter-models of Z is [em(Z)| = S — Sa + -+ + (=1)"F1S,.

Example 1 If M = {a,b,c}, there are 25 = 8 possibilities of truth values for
the & attributes. Then cont(a — b) = cont(aUb) = 2372/23 = 2/8 asa — b
1s false only when a is true and b is false; and c can be true or false. The
implication a — ¢ also has two possibilities of being false, but one is the same
as that of a — b being false: when a is true and both b and ¢ are false; thus,
cont({a — bya — c}) = (2+2—1)/23 =3/8. |

A concise way to represent the set of all counter-models is to list only the
attributes that necessarily belong to each counter-model (the attributes of the
lhs) and the attributes that do not belong to any counter-model (the attribute
of the rhs). Next, this representation will be made by using a set of barred
and/or non barred attributes; a non barred attribute means that it occurs in
all counter-models, and a barred attribute means that it does not occur in any
counter-model. For example, the set {a,b,€} represents all counter-models C
such that a,b € C and e ¢ C; in that case, if M = {a,b,c,d, e}, then {a,b, e}
represents a total of 2573 = 4 counter-models (¢ and d might be present or not
in each counter-model of the represented set). In this way, the counter-models
of T ={P, - mq,...,P, — my} are represented by the set C(Z) = {P, U
{m1},..., Py U{m,}}. As C; and Cy belonging to C(Z) are sets of attributes,
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each one representing a set of counter-models, then if one of them contains a
non barred attribute and the other contains the same attribute barred, they
are contradictory (do not have counter-models in common). If Cy and Cy are
not contradictory, then the intersection of their counter-models is represented
by C; U Cs. For example, if Cy = {a,b,¢} and Cy = {a,€}, then C; UCy =
{a,b,¢, e} represents the intersection of the counter-models represented by Cj
and Cy (which is {{a, b}, {a,b,d}}). Thus, in preparation to apply IEP, we define:

{@, if C1 and Cy are contradictory;

CinCy= .

C1 U (5, otherwise.

Now, making C; = Py U{m1}, ..., C, = P, U{m,}, the terms of IEP are: S; =
i N(C;) and Sy, = Zl§i1<---<ik§n N(C;, N...MC;,), where if C represents
a set of counter-models, then N(C) = 2/MI=I¢l. And the number of counter-
models of Z, represented by C(Z), is >, (—1)""1S,,.

Obviously, it is expected that a method of reduction entails a decrease in the
information content. The greater the decrease, the higher the actual reduction
with respect to the knowledge expressed by the set of implications. Only in very
special situations such content could increase as, for example, in situations where
there are few eliminations and a lot of generalizations.

In the worst case the calculation of the information content has cost O(21X1),
where X C M is the set of attributes referred to in the set of implications, and
thus has limited applicability.

3.2 Fidelity and representativeness index

Modifications made by reduction techniques can produce inaccuracies in the
set of implications that are observed when considering objects in an actual ap-
plication or even objects of the original formal context. In other words, when
considering an object g € G, where G is the set of objects of the original formal
context, an implication P — m € Z,. can fail, i.e. it can be the case that g € P’
and g € m’ (the derivation operator here is from the reduced formal context).
An index that measures the success rate of the objects to implications in general
is call fidelity (F'), which can be defined as follows [14]:

> gec 1AntT(g) U Cons*(g)|

F =
ZlG

where 7 is the actual set of implications (possibly after reduction), AntZ(g) =
{P - m € Z|g € P'} and Cons(g) = {P — m € I|g € m'}. Fidelity is nothing
more than the success rate of implications in a set of implications Z with respect
to the objects in G, considering that an implication P — @ is successful for an
object gif g& P’ or g e m/'.

Since only simplification techniques can create new knowledge (mainly gen-
eralizations), only such techniques tend to decrease the fidelity index, because
the implications that express new knowledge can fail.
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In some applications, the strength of a reduction in preserving what is rel-
evant can be measured by the success rate of the implications considering only
the objects that satisfy the lhs of the implications of the reduced formal context
(Ant?). Thus, objects g satisfying an implication P — m just because g ¢ P’
are not taken into account when calculating the representativeness index [15]:

|AntT (g)NCons® (g)|
2gec  TAnE ]

|G

where in the case that AntZ(g) = 0, |AntZ(g) N Const(g)|/|AntT(g)| must take
value 0. Note that |AntZ(g) N Cons(g)|/|AntZ(g)|, in the case where the formal
context is effectively representative of the universe into consideration, can be
seen as the probability that, for the object g, implications P — m has their rhs
satisfied (that is, g € m'), given that its lhs is satisfied (i.e., g € P’). And thus
representativeness is the average of these probabilities.

R =

Example 2 Let g be an object such that g’ = {a,b,c}. Consider the implications
i=a—c,j=a—d k=e—candl =d— e. The implications i, k and
l are successful for object g, and implication j fails for g. Thus for the object g
three implications, i, k and [, contributes to increasing the index of fidelity, in
the universe of all four implications; but only one implication, i, contributes to
increasing the index of representativeness, in the universe of two implications, i
and j. O

The failure of an implication for a given object causes a decrease in both
the fidelity and representativeness indexes. A further decrease in the represen-
tativeness index occurs when an object fails to give support to any implication.
As a result representativeness is usually smaller than fidelity. Particularly, if an
implication ceases to have support representativeness decreases, but not fidelity.

Unlike the calculation of the information content, the fidelity and representa-
tiveness indexes can be computed efficiently. Suppose k is the average size of the
implications in Z. For each object, we need to go through all the implications.
Therefore the fidelity and representativeness complexities are O(k|Z||G]).

4 Examples of application

Among all reduction technique analyzed in [15,13], we selected minimal set of
attributes selection [46], grouping using the technique JBOS [14] and constraints
learned from data [6]. The selected techniques are representative of redundant
information removal, simplification and selection classes, respectively [15,13].
Note that we selected techniques to exemplify some scenarios. Obviously, other
techniques may be evaluated.

Consider the formal context in Table 1. The concept lattice has 24 formal
concepts and it is depicted in Figure 1. The complete set of proper implications
for the formal context, Z,, has 126 proper implications. To simplify the visual
analysis, only those implications with support greater than zero (P — m €
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J|P # @ — total of 22), sup(Z,), are presented; they are shown in Table 2.
As noted in the table, the information content of the complete set of proper
implications is 0.976, slightly larger than the information content of the subset
with support greater than zero, which is 0.947. Both sets Z, and sup(Z,) have
fidelity (F') and representativeness (R) equal to 1 when considering the original
formal context (Table 1). In the following sections Z, and Z, mean actually
sup(Z,) and sup(Z,) respectively.

Attributes
Objects|a|b|c|d|e|f|g|h|i|]
1 X x| |x X
2 X X X
3 X X X X
4 X x| x| |x| |x
5 x| |x
6 X X X|x
7 X X X
8 X X X|x
9 X X X|x
10 x| |x X|x
11 x| |x X
12 x| x| x| x| |x

Table 1: Formal context.

Proper implications

|Zo| = 126

cont(Z,) = 0.976

Proper implications with support - {P - m € J|P # 0}
g—a c—e a,e—>h eh—1 g—7J

j—>d dh—f bj—h be—i d—j

g—d h,j—f bd—h ae—i

f—=d bj—=>f bf—=>h ch—i

i—e bd—f ai—h f—7j

|sup(Zo)| = 22
cont(sup(Z,)) = 0.947
F=1

R=1

Table 2: Proper implications.
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Fig. 1: Concept lattice.

4.1 Reduction technique: minimal set of attributes selection

Minimal sets can be obtained from identifying reducible attributes [19], using
a discernibility matrix [46]. For example, consider a formal context (G, M,I)
and concepts (A, B), (C,D) € B(G,M,I). The discernibility between concepts
(A, B) and (C, D) is given by the symmetric difference between B and D, i.e.
Disa,p),(c,p) = (BUD)\(BND). Given the discernibility matrix Dis, a minimal
set of attributes X C M can be determined that results in a lattice isomorphic to
the original (i.e., such that B(G, X, I') is isomorphic to B(G, M, I), where I' =
IN(G x X)) by making X meet the restriction: X is one of those sets Y of
lowest cardinality such that VZ € Dis: Y N Z # () |46].

The concept lattice of Figure 1 has 2 minimal sets of attributes: {a, b, ¢, d, e, f,
g,h,i} and {a,b,c,e, f,g,h,i,7}. Note that, a,b, c, e, f,g,h and i are attributes
absolutely necessary. On the other hand, d and j are attributes relatively neces-
sary [46]. Note that d and j appear in same formal concept in Figure 1. Their
corresponding lattices are isomorphic to the original lattice and the set of proper
implications of each one has 97 implications. The fact that minimal sets lead to
sets of proper implications with the same cardinality is justifiable because each
minimal set forms the smallest closure system for the set of attributes. From the
perspective of formal context, a minimal set is the smallest number of attributes
able to characterize and differentiate the objects. In the concept lattice level,
each formal concept will have the smallest number of attributes that defines it.
So it has the fewest possible implications. When using minimal set selection, one
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has a minimum knowledge representation model, which might be represented by
a closure system, formal context, concept lattice or set of implications.

As the reduced lattice is isomorphic to the original, Table 4a shows that
only the number of attributes was reduced in 10%. Table 2 shows that the
information content of the 22 implications with support greater than zero is
0.947 while Table 4a shows that the information content of the 15 implications
retained after reduction is 0.894. As expected the information content decreased
after reduction, even the reduced lattice being isomorphic to the original concept
lattice. This decrease is a consequence of cutting all the implications referring to
the deleted attribute. The fidelity index has value F' = 1 for both the original and
reduced set of implications, because the implications of the latter are a subset
of the former. On the other hand, the representativeness decreases from R = 1
to R = 0.91 due to the fact that no implication in Z, is supported by the object
2. The implications d — j and j — d which were supported by that object are
no longer in the reduced set. There is no implication failure, but now there is an
object that does not support any implication.

4.2 Reduction technique: grouping using the technique JBOS

JBOS (junction based on objects similarity) seeks to replace groups of objects
considered similar by objects that represent them, based on a qualitative assess-
ment of its attributes [14]. Objects considered similar to others with a threshold
€ form groups with a maximum of a objects. The similarity between g and h
(9,h € G) is given by the weighted sum of the weights of attributes in which
both objects agree with each other (both having them or both not having them).
Two objects g and h are considered similar by the algorithm, and therefore are
likely to stay in the same group if and only if sim(g,h) > e.

Assuming that the weight of an attribute is proportional to the frequency of
its occurrence in objects, € = 0.6 and o = 35, the set of objects of the formal
context of Table 1 forms five groups: {1,2,3}, {4,12}, {5,11, 10}, {6,7,8}, {9}.
The set of attributes of each object representative of a group H is ({¢'|g €
H} [14]. Objects of the same group are now indistinguishable in the new lattice,
in the sense that they have exactly the same attributes.

Table 4b shows that when compared to the original lattice the number of
objects of the latter was reduced by 58% and the number of formal concepts
has been cut in half. Despite the substantial reduction of objects and concepts,
the number of attributes remained the same. The information content decreased
(from 0.947 to 0.923) indicating that there was a greater reduction due to elim-
ination of implications. The decrease in fidelity from 1 to 0.94 and in represen-
tativeness from 1 to 0.83 are due to the implications of Z, which fails for some
objects. As an example, the implication a,h — i € Z, fails for the object 4 (the
object 4 has attributes a and h, but does not have attribute 7). The difference
in the indexes reflects the way in which both indexes are computed.

% Since the formal context of Table 1 is relatively small, the choices of € and o were
made in order to achieve around 40% of reduction on the set of formal concepts.
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4.3 Reduction technique: constraint learned from data

A kind of selection technique that does not have concomitant access to all knowl-
edge is the selection of formal concepts based on constraints enforced during the
construction of the concept lattice [6,40]. In addition to restrictions, it is of-
ten also used some background knowledge to guide the selection process. In [6]
a method of imposing constraints in extracting formal concepts was discussed.
The authors presents various kinds of restrictions, among them constraint learned
from data. The data are supplied by means of a formal context (G, M,, I), where
M, are the attributes of the original context (G,, M,,I,). That formal context
can be a sample of the original data or a set artificially constructed by an expert.
The intended application is interested only in formal concepts from (G,, My, I,,)
whose intentions are also intentions of (G, M,, I). Table 3 shows an example of a
formal context with four new objects (13,14, 15 and 16) to be used in conjunction
with the formal context of Table 1.

alb|c|d|e|f|g|h|i]|]
13|x x| |x X
14|x x| x| x| |x
15| |x X X|x
16|x X X|x

Table 3: Background knowledge (G, M,, I).

Using the background knowledge (G, M,,I) from Table 3, the constraint
learned from data technique select only the formal concepts from (G,, M,, I,)
whose intentions are also intentions of (G, M, I'). The following formal concepts
are selected:

- ({3,4,6,8,9,10}, {h})
- ({1,2,3,4,9},{a})

- ({479}7{a’h})

- ({6,8,9,10},{e, h,i})
- ({4}7{a7d7f7huj})
— ({9}, {a,e, h,i})
- ({678}7{b767h7i})
- ({174}7{a7daf7j})

Table 4c¢ shows that there is a reduction of 63% in the number of formal
concepts, 25% in the number of objects and 20% in the number of attributes.
There is a high elimination of implications and the information content drops
to 0.554. Fidelity remains equal to 1. However, there is a high drop to 0.5 in
representativeness. This is a consequence of the selected formal concepts not
having some objects in any of its extensions: objects 2,3,5,7,11 and 12 are not
present in any extension of the selected concepts.
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Indexes Reduction Indexes Reduction
cont(Z,) = 0.894| Objects: 0% cont(Z,) = 0.923| Objects: 58%
F=1 Attributes: 10% F =094 Attributes: 0%
R=0.91 Concepts: 0% R=0.83 Concepts: 50%
(a) Minimal set of attributes. (b) Object grouping.
Indexes Reduction
cont(Z,) = 0.554| Objects: 25%
F=1 Attributes: 20%
R=05 Concepts: 63%

(c) Selection of concepts.

Table 4: Indexes and reduction.

5 Conclusions and future research

As the complexity of concept lattices is considered a key problem for an effective
use of FCA in many situations, several techniques, with different characteristics,
have been proposed for concept lattice reduction. Note that in real life, one deals
with much unnecessary data and that reduction is vital in order to disregard
it. Moreover, besides being computationally expensive to compute all formal
concepts, their number and interrelationships can impair an effective analysis in
a reasonable amount of time.

Some works apply specific indexes to evaluate their techniques for concept
lattice reduction. However, those objective measures and criteria are generally
used only in the selection of formal concepts.

In this work we discuss three indexes to evaluate reduced concept lattice, they
are: information content, fidelity and representativeness. The fist one, informa-
tion content index, measure the information associated with a logical expression
based on the ratio between the number of truth assignments that make the logi-
cal expression false (or true) and the total number of possible truth assignments.
The second one, fidelity index, measure the quality of a reduction would be the
success rate when the rules derived from a reduced formal context (or lattice)
are applied to the original formal context objects. Finally, the representativeness
index, takes the success rate of implications considering only implications with
satisfied left hand sides. The three indexes are complementary and using proper
implications extracted from the original and reduced concept lattice evaluate all
lattice structure. Besides, proposed indexes are independent of the application
one have in mind.

The indexes are applied in three reduction techniques by means of small
example. Every example leads to a decrease in the information content index;
only the JBOS leads to a loss in the fidelity index, as a consequence of the
production of some failing implications; and all examples lead to loss in the
representativeness index. The results shown the characteristics of each lattice
after be reduced.
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Existing measures and criteria, proposed here and found in literature, do
not identify what aspects of knowledge get preserved, eliminated, inserted or
transformed by a reduction technique. As future works we intend to propose a
way to identify these aspects. Finally, as the information content has limited
applicability due the complexity, we would like to improve the index and present
a new algorithm to calculate the number of counter-models.
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Abstract. This paper explores a novel approach to automatically dis-
covering concepts from patterns in abstract strings, without reliance on
prior knowledge of syntax or semantics.

Analysing sequences allows us to detect and predict patterns. When se-
quences take the form of streaming text, patterns take the form of words.
Given text streams, recurring sequences can be detected, formal contexts
formed, and FCA concepts and concept lattices generated.

Processing a text stream results in generating dynamically changing con-
cept lattices representing, conceptually, the stream’s initial segments of
increasing length. Detected words become FCA attributes and they also
dynamically change—they grow on the lattices.

1 Introduction

The act of communication is a process of generating and consuming streamed
information. Streamed information can be characterised in terms of a sequence
of symbols. For example, at the lowest resolution of a digital communications
system, information is encoded as a sequence of bits whether stored in memory
or transmitted via a digital waveform.

Low level sequences can be organised into sequences of higher order objects,
such as packets or frames. In a non-cooperative communications channel, i.e.
one in which the actor has limited visibility of the communications protocols, an
actor may need to form its own higher abstractions of the observed sequence.
Higher order abstractions allow more powerful processing such as predicting the
behaviour of a communications channel so that a cognitive radio can anticipate
segments of clear channel in which to opportunistically transmit.

Natural language is a valuable surrogate for more esoteric forms of commu-
nication as it contains protocol structure and implicit redundancy in order to
make the act of communication resilient to noise and other forms of interfer-
ence. Moreover, natural language and digital communications waveforms both
have the goal of conveying information. For this reason, this paper shall consider
the challenge of extracting higher order abstractions in the form of recurring se-
quences from streaming text as an analogue for extracting protocol structure
from communications waveforms. Furthermore, the paper describes a method
inspired by Formal Concept Analysis of representing these higher order abstrac-
tions as an information system that captures the structural relationships between
the abstractions.

In: K. Bertet, D. Borchmann, P. Cellier, S. Ferré (Eds.): Supplementary Proceedings of ICFCA,
Rennes, France, 2017.
Copyright (© by the paper’s authors. Copying only for private and academic purposes.
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2 Related Work

Sequence prediction is a well-studied problem. For example, recent innovations in
Deep Learning [24] has been motivated by the demand for natural language pro-
cessing, handwriting recognition and language translation, among other things.
Each of these tasks can be formulated as a sequence prediction activity in which
a sequence of inputs is ingest, such as speech, handwriting and language, and the
prediction engine must generate (predict) the corresponding output. In cognitive
radio, the challenge may be described more simply as ingesting channel state in-
formation and predicting channel state occupancy. Recurrent Neural Networks
(RNNs) and specifically those implementing Long Short-Term Memory [13] have
been demonstrated as being especially successful in handwriting recognition [9],
speech-to-text processing [10] and language translation [28,1].

Deep neural networks are neural networks with many hidden layers of neu-
rons such that successive layers are activated by their previous layers. These
networks implicitly develop models of the data upon which they are trained.
Upon inspection of the hidden layers, it has been found that successive layers
exhibit increasingly higher levels of abstraction such that there exists a hier-
archy of abstraction. The authors regard these abstractions as an organically
learned representation of the latent ‘concepts’ within the environment to which
the deep neural networks are exposed. For example, the application of deep neu-
ral networks to facial recognition has revealed that lower layers learn to detect
edges whereas higher layers detect objects such as eyes and noses [27,23]. Al-
ternatively, the adoption of embedding techniques [18,20] has shown that deep
neural network can also learn semantic relationships between inputs such that
they produce a semantic map which can be interrogated.

The disadvantage of deep neural networks is that they require significant
quantities of training data and careful tuning of hyper-parameters to achieve
state-of-the-art performance. By contrast this paper is concerned with processing
an online sequence of symbols, i.e. in the absence of training data, and extracting
concepts on-the-fly.

Clustering algorithms provide an alternative method of recognising latent
‘concepts’ within data. There are many clustering algorithms,' including Princi-
pal Component Analysis, Independent Component Analysis, k-means clustering,
and non-parametric Bayesian methods to name a few. For an exhaustive review
the reader is directed to [14,2].

