
Quantum Thermodynamics
An introduction to the thermodynamics of quantum information

Online at: https://doi.org/10.1088/2053-2571/ab21c6

https://doi.org/10.1088/2053-2571/ab21c6




Quantum Thermodynamics
An introduction to the thermodynamics of quantum information

Sebastian Deffner
University of Maryland, Baltimore County (UMBC), Baltimore, Maryland, USA

Steve Campbell
Trinity College, Dublin, Ireland

Morgan & Claypool Publishers



Copyright ª 2019 Morgan & Claypool Publishers

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system
or transmitted in any form or by any means, electronic, mechanical, photocopying, recording
or otherwise, without the prior permission of the publisher, or as expressly permitted by law or
under terms agreed with the appropriate rights organization. Multiple copying is permitted in
accordance with the terms of licences issued by the Copyright Licensing Agency, the Copyright
Clearance Centre and other reproduction rights organizations.

Rights & Permissions
To obtain permission to re-use copyrighted material from Morgan & Claypool Publishers, please
contact info@morganclaypool.com.

ISBN 978-1-64327-658-8 (ebook)
ISBN 978-1-64327-655-7 (print)
ISBN 978-1-64327-656-4 (mobi)

DOI 10.1088/2053-2571/ab21c6

Version: 20190701

IOP Concise Physics
ISSN 2053-2571 (online)
ISSN 2054-7307 (print)

A Morgan & Claypool publication as part of IOP Concise Physics
Published by Morgan & Claypool Publishers, 1210 Fifth Avenue, Suite 250, San Rafael, CA,
94901, USA

IOP Publishing, Temple Circus, Temple Way, Bristol BS1 6HG, UK



Quidquid praecipies, esto brevis.
(Horaz, Ars poetica 335)





Contents

Preface ix

Acknowledgments xiii

Author biographies xv

1 The principles of modern thermodynamics 1-1

1.1 A phenomenological theory of heat and work 1-1

1.1.1 The five laws of thermodynamics 1-2

1.1.2 Finite-time thermodynamics and endoreversibility 1-8

1.2 The advent of Stochastic Thermodynamics 1-10

1.2.1 Microscopic dynamics 1-11

1.2.2 Stochastic energetics 1-13

1.2.3 Jarzynski equality and Crooks theorem 1-14

1.3 Foundations of statistical physics from quantum entanglement 1-18

1.3.1 Entanglement assisted invariance 1-19

1.3.2 Microcanonical state from envariance 1-19

1.3.3 Canonical state from quantum envariance 1-21

1.4 Work, heat, and entropy production 1-24

1.4.1 Quantum work and quantum heat 1-24

1.4.2 Quantum entropy production 1-27

1.4.3 Two-time energy measurement approach 1-28

1.4.4 Quantum fluctuation theorem for arbitrary observables 1-33

1.4.5 Quantum entropy production in phase space 1-35

1.5 Checklist for ‘The principles of modern thermodynamics’ 1-37

1.6 Problems 1-37

References 1-38

2 Thermodynamics of quantum systems 2-1

2.1 Quantum thermometry 2-1

2.1.1 Thermometry for harmonic spectra 2-3

2.1.2 Optimal thermometers 2-5

2.2 Quantum heat engines—engines with atomic working fluids 2-6

2.2.1 The Otto cycle: classical to quantum formulation 2-6

2.2.2 A two-level Otto cycle 2-8

2.2.3 Endoreversible Otto cycle 2-12

vii



2.3 Work extraction from quantum systems 2-18

2.3.1 Work extraction from arrays of quantum batteries 2-19

2.3.2 Powerful charging of quantum batteries 2-23

2.4 Quantum decoherence and the tale of quantum Darwinism 2-24

2.4.1 Work, heat, and entropy production for dynamical semigroups 2-24

2.4.2 Entropy production as correlation 2-27

2.4.3 Quantum Darwinism: emergence of classical objectivity 2-29

2.5 Checklist for ‘Thermodynamics of quantum systems’ 2-33

2.6 Problems 2-33

References 2-35

3 Thermodynamics of quantum information 3-1

3.1 Quantum thermodynamics of information 3-2

3.1.1 Thermodynamics of classical information processing 3-2

3.1.2 A quantum sharpening of Landauer’s bound 3-6

3.1.3 New Landauer bounds for nonequilibrium quantum systems 3-8

3.2 Performance diagnostics of quantum annealers 3-10

3.2.1 Fluctuation theorem for quantum annealers 3-11

3.2.2 Experimental test on the D-Wave machine 3-13

3.3 Kibble–Zurek scaling of irreversible entropy 3-14

3.3.1 Fundamentals of the Kibble–Zurek mechanism 3-16

3.3.2 Example: the Landau–Zener model 3-17

3.3.3 Kibble–Zurek mechanism and entropy production 3-18

3.4 Error correction in adiabatic quantum computers 3-21

3.4.1 Quantum error correction in quantum annealers 3-22

3.4.2 Adiabatic quantum computing—a case for shortcuts
to adiabaticity

3-23

3.4.3 Counterdiabatic Hamiltonian for scale-invariant driving 3-25

3.5 Checklist for ‘Thermodynamics of quantum information’ 3-31

3.6 Problems 3-31

References 3-33

Epilogue 4-1

Quantum Thermodynamics

viii



Preface

What is physics? According to standard definitions in encyclopedias physics is a
science that deals with matter and energy and their interactions1. However, as
physicists what is it that we actually do? At the most basic level, we formulate
predictions for how inanimate objects behave in their natural surroundings. These
predictions are based on our expectation that we extrapolate from observations of
the typical behavior. If typical behavior is universally exhibited by many systems of
the same ‘family’, then this typical behavior is phrased as a law.

Take for instance the infamous example of an apple falling from a tree. The same
behavior is observed for any kind of fruit and any kind of tree—the fruit ‘always’ falls
from the tree to the ground.Well, actually the same behavior is observed for any object
that is let loose above the ground, namely everything will eventually fall towards the
ground. It is this observation of universal falling that is encoded in the law of gravity.

Most theories in physics then seek to understand the nitty-gritty details, for which
finer and more accurate observations are essential. Generally, we end up with more
and more fine-grained descriptions of nature that are packed into more and more
sophisticated laws. For instance, from classical mechanics over quantum mechanics
to quantum field theory we obtain an ever more detailed prediction for how smaller
and smaller systems behave.

Realizing this typical mindset of physical theories, it does not come as a big
surprise that many students have such a hard time wrapping their minds around
thermodynamics:

Thermodynamics is a phenomenological theory to describe the average behavior
of heat and work.

