Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
IDEAS home Printed from https://ideas.repec.org/a/ags/paaero/340070.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this article

Functioning of Agricultural Biogas Plants from the Perspective of Transaction Costs-A Case Study

Author

Listed:
  • Ciechanowski, Wojciech
  • Maciejczak, Mariusz

Abstract

Agricultural biogas plants transform organic waste into a valuable source of renewable energy, necessary for the energy transition. The institutional environment of agricultural biogas plants shapes the specific operating conditions. It also influences several aspects of the operation, from ensuring the quality of the raw materials used for energy production to selling the energy produced. The main objective of this article is to present the transaction costs incurred by an exemplary agricultural biogas plant and to indicate their impact on the company’s operations. To collect primary data, a structured interview was conducted with the owner of an agricultural biogas plant located in the Lubelskie Province in July 2023. The investigated company generates electricity and heat from agricultural biogas in a cogeneration system. The study concludes that transaction costs influence the choices made within the agricultural biogas plant and translate into its operation. The relevance of the information provided and the level of trust between the different participants in the transaction is indicated. This avoids in most cases an increase in the level of transaction costs as well as negative consequences for the operation of the agricultural biogas plant. The transactions concluded indicate that agricultural biogas plants primarily operate within a region and a local community. The study is a contribution to further research into the area of transaction costs occurring in agricultural biogas plants.