One clustering approach of note is the application of Hierarchical Dirichlet
Process Hidden Semi-Markov Models (HDP-HSMM) techniques [15] to
modelling communications channels [16]. The HDP-HSMM is a non-parametric
Bayesian method in which the sequential data is clustered into classes and a
Hidden Semi-Markov Model (HSMM) is found that fits the transitions between
the classes. The algorithm iteratively refines the number of classes and HSMM
that best fits the data according to a fitting criterion. Although this approach

! One of the reviewers pointed out that PCA and ICA are unsupervised dimensionality
reduction techniques, rather than clustering techniques.
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may be regarded as extracting both concepts (i.e. clusters) and relationships
from the sequential data, it suffers from the criticism levelled at many machine
learning techniques, including deep neural networks, that the rationale for se-
lecting concepts over others may not be transparent to the human observer. By
contrast the Formal Concepts Analysis approach applies a logical framework to
building a concept lattice to recurring objects within sequential data.

Searching for substrings in large strings could be seen as external to the
FCA concept lattice processing. Nevertheless, such references as [5] (unsuper-
vised learning of behaviours), [6] (sequence segmenting), [12] (unsupervised iter-
ative Bayesian word segmenting), [11] (unsupervised morphology learning), [30]
(sequence segmenting using Burrows-Wheeeler Transform), [22] (FCA linguis-
tic processing), [29] (text segmenting, topic detection), [4] (concept stability),
[7] (FCA substring scales) and [25] (pattern mining; change detection in data
streams) are worth exploring. The reviewers suggested some other related work,
including [8] (pattern structures), [3] (sequential data mining), [26] (discourse
structures), [21] (FCA based information retrieval) and [17] (incremental com-
putation of concept lattices).

3 Processing a sentence

One could select a string, assume that the string is a sentence and that it consists
of words. There are sentences that are not good choices for such an exercise.
For instance, the string (written in upper case, with blank spaces separating
words) THE QUICK BROWN FOX JUMPS OVER A LAZY DQOG is a (short) pangram
and therefore its words, unsurprisingly, do not reoccur. Hence, if all we were given
was the string: THEQUICKBROWNFOXJUMPSOVERALAZYDOG then the words would
be impossible to detect (in fact, although some single characters do reoccur, no
doubleton string reoccurs). However, it is not hard to come up with a sentence
with recurring? words. Consider the following string:
WHATSHECANDOHECANNOTDOANDWHATHECANDOSHECANNOTDO

and note that a human reader could easily recognise and detect some words
and guess that the (corresponding) sentence is: WHAT SHE CAN DO HE CANNOT
DO AND WHAT HE CAN DO SHE CANNOT DO. But what words could a computer
program detect, if all it was given was the string?

We refer to WHATSHECANDOHECANNOTDOANDWHATHECANDOSHECANNOTDO using
WHATwWSHECANNOTDO, with w standing for SHECANDOHECANNOTDOANDWHATHECANDO,
and therefore the original string is WHAT concatenated with w concatenated with
SHECANNOTDO. We will process WHATwSHECANNOTDO to see how words can be de-
tected. There are multiple ways one can detect words in a string, where a word
is understood as a substring that reoccurs. However, we will attempt to use For-
mal Concept Analysis (FCA) and therefore try to associate the string with FCA
objects and attributes. The following stages of processing are employed:

2 We use the verb recur as meaning reoccur (multiple times), but without expecting
regular intervals between the word occurrences.
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finding reoccurring strings;

choosing objects (and attributes);
forming contexts;

calculating concepts and concept lattices.

Ll

The above stages of processing are described in Sections 3.1-3.4. We have written
a python program that takes WHATwSHECANNOTDO as its input and generates
outputs depicted in Tables 1-4 (of Sections 3.1-3.3); hence, the python program
generates FCA contexts. Then, the generated FCA contexts are used as inputs
to FCA concept lattice calculation software available from latviz.loria.fr;
the outputs—calculated FCA concepts and FCA concept lattices—are depicted
in Table 5 and Figures 1-2 (of Section 3.4).

3.1 Finding recurring strings

When processing the stream of symbols WHATwSHECANNOTDQ, the string W is pro-
cessed, then the string WH, and so on, until the whole string is processed. To
demonstrate results of the processing, we will consider the string of length 47,
i.e., the whole string WHATSHECANDOHECANNOTDOANDWHATHECANDOSHECANNOTDO
(to which we refer using WHATwSHECANNOTDO); shorter strings, such as an initial
fragment of length 29, i.e., the string WHATSHECANDOHECANNOTDOANDWHAT, could
also be considered. When the whole string WHATwSHECANNOTDO is considered,
the search for recurring substrings is depicted in Table 1.

Table 1 depicts processing the string WHATwSHECANNOTDO by indicating re-
curring substrings with + and = signs at cells of a 47 x 47 matrix with rows and
columns numbered 0, ..., 46; the diagonal of the matrix and the cells above the
diagonal allow us to represent whether the corresponding substrings reoccur.? If
a substring starting at position ¢ and ending at position j (where j > i) reoc-
curs then the corresponding cell is marked with +, or with = if this is the first
occurrence of the substring. For instance, a * at row 0 and column 3 indicates
that the string starting at 0 and ending at 3 (i.e., the substring WHAT) reoccurs
and (0, 3) is the first occurrence of the substring; there is another occurrence of
the substring at (25,28), marked with + at the corresponding cell.

All recurring substrings are listed in Table 2 in a form of a list, where each
element of the list is a pair: [string, list of the string’s occurrences].
For instance, the first element of the list is [’WHAT’, [(0,3),(25,28)]1], indi-
cating that the string WHAT occurs at (0,3) and at (25,28).

Given the string WHATSHECANDOHECANNOTDOANDWHATHECANDOSHECANNOTDO as
input, the python program fromStringToWordsAndOccurrences.py (listed be-
low) produces the output presented in Table 2. Note that Table 2 contains exactly
the same information as Table 1, with Table 1 providing a simple visualisation
of processing the input stream, and Table 2 simply listing recurring words—and
their occurrences.

3 For related string processing, cf. Lempel-Ziv-Welch compression algorithm dictio-
naries [31] and maximal substrings in suffix trees [7].



Words Grow on Lattices: Analysing Sequences through FCA

1 2 3 4
01234567890123456789012345678901234567890123456

WHATSHECANDOHECANNOTDOANDWHATHECANDOSHECANNOTDO

NGO R W RO

cuHoOzZzZPamMEuOU=ZramMIEHAPI=SU=ZroUHOZZraMTogZramMTnA> o=
+

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

Table 1. WHATwSHECANNOTDO: recurring substrings.

Code for finding words and their occurrences

# fromStringToWordsAndOccurrences.py
def replace(prev,new,all):
newAll = []
for pointerToItemInAll in range (0,len(all)):
current = all[pointerToItemInAll]
if not(current == prev):
newAll.append(current)
else:
newAll.append (new)
all = newAll
return all
def coversOnItems(occurrencel,occurrence2):
occurrencelbeg = occurrencel[0]
occurrence2beg = occurrence2[0]
occurrencelend = occurrencel[1]
occurrence2end = occurrence2[1]
if (occurrencelbeg <= occurrence2beg) and \
(occurrence2end <= occurrencelend):
return True
else:
return False

21
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[’WHAT’, [C o0, 3),(25,28)]]

[’H, [C1, 1,05, 5),(12,12),(26,26),(29,29), (37,3711

[a, [C2, 2),(8, 8),(15,15),(22,22),(27,27), (32,32), (40,40)11
rre, [C 3, 3),(19,19),(28,28), (44,4411

[’SHECAN’, [C 4, 9),(36,41)]1]

[’HECAN’, [( 5, 9),(12,16),(29,33),(37,41)]1]

[’HECANDO’,  [( 5,11),(29,35)]1]

[AN, [( 8, 9),(15,16),(22,23),(32,33),(40,41)1]

[ AND’, [( 8,10),(22,24),(32,34)]]

N, [C9, 9),(16,16),(17,17),(23,23),(33,33), (41,41), (42,42)]1]
[’p’, [(10,10),(20,20), (24,24), (34,34) , (45,45)1]

[’DO’, [(10,11),(20,21),(34,35),(45,46)1]

o, [(11,11),(18,18),(21,21),(35,35),(43,43), (46,46)1]

[’HECANNOTDO’ , [(12,21), (37,46)1]

Table 2. WHATwSHECANNOTDO: words—and their occurrences.

[’WHAT’, [C 0, 3),(25,28)]]

[’H, [Co, 3,(4, 9,(5,11),(12,21),(25,28),(29,35), (36,41) , (37,46)11]
[a, [Co, 3,4, 9),(5,11),(12,21),(22,24),(25,28),(29,35), (36,41) , (37,46)]1]
LT, [Co0, 3),(12,21),(25,28),(37,46)]]

[’SHECAN’, [C 4, 9),(36,41)]]

["HECAN’ , [C 4, 9,(5,11),(12,21),(29,35),(36,41), (37,46)11]

[’HECANDO’, [( 5,11),(29,35)]1]

[’AN?, [C 4, 9),(5,11),(12,21),(22,24),(29,35),(36,41), (37,46)1]

[>AND’, [( 5,11),(22,24),(29,35)]1]

[N, [C 4, 9),(5,11),(12,21),(22,24),(29,35), (36,41), (37,46)11

[’p’, [( 5,11),(12,21),(22,24),(29,35), (37,46)1]

[’po’, [( 5,11),(12,21),(29,35),(37,46)]]

[’o’, [( 5,11),(12,21),(29,35),(37,46)]1]

[’HECANNOTDO’ , [(12,21),(37,46)11

Table 3. WHATwSHECANNOTDO: attributes—and their objects.

def coversOnLists(occurrencesl,occurrences?2):
allOccurrences2areCovered = True
for ptrToOccurr2 in range(0,len(occurrences2)):
occurrToBeCovered = occurrencesQ[ptrToDccurr2]
occurrIsCovered = False
for ptrToOccurrl in range(0,len(occurrencesl)):
occurrToBeUsedAsCover = occurrencesl[ptrToOccurri]
isCovered = coversOnItems(occurrToBeUsedAsCover,occurrToBeCovered)
if isCovered:
occurrIsCovered = True
break
if not(occurrIsCovered):
allOccurrences2areCovered = False
break
return allOccurrences2areCovered
def absorbs(D1,D2):
stringl = D1[0]; occurrencesl = D1[1]
string2 = D2[0]; occurrences2 = D2[1]
if string2 in stringl and coversOnLists(occurrencesl,occurrences2):
return True
else:
return False
def occurrences(substring,string):
occurrences = []
for pointer in range(0,len(string)-len(substring)+1):
pointedSubstring = string[pointer:pointer+len(substring)]
if pointedSubstring == substring:
occurrences.append ((pointer,pointer+len(substring)-1))
return occurrences
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def main():
listOfReoccuringSubstrings = []
string = "WHATSHECANDOHECANNOTDOANDWHATHECANDOSHECANNOTDO"
for row in range(0,len(string),1):
for col in range(row,len(string),1):
substring = string[row:col+1]
occurrences0fSubstring = occurrences(substring,string)
number0fOccurrences = len(occurrencesOfSubstring)
if numberOfOccurrences ==
break
else:
substringAndItsOccurrences = []
substringAndItsOccurrences.append(substring)
substringAndItsOccurrences.append(occurrencesOfSubstring)

if listOfReoccuringSubstrings == []:
listOfReoccuringSubstrings.append (substringAndItsOccurrences)
else:

sizeOfListOfReoccuringSubstrings = len(listOfReoccuringSubstrings)
for pointerToSubstringAndOccurrences in range(0,sizeOfListOfReoccuringSubstrings):
newSubstringAndOccurrences = substringAndItsOccurrences
prevSubstringAndOccurrences = \
listOfReoccuringSubstrings[pointerToSubstringAndOccurrences]
allSubstringsAndOccurrences = listOfReoccuringSubstrings
newDropped = False
newReplacedPrev = False
newToBeAppended = False
if absorbs(prevSubstringAndOccurrences,newSubstringAndOccurrences) :
newDropped = True
if absorbs(newSubstringAndOccurrences,prevSubstringAndOccurrences) :
allSubstringsAndOccurrences = replace(prevSubstringAndOccurrences,\
newSubstringAndOccurrences,allSubstringsAndOccurrences)
newReplacedPrev = True
if newDropped:
break
if newReplacedPrev:
break
if pointerToSubstringAndOccurrences == sizeOfListOfReoccuringSubstrings - 1:
newToBeAppended = True
if newToBeAppended:
allSubstringsAndOccurrences.append (newSubstringAndOccurrences)
listOfReoccuringSubstrings = allSubstringsAndOccurrences

print "string = ", string
print "listOfReoccuringSubstrings = ", listOfReoccuringSubstrings
main()

3.2 Choosing objects

Table 2 connects (abstract) strings (such as WHAT) with their specific occurrences
(such as (0,3) and (25,28)), at specific locations in the whole string. One
could think that those abstract strings are words and could be employed as FCA
attributes; then one could also think that the specific occurrences (of the words,
or attributes) could be employed as F'CA objects. But then one could immediately
see that the occurrences listed in Table 2 are all different: they are not shared!

The approach just described would yield trivial, uninteresting FCA contexts
and concept lattices. Fortunatelly, there is a simple solution: to use only mazimal
occurrences (maximal w.r.t. the substring relation). Table 2 is therefore modified
by replacing the occurrences with maximal occurrences containing them; the
result of the modification is shown in Table 3. The mazimal occurrences listed
in Table 3 are used as FCA objects. For instance, the occurrence (5,9) (of
HECAN) will not be used as an object associated with (word, or attribute) HECAN;
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H

E

C

AlH

N|E|S

N|C|H|H

O|A|E|E|W

T|N|C|C|H|A

D/D/A|A|A|N|AD

O|OIN|N|T|D|IN|O|A[N|H|O|D|T
(12,21) = 12HECANNOTDO|X X X X X X X X X X
(37,46) = 37HECANNOTDO|x X X X X X X X X X
( 5,11) = O5HECANDO X X X X X X X X X X
(29,35) = 29HECANDO X X X X X X X X X X
( 4, 9) = 04SHECAN X X X X X X
(36,41) = 36SHECAN X X X X X X
( 0, 3) = OOWHAT X X X X
(25,28) = 25WHAT X X X X
(22,24) = 22AND X X X X X

Table 4. WHATwSHECANNOTDO: formal context.

instead, the maximal occurrences, namely the occurrence (4,9) (of SHECAN) and
the occurrence (5,11) (of HECANDO) will be used as objects. The abstract strings
(such as WHAT, without a reference to its location) are words and are employed as
FCA attributes; the maximal occurrences are employed as FCA objects. Hence,
Table 3 lists attributes—and their objects. Note that Table 3 contains exactly
the same information as Table 4.

3.3 Forming contexts

At the end of Section 3.2, we said that Table 3 lists attributes and their objects.
Therefore, Table 3 specifies a formal context. This formal context is presented,
in a form of a cross-table, in Table 4. In the context, the objects have been
renamed (to have easier to “understand” object names): we refer to the objects
that WHAT has as OOWHAT (occurrence of WHAT starting, within the whole string,
at symbol number 0) and 25WHAT (occurrence of WHAT starting at symbol number
25)—rather than (0,3) and (25,28).

Finding reoccurring strings (Section 3.1), choosing objects (Section 3.2), and
forming contexts (described in this section) have all been implemented in a
python program. The obtained formal contexts have been used to calculate for-
mal concepts and concept lattices; this is described in Section 3.4.
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["O5HECANDO" , "29HECANDQ" , "22AND", "12HECANNOTDQ" , "37HECANNOTDO" , "04SHECAN" , "36SHECAN"]
["AN" s IINH . |IA||]

["12HECANNOTDO" , "37HECANNOTDO"]
[||H|| R "AN" ) "N R I|HECANNOTDOI| R nTn . WA . np" R ||D0|l . |I0|| R ||HECANII]

["12HECANNOTDO" , "37HECANNOTDO" , "OOW" , "25W"]
[||H|| . l|Tl| . IIAII]

["12HECANNOTDO" , "37HECANNOTDO" , "OOW" , "25W" , "OSHECANDQ" , "29HECANDQ" , "22AND" , "04SHECAN" , "36SHECAN"]
[|IA||]

["O5HECANDO", "29HECANDO" , "22AND" , "12HECANNOTDQ" , "37HECANNOTDO"]

[“ANII ) Ll ) nAM R I|Dl|]

["oow","25W"]
["H" . I|Tl| . "A" . "WHAT"]

["O5HECANDO" , "29HECANDQ" , "12HECANNOTDO" , "37HECANNOTDO"]
["H","AN","N","A","D","DQO","0", "HECAN"]

["O5HECANDO" , "29HECANDO" , "12HECANNOTDO" , "37HECANNOTDO" , "04SHECAN" , "36SHECAN"]
[||H|| R "AN" , nN" R wAM ) IIHECANH]

["O5SHECANDQ", "29HECANDO" , " 12HECANNOTDQ" , "37HECANNOTDO" , "04SHECAN", "36SHECAN", "00W" , "25W"]
[||H||,I|Al|]

["O5HECANDO" , "29HECANDO" ]

["H" "HECANDO" "AN" IINII IIANDH "A" I|Dll "DD" I|Dll IIHECANH]

["O5HECANDO" , "29HECANDQ" , "22AND"]
[||ANII ) Ll ,"AND“ R nAM ) llDIl]

1
["AN","N", "HECANNOTDOQ","T","A","D", "WHAT","DQ","0", "HECAN" , "H" , "HECANDQ" , "AND" , "SHECAN"]

["04SHECAN" , "36SHECAN"]
["H" s "AN" . ||N|| s "SHECAN" s "A" s "HECAN"]

Table 5. WHATwSHECANNOTDO: concepts.

3.4 Calculating concepts and drawing concept lattices

The formal contexts have been described in Section 3.3; they can be used to cal-
culate formal concepts and concept lattices. The formal contexts have been used
as input to FCA lattice calculating software available from latviz.loria.fr.

When the context presented in Table 4 is used as input, the concepts pre-
sented in Table 5 are obtained. The concept lattice (built from the concepts
of Table 5) is shown as the last lattice of Figure 2, with reduced labeling, and
showing only the attributes (words).

Section 4 provides a brief description of how the concept lattice grows when
initial segments of the whole string are processed, starting with the first symbol
in the stream of symbols, then the first two symbols, and so on. A stream (of
symbols, or characters) of length n would form a string s,—1 = coc1...cn1.
Then STEP 0 of processing the stream will correspond to processing the string
so = ¢p and STEP i to processing the string s; = ¢q .. . ¢;; we will consider some
of the STEPS 0-46 of processing the string WHATwSHECANNOTDO of length 47.
Figures 1-2 depict the concept lattices for selected steps of the processing.
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OH

WHATSH-WHATSHEC STEPS 05-07 | WHATSHECA~WHATSHECANDO STEPS 08-11 | WHATSHECANDOHECANN STEP 18

WHATSHECANDOHECANNOTDOA STEP 22 | WHATSHECANDOHECANNOTDOAN STEP 23 | WHATSHECANDOHECANNOTDOAND STEP 24

Fig. 1. WHATwSHECANNOTDO: concept lattices for STEPS 5-7, 811, 18, 22, 23, 24.

4 Growing words, growing lattices

Processing a stream (of text) is different than processing a string. A stream
is a sequence of symbols, or characters arriving at times forming a temporal
sequence. Let to,t1,...,t;_1 be timepoints, such that to < t; < ... < t;_1.
Suppose that a character ¢; “arrives” at time t; (for j in (0,...,7 — 1)); at
time t;_1 the stream of processed characters allows us to build a string s;_1 =
co---Ci—1. At time t; a new character ¢; arrives and the previous string s; 1
is extended to s; = s;_1.¢;. An important aspect of stream processing is its
iterative character: after processing the string s;_; we wait for a character ¢;
and when it arrives we update the processing of the string s;_; to have the
string s; = s;_1.¢; processed. This includes updating the following: position i (of
the “reading head” that has just read the character that arrived), character ¢;,
string s;, alphabet X; (of unique characters), set of attributes or words M;, set of
objects G;, context (G;, M;, I;) and ordered set of concepts B; = B(G;, M;, I;).
The relevant questions include: how do objects and attributes change, and how
do the contexts, concepts and concept lattices change?