As a phenomenological theory, thermodynamics does not seek to formulate detailed
predictions for the microscopic behavior of some physical systems, but rather it aims
to provide the most universal framework to describe the typical behavior of all
physical systems.

‘Reflections on the motive power of fire’. The origins of thermodynamics trace
back to the beginnings of the industrial revolution [6]. For the first time, mankind
started developing artificial devices that contained so many moving parts that it
became practically impossible to describe their behavior in full detail. Nevertheless,
the first devices, steam engines, already proved to be remarkably useful and
dramatically increased the effectiveness of productive efforts.

The founding father of thermodynamics is undoubtedly Sadi Carnot. After
Napoleon had been exiled, France started importing advanced steam engines from
Britain, which made Carnot realize how far France had fallen behind its adversary
from across the channel. Quite remarkably, a small number of British engineers, who
totally lacked any formal scientific education, had started to collect reliable data about
the efficiency of many types of steam engines. However, it was not at all clear whether
there was an optimal design and what the highest efficiency would be.

1 This and similar definitions can be found, for instance, in Merriam-Webster.
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Nicolas Léonard Sadi Carnot:

Everyone knows that heat can produce motion [2].

Carnot had been trained in the latest developments in physics and chemistry, and it
was he who recognized that steam engines need to be understood in terms of their
energy balance. Thus, optimizing steam engines was not only a matter of improving
the expansion and compression of steam, but actually needed an understanding of
the relationship between work and heat [2].

Sadly, Carnotʼs work [2] was largely ignored by the scientific community until the
railroad engineer Émile Clapeyron quoted and generalized Carnotʼs results.
Eventually 30 years later, it was Rudolph Clausius, who put Carnotʼs insight into
a solid mathematical framework [3], which is the same mathematical theory that we
still use today—thermodynamics.

Thus, thermodynamics is not only unique among the theories in physics with
respect to its mindset, but also with respect to its beginnings. No other theory is so
intimately connected with someone never holding an academic position—Sadi
Carnot. Formulating the original ideas was thus largely motivated by practical
questions and not purely by scientific curiosity. This might explain why more than
any other theory, thermodynamics is a framework to describe the typical and
universal behavior of any physical system.

Quantum Thermodynamics
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Richard P Feynman:

Nature isn’t classical, dammit, and if you want to make a simulation of nature, you’d
better make it quantum mechanical, and by golly itʼs a wonderful problem, because it
doesn’t look so easy [4].

Quantum computing—Feynman’s dream come true. A remarkable quote from
Carnotʼs work [2] is the following:

The study of these engines is of the greatest interest, their importance is
enormous, their use is continually increasing, and they seem destined to produce
a great revolution in the civilized world.

If we replaced the word ‘engines’ with ‘quantum computers’, Carnotʼs sentence
would fit nicely into the announcements of the various ‘quantum initiatives’ around
the globe [7].

Ever since Feynmanʼs proposal in the early 1980s [4] quantum computing has
been a promise that could initiate a technological revolution. Over the last couple of
years big corporations, such as Microsoft, IBM and Google, as well as smaller start-
ups, such as D-Wave or Rigetti, have started to present more and more intricate
technologies that promise to eventually lead to the development of a practically
useful quantum computer.

Rather curiously, we are in a very similar situation to that which Carnot found in
the beginning of the 19th century. Novel technologies are being developed by crafty
engineers that are much too complicated to be described in full microscopic detail.
Nevertheless, the question that we are really after is how to operate these
technologies optimally in the sense that the least amount of resources, such as
work and information, are wasted into the environment.

As physicists we know exactly which theory will prevail in the attempt to describe
what is going on, since it is the only theory that is universal enough to be useful when
faced with new challenges—thermodynamics. However, this time the natural
variables can no longer be volume, temperature, and pressure, which are
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characteristic for steam engines. Rather, in Quantum Thermodynamics the first task
has to be to identify the new canonical variables, and then write the dictionary for
how to translate between the universal thermodynamic framework and practically
useful statements for the optimization of quantum technologies.

Purpose and target audience of this book. The purpose of this book is to provide a
concise introduction to the conceptual building blocks of quantum thermodynamics
and their application in the description of quantum systems that process information.
Large parts of this book arose from our lecture notes that we had put together for
graduate classes in statistical physics or for workshops and summer schools dedicated
to quantum thermodynamics. When teaching the various topics of quantum thermo-
dynamics we always felt a bit unsatisfied as no single book contained a comprehensive
overview of all the topics we deemed essential. Earlier monographs have become a bit
outdated, such as Quantum Thermodynamics by our colleagues Gemmer, Michel, and
Mahler [5], or are simply not written as a textbook suited for teaching, such as
Thermodynamics in the Quantum Regime which was edited by Binder et al [1].

Thus, we took it upon ourselves to write a text that we will be using for advanced
special topics classes in our graduate program. Considering graduate statistical
physics and quantum mechanics as prerequisites the topics of the present book can
be covered over the course of a semester. However, as always when designing a new
course it is simply not possible to cover everything that would be interesting. Thus,
we needed to make some tough choices and we hope that our colleagues will forgive
us if they feel their work should have been a more prominent part of this text.

Longum iter est per praecepta, breve et efficax per exempla.
(Seneca Junior, 6th letter)

Sebastian Deffner
Baltimore, Maryland, USA

Steve Campbell
Dublin, Ireland
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Chapter 1

The principles of modern thermodynamics

Thermodynamics is a phenomenological theory to describe the average behavior of
heat and work. Its theoretical framework is built upon five axioms, which are
commonly called the laws of thermodynamics. Thus, as an axiomatic theory,
thermodynamic can never be wrong as long as its basic assumptions are fulfilled.

Despite thermodynamics’ unrivaled success, versatility, and universality, it is
plagued with three major shortcomings: (i) thermodynamics contains no micro-
scopic information, nor does thermodynamics know how to relate its phenomeno-
logical framework to microscopic information; (ii) as an equilibrium theory,
thermodynamics cannot characterize nonequilibrium states, and in particular only
infinitely slow, quasistatic processes are fully describable; and (iii) as a classical
theory the original mathematical framework is ill-equipped to be directly applied to
quantum systems.

In the following we will briefly summarize the major building blocks of
thermodynamics in section 1.1, and its extension to stochastic thermodynamics in
section 1.2. We will then see how equilibrium states can be fully characterized from a
quantum information theoretic point of view in section 1.3, which we will use as a
motivation to outline the framework of quantum thermodynamics in section 1.4.

1.1 A phenomenological theory of heat and work
Thermodynamics was originally invented to describe and optimize the working
principles of steam engines. Therefore, its natural quantities are work and heat.
During the operation of such engines, work is understood as the useful part of the
energy, whereas heat quantifies the waste into the environment.