Suggested Citation

  • Ciechanowski, Wojciech & Maciejczak, Mariusz, 2023. "Functioning of Agricultural Biogas Plants from the Perspective of Transaction Costs-A Case Study," Roczniki (Annals), Polish Association of Agricultural Economists and Agribusiness - Stowarzyszenie Ekonomistow Rolnictwa e Agrobiznesu (SERiA), vol. 2023(4).
  • Handle: RePEc:ags:paaero:340070
    DOI: 10.22004/ag.econ.340070
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/340070/files/CIECHANOWSKI-10.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.340070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Francesco Riccioli & Salomon Espinosa Diaz & Francesco Di Iacovo & Roberta Moruzzo, 2023. "Exploring the Effect of Perceived Transaction Costs on Farmers’ Attitudes toward Participation in Agri-Environment-Climate Measures (AECMs)," Social Sciences, MDPI, vol. 12(3), pages 1-17, February.
    2. Aleksandra Lubańska & Jan K. Kazak, 2023. "The Role of Biogas Production in Circular Economy Approach from the Perspective of Locality," Energies, MDPI, vol. 16(9), pages 1-15, April.
    3. Joseph McManus, 2023. "Transaction cost economics and mutual legal uncertainty to build commitment," Journal of Organization Design, Springer;Organizational Design Community, vol. 12(3), pages 141-156, September.
    4. Susanne Theuerl & Christiane Herrmann & Monika Heiermann & Philipp Grundmann & Niels Landwehr & Ulrich Kreidenweis & Annette Prochnow, 2019. "The Future Agricultural Biogas Plant in Germany: A Vision," Energies, MDPI, vol. 12(3), pages 1-32, January.
    5. Guo, Mingxin & Song, Weiping & Buhain, Jeremy, 2015. "Bioenergy and biofuels: History, status, and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 712-725.
    6. Katarzyna Ignatowicz & Gabriel Filipczak & Barbara Dybek & Grzegorz Wałowski, 2023. "Biogas Production Depending on the Substrate Used: A Review and Evaluation Study—European Examples," Energies, MDPI, vol. 16(2), pages 1-17, January.
    7. Evy Mettepenningen & Ann Verspecht & Guido Van Huylenbroeck, 2009. "Measuring private transaction costs of European agri-environmental schemes," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 52(5), pages 649-667.
    8. Laura Onofri & Samuele Trestini & Fateh Mamine & Jason Loughrey, 2023. "Understanding agricultural land leasing in Ireland: a transaction cost approach," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 11(1), pages 1-20, December.
    9. Laura Onofri & Samuele Trestini & Fateh Mamine & Jason Loughrey, 2023. "Correction: Understanding agricultural land leasing in Ireland: a transaction cost approach," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 11(1), pages 1-1, December.
    10. Muench, Stefan & Guenther, Edeltraud, 2013. "A systematic review of bioenergy life cycle assessments," Applied Energy, Elsevier, vol. 112(C), pages 257-273.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eksi, Guner & Karaosmanoglu, Filiz, 2017. "Combined bioheat and biopower: A technology review and an assessment for Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1313-1332.
    2. Jozami, Emiliano & Mele, Fernando D & Piastrellini, Roxana & Civit, Bárbara M & Feldman, Susana R, 2022. "Life cycle assessment of bioenergy from lignocellulosic herbaceous biomass: The case study of Spartina argentinensis," Energy, Elsevier, vol. 254(PA).
    3. Giovanni Ferrari & Andrea Pezzuolo & Abdul-Sattar Nizami & Francesco Marinello, 2020. "Bibliometric Analysis of Trends in Biomass for Bioenergy Research," Energies, MDPI, vol. 13(14), pages 1-21, July.
    4. Manzone, Marco & Paravidino, Elisa & Bonifacino, Gabriella & Balsari, Paolo, 2016. "Biomass availability and quality produced by vineyard management during a period of 15 years," Renewable Energy, Elsevier, vol. 99(C), pages 465-471.
    5. Thi Long Vy Le & Truong Lam Do & Huu Nhuan Nguyen & Trung Thanh Nguyen, 2023. "Farmland accumulation and rural household income: evidence from the Red River Delta region of Vietnam," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 69(11), pages 458-469.
    6. Busola D. Akintayo & Oluwafemi E. Ige & Olubayo M. Babatunde & Oludolapo A. Olanrewaju, 2023. "Evaluation and Prioritization of Power-Generating Systems Using a Life Cycle Assessment and a Multicriteria Decision-Making Approach," Energies, MDPI, vol. 16(18), pages 1-18, September.
    7. Czajkowski, Mikołaj & Zagórska, Katarzyna & Letki, Natalia & Tryjanowski, Piotr & Wąs, Adam, 2021. "Drivers of farmers’ willingness to adopt extensive farming practices in a globally important bird area," Land Use Policy, Elsevier, vol. 107(C).
    8. Luo, Tao & Khoshnevisan, Benyamin & Huang, Ruyi & Chen, Qiu & Mei, Zili & Pan, Junting & Liu, Hongbin, 2020. "Analysis of revolution in decentralized biogas facilities caused by transition in Chinese rural areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    9. Zheng, Shuxian & Zhou, Xuanru & Tan, Zhanglu & Liu, Chan & Hu, Han & Yuan, Hui & Peng, Shengnan & Cai, Xiaomei, 2023. "Assessment of the global energy transition: Based on trade embodied energy analysis," Energy, Elsevier, vol. 273(C).
    10. Sastre, Carlos M. & Carrasco, Juan & Barro, Ruth & González-Arechavala, Yolanda & Maletta, Emiliano & Santos, Ana M. & Ciria, Pilar, 2016. "Improving bioenergy sustainability evaluations by using soil nitrogen balance coupled with life cycle assessment: A case study for electricity generated from rye biomass," Applied Energy, Elsevier, vol. 179(C), pages 847-863.
    11. Stančin, H. & Mikulčić, H. & Wang, X. & Duić, N., 2020. "A review on alternative fuels in future energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    12. Melindi-Ghidi, Paolo & Dedeurwaerdere, Tom & Fabbri, Giorgio, 2020. "Using environmental knowledge brokers to promote deep green agri-environment measures," Ecological Economics, Elsevier, vol. 176(C).
    13. Chen, Yuche & Zhang, Yunteng & Fan, Yueyue & Hu, Kejia & Zhao, Jianyou, 2017. "A dynamic programming approach for modeling low-carbon fuel technology adoption considering learning-by-doing effect," Applied Energy, Elsevier, vol. 185(P1), pages 825-835.
    14. Cai, Weizi & Zhou, Qian & Xie, Yongmin & Liu, Jiang & Long, Guohui & Cheng, Shuang & Liu, Meilin, 2016. "A direct carbon solid oxide fuel cell operated on a plant derived biofuel with natural catalyst," Applied Energy, Elsevier, vol. 179(C), pages 1232-1241.
    15. Roberto Eloy Hernández Regalado & Jurek Häner & Elmar Brügging & Jens Tränckner, 2022. "Techno-Economic Assessment of Solid–Liquid Biogas Treatment Plants for the Agro-Industrial Sector," Energies, MDPI, vol. 15(12), pages 1-20, June.
    16. Daniele Cocco & Paola A. Deligios & Luigi Ledda & Leonardo Sulas & Adriana Virdis & Gianluca Carboni, 2014. "LCA Study of Oleaginous Bioenergy Chains in a Mediterranean Environment," Energies, MDPI, vol. 7(10), pages 1-24, September.
    17. Zhang, Chen & Sun, Zongxuan, 2017. "Trajectory-based combustion control for renewable fuels in free piston engines," Applied Energy, Elsevier, vol. 187(C), pages 72-83.
    18. Roopnarain, Ashira & Rama, Haripriya & Ndaba, Busiswa & Bello-Akinosho, Maryam & Bamuza-Pemu, Emomotimi & Adeleke, Rasheed, 2021. "Unravelling the anaerobic digestion ‘black box’: Biotechnological approaches for process optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    19. Manzini, Riccardo & Accorsi, Riccardo & Gamberi, Mauro & Penazzi, Stefano, 2015. "Modeling class-based storage assignment over life cycle picking patterns," International Journal of Production Economics, Elsevier, vol. 170(PC), pages 790-800.
    20. M'Arimi, M.M. & Mecha, C.A. & Kiprop, A.K. & Ramkat, R., 2020. "Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:paaero:340070. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/seriaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.