In Figures 1 and 2 it is shown how the lattices grow, and how the attributes
(words) change. Notice that a reduced labelling is used, showing only attributes,
or words (to simplify the discussion, we refer to nodes, or concepts, using the
attribute labels). A word can grow and during the growing process it absorbs
its initial segments. For instance, we obtain the following sequence of words: W,
WH, WHA, WHAT—and WHAT absorbs all its inital segments. This is properly imple-
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HECANDO

WHATWSHECAN STEP 41

STEP 42

WHATWSHECANNO

STEP 43

SO

(>
A:;

ol
jof
doT

WHATWSHECANNOT STEP 44

WHATWSHECANNOTD

STEP 45

WHATWSHECANNOTDO

STEP 46

Fig. 2. WHATwSHECANNOTDO: concept lattices for STEPS 41-46.

mented in the python code: for a word w; to absorb a word ws, the occurrences
of wy must also “absorb” (or cover) the occurrences of wy; for example, if there
was a sequence WHERE in the processed string then WHAT would not absorb WH

because its occurrences would not cover the occurrences of WH in WHERE.

STEPS 05-07, 08-11, 18, 22, 23, 24 are depicted in Figure 1;

STEPS 00-04: no string reoccurs:
WOI‘dS; Gi = MZ =9 (fOI‘ 1= 0,,4), 20 = {W}7 ...,24 = {w, H, A, T7 S},

STEPS 05-07: a string H reoccurs—the first detected word; X5 = Xy;

there are no attributes, no objects, no

STEPS 08—-11: A appears; hence, two (singleton) words have been detected;

STEP 22: list of attributes: HECAN, DO, T, H, A, N and O;
STEP 23: AN appears as a meet of A and N, above HECAN;

STEP 24: D reappears and AND appears; D A O = DO, D A AN = AND;

STEPS 41-46 are depicted in Figure 2.

SHECA grows to SHECAN, HECA is absorbed by HECAN;
HECANN appears, N and AN merge (below 4);

HECANN grows to HECANNGO;

HECANNO grows to HECANNOT, T becomes a subconcept of A;
HECANNOT grows to HECANNOTD;

HECANNOTD grows to HECANNOTDO; A becomes the top concept.

STEP 41:
STEP 42:
STEP 43:
STEP 44:
STEP 45:
STEP 46:
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Some comments follow. A word grows and (usually, but not always) absorbs its
initial segments. A word never disappears: the only way for a word to disappear
is to be absorbed by another word (in this case the absorbed word is a segment
of the absorbing word). It is also possible for a word that disappeared to re-
appear. As the set of detected words grows (with the words themselves growing),
the lattice necessarily grows (to accomodate the enlarged set of words). But the
lattice does not grow monotonically: it can contract, when some words disappear
by being absorbed by other words, or some nodes are dropped while other nodes
merge or shift It seems desirable to investigate how words and word lattices
change and grow, as a complete catalogue of possible changes—or transitions—
would facilitate the understanding of the dynamic behaviour of word lattices.

5 Conclusion

FCA processing for word detection is being explored, with most processing al-
ready implemented. It remains to be seen whether it provides an alternative to
HMM and NN processing, or whether some hybrid systems including FCA pro-
cessing as components could be built.* For example, passing the word concept
extracted by FCA through a neural network for sequence prediction could be
used to generate predictions of future sequence behaviour.

Two main questions are the following.

1. Would an FCA based string processing aimed at word detection scale up for
large alphabets and long streams of symbols?

2. Could an FCA based system be an alternative to NN and HMM based sys-
tems, or could it form a useful component of a hybrid system?

Regarding the first question, it is expected that performance might be an
issue because the intention is to work with large alphabets® and long strings.

Regarding the second question, even if an FCA based system performs worse
than the alternatives, it might provide a valuable conceptual analysis tool.

The performance issues are related to the cost of searching for substrings in
large strings (to obtain words and their occurrences, cf. Table 2) and the cost
of generating concept lattices. Searching for substrings could be seen as external
to the FCA concept lattice processing. Nevertheless, the references listed in
Section 2 are worth exploring.

Issues of interest, but not considered here, include detecting higher level be-
haviours (requiring detecting not only words but also sentences, or topics) and
handling noise (possibly using rough sets [19]). Regarding the latter issue—
noise—one should not expect all detectable words to be exact matches, some
might differ from the pattern words only slightly and we don’t want to miss
them. Regarding the former issue—higher level patters—detecting them would

4 Our work on HMM and NN based processing is progressing, but there are no results
available yet.
® The expected size of the alphabet is in order of (potentially) millions of symbols.
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provide a method for fast pattern detection, as it would allow context switch-
ing. It seems that the following could be attempted. The input stream contains
1)

characters (c;

. /), and we are detecting strings—attributes which are words rep-

resenting patters—(sg-l))j. The characters (c(l))i and the strings (sgl))j could be

i
referred to as first level characters and strings. As we progress with detecting

() _ 1)

(851))1., we can form second level characters by putting ¢; , i.e., a second

level character is a first level pattern. Some sequences of second level charac-

ters would reoccur, forming second level strings, or second level patterns (s,(f)) i

(2)

where s;”’—a second level pattern—is a recurring string over the alphabet (cf))

J
(the alphabet (c§2))j is a set of detected first level patterns). Conceptually, de-
tecting higher level patterns would be simple, and it should drastically improve
performance and allow to handle large alphabets and string; However, no re-
portable experimentation has been performed.

For FCA word detection, or behaviour prediction, to be useful—whether as
a stand-alone system or as an FCA-based component of a hybrid system—fast
calculation and drawing of concept lattices is required. We are searching for good
ways of achieving this.

Detecting and predicting patterns in ubiquitous data streams is an impor-
tant and challenging task for knowledge processing in general, and FCA based
processing (including visualising patterns) in particular.
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Abstract. Analysis of polyadic data (for example, multi-way tensors
and n-ary relations) becomes more and more popular task nowadays.
While several datamining techniques exist for (numeric) dyadic contexts,
their extensions to the triadic case are not obvious, if possible at all. In
this work, we study development of the ideas of Formal Concept Anal-
ysis for processing three-dimensional data, namely the so called OAC-
triclustering (from Object, Attribute, Condition). Among several known
methods, we have reasonably selected the most effective one and used
it to propose an algorithm NOAC-triclustering for mining triclusters of
similar values in real-valued triadic contexts. We have also proposed a
second simple algorithm, Tri-K-Means, based on clustering algorithm
K-Means, for the purpose of comparison. The experimental part demon-
strates application of the algorithms to both computer-generated and
real-world data.

Keywords: Three-way data mining, Triadic Formal Concept Analysis,
Triclustering, OAC-triclustering, Real-valued context

1 Introduction

Analysis of polyadic data has a rather long history. Thus, in 1966, L. Tucker pro-
posed a multidimensional extension of factor analysis for three-way tensors [1].
Now, tensor and matrix decomposition approaches play a crucial role in ma-
chine learning where so called latent factors, compact data representation and
dimensionality reduction are needed [2].

There is a complementary approach to such decompositions that aims at
finding homogeneous patterns (e.g., dense submatrices or subtensors) in object-
attribute matrices and tensors of higher order. Namely, biclustering. The term
was coined in [3] but dates back to the seminal work of Hartigan [4] on direct
clustering.

In: K. Bertet, D. Borchmann, P. Cellier, S. Ferré (Eds.): Supplementary Proceedings of ICFCA,
Rennes, France, 2017.
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It seems that Formal Concept Analysis, which is aimed at analysis of object-
attribute relational data, is able to solve both of the aforementioned tasks for
specific cases of input data. Thus, it is possible to find optimal decompositions
of three-dimensional Boolean tensors by means of certain subsets of formal con-
cepts [5]; formal concepts can be viewed as biclusters and their n-ary exten-
sions such as triconcepts can be treated as triclusters [6, 7]. In data mining and
FCA community there were several attempts to extend FCA-like pattern mining
techniques to searching for patterns in numeric data. Thus, in [8], the authors
proposed mining of biclusters (bi-sets) under user-defined constraints, while in
[9] the authors searched for numeric biclusters by means of Triadic Formal Con-
cept Analysis (3-FCA). Several authors proposed n-ary extensions of FCA for
pattern mining with closed n-sets both exact [10-12] and approximate [13, 14].

It is interesting, that historically triadic formal concepts came to the stage
even before formal treatment of Triadic Formal Concept Analysis by Lehman
and Wille [15]; in fact, one of the first application of 3-FCA deals with recall
data in a study of social perception [16].

The goal of this work is two-fold: to prove important properties of the previ-
ously introduced OAC-triclustering and to propose a new subsequent approach,
NOAC-triclustering, for mining triclusters of similar values in real-valued triadic
contexts. We have also proposed a second simple algorithm, Tri-K-Means, based
on clustering algorithm K-Means, for the purpose of comparison. The experimen-
tal part demonstrates application of the algorithms to both computer-generated
and real-world data.

The paper is organised as follows. In Section 2, we recall several basic no-
tions of Triadic FCA. Section 3 discusses multimodal (or multi-way) extensions of
clustering approach with three dimensions simultaneously from the most general
perspective. In Section 4, we recall the definition of OAC-triclusters as a relax-
ation of triconcepts from Section 2. In Section 5, we prove several important
properties of possible variations of OAC-tricluster forming operators that justify
our choice of the concrete OAC-tricluster definition. Section 6 proposes a ver-
sion of OAC-triclustering for numeric (and real) data based on similar values as
well as modification of triadic extension of conventional K-Means clustering. In
Section 7, we describe real and synthetic datasets selected for experimentation.
Section 8 reports main experimental results of comparison of both algrorithms.
Section 9 concludes the paper and outlines possible directions of future work.

2 Triadic Formal Concept Analysis

In Triadic Formal Concept Analysis we deal with triadic formal contexts. They
are very similar to traditional Formal Contexts, but include three dimensions,
or modalities: objects, attributes and conditions [15].

Definition 1. Let G, M and B be arbitrary sets. The subset of their Cartesian
product defines a triadic relation I C G x M x B. The triple K = (G, M, B, I)
is called a triadic formal context, or tricontext. The sets G, M and B are called
set of objects, set of attributes, and set of conditions, respectively.
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When there is a triple (g,m,b) C I, where g € G, m € M, and b € B, it is
said that “the object g has the attribute m under the condition b”.

Like in Formal Concept Analysis we use concept-forming (prime) operators,
but because modality of our case is higher there exists six variations of those
operators:

Oc : 26 — 2M x 2B Oc.ar : 26 x 2M — 2B,
Opr - 2M — 26 x 2B O p:2¢ x 28 — 2M,
Op : 28 — 20 x 2M Orr,p 1 2M x 2B — 26,

These variations are called triadic concept-forming (or prime) operators.
They are assorted by the number of sets in their input into two groups: 1-set
(triadic) prime operators and 2-set (triadic) prime operators.

For example, if X C G, Y C M for a given tricontext K = (G, M, B, I),
then g m(X,Y) = (X,Y) ={b € B | ¥(g,m) € X xY : (g,m,b) € I}.
The remaining operators for 2-sets, 8¢ g(:,-), Om,B(:,-), are defined similarly.
Further, we use the same prime-based notation for all the three operators: (-, -)’.

Therefore, triadic formal concept is defined in the following way:

Definition 2. A triple of sets (X,Y, Z), where X C G,Y C M, Z C B, is called
triadic formal concept (or triconcept) iff three conditions hold: (X,Y) = Z,
(X,2) =Y and (Y, Z) = X.

The first and the second elements of the triple inherit their names from the
dyadic case, which are respectively extent and intent, while the third component
is called modus (modi in plural). As well as in the dyadic case, triadic formal
concept can be interpreted as a maximal cuboid of positive values (or crosses) in
the Boolean matrix representation of the formal context, possibly under suitable
permutations of elements of the dimensions. In set notation, the statement is
equivalent to maximality X x Y x Z C I w.r.t. C order over G, M, B.

The set of all triadic formal concepts of the triadic formal context K can be
organized into a structure called concept trilattice T(K), however unlike in the
dyadic case the extents (respectively intents and modi) does not form a closure
system since two different triconcepts may have the same extent, but their intent
and modus parts may be incomparable in terms of set inclusion.

For polyadic extension of FCA see [17].

3 Multi-way Clustering

The methods of FCA and 3-FCA, in particular, have found numerous successful
applications in different fields, but sometimes they may be too strict to operate
on real-world data. Big datasets are prone to contain missing values, errors and
noise, which may lead to losing some part of relevant information in the output.
The clustering approach studied in this chapter is supposed to be more flexible
and applicable to corrupted data.
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3.1 Triclustering

A formal definition of tricluster is usually adjusted for each specific problem as
it depends on the problem statement, data types, method of triclustering, and
desired output. In this part we will give the most general definition.

Definition 3. Let A, xix; be a three-dimensional binary matriz (or tensor). Let
sets G ={g1,92,.--,9n}, M ={mq1,ma,...,my} and B = {by,ba,..., b} be the
index sets of A. Then for some arbitrary sets X C G, Y C M and Z C B the
submatrizc Axyz = {agy. |z € X,y €Y,z € Z} is called a tricluster. The sets
X, Y and Z are called respectively extent, intent and modus of the tricluster.

Triadic formal concepts may be considered as a special case of triclusters,
because they form a three-dimensional structure without zeros (“holes”) in the
triadic formal context. Therefore, methods of 3-FCA are part of the triclustering
methods. However, most datasets have little distortions, that may affect the
output of the algorithms, so it is considered useful to relax the absolute density
condition, allowing some number of empty cells in the clusters.

Various constraints may be applied to triclusters. Usually they are structure
requirements, cardinality restrictions on extent, intent and modus, and limita-
tions of other parameters. For example, the most common conditions, which
eliminate small and meaningless structures from the output, are the minimal
support condition (|X| > sx,|Y| > sy,|Z] > sz) and minimal density thresh-

old:
Zl):(ll Z‘jill ‘kZ:l1 Qziy;z,
XTYTZ] = i
The main application of triclustering is in the field of gene expression analysis
and biological data mining [18,19]. There are also works dedicated to the use
of triclustering in recommender systems [20] [21], folksonomies analysis [6], and
social network analysis [22].

P(AXYZ) =

3.2 Triadic Multivalued Clustering

Another step forward from traditional formal contexts, where table representa-
tions contain only values from the set {0, 1}, will be triadic multivalued contexts.
In such contexts the data is not binary, but may take any value from some pos-
sibly infinite set W.

Definition 4. Triadic multivalued context is a tuple K = (G, M,B,W,1,V),
where G, M and B are respectively the sets of objects, attributes and conditions.
The set W is called the set of values. Ternary relation I C G x M x B defines
which triples of the context have values. The value functionV : I — W associates
a triple (g, m,b) € I with its corresponding value w € W.

When V(g,m,b) = w it is said that “the object g has the value w on the
attribute m under the condition b”.

In its general form, the definition of a tricluster does not differ from the
binary case.
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Definition 5. Triple (X,Y,Z), where X CG,Y C M and Z C B, is called a
triadic multivalued cluster (multivalued tricluster).

Multivalued Context Analysis is used to process numerical data. This type of
data is common in biological problems, specifically microarray gene expression
analysis [18], [23]. In this work we only consider cases when W C R. Thence the
studied methods are called Numerical.

4 OAC-triclustering

The main triclustering method studied within FCA framework previously is
OAC-triclustering [13]. It is the result of the extension of the OA-biclustering
algorithm [24] on the triadic case. The two existing variations of this method are
very similar, but one relies on box operators, while another uses prime operators
[13]. Let us describe them in detail.

4.1 Box Operator Based OAC-triclustering

The box operator based variant of OAC-triclustering was chronologically the
first. It was introduced in [7]. The method utilizes the following idea:

Let K = (G,M,B,I) be a triadic context. For triplets g € G, m € M,
b € B of the context, where (g, m,b) € I, we generate triclusters by applying
so-called box operators. The triple to which the operators are applied is called
the generating triple, or generator. Further, we simplify the used set notation
for both prime and box operators and write = and o’ instead of {a}D and {a}’,
but readers should keep in mind, that the operators can also take sets as input.

First, we should give definitions for prime operators, that take 1-set input,
as box operators rely on them (consider X C G,Y C M,Z C B):

(m,b) e M xB|VYge€ X:(g,m,b) eI}

X' =
Y ={(g,b) € G x B |¥m €Y : (g,m,b) € I}
ZI

{
{
{(g,m) eGxM|Ybe Z: (g,m,b) ez}

For a fixed triple (g, m, 5) € I the box operators are defined in the following
way:

g = {g|§|m: (g,m) € b’ v 3Ib:(g,b) Erh’}
mb = {m|ﬂg:(g7m) e’ vab: (m,b) Ef}’}

B = {b|ag;(g,b) e @' V3Im: (m,b) eB’}

The outputs of the operators are called the box sets.
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Definition 6. For a triple (g,m,é) € I a triple of sets T = (gD,mD,BD) is
called a box operator based OAC-tricluster. The components of the triple are
called respectively extent, intent and modus. The triple (g,m,b) is called a gen-
erating triple of the tricluster T.

Figure 1 illustrates the addition condition for an element g € G to be included
into g&. The element will be added to the box set, if the gray zone contains at
least one cross.

g bl I E [ bIBI

=

MM

Fig. 1: Addition of ¢ to g~

The method consists of iteration over all of the triples in the relation I of
the triadic context K, generation of box operator based triclusters for each of
them and storing the triclusters in a set 7. The tricluster T" should be added to
the set T only if it has not been discovered earlier, as some triplets may result
in the same triclusters. Minimal support condition and density threshold may
improve performance by elimination of less important results from the output.

4.2 Alternative Box Operator Definition

The alternative definition for box operators utilizes possible changes of quan-
tifiers and logical operators for obtaining different sets and, therefore, different
triclusters. The general definition of box operators has the following form:

Pi={g 1 3mi(gm) eV 0Ib: (g.0) e’}

mD::{m \ Eg:(g,m)ei)'OEb:(m,b)egl}

We={b | 3g:(gb)em O Im:(mb)eq}

Here the symbol ¢ signifies variability between logical operators A and V.
The 1-set prime operators remain the same, as they were given in the previous
section.
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This yields two variations of box operators. They are distinguished by char-
acters, which substitute optionality symbol, and are called respectively V-box
and A-box operators. Let us investigate their structure.

1. The V-box variation is the simplest one, as it is identical to the classical

box operators. In order for an element to be added to the box set, the slice
corresponding to the element should contain at least one cross in the gray
area, as shown in Figure 2a.
The aforementioned general definition of the box operators contains 1-set
prime operators, which makes it complicated and difficult to use in theo-
retical work. For this reason, we introduce a detailed definition for V-box
operators:

3= {g | I3m:(g,mb) el Vv ab:(g,fn,b)ef}

m@::{m | 3g:(g,mb)el Vv Hb:(g,m,b)el}

b o={b | 3g:(gm,b)yel v Im: (g m,b)el}

2. The A-box operators impose stricter conditions for an element to be included
in the box set. The corresponding slice needs to have at least one cross in
both lines of the gray area (see Figure 2b). This way of forming triclusters
is supposed to give higher density. The detailed definition is the following:

39 = {g | 3m:(g,mb) el A ab:(g,m,b)ef}

ﬁz%:z{m | 3g:(g,m,b)el A Hb:(g,m,b)el}

bli={b | 3g:(g,mb el A Im:(§m,b)cl}

g by ... b ... Dby g by ... b .. Dby

=
=7
X

M pq] M p

(a) V-box case (b) A-box case

Fig. 2: 0-box addition conditions
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4.3 Prime Operator Based OAC-triclustering

The prime algorithm [25] uses a simpler way of generating triclusters. It cor-
responds to the dyadic method of mining OA-biclusters described in [24]. The
OAC-triclusters found by this approach have similar to the OA-biclusters cross-
like structure.

Like in the previous method, the triclusters are generated by applying 2-
set prime operators to the pairwise combinations of the components of each
triple in the context. The motivation for development of this method was to
improve quality of the resulting triclusters in terms of density and simplicity of
the structure. Now we will draw the definition for prime operator based OAC-
triclusters:

Let K = (G, M, B,I) be a triadic context. 2-set prime operators have the
following form (consider X C G,Y C M,Z C B):

(X,Y)Y={beB | YVge X,me M :(g,m,b) € I}
(X,Z)’:{meM | vgeX,BeB:(g,m,B)el}

(Y, 2) = {g €G | VjeX,meM: (g,m,b)e I}
The outputs of the operators are called the prime sets.