In reality, steam engines are messy, stinky, and huge (cf figure 1.1), which makes
any attempt to describe their properties from a microscopic theory futile.
Thermodynamics takes a very different perspective: rather than trying to understand
all the nitty-gritty details, let’s focus on the overall, average behavior once the engine
is running smoothly—once it has reached its stationary state of operation.

doi:10.1088/2053-2571/ab21c6ch1 1-1 ª Morgan & Claypool Publishers 2019
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1.1.1 The five laws of thermodynamics

The framework of thermodynamics is built upon five laws, which axiomatically
paraphrase ordinary experience and observation of nature. The central notion is
equilibrium, and the central focus is on transformations of systems from one state of
equilibrium to another.

Zeroth law of thermodynamics
The zeroth law of thermodynamics defines a state of equilibrium of a system relative
to its environment. In its most common formulation it can be expressed as:

If two systems are in thermal equilibrium with a third system, then they are in
thermal equilibrium with each other.

States of equilibrium are uniquely characterized by an equation of state, which
relates the experimentally accessible parameters. For a steam engine these param-
eters are naturally given by volume V, pressure P, and temperature T. A sometimes
under-appreciated postulate is then that all equilibria can be fully characterized by
only three accessible parameters, of which only two are independent. The equation
of state determines how these parameters are related to each other,

=f V P T( , , ) 0, (1.1)

Figure 1.1. Paradigmatic thermodynamic engine: first operational Diesel test engine (M.A.N. museum in
Augsburg, Germany).

Quantum Thermodynamics
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where the function f is characteristic for the system. For instance for an ideal gas
equation (1.1) becomes the famous =PV Nk TB , where N is the number of particles
and kB is Boltzmann’s constant.

Thermodynamic manifolds and reversible processes
Mathematically speaking the equation of state (1.1) defines 2–1 maps, which allow
one of the parameters to be written as a function of the other two, V P T( , ) or
P V T( , ) or T V P( , ). Except under very special circumstances we regard f as a
continuous differentiable function1. Thus, the equation of state can be represented as
a smooth surface in three-dimensional space.

All equilibrium states for a specific substance are points on this surface. All
thermodynamic transformations are processes that take the system from one point on
the surface to another, cf figure 1.2.

In what follows we will see that only quasistatic processes are fully describable by
means of thermodynamics. Quasistatic processes are so slow that the driven systems
almost instantaneously relax back to equilibrium. Thus, such processes can be
regarded as successions of equilibrium states, which correspond to paths on the
surface spanned by the equation of state. Since the surface is smooth, i.e. continuous
differentiable, the path cannot have any distinct directionality and this is why we call
quasistatic processes that lie entirely in the thermodynamic manifold reversible.

All real processes happen in finite time and at finite rates. Such processes necessarily
comprise of nonequilibrium states, and paths corresponding to such processes have to
leave the thermodynamic surface. Our goal has to be to quantify this irreversibility,
which is the starting point of stochastic thermodynamics, see section 1.2

Figure 1.2. Thermodynamic manifold for an ideal gas with =PV Nk TB , and a reversible state transformation
(blue) and an irreversible process with the same end points (purple).

1At loci where f is not continuous differentiable, we have a so-called phase transitions.
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Rudolf J E Clausius:

… as I hold it better to borrow terms for important magnitudes from the ancient
languages, so that they may be adopted unchanged in all modern languages, I propose to
call [it] the entropy of the body, from the Greek word ‘trope’ for ‘transformation’ I have
intentionally formed the word ‘entropy’ to be as similar as possible to the word ‘energy’;
for the two magnitudes to be denoted by these words are so nearly allied in their physical
meanings, that a certain similarity in designation appears to be desirable [4].

First law of thermodynamics
Before we move on to extensions of thermodynamics, however, we need to establish
a few more concepts and notions. In classical mechanics the central concept is the
energy of the system, since the complete dynamical behavior can be derived from it.
We also know from classical mechanics that in isolated systems the energy is
conserved, and that transformations of energy can depend on the path taken by the
system—think for instance of friction.

This leads naturally to the insight that

đ đ= +dE W Q, (1.2)

where E is the internal energy,W the work, andQ denotes the heat. In equation (1.2)
work, đW , is identified with the contribution to the change in internal energy that
can be controlled, whereas đQ denotes the amount of energy that is exchanged with a
potentially vast bath. Moreover, dE is an exact differential, which means that
changes of the internal energy do not depend on which path is taken on the
thermodynamic manifold. This makes sense, since we would expect energy to be
only dependent on the state of the system, and not how the system has reached a
state. In other words, E is a state function.

Quantum Thermodynamics
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Already in classical mechanics, work is a very different concept. Loosely speaking
work is given by a force along a trajectory, which clearly depends on the path a
system takes and which explains why đW is a non-exact differential. We can further
identify infinitesimal changes in work as

đ = −W P dV , (1.3)

which is fully analogous to classical mechanics. The other quantity, the one that
quantifies the useless change of internal energy, the part that is typically wasted into
the environment, the heat Q has no equivalent in classical mechanics. It is rather
characterized and specified by the second law of thermodynamics.

Second law of thermodynamics
Let us inspect the first law of thermodynamics as expressed in equation (1.2). If dE is
an exact differential, and đW is a non-exact differential, then đQ also has to be non-
exact. However, it is relatively simple to understand from its definition how đW can
be written in terms of an exact differential. It is the force that depends on the path
taken, yet the path length has to be an exact differential—if you walk a closed loop
you return to your point of origin with certainty.

Finding the corresponding exact differential, i.e. the line element for đQ was a
rather challenging task. A first account goes back to Clausius who realized [4] that

∮ đ ⩽Q
T

0 (1.4)

where T is the temperature of the substance undergoing the cyclic, thermodynamic
transformation. Moreover, the inequality in equation (1.4) becomes an equality for
quasistatic processes. Thus, it seems natural to define a new state function, S, for
reversible processes through

đ≡dS
Q

T
(1.5)

and that is known as thermodynamic entropy.
To get a better understanding of this quantity consider a thermodynamic process

that takes a system from a point A on the thermodynamic manifold to a point B.
Now imagine that the system is taken from A to B along a reversible path, and it
returns from B to A along an irreversible path. For such a cycle, the latter two
equations give combined,

∫ đΔ ⩾→S
Q

T
, (1.6)A B

A

B

which is known as the Clausius inequality.
The Clausius inequality (1.6) is an expression of the second law of thermo-

dynamics. More generally, the second law is a collection of statements that at their
core express that the entropy of the Universe is a non-decreasing function of time,

Δ ⩾S 0. (1.7)Universe
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The most prominent, and also the oldest expressions of the second law of
thermodynamics are formulated in terms of cyclic processes. The Kelvin–Planck
statement asserts that

no process is possible whose sole result is the extraction of energy from a heat
bath, and the conversion of all that energy into work.