Definition 7. For a triple (§,m,b) € I a triple of sets T = ((n,b)’, (§,b)’, (§,7m)")
is called a prime operator based OAC-tricluster. The components of the triple are
called respectively extent, intent and modus. The triple (g,fn,ZN)) is called a gen-
erating triple of the tricluster T.

As mentioned before these triclusters have star-like structure in the 3-dimensional
table representation of the formal context (under appropriate permutation of
rows, columns and layers).

g by ... b .. by Vg.g#§ by, ... b ... by
my my
i o]

My miyf

Fig. 3: Prime operator based tricluster structure

Figure 3 shows the structure of a prime operator based tricluster T =
(X,Y, Z), generated from a triple (g,m,b) € I. The gray zone contains crosses.
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Contents of the white zone are unknown and define the density (quality) of the
tricluster.

The algorithm is identical to the box operator based one: it iterates over all
the triplets of the context K, generates triclusters 7T-s and adds them to the
resulting set 7, if they were not found on the previous steps.

5 Relations of the OAC-triclustering Operators

In this section we discuss the relations between the variations of box operators
and the prime operator, as well as the triclusters that they produce. We propose
several ordering lemmas that describe the relations, and later are used to organize
the operators in a simple system. We consider the lemmas only for one dimension,
for simplicity. The formulations and proofs for other dimensions can be developed
in a similar way, due to intrinsic symmetry between the dimensions. The proofs
for the following statements are rather simple, so we omit them in this paper.

Lemma 1. The box set generated by the V-box operator contains as subset the
box set generated by the corresponding A\-box operator from the same generating
triple (g,m,b) € I, but the contrary is not always true.

Lemma 2. The box set generated by the NA-box operator contains as subset the
prime set generated by the prime operator from the same generating triple (g, m, b)
€ I, but the contrary is not always true.

Theorem 1 (Nesting Order of tricluster components generated from
the same generating triple). The box and prime sets generated by the prime
operators and the variations of box operators from the same generating triple
(g,m, E) € I are ordered in the following way with respect to set inclusion:

~ 7 ~[ ~0
(m,b)" € gn S gy
(3,0)' €l €l
. 0 ~ 70
(g.m)" C by C by
Corollary 1. The triclusters built with the box and prime sets generated by the

operators from the same generating triple (g, m, 5) € I inherit the same nesting
order with respect to component-wise inclusion C:

O O
T'CTLCT,.

These findings may help to analyze and explain the changes in number and
quality of the triclusters found by different methods in the same triadic context.

6 Methods of Numerical Triclustering

In this section, two methods of numerical triclustering for finding triclusters
of similar values are proposed. The first one is an extension of prime operator
based OAC-triclustering for real-valued contexts. The second one is a classical
clustering algorithm K-Means, for which we have developed a special metric in
order to operate in multivalued triadic contexts.
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6.1 Numerical OAC-triclustering

The NOAC (Numerical OAC) method was developed from the prime operator
based OAC-triclustering by adjusting it for mining numerical triclusters of sim-
ilar values in numerical triadic contexts. It has a parameter d, which defines
possible deviations of values inside the extracted triclusters.

Let K = (G,M,B,R,I,V) be real-valued triadic context. We iterate over
the generating triples (g, m, I~)) € I, build numerical triclusters and try adding
them to the resulting set of triclusters 7. The modified prime operators utilize
the parameter §, therefore we have decided to call them d-operators.

@m)" = {b | (@.m.b) € IAIV(3.m,b) - V(G,m.b) <o}
(5:0)° = {m | (§.m,b) € IA[V(g,m,b) ~ V(g,m,0)] <}
(7.8)° ={g | (g.17.8) € I AV (g,10.B) = V(5,m,B)| < 6}

Definition 8. §-operator based OAC-tricluster for a generating triple (g, m, ZN)) €
I is a triple of sets T = ((ﬁz,i))‘s, (g,IS)é, (g,m)ﬁ). The elements of the triple T

are called the intent, extent and modus of the tricluster.

As in binary case, the tricluster contains three-dimensional cross of elements
with similar values, which maximal difference with the central element does not
exceed 4.

6.2 Tri-K-Means

To compare the method from the previous section with some alternative, we use
the classical clustering algorithm K-Means with special metric, which allows it
to operate in multivalued triadic contexts and mine triclusters of similar values.

Let K = (G,M,B,W,1,V) be multivalued tricontext. We use the follow-
ing formula to compute distance between triples ¢t = (g1,m1,b1) and ty =

(927m27b2):
D(ty,ta) = |V (t1) = V(t2)| + 7 * ([91 # g2] + [m1 # ma] + [b1 # ba])

Here ~ is a parameter that defines the priority of closeness of the values inside
tricluster over inclusion of new elements. The expression [a; # ag] defines a
predicate, which is equal to 0, when the coordinates of the triples are equivalent
in the corresponding dimension, and 1 otherwise.

As aresult we have k usual clusters of triples. Let H C I be a set of triples rep-
resenting one cluster. We transform it into a tricluster T' = ({g | 3(g,m,b) € H},
{m | 3(g,m,b) € H} ,{b| 3(g,m,b) € H}). This way the extent, intent and modus
of the tricluster contain the element of the corresponding dimension, if at least
one triple in H has the element. We call the algorithm Tri-K-Means.
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A well-known weak point of K-Means algorithm is strong dependency of
quality of clustering on right number of clusters k and initial distribution of
centriods. Moreover, our approach may lose accuracy during the transfer of clus-
ters into triclusters. However lower estimated computing time may give it some
advantage over the NOAC method.

7 Datasets

We assessed performance of the algorithms by applying them to two different
datasets: a pseudo-random generated and a real world dataset available from
GroupLens project.

7.1 Pseudo-random Dataset
Three sets of input data were generated.

— Initial context containing two full cuboids 10x10x10 and 5x6x4 with values
respectively 3 and 7. The total count of triples is 1120.

— Contexts with missing values, derived from the initial context. The percent-
age of missing values increases from 10% to 90% with 10% step.

— Contexts with noise, derived from the initial context. The deviation upper
bound takes values 0.1, 0.5, 0.9, 1, 1.5, 2.

These dataset are used to assess the ability of studied algorithms to process
simple data with known perturbations. The findings of these experiments help
to understand how algorithms cope with such rather simple difficulties. Further,
it could advice which method to use in each specific case.

7.2 Real World Dataset

The GroupLens project collects data from the movie recommendation site Movie-
Lens, where thousands of people rate and tag movies[26]. We used the 100k
dataset3, which contains information about 100 000 5-star scale ratings of 1700
movie titles in 19 genres from 1000 different users. The total count of triples is
212595 and density is 0,00658. The data also provides which movie belong to
which genre. Each movie title may have several genres associated with it. We
treat users as a set of objects, movies as a set attributes and genres as a set of
conditions. The triples are constructed from a user id, movie id of a movie rated
by the user and one of the genres of the movie. The ratings are used as values
of the context. However, the rating of the movie does not depend on its genre,
so all the triples corresponding to a user-movie pair have the same value. This
feature of the context is its main drawback or at least peculiarity.

3 http://grouplens.org/datasets/movielens/
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8 Experimental Verification

During the testing period we have discovered, that most appropriate comparison
can be made when the parameter v of Tri-K-Means method is equal to the
parameter § of NOAC in pairs of related experiments.

8.1 Quality Criteria

The triclusters in the outputs of the algorithms were evaluated by density and
variance of values. For the resulting tricluster sets the measures are the number
of triclusters, average density and average variance of values in the triclusters.

Let T = (X, Y, Z) be some tricluster in a multivalued tricontext K = (G, M, B,
W,I,V). We compute density of the tricluster as a ratio of number of triples
(g,m,b) € I to its geometrical volume:

[INX xY x Z]
pT) =
[ X1IYZ]

If we consider each tricluster as an independent sample S(T") = {V(g,m,b) |
(g,m,b) € INX xY x Z}, then unbiased estimate of the variance is:

ISI (2 _ &2
o2(8) = >ion (57— 5%)
S| -1
The tricluster satisfy the condition of similar values with the parameter 4, if
the standard deviation of the tricluster does not exceed this parameter:

a(5(T)) < 4.

8.2 Experiments with Missing Values

Table 1 contains the results of experiments with contexts with missing values.
Tri-K-Means shows perfect resistance to noise in incomplete data. NOAC demon-
strates opposite results, failing to discover initial cuboids even with 20% loss rate.
However, the number of triclusters is almost equal to the number of left triples
in each case, which means most of them generated a unique tricluster, possibly
very similar to one of the initial cuboids. This problem may be solved by merging
similar triclusters and eliminating smaller ones.

In these experiments Tri-K-Means was set with parameters k = 2, v = 0 and
NOAC with 6 = 0.

8.3 Noise Tolerance Experiments

For noise resistance experiments, the initial context has been distorted with
different deviations. In these experiments we have used Tri-K-Means with pa-
rameters k = 2, v = 1 and NOAC with parameter 6 = 1.
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10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90
2 2 2 2 2 2 2 2 2

+ A+ |+ |+ |+ + |+ |+ ]+
603 | 862 | 771 | 664 | 554 | 469 | 329 | 239 | 105
+ - - - - - - - -

Tri-K-means | # triclusters
Cuboids found
NOAC # triclusters
Cuboids found

+ (o4 (oo

Table 1: Results of experiments with missing values

Table 2 contains the results of noise tolerance experiments. It shows that
both methods deal with small deviations well. When the deviation grows Tri-
K-Means starts to lose its accuracy due to variance. On 1.5 mark its output
does not satisfy the condition of similar values any more. NOAC shows better
results, but generates numerous triclusters on high deviation values. It loses the
condition of similar values, when deviation reaches two. At this point the ranges
of values in the initial cuboids start to intersect ([1;5] and [5;9]).

Tri-K-Means NOAC
Deviation|# triclusters|Avg. Variance|# triclusters|Avg. Variance
0 2 02 0
0.1 2 0.0031 2 0.0031
0.5 2 0.0775 2 0.0775
0.9 2 0.2767 562 0.2622
1 2 0.3424 967 0.3221
1.5 2 1.5556 1115 0.7573
2 2 2.9508 77 1.2769

Table 2: Results of experiments with noise

8.4 Real World Dataset Experiments

Due to high execution time we limited number of triples in the context to 100
000.

Table 3 contain the results of experiments with GroupLens dataset. In the
related experiments, parameter k of Tri-K-Means is set to the number of triclus-
ters found by NOAC. Parameters v and ¢ are equal to 1. NOAC algorithm has
minimal density threshold set to 0.5 and minimal support threshold in extent
and intent set to 4, in order to reduce computational time and improve quality
of extracted triclusters. In our experiments Tri-K-means algorithm produces the
same set of triclusters and stops after not more than 3 steps, which proves our
assumption about the convergence of Tri-K-Means algorithm. Figure 4 shows
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that Tri-K-Means time consumption grows slower with increase of the number
of the input triples and after certain point is almost linear.

The output of numerical OAC-triclustering algorithms can be interpreted as
interest clubs of users, who give similar rating to the same set of movies. In this
case, the missing values in the triclusters may be used by some recommender sys-
tem, making an assumption, that new ratings fill “holes” in triclusters, satisfying
the condition of similar values.

NOAC Tri-K-Means
## triples|# triclusters|Avg. Variance|Avg. Density|Avg. Variance|Avg. Density
10 000 13 0.4831 0.5269 1.0447 0.0126
20 000 47 0.6840 0.5208 0.8264 0.0717
30 000 101 0.7947 0.5399 0.8152 0.1057
40 000 153 0.7667 0.5436 0.7006 0.1253
50 000 259 0.8186 0.5509 0.6286 0.2041
60 000 372 0.8240 0.5471 0.5657 0.2300
70 000 618 0.8200 0.5434 0.4854 0.3190
80 000 864 0.8265 0.5471 0.4339 0.3777
90 000 1135 0.8545 0.5508 0.4303 0.3929
100 000 1421 0.8672 0.5527 0.4087 0.4422

Table 3: NOAC and Tri-K-Means results on the GroupLens dataset

9 Conclusion

This work consists of two main parts. The first one is dedicated to the methods
of OAC-triclustering. We described two kinds of tricluster generating operators.
One of them has an alternative definition that yields four different variations of
the operator. We investigated the relations between the operators and proposed
a set of ordering lemmas that establish a nesting order of triclusters generated by
the operators. These findings theoretically prove advantages of certain operators
over the others.

In the second part of this work, numerical extension of OAC-triclustering was
studied. We proposed two algorithms for finding triclusters of similar values in
real-valued triadic contexts. One is based on prime operators from the previous
part. The other is a well-known clustering algorithm K-Means equipped with a
specific metric in order to operate in numerical triadic contexts. The experiments
have revealed weak and strong sides of the proposed algorithms.

In our further studies, we would like not only to compare the proposed ap-
proach with a modified version of TRIMAX for triadic numeric data from [9] and
FENSTER from [14], but also to address such application as collaborative filtering
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in recommender systems [20, 12] and gene expression analysis [18] where numeric
triclusters are used.
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Abstract. We present recent results of studies in application of sequence-
based pattern structures and emerging patterns to analysis of demo-
graphic sequences in Russia. This study is performed on data of 11 gen-
erations from 1930 till 1984 for the panel of three waves of the Russian
part of Generation and Gender Survey, which took place in 2004, 2007,
and 2011. The main goal is to develop methods of extracting emerging
patterns (EP) with the following restrictions: the obtained patterns need
to be (closed) frequent contiguous prefixes of the input sequences. These
constraints were required by demographers for proper interpretation and
understanding of early life course events that lead to adulthood. To fulfil
this requirement we used modified FP-trees [1]' based on pattern struc-
tures of contiguous prefixes. After extraction of EP we use CAEP? clas-
sifier to predict gender of respondents using their demographic sequences
of the first life course events. The best results in terms of TPR-FPR have
been obtained for large values of minimum growth-rate parameter (with
some objects left without classification).

Keywords: demographic sequences, pattern structures, sequence min-
ing, emerging patterns, emerging sequences, machine learning

1 Introduction and related work

The analysis of demographic sequences is a popular and promising direction
of study in demography [2,3]. The life courses of people consist of the chains
of events in different spheres of life. Scientists are interested in the transition
from the analysis of separate events and their interrelation to the analysis of
the whole sequences of the events. However, this transition is slowing by the
technical peculiarity of working with sequences. As of today, demographers and
sociologists do not have an available and simple instrument of such analysis.

! to specify our version we refer to it as frequent prefix trees rather than frequent
pattern ones
2 Classification by Aggregating Emerging Patterns

In: K. Bertet, D. Borchmann, P. Cellier, S. Ferré (Eds.): Supplementary Proceedings of ICFCA,
Rennes, France, 2017.
Copyright (© by the paper’s authors. Copying only for private and academic purposes.
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Some demographers possessing programming skills are successfully making se-
quence analysis [4,5,6] and developing statistical methods [7,8,9,10,11], but the
majority of the social scientists have the only option to cooperate with other
scientists to extract knowledge from demographic data. Commonly, demogra-
phers rely on simple statistics, but sophisticated sequence analysis techniques
only start to emerge in this field [12]. Since traditional statistical methods used
in the domain cannot face the emerging needs of demography, demographers
start showing a great interest in techniques from machine learning and pattern
mining [13,14].

Human demographic behaviour can be very different varying over genera-
tions, gender, education level, religious views etc., however, hidden similarities
can be found and generalised by specially designed techniques.

In our previous paper [14], we used SPMF? [15] for mining frequent sequences
and our program to find emerging patterns in them. However, the implemented
sequence mining techniques rely on the definition of subsequence in general: it
brings results which are hard to interpret. Our colleagues, demographers, asked
us to find contiguous prefixes patterns because they are interested in full parts
of people’s life trajectories without gaps.

So, one of the goals of this study is to develop methods of extracting emerging
patterns with the following restrictions: the obtained patterns need to be (closed)
frequent contiguous prefixes of the input sequences.

The main goal of our paper was to find rules (patterns) that discern demo-
graphic behaviour of different groups of people. The classification itself is rather
a means but not the goal. Thus good classification results only conviced us that
the prefix-based classifier is applicable to the problem. From this point of view,
black-box approaches like SVM and artificial neural networks do not match the
task; they can be better in prediction but do not produce interpretable patterns.

The paper is organized as follows. In Section 2, we describe our demographic
data. Section 3 introduces basic definitions and prefix-based contiguous subse-
quences in terms of pattern structures combined with emerging patterns. Exper-
imental results are reported in two subsections of Section 4. Section 5 concludes
the paper. Some implementation details can be found in Appendix.

2 Problem Statement and Demographic Data

The dataset for the study is obtained from the Research and educational group
for Fertility, Family formation and dissolution of HSE 4. We use the panel of three
waves of the Russian part of Generation and Gender Survey (GGS), which took
place in 2004, 2007 and 2011 °. The dataset contains records of 4857 respondents
(1545 men and 3312 women). The gender imbalance of the dataset is caused by

3 Sequential Pattern Mining Framework: http://www.philippe-fournier-viger.
com/spmf/

* http://www.hse.ru/en/demo/family/

5 This part of GGS “Parents and Children, Men and Women in Family and in Society”
is an all Russia representative panel sample survey: http://www.ggp-i.org/
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the panel nature of the data: the leaving of the survey by the respondents is
an uncontrollable process. That is why the representative waves combined in a
panel with the structure less close to the general sample.

In the database, for each person the following information is indicated: date
of birth, gender (male, female), generation, type of education (general, higher,
professional), locality (city, town, village), religion (yes, no), frequency of reli-
gious events’ attendance (once a week, several times in a week, minimum once a
month, several times in a year or never) and the date of significant events in their
lives such as: first job experience, completion of education of the highest level,
leaving the parental house, first partnership, first marriage, birth of the first
child. There are eleven generations: from first (those who was born in 1930-34)
through eleventh (1980-84) generations.

There is a variety of questions that demographers would like to answer, for
example:

— What is the difference between men and women in terms of demographic
behaviour?
— What is the difference between generations in terms of demographic behaviour?

There are many different variations of similar questions and all they in fact
need a proper means of pattern mining to answer.

3 Sequence mining and emerging patterns

3.1 Basic definitions

A prefix-based contiguous subsequence (or prefix) of a sequence s = (s1,. .., Sg)
is the sequence s; = (s, ..., s),) where s; = s, for i < k' <k.
The relative support, rsup(s,T), of a prefix subsequence s in the set of se-
quences T is the number of sequences in T that start with s divided by |T|.

Formally, given a set of sequences, where each sequence is a list of itemsets
ordered by time, the problem amounts to find all frequent prefix-based contigu-
ous subsequences that appear a sufficient number of times, i.e. greater than a
user-specified minimum support threshold (minsup) [16].
A frequent prefix is a prefix-based contiguous subsequence which satisfies min-
imum support threshold (minsup).
A frequent closed prefix is a frequent prefix-based contiguous subsequence
such that it is not a prefix of another prefix with the same support.

Let us introduce several definitions related to Pattern Structures.

Pattern structures were introduced in paper [17]. They expand capabilities
of Formal Concept Analysis to more complex structures than a binary context.

A triple (G, D, ¢) is a pattern structure where G is a set of objects, D =
(D,M) is a complete meet-semilattice of descriptions, and § : G — D maps an
object to its description.

The usage of pattern structures for sequence mining has already been suc-
cessfully demonstrated in [18].

The lattice operation in the semilattice M corresponds to the similarity be-
tween two descriptions.
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The Galois connection for a pattern structure (G, (D,M),d) is defined as
follows:

A° =[] 6(g), for AC G and d° :={g € G|d E §(g)}, for d € D.
geA

As in FCA, the Galois connection makes a correspondence between sets of
objects and descriptions which are more complex than subsets of attributes.
Given a subset of objects A, operation A® returns the description that is common
to all objects in A. Given a description d, d°® is the set of all objects whose
description subsumes d. More precisely, the partial order on D(E) is defined
w.r.t. the similarity operation M: cC d < clMNd = c.

A pattern concept of the pattern structure (G, (D,M),d) is a pair (A,d)
where A C G, d € D, and A° = d,d° = A; A is called the (pattern concept)
extent and d is called the pattern (concept) intent.

3.2 Pattern structures in the demographic context

Let us introduce M operation which returns the maximal common prefix of two
sequences. Let S be a set of sequences and D be the set of all their prefix-based
descriptions.
Let (S, (D, M), d) be a pattern structure related to our demographic problem.
For each s € S = {1,...,n} operation 6(s) returns the sequence description
of object s. For example, if we have two sequences s; and so:

s1 = {a,b,c,d) and s2 = (a,b, ¢, e).

If we apply operation ¢ to subset of sequences from S, then we will obtain
the maximal common prefix for these sequences. For example, for we have

{s1,82}° = {a,b,c).

The operation ¢ on description d = {a, b, ¢) in our case is given as

d® ={s1,s2} ={se€ S|dC s},

d C s means that d is the prefix of subsequence s. In other words, that
operation ¢ applied to the description d returns subset of objects from S that
have the prefix subsequence d.

Let (A, d) be a pattern concept of the pattern structure (S, (D, M), d) with

A°=d,d* = A where AC Sand d € D.

Let us discuss the representation of pattern concepts in the related prefix-tree
(see section 3.5) for the original pattern structure and how they can be found.
As an example consider the set of sequences, S:
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s1: {a, b, c,d);
S92 1 <a7bv C>a
s3: (a,b,d).

Let us draw the corresponding prefix-tree in Fig. 1.

Fig. 1. The prefix-tree representation of S; the support of an event is shown in paren-
thesis in the related node

We can distinguish pattern concepts relevant to this example:

({s1,52,53}, (a,0));
({s1,52}, {a,b,0));
({s1} (@, b, ¢, d));

({s3}, (a,b,d)).

We can say that any path from the root to the top node, which support
is more than the support of its descendants, corresponds to the concept of the
original pattern structures.

3.3 Hypotheses as pattern intents

Let us recall the classification problem in terms of pattern structures [17]. For
each object (individual) there is a target attribute (e.g., gender, for binary
classification problem) on which we want to classify that individual. Then we
split our pattern structures in two, positive and negative ones, respectively:
Kg = (S¢,D,0p) and Kg = (Sg,D,dg). Also, we have examples S, with
unknown value of the target attribute.

Now the Galois closure operators are denoted as AP, A®®  respectively, for
the positive pattern context; similarly for the negative one.

Let us define the positive and negative hypotheses. A pattern intent of the
pattern structure Kq (Kg) H C D is a positive (negative) hypothesis if H is
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not a subset of the pattern intent of any negative (positive) examples s € Sg
(8 S S@)Z
Vs € So(s € Sa) : H IZ s°(H Z s9).

Eventually, the hypothesis is the pattern intent of a formal concept, which is
found only in the objects of only one class.

Let hg and hg be hypotheses of positive and negative pattern structures,
respectively. When we look at a new object, we have four scenarios:

— 3hg, hg C 6,(g9-), and Pho, he T 5.(g,) then a new object is classified as
positive;

— Phe T 6.(9-), and Fhe,he C 6.(g,) then a new object is classified as
negative;

— Jhge C 4,(g-), and hg, hg C 6,(g,-) then the object is classified contradic-
tory, i.e. we can not say to which class it belongs to;

— Phg T 6-(g97), and Phe C 6-(g-) then the object remains undetermined, i.e.
we can not say to which class it belongs to.

3.4 Emerging patterns in pattern structures

Also, we introduce the notion of emerging prefix subsequences in terms of pattern
structures. Such emerging pattern is specific for one class, but not specific for
its counterpart.

This feature is implemented via the ratio of the pattern supports for different
classes. This ratio is called growth rate. Then the growth rate of a pattern p
on the positive and negative pattern structures of K¢ and Kg is defined as:

rsupi (9)

GR(p7K®7K9) = rSupk. (g)
S}

Patterns are selected by specifying a minimum growth rate as in [19]. That
is, we set the minimum ratio of growth, for which we want to select patterns:

GR(p, K@a K@) Z 0.

For each class we compute its score as follows. Let s be a new object which
we want to classify, then score for positive class is equal to:

> peppcss) CR(, Ko, Ko)
median(GR(Sg))

scoreg(s) =

We have selected the set of patterns P based on the minimal growth rate.
Then we sum GR-s over all prefix-based patterns p € P that are included in the
description for the new object and get the score. Further we normalize score by
dividing to the median of growth-rate for the current class. This scheme relates
to the method in the article [20].
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3.5 Prefix-tree structure

As we need to find prefix subsequences it is a good idea to use a prefix-tree [21].
Usually, a node in a prefix-tree is associated with a certain string but in our
tree structure each node is associated with only one symbol (in case there are
no simultaneous events).

Let us have a look at the example of sequences.

Men sequences: Women sequences:

({education}, {work}, {marriage}) ({education},{marriage}, {work})
({education}, {work}, {marriage}) ({marriage}, {education},{work})
({education}, {marriage}, {work}) ({marriage},{education},{work})

Now we build a prefix-tree for these sequences. In each node we store the event
and the number of sequences associated with this prefix for Class 0 (woman) and
Class 1 (man).

0

education(1, 3) marriage(2, 0)

\
education(2, 0)
work(0, 2)  marriage(1, 1)

\ \
marriage(0, 2)  work(1, 1)

work(2, 0)

For example, we can see that according to the prefix-tree one woman and
three men share prefix ({education}). All three men’s sequences start with edu-
cation and one women’s sequence starts with education. As for the prefix

({education}, {marriage}, {work})

according to the prefix-tree, one man and one woman have this prefix. Based
on this tree-like structure we can efficiently compute support and growth-rate of
each sequence.

4 Experiments and results

To perform experiments with pattern-based classification, we use Python and
Contiguous Sequences Analysis library implemented by the first author®.

4.1 Classification by gender

After discussion with demographers, we have set minimal relative support to
0.09. We have received the following prefix-based contiguous patterns that meet
a minimum of 9% of all respondents:

5 https://github.com/DanilGizdatullin/ContiguousSequencesAnalysis
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Table 1. Women’s patterns Table 2. Men’s patterns
Pattern rsupp Pattern rSUpp
({work}) 0.287 ({work}) 0.329
({work}, {education}) |0.120 ({work}, {education}) ]0.155
({separation}) 0.283 ({separation}) 0.266
({education}) 0.239 ({education}) 0.276
({education}, {work}) |0.168 ({education}, {work}) ]0.103
({separation}, {education})|0.110 ({separation}, {education})|0.199
({sep...},{edu...}, {work}) |0.097 ({sep...},{edu...}, {work}) |0.099

By thoughtful inspection, we can conclude that the beginning of human life
trajectories do not depend strongly on the gender and the beginning of the most
popular paths are the same for both sexes.

We have split all our data into two groups: a training set and a test set as a
percentage of 66.5%—33.5%.

We have selected the same minimum support threshold for both classes,
0.004; it means that the pattern must be found in trajectories at least five men
and nine women. Then we made classification with different minimum threshold
values for growth rates {1.5,2,5,7} for men and {1.5,2,5,7, 00} for women.

The graphs below show the results and skyline in TPR-FPR (true positive
rate, false positive rate), TPR-NCPR (true positive rate, non-classified posi-
tive rate), NCPR-FPR (non-classified positive rate, false positive rate) on axes
(Fig. 2,3).
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Fig. 2. TPR-FPR plot with two of Pareto-optimal results from the skyline in the oval.

We have chosen the same value for both the minimum supports of two classes,
0.004. It means that the pattern must share at least five men and nine women.
We have performed several classifications with different minimum values of the
growth rate from {1.2,1.5,2,3,5,7,00}.
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Fig. 3. TPR-NCPR and NCPR-FPR plots along with their skyline points in the ovals.

Since in demographic setting, it is important to identify interesting discrimi-
native patterns, we do not try to solve the problem of classification per se. Thus,
several objects from the test set have not been assigned to any class. For ex-
ample, in the experiment with the best TPR-FPR metric, we cover over 1% of
people in the test sample. It can be concluded from the results obtained that
the interesting discriminative patterns for some class relative to the other have a
small cover. Moreover, we can conclude the average behavior of men and women
has not that strong differences in general, but there are local groups of both
classes that behave sufficiently different.

The best quality of classification have been reached with the minimum value
of the growth-rate (7, 0o). It corresponds to the following emerging patterns:

Table 3. Women’s patterns in the test set

Pattern Growth|rsupp

rate
({work, separation}, {marriage}, {children}, {education})| oo |0.006
({separation, partner}, {marriage}) oo |0.005
({separation, partner}, {marriage}) oo |0.005
({work, separation}, {marriage}, {children}) co |0.008
({work, separation}, {marriage}) oo [0.009

We have got seven sequences that separate men and women most differently:
four of them identify women, the remaining three describe men. The growth
rate 0o) shows that all the prefixes for women are typical only for them; the
growth rate for mens sequences varies between 10.6 and 12.7, which means these
sequences are 10-12 times more indicative for men than for women.

The professional interpretations given by the third co-author, a demographer,
are as follows. Within the sequences identifying women, the first event is “sep-
aration”, which occurs simultaneously with another event: “work” (three cases
out of four) and “partner” (one case out of four). The second event for women is
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Table 4. Men’s patterns in the test set

Pattern Growth|rsupp

rate
({education}, {marriage}, {work}, {children}, {separation}) | 10.6 |0.006
({education}, {marriage}, {work}, {children}) 12.7 |0.007
({edu...},{work}, {partner}, {marriage}, {sep...}, {children})| 10.6 |0.006

“marriage”, the third (when it is presented) is “children”, and the fourth (when
it is presented) is “education”.

The presented results for women show that they prefer to start their adult life
with separation. Only in one case separation connected with having a partner.
In other cases, we have an image of an independent woman, who got a job and
left parents. The second step in all the cases is marriage. Here we see how an
independent (financially and from parents) woman creates her own family and
give a birth to a child. The longest sequence contains an event “finishing an
education of the highest level”. Only after four important socioeconomic and
sociodemographic events our typical woman finishes her education.

The first event in the sequences indicative for men is an education. Unlike
women, who obtaining their education only after fulfilling almost all events, men
are getting education earlier. It can show not only the priority in education for
men and women, but also the difference in the level of the highest step of the
finished education: the lower the level, the less the age of obtaining an education.

The second event in the three sequences specifying men is marriage (two
cases) or work (one case). As a woman, a man tends to create his family quite
soon, but unlike woman, who is already very independent at this step, a man
has only an education. Men, whose second event is “marriage”, are obtaining
their first jobs next and then becoming fathers. In the longest sequence, they
are leaving parental houses as the final step in the transition to adulthood.

Men who have “work” as the second event, demonstrate different events in
their sequences: they have the first partner, then they get married, leave parental
house, and only after all other events become parents.

4.2 Classification by generation

In this experiment, we search for emerging patterns for different generations of
the same gender. The first class 0 features people who were born between 1924
and 1959. The second class 1 contains people who were born between 1960 and
1984.

First, let us find emerging patterns patterns for women from different gener-
ations. We have 940 women from class 0 and 1364 women from class 1. We need
to tune two parameters: the first is minimal support and the second is minimal
growth rate.

Let us tune the minimal support parameter (Table 5).
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Table 5. Tuning of minimal support for women

minsup|accuracy| TPR|FPR NCR
non-classification rate

0.001 | 0.682 |0.707(0.331 0.255
0.004 | 0.683 |0.703/0.316 0.333
0.01 0.668 |0.710(0.332 0.399
0.025 | 0.660 |0.648/0.298 0.540
0.04 | 0.660 |0.616|0.278 0.606
0.05 | 0.652 |0.646|0.312 0.641
0.1 0.651 1.0 | 1.0 0.884

As we can see, minimal support can change sufficiently only non-classification
rate, and slightly affect accuracy, TPR and FPR.
We have chosen 0.004 as a minimal support and tuned minimal growth rate.

Table 6. Tuning of minimal growth rate for women

minGrowthRate|accuracy| TPR|FPR |NCR

1.5 0.683 [0.655(0.297(0.102
0.692 (0.703(0.316(0.333
0.766 [0.747(0.217(0.684
0.751 |0.821(0.347(0.848
0.777 |0.848(0.333(0.891

| O W N

We have decided to choose minGrowthRate as 2 since it covers 66 percent of
test data and also provides good results in terms of accuracy, TPR and FPR.

Since we have had quite many emerging patterns from this data, we consider
only patterns with the biggest growth rate and support.

Table 7. Patterns for women of old generation

Pattern Growthrate|rsupp
({work}, {separation}) 1.85 0.38
({work}, {marriage, separation}) 3.92 0.08

As we can see from Tables 7-8, the main differences in the behavior of women
of different generations are the tendency to obtain education and a tendency to
work and then separate from their parents in old generations.
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Table 8. Patterns for women of younger generation

Pattern Growthrate|rsupp
({education}) 1.84 0.26
({education}, {work}) 3.92 0.08

Let us find emerging patterns for men from different generations. Again we

report tuning of minimal support:

Table 9. Tuning of minimal support for men

minsup|accuracy| TPR|FPR|NCR
0.001 | 0.701 |0.667|0.266|0.271
0.004 | 0.704 |0.667|0.262|0.338
0.01 0.723 |0.671(0.232(0.442
0.025 | 0.719 |0.651|0.218|0.590
0.04 | 0.706 |0.536(0.165(0.712
0.05 | 0.718 |0.627(0.208(0.764
0.08 | 0.710 | 0.0 | 0.0 [0.944

Again, minimal support can change sufficiently only non-classification rate.

We have chosen 0.01 as a minimal support and tuned minimal growth rate.

Table 10. Tuning of the minimal growth rate for men

minGrowthRate|accuracy| TPR|FPR |NCR
1.2 0.638 [0.510(0.242(0.050
1.5 0.670 [0.591(0.260(0.171
2 0.723 |0.671|0.232|0.442
3 0.754 [0.627(0.144(0.664
5 0.744 (0.625(0.152(0.845
7 0.836 (0.808(0.138|0.901

The patterns with the biggest growth rate and support are reported in Ta-

bles 11,12.
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Table 11. Patterns for men of old generation

Pattern Growth rate|rsupp

({work}, {marriage, separation}, {education}) 13.52 0.025
({work}, {marriage}, { separation}) 22.87 0.042
({work}, {marriage}, {separation}, {education}) 00 0.0208

Table 12. Patterns for men of younger generation

Pattern Growth rate|rsupp

({education}, {work}, {separation}, {marriage}, {children}) 10.58 0.020
({education}, {work}, { separation, partner}, {marriage}) 8.65 0.016
({education}, {marriage, separation}) 7.69 0.015

As in the previous experiment with the subsample of women, the main differ-
ence is a tendency to obtain education; thus, men of new generation demonstrates
this tendency.

5 Conclusion

The main result of our work is the fitting and usage of different pattern min-
ing approaches including pattern structures to the analysis of demographic se-
quences. The following conclusions can be drawn from the first results of this
work:

1. In this paper, the usage of sequence analysis methods to problems of demo-
graphic trajectories of early life events has been studied.

2. A new method based on pattern structures for the analysis of special type of
patterns required by demographers (prefix-based and contiguous) have been
proposed and implemented.

3. Patterns of behavior for different classes of respondents were obtained and
interpreted for the most recent and clean demographic material available for
Russia.

4. Classifier based on pattern structures and emerging patterns have been de-
signed and tested.

According to the demographers involved in the project, the work is very
important for the further development of the application of pattern mining for
demographic analysis of sequence data. Thus, the next planned steps includes
following direction:
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— using similarity [22] and kernel-based approaches [23] for demographic se-
quence mining;

— (sub)sequence clustering, in particular, based on pattern structures;

— pattern mining and rule-based approaches for next event prediction [14] com-
petitive with black box approaches like recurrent neural networks;

— comprehensive trajectory visualisation within cohorts [24];

— analysing sequences of statuses like ({studying, single}, {working, single});

— analysis of matrimonial and reproductive biographies, migration studies, etc.
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Appendix

Pseudocode and Complexity

Prefix-tree building. Let us start with the prefix-tree building procedure. As
an input we have the set of sequences and their labels. At first we create the
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root node. It should be empty. Then we iterate through all sequences and try to
match a full path from the root to the end of the sequence. If we meet a dead
end having a non-matched suffix subsequence, we create a new node (and all the
remaining events in the current sequence should be added as new subsequent
nodes). Along the way we increment all counters associated with the traversed
nodes, one for each class.

First, we start from sequence ({education}, {work}, {marriage}) (Step 1).
Then we add the same sequence ({education},{work}, {marriage}) (Step 2).
The third sequence in men’s data is different ({education}, {marriage}, {work})
(Step 3).

Step 3. 0

\
education(0, 2)

work(0, 2)  marriage(0, 1)

\ \
marriage(0, 2)  work(0, 1)

Algorithm 1 Sequence tree building

1: procedure SEQUENCESTREE(S, L)
2: T « {0} // Initial prefix tree

3 cn <+ 0

4 for s € S do

5: I = label(s)

6: for e € s do

7 ¢ < FIND(e, cn.children)

8: if ¢ # () then

9: c.counter[l] < c.counter[l] + 1
10: cn < c

11: else

12: cn.children.append (newC)
13: newC'.element < e

14: newC'.counter[l] < 1

15: cen +— newC

1: function FIND(e, N)

2 for n € N do

3: if n.element = e then

4: return n

5 return None

Description of the algorithm. Algorithm 1 has two procedures. The main
procedure is SEQUENCESTREE and its auxiliary function is FIND. FIND proce-
dure takes an element, e, and nodes, N as input. Each element is a part of an
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input sequence and nodes are taken from the tree. Each node in the tree has
an element field. It contains a part, single event or complex event (itemset) of
a sequence. The goal of this procedure is to return the node with the wanted
element. This procedure visits element fields in nodes and compares them to the
element that we want to find. SEQUENCESTREE procedure is more complex. At
first, it creates an empty tree, T' (line 2). The current node, cn, is a node we
are working at in a particular moment. The first ¢n is the root node (line 3).
Then we iterate over the sequences, S and their associated labels via label(s)
from values in L. We start from the first element of a sequence and try to find
it in the children of current node (lines 5-7). Now we have two possible options
(line 8). The first option is enabled when we find a node with the wanted ele-
ment. In this case, the counter of the found node for the label of the sequence
is incremented (line 9). And the current node changes to its child node with
the wanted element, ¢ (line 9). The second option is enabled if we cannot find a
node with the wanted element. In this case we create a new child, newC for the
current node (line 12), then its element field is set equal to e and the counter
is initialised by 1 for the corresponding label (lines 13-14). Finally, the current
node is changed to the new node (line 15).

Time complexity. Let n be the size of the training set and m be the number
of different events in it.

In line 4, we go through all the data; it takes n times. Then in line 6 we go
through all the elements in a sequence. The maximum length of sequence is m.
Then in FIND procedure we iterate through all children of a node. The maximum
number of children nodes is m — 1. Thus the total time complexity is O(n - m?).
In our case m is a small value (about 7-10 events) and can be considered as a
constant. Then the time complexity is O(n).

Space complexity. The space complexity is equal to the number of nodes in a
tree. The worst case is when all n sequences are different; i.e. all n sequences do
not have the same prefix. In this case space complexity will be O(n - m).