The Clausius statement reads,

no process is possible whose sole result is the transfer of heat from a body of
lower temperature to a body of higher temperature.

Finally, the Carnot statement declares that

no engine operating between two heat reservoirs can be more efficient than a
Carnot engine operating between those same reservoirs.

These formulations refer to processes involving the exchange of energy among
idealized subsystems: one or more heat reservoirs; a work source—for example, a
mass that can be raised or lowered against gravity; and a device that operates in
cycles and affects the transfer of energy among the other subsystems. All three
statements follow from simple entropy-balance analyses and offer useful, logically
transparent reference points as one navigates the application of the laws of
thermodynamics to real systems.

Third law of thermodynamics
The third law of thermodynamics, or the Nernst theorem, paraphrases that in
classical systems the entropy vanishes in the limit of →T 0. A little more precisely,
the Nernst theorem states that as absolute zero of the temperature is approached, the
entropy change ΔS for a chemical or physical transformation approaches 0,

Δ =
→

Slim 0. (1.8)
T 0

It is interesting to note that this equation is a modern statement of the theorem.
Nernst often used a form that avoided the concept of entropy, since, e.g. for
quantum mechanical systems the validity of equation (1.8) is somewhat
questionable.

Fourth law of thermodynamics
The fourth law of thermodynamics takes the first step away from a mere equilibrium
theory. In reality, few systems can ever be found in isotropic and homogeneous
states of equilibrium. Rather, physical properties vary as functions of space ⃗r and
time t.
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Nevertheless, it is frequently not such a bad approximation to assume that a
thermodynamic system is in a state of local equilibrium. This means that for any
point in space and time, the system appears to be in equilibrium, yet thermodynamic
properties vary weakly on macroscopic scales. In such situations we can introduce
the local temperature, ⃗T r t( , ), the local density, ⃗n r t( , ), and the local energy density,
⃗e r t( , ). The question now is, what general and universal statements can be made

about the resulting transport driven by local gradients of the thermodynamic
variables?

The clearest picture arises if we look at the dynamics of the local entropy, ⃗s r t( , ).
We can write

∑= ∂
∂

ds
dt

s
X

dX
dt

, (1.9)
k k

k

where X{ }k k is a set of extensive parameters that vary as a function of time. The time-
derivative of these Xk define the thermodynamic fluxes

≡J
dX
dt

(1.10)k
k

and the variation of the entropy as a function of the Xk are the thermodynamic forces
or affinities, Fk. In short, we have

∑=ds
dt

F J . (1.11)
k

k k

This means that the rate of entropy production is the sum of products of each flux
with its associated affinity.

It should not come as a surprise that equation (1.11) is conceptually interesting,
but practically of rather limited applicability. The problem is that generally the
fluxes are complicated functions of all forces and local gradients, …J F F( , , )k 0 1 . A
simplifying case is a purely resistive system, for which by definition the local flux
only depends on the instantaneous local affinities. For small affinities, i.e. if the
system is in local equilibrium, Jk can be expanded in Fk. In leading order we have,

∑=J L F , (1.12)
j

k j k j,

where the kinetic coefficients Lj k, are given by

≡ ∂
∂

=

L
J
F

, (1.13)j k
k

j F

,

0j

with =F 0j in equilibrium.
The Onsager theorem [39], which is also known as the fourth law of thermo-

dynamics, now states

=L L . (1.14)j k k j, ,
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Lars Onsager:

Now if we look at the condition of detailed balancing from the thermodynamic point of
view, it is quite analogous to the principle of least dissipation [40].

This means that the matrix of kinetic coefficients is symmetric. Therefore, to a
certain degree equation (1.14) is a thermodynamic equivalent of Newton’s third law.
This analogy becomes even clearer if we interpret equation (1.12) as a thermo-
dynamic equivalent of Newton’s second law.

It is interesting to consider when the above considerations break down.
Throughout this little exercise we have explicitly assumed that the considered
system is in a state of local equilibrium. This is justified as long as the flux and
affinities are small. Consider, for instance, a system with a temperature gradient. For
small temperature differences the flow is laminar, and the Onsager theorem (1.14) is
expected to hold. For large temperature differences the flow becomes turbulent, and
the fluxes can no longer be balanced.

1.1.2 Finite-time thermodynamics and endoreversibility

A standard exercise in thermodynamics is to compute the efficiency of cycles, i.e. to
determine the relative work output for devices undergoing cyclic transformations on
the thermodynamic manifold. However, all standard cycles, such as the Carnot,
Otto, Diesel, cycles, etc, have in common that they are comprised of only quasistatic
state transformations, and hence their power output is strictly zero.

This insight led Curzon and Ahlborn to ask a slightly different, yet a lot more
practical question [7]: ‘What is the efficiency of a Carnot engine at maximal power
output?’Obviously such a cycle can no longer be reversible, but we still would like to
be able to use the methods and notions from thermodynamics. This is possible if one
takes the aforementioned idea of local equilibrium one step further.

Imagine a device, whose working medium is in thermal equilibrium at temper-
ature Tw, but there is a temperature gradient over its boundaries to the environment
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at temperature T. A typical example is a not perfectly insulating thermo-can. Now
let us now imagine that the device is slowly driven through a cycle, where slow
means that the working medium remains in a local equilibrium state at all instants.
However, we will also assume that the cycle operates too fast for the working
medium to ever equilibrate with the environment, and thus from the point of view of
the environment the device undergoes an irreversible cycle. Such state transforma-
tions are called endoreversible, which means that locally the transformation is
reversible, but globally irreversible.

This idea can then be applied to the Carnot cycle, and we can determine its
endoreversible efficiency. The standard Carnot cycle consists of two isothermal
processes during which the systems absorbs/exhausts heat and two thermodynami-
cally adiabatic, i.e. isentropic strokes. Since the working medium is not in
equilibrium with the environment, we will have to modify the treatment of the
isothermal strokes. The adiabatic strokes constitute no exchange of heat, and thus
they do not need to be re-considered.

During the hot isotherm the working medium is assumed to be a little cooler than
the environment. Thus, during the whole stroke the system absorbs the heat

κ τ= −Q T T( ), (1.15)h h h h hw

where τh is the time the isotherm needs to complete and κh is a constant depending on
thickness and thermal conductivity of the boundary separating working medium and
environment. Note that equation (1.15) is nothing else but a discretized version of
Fourier’s law for heat conduction.

Similarly, during the cold isotherm the system is a little warmer than the cold
reservoir. Hence, the exhausted heat becomes

κ τ= −Q T T( ) (1.16)c c c cw c

where κc is the heat transfer coefficient for the cold reservoir.
As mentioned above, the adiabatic strokes are unmodified, but we note that the

cycle is taken to be reversible with respect to the local temperatures of the working
medium. Hence, we can write

Δ = −Δ =S S
Q

T

Q

T
and thus . (1.17)h c

h

hw

c

cw

The latter will be useful to relate the stroke times τh and τc to the heat transfer
coefficients κh and κc.

We are now interested in determining the efficiency at maximal power. To this
end, we write the power output of the cycle as

δ δ
ζ τ τ

=
−
+

P T T
Q Q

( , )
( )

(1.18)h c
h c

h c

where δ = −T T Th h hw and δ = −T T Tc cw c. In equation (1.18) we introduced the total
cycle time ζ τ τ+( )h c . This means we suppress any explicit dependence of the analysis
on the lengths of the adiabatic strokes and exclusively focus on the isotherms, i.e. on
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the temperature difference between the working medium and the hot and cold
reservoirs.

It is then a simple exercise to find the maximum of δ δP T T( , )h c as a function of δTh
and δTc. After a few lines of algebra one obtains [7]

⎛
⎝⎜

⎞
⎠⎟

κ κ
ζ κ κ

=
−
+

P
T T

, (1.19)h c h c

h c
max

2

where the maximum is assumed for

δ
κ κ

δ
κ κ

=
−
+

=
−

+
T

T

T T T
T

T T1 /

1 /
and

/ 1

1 /
. (1.20)h

h

c h

h c

c

c

h c

c h

From these expressions we can now compute the efficiency. We have,

η δ
δ

=
−

= − = − +
−

Q Q

Q
T
T

T T
T T

1 1 (1.21)h c

h

cw

hw

c c

h h

where we used equation (1.17). Thus, the efficiency of an endoreversible Carnot
cycle at maximal power output is given by

η = − T
T

1 , (1.22)CA
c

h

which only depends on the temperatures of the hot and cold reservoirs.
The Curzon–Ahlborn efficiency is one of the first results that illustrate that

(i) thermodynamics can be extended to treat nonequilibrium systems, and that
(ii) also far from thermal equilibrium universal and mathematically simple relations
govern the thermodynamic behavior. In the following we will analyze this observa-
tion a little more closely and see how universal statements arise from the nature of
fluctuations.

1.2 The advent of Stochastic Thermodynamics
Relatively recently, Evans and co-workers [15] discovered an unexpected symmetry
in the simulation of sheared fluids. In small systems the dynamics is governed by
thermal fluctuations and, thus, also thermodynamic quantities such as heat and
work fluctuate. Remarkably, single fluctuations can be at variance with the macro-
scopic statements of the second law. For instance, the change of entropy can be
negative, or the performed work amounts to less than the free energy difference.
Nevertheless, the probability distribution for the thermodynamic observables fulfills
a symmetry relation, which has become known as fluctuation theorem.

In its most general form the fluctuation theorem relates the probability to find a
negative entropy production Σ with the probability of the positive value,

P
P
Σ = −
Σ =

= −A
A

A
( )
( )

exp( ). (1.23)
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Using Jensen’s inequality for exponentials, −〈 〉 ⩾ 〈 − 〉x xexp( ) exp( ) , equation (1.23),
immediately implies that

〈Σ〉 ⩾ 0, (1.24)

which is a variation of the Clausius inequality (1.6). Therefore, the fluctuation
theorem can be interpreted as a generalization of the second law to systems far
from equilibrium. For the average entropy production we retrieve the ‘old’
statements. However, we also have that negative fluctuations of the entropy
production do occur—they are just exponentially unlikely.

The first rigorous proof of the fluctuation theorem was published by Gallavotti
and Cohen in 1995 [17], which was quickly generalized to Langevin dynamics [32]
and general Markov processes [35].

The discovery of the fluctuation theorems has effectively opened a new area of
thermodynamics, which adopted the name Stochastic Thermodynamics. Rather than
focusing on describing macroscopic systems in equilibrium, stochastic thermo-
dynamics is interested in the thermodynamic behavior of small systems that operate
far from thermal equilibrium and whose dynamics are governed by fluctuations.
Since quantum systems obviously fall into this class, we will briefly summarize the
major achievements for classical systems that laid the ground work for what we will
eventually be interested in—the thermodynamics of quantum systems.

1.2.1 Microscopic dynamics

To fully understand and appreciate the fluctuation theorem (1.23) we continue by
briefly outlining the most important descriptions of random motion. Generally there
are two distinct approaches: (i) explicitly modeling the dynamics of a stochastic
observable, or (ii) describing the dynamics of the probability density function of a
stochastic variable. Among the many variations of these two approaches the
conceptually simplest notions are the Langevin equation and the Klein–Kramers
equation.

Langevin equation
In 1908 Paul Langevin, a French physicist, proposed a powerful description of
Brownian motion [34, 36]. The Langevin equation is a Newtonian equation of
motion for a single Brownian particle driven by a stochastic force modeling the
random kicks from the environment,

γ ξ¨ + ˙ + ′ =mx m x V x t( ) ( ). (1.25)

Here, m denotes the mass of the particle, γ is the damping coefficient and
′ = ∂V x V x( ) ( )x is a conservative force from a confining potential. The stochastic

force, ξ t( ) describes the randomness in a small, but open system due to thermal
fluctuations. In the simplest case, ξ t( ) is assumed to be Gaussian white noise, which
is characterized by,

ξ ξ ξ δ〈 〉 = 〈 〉 = −t t s D t s( ) 0 and ( ) ( ) 2 ( ), (1.26)
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whereD is the diffusion coefficient. Despite its apparently simple form, the Langevin
equation (1.25) exhibits several mathematical peculiarities. How to properly handle
the stochastic force, ξ t( ), led to the study of stochastic differential equations, for
which we refer to the literature [45].

It is interesting to note that the Langevin equation (1.25) is equivalent to
Einstein’s treatment of Brownian motion [14]. This can be seen by explicitly deriving
the fluctuation–dissipation theorem from equation (1.25).