Classification by patterns. After performing of SEQUENCESTREE procedure
on an input data we have the prefix-tree with absolute support value for each
node and label. Then we can classify a new portion of sequences from the same
domain. At first we make preprocessing by PRECOMPUTEGROWTHRATE proce-
dure. In this procedure we compute relative support and growth rate for each
node. After that we use CLASSIFYSEQUENCE function to predict the label of a
new sequence. At first the function initialises Score for Classes, sfc, and the
current node, cn, variables. Then it iterates through all elements of the sequence
(line 4). Next it traverses all children of the current node (line 5) and searches
for continuation of the sequence in the prefix-tree (line 6). Then for each label, if
this sub-sequence satisfies the minimum thresholds for support and growth rate,
we increase the score (lines 7-10). Then the current node is changed to a child
node (line 11). And so on until the end of the sequence. Finally, the function
returns arg max of Score over Classes.
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Algorithm 2 Classify Sequence
1: function CLASSIFYSEQUENCE(T), s,l, Classes, minSup, minGR)
2: sfe <« [0, 0]
: cn <+ T.root

3
4 for e € s do

5: for ¢ € cn.children do

6: if c.element = e then

T for [ € Classes do

8 if (c.support[l] > minSup) and (c.GRllabel] > minGR) then
9 sfell] = sfe]l] + n.GRJl]

10: cn < ¢
return argMaz(sfc)

1: procedure PRECOMPUTEGROWTHRATE(T, Classes, soc)

2 soc=size(Classes) // soc is the number of classes

3 for n € T do // iterate over the tree nodes

4 for | € Classes do // iterate over the labels of classes
5: n.support[l] « (n.counter[l] / socll])

6 for n e T do

7 for l € C do // GR is a growth-rate attribute

8 n.GR[l] - (n.support[l] / n.support[counterpartL])

Time complexity. Let k be the length of a sequence for classification. In PRE-
COMPUTEGROWTHRATE we need to iterate through the tree’s nodes two times
for each class label. We consider the situation where only 2 different classes:
O(n - m). In CLASSIFYSEQUENCE we iterate through the elements of the se-
quence and children of nodes for each label: O(k - m).
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1 Singleton Horn Extension problem

The dynamic update of evolving knowledge bases and ontologies is a routine pro-
cedure in the realm of Artificial Intelligence. These applications require tractable
representations, such as Horn logic or various versions of descriptive logic. The
interest in Horn logic is easily explained by the fact that the reasoning in Horn
logic is effective, while the reasoning in general propositional logic is intractable.

If some knowledge base is represented by a (definite) Horn formula X in
variables X = {z1,...,2,}, then the set of its models Fx forms a lower sub-
semilattice in 2%, which is often referred to as a closure system on X, or a Moore
family on X. Alternately, one can associate with X a closure operator ¢ on X, so
that models from Fyx are exactly the closed sets of ¢. Also, X' can be interpreted
as a set of implications defining the closure operator . The general connections
between Horn formulas (in propositional and first order logic), closure operators
and their models were surveyed recently in [1].

The knowledge base requires an update if some of the models expire or the
new models need to be incorporated into the existing base. In the current work
we tackle the problem of re-writing the Horn formula X', when a new model A
has to be added to the family Fx. We will refer to it as the Singleton Horn
Extension (SHE) Problem. To avoid misconception, we note that adding set A
may result in adding more than just single set to Fx. Some proper subsets of A
may be added as well, which are intersections of A with members of Fx. This is
due to the requirement that the updated family of models must be described by
a Horn formula as well, see the classical result in [9]. If the closure operator is
encoded through the formal context, the SHE problem arises when adding new
rows to the context. The problem was earlier addressed in the general framework
of closure systems, including the FCA framework in [11] and the framework of
Horn-to-Horn belief revision in [4].

In our work we considered two special cases of the SHE problem: when for-
mula X is given by the canonical direct basis of implications defining closure

In: K. Bertet, D. Borchmann, P. Cellier, S. Ferré (Eds.): Supplementary Proceedings of ICFCA,
Rennes, France, 2017.
Copyright (© by the paper’s authors. Copying only for private and academic purposes.
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operator ¢, and when it is given by its refined form of the D-basis. We will
assume that one needs an algorithmic solution that provides at the output an
updated formula X*(A) that is canonical direct, or, respectively, the D-basis of
the extended closure system.

These two cases will be addressed in the next two sections. The last section
is devoted to the results of algorithmic implementations and testing on various
closure systems.

2 Update of the canonical direct basis of implications

In [4], the SHE problem was addressed in the case when the formula X describing
the knowledge base is assumed to be a conjunction of prime implicates of the
Horn belief set. Translating this into the language of closure systems, one would
call X' the canonical direct basis, a type of implicational basis surveyed in [6].

Recall that a formula/implicational set ¥ = {C — d: CU{d} C X} is called
direct for closure operator ¢ on X, if, for any Y C X

o(Y)=YU{d: (C—d)eXx,CCY}.

In other words, the closure of any subset Y can be computed by checking the
bodies (left sides) of implications of X' with respect to set ¥ and expanding Y
by their consequents when possible. Each implication of X' is attended only once
during the process. Recall that the computation of the closure of Y is generally
performed through multiple iteration of X' and expansion of Y, see the theoretical
background in [13], or through the algorithm known as Forward Chaining [7]
or LinClosure [8]. The canonical direct basis is the smallest implicational set
contained in all direct bases defining the same closure operator ¢ on X, see [6].

The algorithmic solution for the SHE problem in [4] was given in the form
of body-building formula X(A), which was produced given a set of implica-
tions/formula X' that forms the canonical direct basis of a closure system, and
a new set A that needs to be added to the closure system Fy. The formula
came up as a consequence to earlier work [10], where the body-building formula
was provided to a special extension of the closure system, namely, to the one
corresponding to the saturation operator ¢* associated with given operator .
The necessary background for the saturation operator can be found in [5].

In our current work we analyse further the solution for the one-set extension
of a closure system. One core observation is the following

Lemma 1. If X is any direct basis for the closure operator ¢ on X, and A a
new set added to closure system Fx, then X(A) is also direct.

It turns out that without the assumption about the directness of X the
body-building formula X'(A) may lack implications to define the updated closure
system. Also, if X' is the canonical direct basis, formula X' (A) as given in [4] may
not be the canonical direct basis of the updated closure system.

We describe an effective algorithm to produce the modified version X*(A) of
body-building formula, which is canonical direct , when X is canonical direct.
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For this aim, we propose the new data structure for X' that is designed for a
quick update should a new set A be incorporated into the closure system. The
algorithm builds X*(A) in the upgraded data-structure to keep it ready for the
fast future updates.

3 Update of the D-basis of implications

The other part of the work is devoted to the algorithmic solution for the case
when X is the D-basis for the closure operator ¢ and updated formula X*(A) is
expected to be the D-basis of the expanded closure system.

The D-basis was introduced in [3] as a refined and shorter version of the
canonical direct basis: the former is a subset of the latter, while the D-basis
still possesses a form of the directness property known as ordered direct [3].
The closure of any subset Y can be computed attending the implications of the
D-basis X' only once, when it is done in the specific order.

The part of the basis containing implications z — y, i.e. implications with
only two variables from X, is called binary, and it plays a special role in the
computation of the closures using the D-basis.

We will assume that binary part of the basis X? is transitively closed, i.e. if
a— band b— care in X%, then a — c¢ is also in X°.

We will denote by Y] the set {c € X : (y — ¢) € X for some y € Y}.

Then the closure of Y C X with respect to closure operator ¢ associated
with D-basis X' is given by some modification of that procedure for the canonical
direct basis:

eY)=Y U{d: (C—=d)eX,CCY}.

We describe an effective algorithm for the solution of SHE problem, when
the implicational basis Y is the D-basis of the associated closure operator ¢,
and X*(A) is the D-basis of the extended closure system. The update of X will
require additional procedure we call an A-lift before the standard body-building
technique applies.

We will also discuss the open problems related to the D-basis and its char-
acterization.

4 Algorithmic solutions and testing

We will present the results of code implementations of two algorithms discussed
in section 2 and 3 and their testing on some bench-mark examples developed
in earlier code implementations for the D-basis outputs. In [12], the algorithm
produces the D-basis, when the input is some set of implications defining the
closure operator. In [2], the closure operator is encoded in the context, and
the extraction of the D-basis is done by reduction to known solutions of the
hypergraph dualization problem.

We will present the bounds of algorithmic complexity and compare them
with the actual time distributions based on parameters such as the sizes of the
input and output.
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Abstract. Exploratory search allows to progressively discover a data-
space by browsing through a structured collection of documents. In this
paper, we provide techniques to reduce the complexity of FCA-based
exploratory search by using of AOC-posets to achieve conceptual navi-
gation. Also, we outline algorithms to enable an on-demand generation
of AOC-posets. This work is motivated by the necessity to devise more
flexible methods to perform product selection in software product line
engineering.

Keywords: Formal Concept Analysis, AOC-poset, Conceptual Naviga-
tion, Software Product Line Engineering, Product Selection.

1 Introduction

Exploratory search is an information retrieval strategy that aims at guiding
a user into a space of existing documents he is unfamiliar with, to help him
select the one that best suits his needs. Lattice structures were among the first
structures used to support information retrieval processes [2], and their usage was
later generalised to formal concept analysis theory (FCA)[1]. The concept lattice
offers a convenient structure to do exploratory search, where navigating from
concept to concept by selecting or deselecting attributes (conceptual navigation)
emulates iterative modifications of the document descriptor selection (the user
query), and thus of the current research state. Neighbour concepts (i.e., direct
super-/sub-concepts) represent the minimal possible modifications of the current
query and therefore permit to navigate through the dataspace by minimal steps
[2]. Therefore, a concept lattice depicts all possible queries a user can formulate.
However, FCA-based exploratory search raises some problems, mainly because
of the size (in terms of number of concepts) of the generated lattices, which are
well known to grow exponentially with the size of the input data.

In this document, we propose a new and more scalable approach to per-
form conceptual navigation, that relies on local generation of AOC-posets, a
partial sub-order of concept lattices. This alternative conceptual structure rep-
resents and structures the minimal set of queries that are necessary to perform

In: K. Bertet, D. Borchmann, P. Cellier, S. Ferré (Eds.): Supplementary Proceedings of ICFCA,
Rennes, France, 2017.
Copyright (© by the paper’s authors. Copying only for private and academic purposes.



72 A. Bazin, J. Carbonnel and G. Kahn

conceptual navigation. We outline algorithms to identify neighbour concepts in
AOC-posets, i.e., determining upper and lower covers of a given concept in an
AOC-poset. Our work is motivated by an application in the field of software
product line engineering, for an activity called product selection.

2 Motivation

Software product line engineering (SPLE) [3] is a development paradigm that
aims to efficiently create and manage a collection of related software systems,
based on factorisation and exploitation of a common set of artefacts. A central
point of SPLE is the modelisation of the common parts and the variants con-
tained in the related software systems, called the wvariability. This variability is
represented by variability models, which are the traditional starting points to
perform information retrieval operations in SPLE, including product selection,
an important task that consists in guiding the user into selecting the function-
alities he wants in the final derived software system. A combination of these
functionalities respecting all the constraints expressed in the variability model
is called a wvalid configuration, and corresponds to a derivable software system.

Current approaches for product selection rely on the variability model’s struc-
ture to automatically deploy configurators; however, these methods are too stiff
considering that they do not allow the user to change his final configuration with-
out having to start again the product selection process, or to see which other
configurations are similar to his. We propose to apply exploratory search in the
context of product selection to complement these methods and offer a more flex-
ible selection. Reducing the complexity of the underlying conceptual structure
along with its generation time is crucial to be able to conceive applications using
conceptual navigation in this context.

3 Local Generation of AOC-poset

FCA is a mathematical framework based on the notion of formal context as
a condensed representation of a lattice. A formal context K = (O, A,R) is a
triple, where O is the set of objects, A the set of attributes and R C O x A
a binary relation. The application of FCA permits to extract from a context
K a finite set of formal concepts through the use of two derivation operators
020 s 24 and 2 24+ 29 Thus, O’ = {a € A | Yo € O,(0,a) € R}
and A’ = {0 € O | Va € A4,(0,a) € R}. A formal concept C is a pair (F,I)
with £ C O and I C A, representing a maximal set of objects that share a
maximal set of common attributes. £ = I’ is the concept’s extent (denoted
Ext(C)), and I = E’ is the concept’s intent (denoted Int(C)). The set of all
concepts extracted from K together with the extent set-inclusion order forms
a lattice structure called a concept lattice. We simplify the representation of
intents and extents in the lattice by displaying each attribute (resp. object)
only once in the structure, in the lowest (resp. the greatest) concept having this
attribute (resp. object). We say that these concepts introduce an element. A
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concept introducing at least one attribute is called an attribute-concept (AC),
and a concept introducing at least one object is called an object-concept (OC). A
concept can introduce both (attribute-object-concept (AOC)), or it can introduce
neither of them (plain-concept). In some applications, one can benefit from only
generating the sub-order restricted to the introducer concepts instead of the
whole concept lattice. This smaller structure (in terms of number of concepts) is
called an Attribute-Object-Concept partially ordered set (AOC-poset). While a
concept lattice can have up to 27"(MLIOD concepts, the associated AOC-poset
cannot exceed |O| + |A| concepts.

AOC-posets restrict the set of possible queries a user can formulate to the
minimal queries required to perform conceptual navigation. Neighbour concepts
in a concept lattice represent minimal possible modifications a user can make
to the current query, and therefore offer a dataspace in which one can navigate
in minimal steps. Concept lattices allow to select and deselect non-cooccurrent
attributes one by one. AOC-posets do not preserve the minimal step query refine-
ment/enlargement property, but factorise the possible query modification steps
to keep the most prevalent ones.

Local generation consists in generating only the part of the structure we
are interested in. Here, we outline algorithms to retrieve the neighbourhood of
a given concept of an AOC-poset. Exploration can start from the top concept
(i.e., the most general query), but it is possible that the user already has partial
knowledge of the configuration, and it is then necessary to start from a concept
in the AOC-poset; the problem is thus to compute the upper and lower covers
of a given concept C in the poset.

Let us start with computing the upper covers. We are looking for the smallest
ACs or OCs greater than the input. We start out by computing the smallest ACs
greater than C. They can be obtained by computing the concepts ({a}’, {a}")
for each attribute a € Int(C). We remark that ({a1}, {a1}") > ({a2}’, {a2}") if
and only if a; € {as}”. As such, the smallest ACs are the ones that are computed
from attributes that do not appear in the closures of other attributes. Once we
have the smallest ACs, we want to compute the smallest OCs that are between
them and C. This means that we are looking for concepts ({o}”, {o}’) such that
o is in the extent of one of the ACs we have and {o} C Int(C). We remark
once again that ({01}, {01}") > ({02}',{02}") implies 02 € {01}” and that the
closures of some objects give us information on OCs that can’t be minimal.

Algorithm 1 computes the upper neighbours of the input concept in the AOC-
poset. The first loop computes the closure of single attributes. Each closure allows
us to remove attributes that correspond to non-minimal ACs. The resulting set
R contains the intents of the ACs that are both super-concepts of C' and minimal
for this property. The second loop constructs the set O of objects that are in the
extent of an element of R but not in the extent of C'. The third loop removes the
objects of O that cannot possibly be introduced by a superset of C' and, finally,
the fourth loop removes the objects of O that produce non-minimal OCs. The
ACs that are no longer minimal are also removed. Computing the lower covers is
done using the same algorithm, exchanging the roles of attributes and objects.
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Algorithm 1: UpPER COVERS

Input: A concept C
Output: The upper covers of C' in the AOC-poset

1 A<+ Int(C)

2 foreach a € A do

3 Y + {a}"’

4 LA<—A\{Y\{a}}

5 R+ {{a}'|a € A}

6 O« 10

7 foreach S € R do

8 X5

9 O+ OU(X\ Ext(0))

10 foreach o € O do
11 if o' ¢ Int(C) then
12 | O+ 0\{o}

13 foreach o € O do

14 T={S|(SeR)A (o€ S)}

15 R+ R\T

16 Y « {o}"

17 if dp € O such that p € Y then
18 | O+ 0\{o}

19 R+« {({o}',{0}) | 0 € O}
20 return R

4 Conclusion

We adress the problem of providing a more scalable and praticable techniques
to perform conceptual navigation with formal concept analysis. This is moti-
vated by the problem of product selection, a software product line engineering
task that can benefit from these techniques to complement current methods.
We used AOC-posets, the concept lattice sub-hierarchy restricted to introducer
concepts, as a smaller, condensed alternative to concept lattices that preserve
objects and attributes taxonomy. To avoid generating the whole sub-hierarchy,
we outline algorithms to enable local generation of AOC-posets by computing
the neighbourhood of any concept in the AOC-poset.
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Abstract. Logical Concept Analysis [1] (LCA) extends the Formal Con-
cept Analysis [4] (FCA) approach. Recently, this approach has been un-
dertaken for terminology, a workflow has been developed to go from XML
data to a logical information context. Through experiments on specific
resources, facet designs have been tuned to facilitate the search and con-
trol on the data. We will consider several usages of such contexts and
illustrate benefits of the approach.

1 Introduction

This proposal aims to show how linguistic data can become easier to exploit
through the logical information systems approach: whereas such data are not
always easy to use without assistance or expertise, logical information systems
are especially designed to offer a flexible browsing of data when organized as a
logical context.

TermLis is an application of Logical Information Systems to terminological
resources (http://www-semlis.irisa.fr/software/). It has been introduced in [3,2].
It was illustrated initially using the FranceTerme resource’, containing terms of
different scientific and technical fields; we have carried on this development,
considering the EuroVoc resource?, a Multilingual Thesaurus of the European
Union. In these data, each concept is related to a domain, with an attempt to
avoid ambiguities.

We transduced parts of the EuroVoc XML data, producing modular contexts
to be loaded in a logical context management system; we use Camelis® showing
three actionable windows: a set of objects, a property index and a textual query
(a logical formula). In this process, we consider terms (viewed as terminological
concept labels) as objects, and for the property index, we favored semantic facets
(logical properties attached to objects) identical or similar to those initially
devised for FranceTerme.

We propose several scenarios, illustrating benefits of the approach, applied
on both linguistic data, transduced as logical contexts, then loaded in Camelis.

! http://www.culture.fr/franceterme, see https://fr.wikipedia.org/wiki/FranceTerme

2 http://eurovoc.europa.eu/

3 to our knowledge, it is the only logical context management system, it is available
at http://www.irisa.fr/LIS /ferre/camelis/
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2 Some key aspects

A transducer methodology

In order to adapt the transducer of [2] to the new set of files in XML format,
we followed its general workflow shown in Figure 1 (on the left) and the facet
modelling in [3]. We also relied on the data schema (in DTD format) of the new
resource. We could keep the overall facet structure, as illustrated in the next
screenshots in Figure 2. The workfow outputs (modular) logical contexts to be
loaded in a Logical Information System.

Logical Information System capabilities

LCA generalizes Database and Hierarchical systems, as illustrated on Figure 1
on the right; the figure also follows the Camelis interface that enables three in-
teraction modes and shows synchronized windows: after an initial logical context
is loaded, interactions lead to a state/subcontext displayed by: its formula/query
on the top, links in the navigation index on the left, and its objects on the right.

source
xml

.
’

Ter construction)

Key
descriptor |77 = ™
o -

Mapping
transducer
xsl

context
file

. I -
4 Document
mode]

[

Question

formula expression
(editable query)

Hierarchy

Property

navigation index
(clickable links)

Databases

Objects

subset presentation
(selectionable examples)
(triggered actions)

Concepts

-——— @ indicators

Fig. 1. Workflow architecture (on the left) and LIS-LCA overview (on the right)

3 Logical contexts, multiple facets and search examples

We consider and discuss several usages and interaction scenarios, on the contexts
obtained as transductions from terminological resources.

Property index and sub-context cardinalities. In the property index-tree, we may
choose an order for displaying a given facet. This is useful for example to read
directly which Equivalent _en correspond to the greatest number of French terms
(package on the left part of Figure 3). This highlights potential ambiguities, with a
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Fig. 2. FranceTerme (left) and EuroVoc (right) TermLis contexts in Camelis

degree indicator, using both languages 4. The dynamic links (domains, etc.) then
provide hints to disambiguate, as in Figure 3 on the right, showing a subcontext
after a selection in the property index-tree (Camelis displays three windows
about a same subcontext). Links of a same color characterize the same set of
objects (concept) which provides further hints.

Other kinds of ambiguities can be highlighted, such as the ass abbreviation
in FranceTerme, with these steps: (1) open a facet and select, moving to a state
showing the query: _Pius EquivalentVariante _en is "ABS" , and two french terms as
objects: antiblocage de sécurité whose Equivalent _en is "Anti-lock Braking System"
and titre adossé & des créances titrisédes Whose Equivalent _en is "asset-backed security"
(2) open the pomaine facet, which displays two domains: automobile, Finances.

We can explore variants and false-friends. Other kinds of search are possible:
focused search on elements and exceptions, in some cases the query at the top
may act as a useful summary.

Data types. Data types other than attributes and strings can be handled, such
as dates, allowing for more or less fine-grained selections. This can be illustrated
on FranceTerme publications dates with facet publiarticle date.