Fluctuation–dissipation theorem
The Langevin equation (1.25) for the case of a free particle, =V x( ) 0, can be
expressed in terms of the velocity v = ẋ as,

v vγ ξ˙ + =m m t( ). (1.27)

The solution of the latter first-order differential equation (1.27) reads,

v v ∫γ ξ γ= − + − −t
m

ds s t sexp( )
1

( ) exp( ( )), (1.28)t

t

0
0

where v0 is the initial velocity. Since the Langevin force is of vanishing mean (1.26),
the averaged solution v〈 〉t becomes,

v v γ〈 〉 = − texp( ). (1.29)t 0

Moreover, we obtain for the mean-square velocity vt
2 ,

v v ∫
∫

γ

γ γ ξ ξ

= − +

× − − − − 〈 〉

t
m

ds

ds t s t s s s

exp( 2 )
1

exp( ( )) exp( ( )) ( ) ( ) .
(1.30)

t

t

t

2
0
2

2 0
1

0
2 1 2 1 2

With the help of the correlation function (1.26) the twofold integral can be written in
closed form and, thus, equation (1.30) becomes,

v v γ
γ

γ= − + − −t
D
m

texp( 2 ) (1 exp( 2 )). (1.31)t
2

0
2

2

In the stationary state for γ ≫t 1, the exponentials become negligible and the mean-
square velocity (1.31) further simplifies to,

v
γ

= D
m

. (1.32)t
2

2

However, we also know from kinetic gas theory [2] that in equilibrium v β= m1/t
2

where we introduce the inverse temperature, β = k T1/ B . Thus, we finally have

γ
β

=D
m

, (1.33)

which is the fluctuation–dissipation theorem.
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Klein–Kramers equation
The Klein–Kramers equation is an equation of motion for distribution functions in
position and velocity space, which is equivalent to the Langevin equation (1.25), see
also [45]. For a Brownian particle in one dimension it takes the form,

⎛
⎝⎜

⎞
⎠⎟v v v

v
v v v

v
v

γ

γ
β

∂
∂

= − ∂
∂

+ ∂
∂

′ +

+ ∂
∂

t
P x t

x
P x t

V x
m

P x t P x t

m
P x t

( , , ) ( ( , , ))
( )

( , , ) ( , , )

( , , ).
(1.34)

2

2

Note that by construction the stationary solution of the Klein–Kramers equation
(1.34) is the Boltzmann–Gibbs distribution, β β∝ − −P mv Vexp( /2 )eq

2 . The main
advantage of the Klein–Kramers equation (1.34) over the Langevin equation (1.25)
is that we can compute the entropy production directly, which we will exploit shortly
for quantum systems in section 1.4.5.

1.2.2 Stochastic energetics

An important step towards the discovery of the fluctuation theorems (1.23) was
Sekimoto’s insight that thermodynamic notions can be generalized to single particle
dynamics [46]. To this end, consider the overdamped Langevin equation

γ ξ λ= − − ˙ + + ∂m x dx V x dx0 ( ) ( , ) , (1.35)t x

where we separated contributions stemming from the interaction with the environ-
ment and mechanical forces. Here and in the following, λ is an external control
parameter, whose variation drives the system.

Generally, a change in internal energy of a single particle is comprised of changes
in kinetic and potential energy. In the overdamped limit, however, one assumes that
the momentum degrees of freedom equilibrate much faster than any other time-scale
of the dynamics. Thus, the kinetic energy is always at its equilibrium value, and thus
a change in internal energy, de, for a single trajectory, x, is given by

λ λ λ λ λ= = ∂ + ∂λde x dV x V x dx V x d( , ) ( , ) ( , ) ( , ) . (1.36)x

Further, identifying the heat with the external terms in equation (1.35), which are
governed by the damping and the noise, we can write

γ ξ= − ˙ +dq x m x dx( ) ( ) . (1.37)t

Thus, we obtain a stochastic, microscopic expression of the first law (1.2)

λ λ λ= − + − ∂λdq x de x V x d0 ( ) ( , ) ( , ) , (1.38)

which uniquely defines the stochastic work for a single trajectory,

λ λ= ∂λdw x V x d( ) ( , ) . (1.39)
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Christopher Jarzynski:

If we shift our focus away from equilibrium states, we find a rich universe of
nonequilibrium behavior [29].

Note that the work increment, dw, is given by the partial derivative of the potential
with respect to the externally controllable work parameter, λ.

1.2.3 Jarzynski equality and Crooks theorem

The stochastic work increment dw x( ) uniquely characterizes the thermodynamics of
single Brownian particles. However, since dw x( ) is subject to thermal fluctuations
none of the traditional statements of the second law can be directly applied and, in
particular, there is no maximum work theorem for dw x( ). Therefore, special interest
has to be on the distribution of P W( ), where ∫=W dw x( ) is the accumulated work
performed during a thermodynamic process.

In the following we will briefly discuss representative derivations of the most
prominent fluctuation theorems, namely the classical Jarzynski equality and the
Crooks theorem, and then the quantum Jarzynski equality in section 1.4.3 and
finally a quantum fluctuation theorem for entropy production in section 1.4.5.

Jarzynski equality
Thermodynamically, the simplest cases are systems that are isolated from their
thermal environment. Realistically imagine, for instance, a small system that is
ultraweakly coupled to the environment. If left alone, the system equilibrates at
inverse temperature β for a fixed work parameter, λ. Then, the time scale of the
variation of the work parameter is taken to be much shorter than the relaxation
time, γ1/ . Hence, the dynamics of the system during the variation of λ can be
approximated by Hamilton’s equations of motion to high accuracy.
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Now, let Γ = ⃗ ⃗q p( , ) denote a microstate of the system, which is a point in the
many-dimensional phase space including all relevant coordinates to specify
the microscopic configurations ⃗q and momenta ⃗p . Further, λΓH ( ; ) denotes the
Hamiltonian of the system and the Klein–Kramers equation (1.34) reduces for γ ≪ 1
to the Liouville equation,

λ∂
∂

Γ = − Γ Γ
t

P t P t H( , ) { ( , ), ( ; )}, (1.40)

where · ·{ , } denotes the Poisson bracket.
We now assume that the system was initially prepared in a Boltzmann–Gibbs

equilibrium state

β λΓ = − Γλ
λ

p
Z

H( )
1

exp( ( ; )), (1.41)eq

with partition function Zλ and Helmholtz free energy, Fλ,

∫ β λ β= Γ − Γ = −λ λ λZ d H F Zexp( ( ; )) and ln . (1.42)

As the system is isolated during the thermodynamic process we can identify the work
performed during a single realization with the change in the Hamiltonian,

λ λ= Γ Γ − Γτ τW H H( ( ); ) ( ; ), (1.43)0 0 0

where Γ Γτ( )0 is a time-evolved point in phase space given that the system started at Γ0.
It is then a simple exercise to derive the Jarzynski equality for Hamiltonian

dynamics [26]. To this end, consider

∫
∫

∫

β β

β λ

β λ

〈 − 〉 = Γ Γ − Γ

= Γ − Γ Γ

= Γ ∂Γ
∂Γ

− Γ

λ

λ
τ τ

λ
τ

τ
τ τ

−

W d p W

Z
d H

Z
d H

exp( ) ( ) exp( ( ))

1
exp( ( ( ); ))

1
exp( ( ; )).

(1.44)

0
eq

0 0

0 0

0

1

0

0

0

Changing variables and using Liouville’s theorem, which ensures conservation of
phase space volume, i.e. ∣∂Γ ∂Γ ∣ =τ

−/ 10
1 , we arrive at,

∫β β λ β〈 − 〉 = Γ − Γ = = − Δ
λ

τ τ τ
λ

λ

τW
Z

d H
Z

Z
Fexp( )

1
exp( ( ; )) exp( ). (1.45)

0 0

The Jarzynski equality (1.45) is one of the most important building blocks of
modern thermodynamics [41]. It can be rightly understood as a generalization of the
second law of thermodynamics to systems far from equilibrium, and it has been
shown to hold in a wide range of classical systems, with weak and strong coupling,
with slow and fast dynamics, with Markovian and non-Markovian noise etc [28].
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Crooks’s fluctuation theorem
The second most prominent fluctuation theorem is the work relation by Crooks
[5, 6]. As before we are interested in the evolution of a thermodynamic system for
times τ⩽ ⩽t0 , during which the work parameter, λt, is varied according to some
protocol. For the present purposes, we now assume that the thermodynamic process
is described as a sequence, Γ Γ … Γ, , , ,N0 1 of microstates visited at times …t t t, , , N0 1

as the system evolves. For the sake of simplicity we assume the time sequence to be
equally distributed, τ=t n N/n , and, implicitly, τΓ = Γτt( ; ) ( ; )N N . Moreover, we
assume that the evolution is a Markov process: given the microstate Γn at time tn,
the subsequent microstate Γ +n 1 is sampled randomly from a transition probability
distribution, P, that depends merely on Γn, but not on the microstates visited at
earlier times than tn [54]. This means that the transition probability to go from Γn to
Γ +n 1 depends only on the current microstate, Γn, and the current value of the work
parameter, λn. Finally, we assume that the system fulfills a local detailed balance
condition [54], namely

λ
λ

β λ
β λ

Γ → Γ′
Γ ← Γ′

= − Γ′
− Γ

P
P

H
H

( ; )
( ; )

exp( ( ; ))
exp( ( ; ))

. (1.46)

When the work parameter, λ, is varied in discrete time steps from λ0 to λ λ= τN ,
the evolution of the system during one time step can be expressed as a sequence,

λ λ λΓ → Γ → Γ+ + +forward: ( , ) ( , ) ( , ). (1.47)n n n n n n1 1 1

In this sequence first the value of the work parameter is updated and, then, a random
step is taken by the system. A trajectory of the whole process between initial, Γ0, and
final microstate, Γτ, is generated by first sampling Γ0 from the initial, Boltzmann–
Gibbs distribution λp eq

0
and, then, repeating equation (1.47) in time increments,

δ τ=t N/ .
Consequently, the net change in internal energy, λ λΔ = Γ − ΓE H H( , ) ( , )N N 0 0 ,

can be written as a sum of two contributions. First, the changes in energy due to
variations of the work parameter,

∑ λ λ= Γ − Γ
=

−

+W H H[ ( ; ) ( ; )], (1.48)
n

N

0

1

n n n n1

and second, changes due to transitions between microstates in phase space,

∑ λ λ= Γ − Γ
=

−

+ + +Q H H[ ( ; ) ( ; )]. (1.49)
n

N

0

1

n n n n1 1 1

As argued by Crooks [5] the first contribution (1.48) is given by an internal change in
energy and the second term (1.49) stems from the interaction with the environment
introducing the random steps in phase space. Thus, equation (1.48) is a natural
definition of stochastic work, and equation (1.49) is the stochastic heat for a single
trajectory.
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The probability to generate a trajectory, Ξ = Γ → … Γ( )N0 , starting in a particular
initial state, Γ0, is given by the product of the initial distribution and all subsequent
transition probabilities,

∏ λΞ = Γ Γ → Γ
=

−

λ + +P p P[ ] ( ) ( ; ), (1.50)
n

N

0

1
F

n n n
eq

0 1 10

where the stochastic independence of the single steps is guaranteed by the Markov
assumption.

Analogously to the forward process, we can define a reverse trajectory with
λ λ← τ( )0 . However, the starting point is sampled from λτ

p eq and the system first takes
a random step and, then, the value of the work parameter is updated,

λ λ λΓ ← Γ ← Γ+ + +reversed: ( , ) ( , ) ( , ). (1.51)n n n n n n1 1 1

Now, we compare the probability of a trajectory Ξ during a forward process, ΞP [ ]F ,
with the probability of the conjugated path, Ξ = Γ ← … Γ† ( )N0 , during the reversed
process, Ξ†P [ ]R . The ratio of these probabilities reads,

∏

∏

λ

λ

Ξ
Ξ

=
Γ Γ → Γ

Γ Γ ← Γ

=

−

=

−

λ

λ

†

+ +

+ − −

( )

( )

P
P

p P

p P

[ ]
[ ]

( ) ;

( ) ;

. (1.52)n

N

n

N
0

1

0

1

F

R

n n n
F

N n n N n
R

eq
0 1 1

eq
1 1

0

1

Here, λ λ λ…{ , , , }F F
N
F

0 1 is the protocol for varying the external work parameter
from λ0 to λτ during the forward process. Analogously, λ λ λ…{ , , , }R R

N
R

0 1 specifies
the reversed process, which is related to the forward process by,

λ λ= − . (1.53)n
R

N n
F

Hence, every factor λΓ → Γ′P( ; ) in the numerator of the ratio (1.52) is matched by
λΓ ← Γ′P( ; ) in the denominator.