4 Refinements and user preferences

We can adapt facets using rules. For example, Domains and SubDomains data
have been translated for FranceTerme in a context of update rules of the form:

rule_extr Domaine is "Acoustique" -> Domain is "Acoustic"

4 no ambiguities of that first type are found in EuroVoc (displaying card 1); other kinds
on EuroVoc can be shown, for example with _Plus EquivalentVariante _en is "ESA"
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Fig. 3. Facet Equivalent _en opened, by card desc - then subcontext after selection (right)

when loaded in the context, properties on the right hand side are added to all
objects verifying the left hand side. As another example, the linguistic features in
FranceTerme displayed in the categorie facet, can be harmonized adding a set of
rules and axioms (as a context file for Camelis) that render them in a hierarchy
of regular categories. The context file modularity also enables to load parts or
variants of the context.

Linking data and resources (using actions)

Relations between objects are rendered by properties voir ... ("see") in the in-
dex. Another kind is linkage is made through actions associated to objects. We
generated connections to: - a parser; a web link to another terminological re-
source for French (CNRTL, http://www.cnrtl.fr/); an XML link to a subpart of
the source file. This action list is not exhaustive and can be adapted.
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Abstract. This article extends the method of Garriga et al. for min-
ing relevant rules to numerical attributes by extracting interval-based
pattern rules. We propose an algorithm that extracts such rules from
numerical datasets using the interval-pattern approach from Kaytoue et
al. This algorithm has been implemented and evaluated on real datasets.

Keywords: rule learning, interval patterns, relevant rules, closed pat-
terns

1 Introduction

Garriga et al. [2] proposed a method to extract relevant association rules from
labeled itemsets. We extend the work of Garriga et al. to numerical attributes
using the pattern mining approach of Kaytoue et al. [3] which is based on FCA
(Formal Concept Analysis). Kaytoue et al. [3] proposed to extend the mining
of frequent closed interval pattern to numerical data. Our work bridges the gap
between these two approaches to extract relevant interval pattern rules.

2 Closed Interval Patterns

Let F = {f1,..., fn} be a fixed set of n features. We represent a training ex-
ample as a tuple of real values x = {z1,...,x,}, where x; € Dom(f;), with an
associated class label. The tuple stores one value per feature of F. We consider
two-class learning problems where the set of examples E is divided in positives
(P) and negatives (N) such that E = PUN and PNN = (). Multi-class problems
can be transformed in two-class learning problems.

An n-dimensional interval pattern is a tuple of intervals ([l;,u;])ie1,. .n],
where l;,u; € M; C R, I; < u; and M; is an ordered finite set of modali-
ties (i.e. each M, is a set of feature values, i.e. Dom(f;), or a subset of val-
ues M; C Dom(f;)). An interval pattern P = ([l;,u;])ie[1,..n) covers a tuple
x={x1,...,2,}, denoted & C P, iff Vi € [1,...n], [; < z; < u;.

Let X = ([ls, wi])iep,..ny and Y = ([Ij, ui])icp1,...n) be two n-dimensional inter-
val patterns. We define XUY = ([min (I;, [j) , max (us, uj)]) ;¢ - Furthermore,
XLCYiftVie[l,..n], [liu] C[l},u}]. This definition extends the previous one

for tuple covering considering a value v as a singleton interval [v, v].
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Let X — + be a positive rule where X is an interval pattern. True positives
are positive examples covered by the rule: TP(X) = {ele € PAe C X}.
False positives are negative examples covered by the rule: FP(X) = {ele €
N A e C X}. True negatives are negative examples not covered by the rule:
TN(X) = {ele € NAeZ X}. supp(X), the support of pattern X is defined
as supp(X) = |{ele € EAe C X}|. We also define supp™ (X) = |TP(X)| and
supp™ (X) = |[FP(X)|. supp™ is antimonotone w.r.t the C relation and supp™ is
monotone w.r.t C. This means that VX,Y, X CY, suppt(X) < supp™(Y) and
supp~ (V) < supp™ (X).

The learning task consists in constructing all interval patterns X such that
supp™(X) > minsup and supp™ (X) < mazfp where minsup and maz fp are
given parameters.

From the practical point of view of data mining algorithms, closed patterns
are the largest patterns (w.r.t. a partial order C on the set of patterns, denoted
P) among patterns occurring in the exact same set of examples. Formally, a
set X € P is closed when there is no other set ¥ € P such that X C— Y
(i.e. YC X AY # X) and supp(X) = supp(Y). Closed patterns are interesting
because they carry the same information as the total set of frequent patterns.

Kaytoue et al. [3] have investigated the problem of mining frequent closed
interval patterns with Formal Concept Analysis (FCA). They proposed the MIN-
INTCHANGE algorithm which enumerates all frequent closed frequent patterns.
It starts from the most generic interval pattern that covers all the examples:
IP = ([min (M;) ,mazx (M;)]),cq. - Then, each interval pattern is specialized
applying minimal changes on the left or on the right of the interval.

3 Mining Relevant Interval-Rules

The theory of relevancy, described in [4], aims mainly at reducing the hypothesis
space by eliminating irrelevant features. This theory has been used by Garriga
et al. [2] to extract relevant features in example database where an example
is a tuple of symbolic features. Here, we extend the definition of relevancy of
Garriga et al. [2] to the relevancy of interval patterns. First, we define two
closure operators, I'" and I'~, that respectively stand for the closure of interval
pattern on P (positive examples) and on N (negative examples).

Definition 1 (Relevancy of an interval pattern) Let X and Y be two in-
terval patterns. X is more relevant thanY 4ff T (Y) =TT (X UY) and '™ (X) =
I (Xuy).

Thus, similar results as those of Garriga et al. [2] can be deduced about the
characterization of the space of relevant interval patterns.

Theorem 1. Let X and Y be two interval patterns. If IV (Y) =X and Y # X
then Y s less relevant than X.

Theorem 2. Let X and Y be two different closed interval patterns such that
X T Y. Then, we have that'Y is less relevant than X iff '~ (X) =I"(Y).
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Algorithm 1 Closed interval rule mining algorithm. P is the set of positive
examples, N is a set of negative examples and M is the set of modalities.

1: FCIP +MININTCHANGE(P, M)

2: for (X,Y) € FCIP do

3 if FP(X)=FP(Y) and X C Y then
4: FCIP «+ FCIP\{Y}
5

6

end if
: end for

The first theorem shows that the relevant rules X — + are those for which
the interval pattern X is closed over the positive examples. According to the
second theorem, in case of similar negative supports, the interval pattern with
largest intervals is preferred. Proofs for Theorems 1 and 2 may be deduced from
proofs on features sets [2].

Algorithm 1 is based on these theorems to extract the relevant interval pat-
terns. The first step of the algorithm is to extract FCIP, the set of frequent
interval patterns closed over the positives. Then, line 3 prunes irrelevant pat-
terns in accordance with Theorem 2. For any closed interval pattern Y € FCIP,
if there exists another closed interval pattern X such that both have the same
support in the negatives (i.e. same number false-positives) and such that X C Y
then Y is removed.

The size of the interval patterns search space is O (m?*") where n is the
number of features and m is the number of modalities M; of one attribute. Thus,
we are facing a memory usage constraint. Keeping all the frequent concept in
memory requires a large memory. This memory issue is classically encountered
in formal concept analysis but it becomes harder when the number of modalities
increases.

To tackle the issue of memory usage, we reduce the modalities to a subset M;
of a fixed maximal size, defined by parameter egmod. The overall rule mining
algorithm has not to be modified. There are several methods to reduce the
number of modalities. We choose to extract the equi-probable intervals from the
positives examples.

4 Implementation and Results

We evaluated our algorithm on three UCI datasets [1] (Haberman, Iris and Verte-
bral column). The algorithm is implemented in C++. Experiments are conducted
on an Intel Core-I5 with 8GB of RAM with Linux system.

For all experiments in this section, fpmax = 10% and eqgmod = 10. Figure 1
illustrates the number of closed interval patterns in positive examples, the num-
ber of frequent and accurate rules; and the number of relevant interval pattern
rules. We can see that the computing times (see Figure 2) are strongly correlated
to the number of patterns.
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Fig. 1. Number of closed interval patterns in positives, number of rules satisfying
minsup and max fp; and number of relevant interval-rules w.r.t. minimal support.

Haberman

Fig. 2. Computing time (in millisecond) w.r.t. minimal support.

Even for small data such as the Iris dataset, the number of patterns is high
for low thresholds (= 3000) but the number of relevant patterns is significantly
lower than the total number of closed rules. Moreover, the number of patterns
increases exponentially with the number of modalities.

5 Conclusions

We have presented a new algorithm for extracting relevant rules from a numerical
dataset. It offers a wider choice of possibly interesting rules for experts. The
number of extracted patterns is high but more representative of the input dataset
whereas standard algorithms such as CN2 or Ripper select a priori a very limited
set of rules simply based on covering and accuracy criteria. Future work will be
devoted to proposing additional selection criteria which enable the expert to
express his/her preferred set of relevant rules.
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Abstract. Formal concept analysis (FCA) is a powerful mathematical
tool that allows deriving concept hierarchies from large sets of data in
order to analyze data and derive meaningful information from it [3].
FCA finds practical application in fields including data mining, text
mining, machine learning, knowledge management, semantic web, soft-
ware development, chemistry, biology and many more. FCA works with
contexts and concept lattices derived from them. Since navigation in
three-dimensional spaces is rather difficult, one method of navigation in
tricontexts uses local projections and reduces the triadic contexts to mul-
tiple dyadic contexts. The purpose of this paper is to present FCA Tools
Bundle, which is a collection of tools for dyadic and triadic formal con-
cept analysis. Furthermore, in this paper, we describe the architecture
of the tool and the technologies used in its implementation.

Keywords: FCA, Triadic Context, Navigation Tool, Concept Lattice

1 Introduction

Formal concept analysis is a field of applied mathematics having order theory as
a foundation and its main focus towards data analysis. The basic data structure
is a formal context described a set of objects, a set of attribute and a relation be-
tween them. In order to obtain relevant information about clusters of objects and
attributes, the context needs to be parsed and a concept lattice generated. The
concept lattice displays the formal concepts of a context in an order diagram
which in turn allows analysis and navigation of the data in order to discover
more knowledge about it. For triadic contexts this approach becomes more diffi-
cult, therefore another method was defined that enables local navigation in such
contexts. This navigation method in tricontexts based on local projections is
implemented and incorporated in the FCA Tools Bundle.

The tools implemented in the FCA Tools Bundle are meant to help users
analyze large datasets and derive useful information from them.

In: K. Bertet, D. Borchmann, P. Cellier, S. Ferré (Eds.): Supplementary Proceedings of ICFCA,
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2 FCA Tools Bundle

FCA Tools Bundle! is a web based application which currently implements fea-
tures for dyadic and triadic formal concept analysis. The main purpose of the
tool is to enable the user to visualize formal contexts of different dimensions in
several formats and to interact with them. The tool offers some public contexts
for users who want to test the functionalities and, in addition, users can import
their own dyadic or triadic contexts. The allowed formats for importing a for-
mal context are cxt and csv. The csv file must contain only the tuples of the
relation from which the context can be reconstructed. The key features offered
by the FCA Tools Bundle are: storage and visualization of n-dimensional con-
texts, generation of the n-adic concepts, dyadic context exploration based on a
concept lattice, triadic context exploration using dyadic projections on different
perspectives, and exploration of concepts in an n-adic context by user defined
constraints.

3 Concept Generation

One of the base functionalities of the website is the storage the contexts. In order
to ensure privacy, the uploaded contexts are private by default and bound to the
user’s account. As mentioned previously, a context can be imported in several
formats but it can also be manually created if it is a relatively small context.
For larger contexts the import method is preferred for the simple reason that
it is faster. Once a context has been saved, it can be accessed at any time and
exported in different formats. If the context is made public it can also be accessed
and explored by other users. The basic features offered by FCA Tools Bundle
for a context are visualizing the context details, i.e. object set, attribute set,
incidences and the subsequent concept set, and to compute and visualize the
concept lattice of the context.

We have implemented two different algorithms for concept generation. For
computing formal concepts of dyadic contexts, we use In-Close2 [1]. However,
if one wants to explore multi-dimensional datasets, it becomes more complex
to generate fast formal concepts for higher dimensions. Therefore, FCA Tools
Bundle uses Data-Peeler [2] for computing formal concepts of n-adic contexts
(n>3).

4 Dyadic Context Exploration

The usual and most efficient way of exploring a dyadic context is by computing
and drawing its concept lattice. This functionality is implemented in the website
using JavaScript in order to present and draw the concept lattice in a simple
and efficient way. There are multiple approaches for this task but drawing a
“good” concept lattice is difficult and it can be subjective. Some of the aesthetics

! feca-tools-bundle.com
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criteria by which two concept lattices can be compared are: the number of line
crossings, the number of line breaks, angle between incident lines, symmetries,
compactness.

There are multiple different methods of drawing a concept lattice, some of
which are better for certain contexts while being less efficient on others. Among
the methods of representing a concept lattice we recall: Drawing by hand, which
yields the best results but it is slow and increasingly difficult with the size of
a concept lattice. The layered approach, which assigns each node a level based
on the distance from the top node. From top to bottom each level is reserved
a layer on which nodes will be drawn. After that, each node will be drawn on
the layer of its respective level. The nodes on a layer are sorted in a manner
such that the line crossings between two layers will be minimized. Force directed
approach, which assigns each node a level much like the layered approach but
the position of the nodes and the distance between them is computed based on
multiple forces of repulsion and attraction between the nodes. Basically each
node has a repulsion force that pushes other nodes away from it while each line
between the nodes acts like a spring and draws them close to each other.

FCA Tools Bundle uses the force-directed approach because it seems to yield
the best results, but it also allows the user to move the nodes freely on their
level and pin them into fixed positions in order to increase the visibility and the
readability of the concept lattice.

5 Triadic Context Exploration

For a triadic datasets, the trilattice representation of triconcepts is no longer
satisfactory. Besides displaying a triconcept list, FCA Tools Bundle implements
a navigation paradigm based on local projections, which was introduced in a
previous paper and has not been implemented by any previous tool [5]. In this
navigation paradigm, one can choose a set of elements (from the same set of
objects/attributes/conditions) to project on and visualize the concept lattice of
the dyadic projection. This functionality can be used to navigate among different
projections of a threedimensional dataset.

The first step of the navigation is to choose a triconcept. Next, in order to
obtain a local projection, one must choose one of the dimensions to project on,
that is: the extent, the intent or the modus. The component along which the
projection is done is called the perspective. After choosing a perspective, the
projected dyadic context is built and the dyadic concept lattice is computed. It
can be proven that every dyadic concept of the projected context corresponds
to exactly one triconcept [5].

The navigation is done by selecting one of the dyadic concepts of the dyadic
context and computing the associated triadic concept. By choosing different
perspectives of that triadic concept one can switch the projection and navigate
in a different dyadic concept lattice. Therefore, the whole tricontext can be
explored.
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6 Concept Search Tool

Besides navigation on dyadic and triadic contexts one other main functionality
of FCA Tools Bundle is represented by the concept search tool. This tool im-
plements user defined constraints by including and excluding objects/attributes.
A key feature is that constraints definition is generalized in a way that works on
any n-adic context, even on large datasets. This allows for exploration of very
big contexts where one cannot generate the list of all its concepts. The algorithm
for the Concept Search Tool was analyzed and described in more details in two
previous papers [4, 6].

While it is slow for large contexts it slowly gets faster due to an efficient
caching system. The experience is also enhanced by multiple small functionalities
like bookmarks which allow the user to bookmark not only a found concept but
also the search path used to reach that concept.

7 Conclusions

FCA Tools Bundle was built with the idea of providing a user with a wide
range of tools for exploring and analyzing contexts via an FCA approach. The
tools range from common functionalities, like concept lattice display, to new
and innovative ones like the triadic context exploration via dyadic projections
or concept search in n-dimensional contexts. The website UI was also built with
usability and practicality in mind.
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1 Outline

A program for navigation in relational databases is presented. To enable nav-
igation, the relational database is first transformed into a relational context
family [3] by means of conceptual scaling; unlike in [3], we shall also use formal
contexts for the representation of relations, thereby treating a relational context
family as a many-sorted version of a power context family [6]. Figure 1 shows
a relational database, and Fig. 2 shows a relational context family obtained by
scaling. The context family has two object contexts of sorts author and book
and a relation context of the sort bookxauthor.

Author

Lewis Carroll British 1832-01-27
Virginia Woolf | British 1882-01-25
Douglas Adams| British | 1952-03-11

J. K. Rowling | British | 1965-07-31

Stephen King | American | 1947-09-21

Dan Brown | American | 1964-06-22

Book

Alice in Wonderland Lewis Carroll 1865-11-26

To the Lighthouse Virginia Woolf 1927-05-05

The Hitchhiker’s Guide to the Galaxy [Douglas Adams| 1979-10-12
Harry Potter and the Deathly Hallows| J. K. Rowling 2007-07-21

The Casual Vacancy J. K. Rowling 2012-09-27
The Shining Stephen King 1977-01-28
Doctor Sleep Stephen King 2013-09-24

The Da Vinci Code Dan Brown 2003-03-18

Inferno Dan Brown 2013-03-14

Fig. 1. Database

2 Specifications

2.1 User Interface

The user interface consists mainly of three parts:

In: K. Bertet, D. Borchmann, P. Cellier, S. Ferré (Eds.): Supplementary Proceedings of ICFCA,
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Fig. 2. Relational Context Family

Intension Graph An attribute-labeled graph formalizing a conjunctive query.
Result Table The result table for the database query expressed by the graph.
Navigation Options Incremental changes to the graph.

Figure 3 (left) shows an intension graph which asks for all 20th-century-born
authors who have published in the 21st century (as known to the database).
The rectangles are sorted object variables (with the sort stated inside the node)
and circles represent relations (the sort is implied by the connections). Rectangles
can and circles must be labeled by one or more attributes of the respective sort
context. Each node contains a unique node ID of the form #n which serves as a
variable name. A valid assignment for the graph would e.g. be #1=Dan Brown and
#3=Inferno (assignments for relation nodes are implicit, here #2=(Inferno,Dan
Brown) ). The marked nodes (colored gray) designate the output columns. So the
result table for the example graph has only one column (Fig. 3, right). Navigation
options are described in Sect. 2.3.

2.2 Program State

If we consider the relational context family fixed, program state is defined by
the intension graph exclusively. State transitions are given by the navigation
options. Every time the state changes, the result table and navigation options
are updated automatically.

2.3 Navigation Options
2.3.1 Refinement Options

R1 Create Node Creates an isolated object node of a given sort. This would
usually only be used as the first action when building a query. The generated
node is marked by default.
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R2 Add attribute Adds an attribute of the proper sort to an object or relation
node.

R3 Adjoin edge Creates a new relation node and connects the i-th edge with
an existing object node of the proper sort. Each of the remaining edges is
connected to a new, unmarked object node.

R4 Mark node Includes a column for a given object node in the result table.

R5 Merge nodes Identifies two object nodes in the graph.

The attribute labels for each graph node z are collected in the set def(z). In
addition, let ext(z) denote the set of valid assignments for the node z. The node
context of anode x of sort s is the subcontext of the sort context (G5, My, I;) with
object set ext(r) and attribute set {m € M, | ext(x) Nmls # 0 Am ¢ def(x)}.
The attributes of the node context are the attribute choices for action R2 (note
that the result table changes only when the chosen attribute is not common
to all objects in the node context). The extended node context of a node x of
sort s contains in addition a column r; for each relational attribute r which
expects objects of type s in the i-th position. An object g has the attribute r; iff
(91, -,9n) has attribute r for some objects g1, ..., g, with g = g;. We may call
these attributes roles. The roles define the choices for action R3. The extended
node contexts for nodes #1 and #3 in the example above are shown in Fig. 4.
The possible choices for action R5 are obtained from the result table.

2.3.2 Generalization Options

G1 Remowve attribute Removes an attribute from an object or relation node. If
this is applied to a relation node with a single attribute, the relation node
is deleted. As a result, the number of connected components may increase.
If a connected component contains only unmarked nodes, it is irrelevant to
the output and the whole component is deleted.

G2 Unmark node Removes the column associated with a given object node from
the result table.

2.4 Architecture

The program is implemented as a web application. The front end is written
in Javascript (using jQuery for better DOM accessibility and browser indepen-
dence). Intension graphs are represented by SVG graphs, which can be directly
integrated into the webpage with the new HTML5 <svg> tag. The Python back-
end answers API calls get_sorts (which returns all objects sorts in the relational
context family, needed for action R1) and solve, which takes an intension graph
and returns the result table and refinement options. Program support for trans-
lating relational databases into relational context families would be an important
feature but is not supported yet.

3 Related Work

Similar applications are described in [2], [1] and [4]. Relevant theoretical back-
ground is given in [5], but is not required to understand the navigation concept.
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Abstract. Lattice Miner 2.0 is the latest release of a Formal Concept
Analysis (FCA) software tool for the construction, visualization and ma-
nipulation of concept lattices. The newly added procedures include the
computation of implications with negation as well as the production of
triadic association rules, including implications.

1 Introduction

Lattice Miner is an FCA-based prototype developed in the LARIM research lab-
oratory at Université du Québec en OQutaouais under the supervision of the first
author. Tt allows the construction of concept lattices and association rules (in-
cluding implications) from a given formal context K := (G, M, I) that links the
set G of objects to a set M of attributes through a binary relation 7. The focus of
Lattice Miner is on pattern (knowledge) visualization, exploration, querying and
approximation through a lattice representation of either a flat or a nested struc-
ture. Lattice Miner is a public-domain Java tool whose main functions include
all low-level operations and structures for the representation and manipulation
of input data, lattices and association rules. The interface offers a context editor
and concept lattice manipulator to assist the user in a set of interactive oper-
ations. The architecture of the tool is open and modular enough to allow the
integration of new features and facilities. Lattice Miner 2.0 [4] adds new facili-
ties to the previous release by integrating the computation of implications with
negation as well as triadic association rules.

The rest of the paper is organized as follows. In Section 2 we recall triadic
concept analysis and triadic association rules and provide screen shots of these
rules. Section 3 briefly recalls the theorem behind computing implications with
negation and offers an illustrative example together with a screen capture. Fi-
nally, Section 4 presents our future work.

2 Triadic Association Rules

Triadic concept analysis was originally introduced by Lehmann and Wille [3] as
an extension to FCA, to analyze data described by three sets K; (objects), Ko
(attributes) and K3 (conditions) together with a 3-ary relation Y C K3 x Ko X K3.
K := (K3, K9, K3,Y) is called a triadic context (see Table 1). A triple (a1, a9, as)
in Y means that object a; possesses attribute as under condition as.

In: K. Bertet, D. Borchmann, P. Cellier, S. Ferré (Eds.): Supplementary Proceedings of ICFCA,
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K| P| N| R| K| S

abd| abd| ac | ab
ad | bed| abd| ad
abd/ d | ab | ab
abd| bd | ab | ab
5 | ad | ad | abd| abc
Table 1. A triadic context K := (K1, K2, K3,Y)
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According to Biedermann [1], a triadic implication has the form (A — D)¢
and holds if “whenever A occurs under all conditions in C, then D also occurs
under the same conditions” . Later on, Ganter and Obiedkov [2] extended Bieder-
mann’s definition by proposing three types of implications: attribute x condition
implications (AxCIs), conditional attribute implications (CAls), and attribu-
tional condition implications (AClIs).

An attributex condition implication has the form A — D, with A, D subsets of
K5 x K3. Such implications (rather dyadic) are extracted from the binary context
KW = (K, Kyx K3, YY) where (a;, (a;,ax)) € Y & (a;,a5,a;) €Y.

A conditional attribute implication takes the form: A <, D, where A and D
are subsets of K, and C is a subset of K3. It means that A implies D under all
conditions in C. In particular, the implication holds for any subset in C. Such
implication is then linked to Biedermann’s definition of triadic implication as
follows [2): A % D <= (A — D), for all C; C C.

In a dual way, an attributional condition implication is an exact association
rule of the form A4 -5 D, where A and D are subsets of K3, and C C Kj.

By extending the definition of conditional attribute implications to associa-
tion rules, a Biedermann conditional attribute association rule BCAAR (A —
D)¢ [s,c] holds, where A and D are subsets of Ks, and C is a subset of K3, if
D is true for C whenever A is true for C' with a support s and a confidence c.

All these variants of triadic implications and association rules are produced
by our tool using procedures in [5,7] as illustrated by Figure 1.

3 Implications with negation

To compute implications with negation from a given context K = (G, M,I),
the following theorem in [6] exploits the set Y of key-based implications of the
context K|K! to infer implications with a non-null support.

Theorem 1. Let Az C MM. Then, Az — MM\Az [0] < A — & [sup] where
sup = |A'|/|G| and G is a set of objects.

! The context K |[§' is the apposition of K and its complementary K whose attributes
are in M (negative attributes).
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Fig.1. Top: The dyadic context K® extracted from the triadic context shown in
Table 1. Left: Biedermann triadic association rules. Middle: Biedermann implications.
Right: Conditional attribute implications.

This is done in Lattice Miner by (i) first computing the context K|K, (ii)
identifying the left-hand side of key-based implications, which are the minimal
generators of the infimum, and (iii) finally generating the whole set of implica-
tions (with or without negation) by creating for each key Az, p = |Az| implica-
tions where each element in Az is negated and shifted from the left to the right
of the generated implication.

For example, de f—-M M [0] leads to three implications, namely ef —
d [0.16], de — f [0.16] and df — € [0.16]. Such implications appear in Figure 2.

4 Conclusion and Further Development

We have presented two main additions to our prototype, namely the computation
of implications with negation and the identification of triadic association rules.
We plan to have a Web-based release of Lattice Miner 2.0. This will bring the
following advantages: (i) the application can be used from a laptop or a tablet
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Context : ContextForNegation

1 X X X X
2 X X X X
3 X X
4 X X
5 X X
] X X X X
Context : ContextForNegation

Min. support : 0.0%

Min. confidence : 100.0%

Rule count : 36

# Antecedent  => Consequence Support / Confidence

20. 1e'} => i} 16.66% 100.0%
21. {e, f} => {d} 16.66% 100.0%
22. {d', f} => (3] 16.66% 100.0%
23. {d', e} => f 16.66% 100.0%

24, 1g} => {b'} 16.66% 100.0%

25. {b} => 3] 16.66% 100.0%

26. {a} => {c} 16.66% 100.0%

27. i =5 {g'l 16.66% 100.0%

28. {g} => [d} 16.66% 100.0%

Export to XML...

Fig. 2. Implications with negation

without installing any further software, (ii) it can be deployed to a private or
public cloud to benefit from powerful software and hardware resources, and (iii)
the opportunity to speed up the development of this project by using modern
tools and technologies.
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Abstract. Formal Concept Analysis offers an elegant, intuitive and
powerful graphical representation of landscapes of knowledge as concept
lattices. In this paper, we report about the current state of FACT, a tool
for temporal data analysis and knowledge discovery. FACT is a web-based
application which allows an online interaction with larger data sets in
order to explore and analyze data conceptually. It uses concept lattices
in order to extract knowledge from the data set. After presenting the
tool itself we shortly describe an example and present the planning for
further development.

Keywords: Life tracks, Temporal Concept Analysis, Web logs analysis,
Conceptual structures, User behavior, Attractors

1 Introduction

During the last decades, many theories have been developed, aiming at the in-
vestigation of temporal phenomena. One of them is the particular approach to
Temporal Concept Analysis (TCA) introduced by Karl Erich Wolff in [3]. He
uses FCA as a frame for describing concept analysis of data with a temporal
layer.

The FCA researchers community agrees upon the necessity of having powerful
software tools for formal context handling and lattice representations. There is
a long list of FCA related software tools! but a freely available tool for TCA,
which is handy and easy to use is missing. In this paper we aim to fill this gap
and present the current state of FACT which is a tool for Temporal Concept
Analysis. We motivate the implementation of the tool suite and we describe the
implemented features in Section 2. Here, we also describe the architecture of the
tool and the technologies as well as the external tools used in implementation.
Finally, Section 3 describe some of the future directions for the development of
the tool.

Conceptual time systems have been introduced by K. E. Wolff in [3] in order
to investigate conceptual structures of data enhanced with a time layer. Basically,
conceptual time systems are many-valued contexts, comprising a time part and

* Diana Sotropa was supported by Tora Trading Services private scholarship.
! http://www.upriss.org.uk/fca/fcasoftware.html
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an event part, which are subject to conceptual scaling, unveiling the temporal
development of the analyzed data, object trajectories and life tracks. K. E. Wolff
defined states as objects concepts of time points and transitions in order to
introduce the definition of the life track of a conceptual time system. K. E. Wolff
states in [3] that programs which represent complex temporal systems have to
be developed in order to easily understand and visualize data and connections
between data.

2 FACT - Motivation, Description and Features

The main motivation of developing this tool comes from practical applications
of FCA. Some data have a natural temporal structure and can usually be in-
terpreted as many-valued contexts which are scaled using the ToscanaJ Suite
[1].

In some previous research, we have investigated different types of user be-
havior in educational platforms. Paper [2] emphasize how TCA methods might
help in discovering users behavior by considering different points in time. Besides
data from educational platforms, many other data sets have an inherently tem-
poral layer and the lack of easy to use software solutions for analyzing temporal
data contributes to a relatively small number of reported applications of TCA.

The main goal of conceptual knowledge discovery is to support a human-
centered process of knowledge discovery by providing a visualization of data
based on the visualization of underlying conceptual structures. Therefore, FACT
was designed in order to support visualization of temporal behavior of data.
Hence, it currently implements current features for Temporal Concept Analysis.
The main purpose of the tool is to enable the user to visualize the temporal
perspective of his data, projected on a conceptual landscape (such as concept
lattice, or user defined browsing scenarios). Every user identifies himself by a
login system and has access to his own data, as well as to a small number of
public contexts which can be used as toy examples.

There are multiple technologies used for the implementation. For the per-
sistence is used postgresql - to store the private conceptual data for further
analysis, as well as the authentication data. The Cytoscape library is used to
display the concept lattice on the web page and to display the temporal devel-
opment of data on it.

The tool offers the following features:

— load CSX and SQL files;

— visualize and navigate through the contexts;

— store contexts;

— user can dynamically filter data after some SQL fields;

— indicate the nodes and edges based on the temporal data.

— diagrams can be exported in the Portable Networks Graphic (png);

— after computing the concept lattice, the y coordinate of the nodes is locked;
the nodes are only allowed to move freely in their corresponding layer.
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We have chosen Java as a platform for the new development of this software
tool. Java offers virtual machines for most common operating systems and since
it is very common as programming language in universities, it makes the project
more accessible for many students. Java is used to process the data and send
the result via JSON to Cytoscape. The FACT tool requires the previous use of
the ToscanaJ suite to build a conceptual schema file. Other than Siena, which
requires preprocessing by a quite rare tool, Cernato, FACT is self-contained. Once
a conceptual schema has been imported and some scales have been chosen for
visualization, FACT draws the corresponding order diagrams indicating all objects
stored in the database in their relationships to the attributes of the scale. The
novelty comes also from the front-end for temporal conceptual systems. It allows
the user to navigate through the data and to analyze specific sets of objects by
activating scales that interpret relevant aspects of the given data from a temporal
perspective using a simple graphical interface. The screenshot of FACT in Figure
1 exemplifies this interface.

Usability and accessibility is another goal of this tool development. Hence it
has been developed as an open source project. Furthermore, it is made public as
a web site which requires registration, but no other installation process which
makes it easy to use.

Last but not least, revival of software development for FCA is in our opinion,
a major objective for our community, to which we strongly adhere.

In order to exemplify the use of FACT tool we will consider our previous
research on the use of an e-learning platform. Different users patterns were iden-
tified and formalized in [2]. They are called attractors and are defined as sets of
scales in conceptual time systems. An attractor is a conceptual structure having
a clear meaning and which is considerably influencing the users behavior in the
educational platform. Some attractors are intended, i.e., encoded in the concep-
tual structure by the educator itself, while some others are not intended and
are occurring at some particular points in time. Students, while browsing the
e-learning platform, adhere to some attractors or not, showing thus particular
browsing habits.

A behavioral attractor is a conceptual scale which reflects the habits of a
user while visiting an educational platform at a specific point in time. The be-
havioral pattern represents the event part of the conceptual time system at the
specific time granule. In order to build users’ life tracks we set the time gran-
ularity to week level and mark the temporal trajectory of the student through
different behaviors (eg. Ls-LP-LT-LA). Then, we superimpose them on the con-
cept lattice of the corresponding behavioral attractor. Behavioral attractors are
unintended attractors, which are crystallizing behavioral patterns showing how
users are using the resources, independently to the intention of the educator.
Figure 1 presents how user F is using the educational content considered for
this particular behavior (Ls-LP-LT-LA) on the entire semester. This behavior is
a navigational behavior and emphasize how students are using the educational
content presented on the platform. In this specific context we may observe how
and when user F is visiting lectures page, different information about lecture



98 B. Movileanu, C. Sacarea, D-F. Sotropa

papers given during lectures or laboratory pages which presents the laboratory
theory or assignments.

LP LA LT Ls

w9, w10

wa W3, W5NWB, W7, W11

WO, W12, W3 w14

I

W4

Fig. 1. Life track of user F' while navigating the platform wrt. Ls-LP-LT-LA behavior

3 Conclusions and Further Research

Temporal Concept Analysis is the theory of temporal phenomena described with
tools of Formal Concept Analysis. The development of the tool is ongoing and
there are multiple functionalities that we plan to implement in the future. The
tool will be developed according to users needs and feedback. In conclusion, we
believe that the presented version of FACT brings an important contribution to
the collection of FCA tools, by implementing functionalities of visualization and
navigation in temporal conceptual systems.
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1 Introduction

The extraction of regularities in texts is important for several natural language
processing tasks. For instance, in information extraction, the regularities can
allow to discover linguistic patterns [4] or to study the stylistics of authors [9].
When looking for those regularities, some specificities of textual data have to be
taken into account: the sequentiality of the data (i.e., the order between words),
the different levels of abstractions (i.e., words, lemma, Part-Of-Speech (POS)
tags) and specific constraints (e.g., "the regularities have to contain a verb”).
SDMC (Sequential Data Mining under Constraints) [3,2]* is a sequential pattern
mining tool that deals with all those requirements. From a text, the tool extracts
regularities called sequential patterns, i.e sequences of words, lemmas, and POS
tags that frequently appear together in the text. In order to extract such patterns
mixing different levels of abstraction, each word in the text is represented by
itself but also by its lemma and its POS tags. In addition, SDMC allows to
apply constraints to filter the extracted patterns: widespread constraints in data
mining like minimum frequency (support) but also text-specific constraints like
“contains a verb”.

A well-known drawback of pattern mining is the huge number of patterns
that can be extracted. Even if SDMC manages the computation issue through
constraints, the set of extracted patterns can be very large and hard to assess
for users. In a previous work [5], the authors have used the Logical Information
Systems (LIS) [6] paradigm to explore a set of patterns. The main advantage
of this approach is that users can benefit from their background knowledge to
navigate through the patterns.

In this paper we show how we have instantiated the LIS paradigm into SDMC
to help users deal with their patterns and their texts. Indeed, we propose to
explore the sequential patterns that appear in a text with a visualization of the
sentences where those patterns occur. That exploration functionality is available
online in the ” Concordancier” menu as ”Navigation dans les motifs”. To illustrate
the exploration, we use the French book ”Le Petit Prince”?.

* http://tal.lipn.univ-paris13.fr/sdmc/
5 7Le Petit Prince”, Antoine de Saint-Exupéry, 1943.
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Sequential Data Mining under Constraints “
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Adjectif
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Lancer

Représentation condensée des motifs:
’7 Sélection multiple avec "Ctrl"

Fig. 1. The textual interface of SDMC

2 Sequential Pattern Mining and SDMC

Sequential pattern mining [1] is a data mining technique that aims at discovering
correlations between events through their order of appearance. It is an important
field of data mining with broad applications (e.g. biology, marketing), and many
algorithms to extract frequent sequential patterns [10,8,11]. In the context of
the extraction of sequential patterns from texts, a sequence is an ordered list of
distinct words also called items. Note that when considering different levels of
abstraction for a word, a sequence is an ordered list of itemsets where each item
represents some information about the word (e.g., the word itself, its lemma or a
POS tag). The support of a sequence S in a text is the number of sentences in the
text containing S. Given a mininimum support threshold minsup, the problem
of frequent sequential pattern mining is to find the complete set of sequences
whose support is greater or equal to minsup.

SDMC (Sequential Data Mining under Constraints) [3, 2] is an online sequen-
tial pattern mining tool with two user interfaces: one for mining textual data,
and another for mining any kind of dataset. Figure 1 shows the first interface.
SDMC handles various types of constraints which are not only numerical (e.g.,
the support constraint) but also symbolic and syntactic (e.g., ”the pattern has
to contain a verb”). These multiple constraints enable the user to express a large
scope of knowledge to focus on interesting textual sequential patterns.

3 Logical Information Systems (LIS)

Logical Information Systems (LIS) [6] are a paradigm of information retrieval
that combines querying and navigation. LIS are formally based on Logical Con-
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Date Corpus Gap,Longueur,Support

2017-04-28 10:12:12 petitPrince. txt [0,0] [2,5] [15]

phrase contenant les motifs petit prince et le fleur jannuler |saisie manuelle
et ou letpas ( )
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fleur ... - mais non
1 {et}{un} R E R E R E R E R E R R
le petit prince qui assister a
2 {quejtu} installation un bouton énorme sentir ¥k ok ok ok ok ok ok ok okok ok ok ok
6 {se}{dire} 302 bien il en sortir un apparition
miraculeux mais le fleur en finir pas P23
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1 {étre}{trés} - étre heure je croire du petit
déjeuner avoir elle bientét ajouter Fokododokok ok ook ok ok ok KoKk
2 {pasile} 316 avoir vous le bonté de penser a moi ...
3 {-}{le} et le petit prince tout confus avoir LR
étre chercher un arrosoir eau frais
5 {ice} avoir servir le fleur BHERR R kR

Fig. 2. The LIS interface of SDMC to explore a text and its patterns

cept Analysis (LCA), a logical generalization of Formal Concept Analysis [7].
In LCA, objects are described by logical formulas rather than sets of attributes.
The concept lattice serves as a navigation structure where each concept is a nav-
igation place. Because of its huge size, LIS only show a local view of the concept
lattice, centered on each navigation place. A local view has three components:
(a) the query that is a Boolean combination of descriptors, (b) the extent that
is the set of objects matching the query, and (c) the index that is the set of de-
scriptors that occur in the extent, along with their relative frequency. The index
descriptors can be used as navigation links to modify the query, and hence reach
related concepts: e.g., adding a descriptor to reach a more specific concept.

4 LIS Exploration Interface in SDMC

We have instantiated the LIS paradigm to textual sequential patterns by con-
sidering sentences as objects, and sequential patterns as descriptors. This has
been implemented and integrated into SDMC as a new user interface. Figure 2
shows that LIS interface in SDMC.

On the top of the screen, information about the extraction are given: the date
of the extraction, the corpus (text), and the values of numerical constraints used
for pattern extraction: [min,max| gap size between words in patterns, [min,max|
length of the extracted patterns, and minimum support. The query appears just
below those information. It is a Boolean combination of patterns. Here, it is
a conjunction of two patterns: ”phrases contenant les motifs petit prince et
le fleur” (in English ”sentences that contain patterns little prince and the
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flower”) which means that the user has selected pattern ”petit followed by
prince” and pattern ”le followed by fleur”.

On the main part of the screen, there are 3 parts. On the left part, there is
the index, i.e. textual patterns that can be selected or added to the query. On the
middle part, there is the extent, i.e. the sentences that match the query. In the
example, three sentences (82, 302, and 316) contain both patterns petit prince
and le fleur. On the right part, a text view is displayed where the selected
sentences appear in bold and red. The tool proposes three kinds of text views:
the text itself, a compact version where the sentences are replaced by stars (as
shown on the figure), and a void view (useful for very long texts).

5 Conclusion

In this paper we have presented an interface to explore regularities extracted
from text, called textual sequential patterns. The exploration is based on a con-
ceptual navigation over the set of all patterns in the logical information systems
framework, a logical version of formal concept analysis. The exploration interface
is available through the online tool SDMC.
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