In conclusion, equation (1.52) reduces to [5],

βΞ
Ξ

= Ξ − Δ† ( )( )P
P

W F
[ ]
[ ]

exp [ ] , (1.54)
F

R
F

where ΞW [ ]F is the work performed on the system during the forward process.
Forward work, ΞW [ ]F , and reverse work, Ξ†W [ ]R , are related through

Ξ = − Ξ†W W[ ] [ ] (1.55)F R

for a conjugate pair of trajectories, Ξ and Ξ†. The corresponding work distributions,
PF and PR, are then given by an average over all possible realizations, i.e. all discrete
trajectories of the process,

P

P

∫
∫

δ

δ

+ = Ξ Ξ − Ξ

− = Ξ Ξ + Ξ† †

( )

( )

W d P W W

W d P W W

( ) [ ] [ ]

( ) [ ] [ ] ,
(1.56)

F
F F

R
R R
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where Ξ = Ξ = ∏ Γ†d d dn n. Collecting equations (1.54) and (1.56) the work dis-
tribution for the forward processes can be written as

P ∫β δ+ = − Δ Ξ Ξ + Ξ† †( )W W F d P W W( ) exp( ( )) [ ] [ ] , (1.57)F
R R

from which we obtain the Crooks fluctuation theorem [6]

P Pβ− = − − Δ +W W F W( ) exp( ( )) ( ). (1.58)R F

It is interesting to note that the Crooks theorem (1.58) is a detailed version of the
Jarzynski equality (1.45), which follows from integrating equation (1.58) over the
forward work distribution,

P P∫ ∫ β

β

= − = − − Δ +

= 〈 − − Δ 〉

dW W dW W F W

W F

1 ( ) exp( ( )) ( )

exp( ( )) .
(1.59)R F

F

Note, however, that the Crooks theorem (1.58) is only valid for Markovian
processes [27], whereas the Jarzynski equality can also be shown to hold for non-
Markovian dynamics [48].

1.3 Foundations of statistical physics from quantum entanglement
In the preceding section we implicitly assumed that there is a well-established theory
if and how physical systems are described in a state of thermal equilibrium. For
instance, in the treatment of the Jarzynski equality (1.45) and the Crooks fluctuation
theorem (1.58) we assumed that the system is initially prepared in a Boltzmann–
Gibbs distribution. In standard textbooks of statistical physics this description of
canonical thermal equilibria is usually derived from the fundamental postulate,
Boltzmann’s H-theorem, the ergodic hypothesis, or the maximization of the
statistical entropy in equilibrium [2, 52]. However, none of these concepts are
particularly well-phrased for quantum systems.

It is important to realize that statistical physics was developed in the XIX century,
when the fundamental physical theory was classical mechanics. Statistical physics
was then developed to translate between microstates (points in phase space) and
thermodynamic macrostates (given by temperature, entropy, pressure, etc). Since
microstates and macrostates are very different notions, a new theory became
necessary that allows one to ‘translate’ with the help of fictitious, but useful,
concepts such as ensembles. However, ensembles consisting of infinitely many copies
of the same system seem rather ill-defined from the point of view of a fully quantum
theory.

Only relatively recently this conceptual problem was repaired by showing that the
famous representations of microcanonical and canonical equilibria can be obtained
from a fully quantum treatment—from symmetry considerations of entanglement
[12]. This novel approach to the foundations of statistical mechanics relies on
entanglement assisted invariance or in short on envariance [59–61].
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In the following we summarize the main conceptual steps that were originally
published in reference [12].

1.3.1 Entanglement assisted invariance

Consider a quantum system, S , which is maximally entangled with an environment,
E , and let SEψ∣ 〉 denote the composite state in S E⊗ . Then SEψ∣ 〉 is called envariant
under a unitary map S S E= ⊗ U u if and only if there exists another unitary
E S E= ⊗U u such that,

S SE S E SE SE

E SE S E SE SE

ψ ψ η
η η ψ
∣ 〉 = ⊗ ∣ 〉 = ∣ 〉
∣ 〉 = ⊗ ∣ 〉 = ∣ 〉





U u

U u

( )

( ) .
(1.60)

Thus, EU that does not act on S ‘does the job’ of the inverse map of SU on S—assisted
by the environment E .

The principle is most easily illustrated with a simple example. Suppose S and E are
each given by two-level systems, where S S∣↑〉 ∣↓〉{ , } are the eigenstates of S and

E E∣↑〉 ∣↓〉{ , } span E . Now, further assume SE S E S Eψ∣ 〉 ∝ ∣↑〉 ⊗ ∣↑〉 + ∣↓〉 ⊗ ∣↓〉 and SU is a
swap in S—it ‘flips’ its spin. Then, we have

The action of SU on SEψ∣ 〉 can be restored by a swap, EU , on E ,

Thus, the swap EU on E restores the pre-swap SEψ∣ 〉 without ‘touching’ S , i.e. the
global state is restored by solely acting on E . Consequently, local probabilities of the
two swapped spin states are both exchanged and unchanged. Hence, they have to be
equal. This provides the fundamental connection of quantum states and prob-
abilities [59], and leads to Born’s rule [60].

Recent experiments in quantum optics [23, 56] and on IBM’s Q Experience [9]
have shown that envariance is not only a theoretical concept, but a physical reality.
Thus, envariance is a valid and purely quantum mechanical concept that we can use
as a stepping stone to motivate and derive quantum representations of thermo-
dynamic equilibrium states.

1.3.2 Microcanonical state from envariance

We begin by considering the microcanonical equilibrium. Generally, thermo-
dynamic equilibrium states are characterized by extrema of physical properties,
such as maximal phase space volume, maximal thermodynamic entropy, or maximal
randomness [53]. We will define the microcanonical equilibrium as the quantum
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state that is ‘maximally envariant’, i.e. envariant under all unitary operations on S .
To this end, we write the composite state SEψ∣ 〉 in Schmidt decomposition [38],

SE ∑ψ ε∣ 〉 = ∣ 〉 ⊗ ∣ 〉a s , (1.63)
k

k k k

where by definition ∣ 〉s{ }k and ε∣ 〉{ }k are orthocomplete in S and E , respectively. The
task is now to identify the ‘special’ state that is maximally envariant.

It has been shown [60] that SEψ∣ 〉 is envariant under all unitary operations if and
only if the Schmidt decomposition is even, i.e. all coefficients have the same absolute
value, ∣ ∣ = ∣ ∣a ak l for all l and k. We then can write,

SE ∑ψ ϕ ε∣ 〉 ∝ ∣ 〉 ⊗ ∣ 〉( )i sexp , (1.64)
k

k k k

where ϕk are phases. Recall that in classical statistical mechanics equilibrium
ensembles are identified as the states with the largest corresponding volume in
phase space [53]. In the present context this ‘identification’ readily translates into an
equilibrium state that is envariant under the maximal number of, i.e. all unitary
operations.

To conclude the derivation we note that the microcanonical state is commonly
identified as the state that is also fully energetically degenerate [2]. To this end,
denote the Hamiltonian of the composite system by

SE E S E= ⊗ + ⊗ H H H . (1.65)

Then, the internal energy of S is given by the quantum mechanical average

SE E SE ∑ψ ψ= ⊗ ∣ 〉 =E H s H s Z( ) / , (1.66)
k

k k mic

where Zmic is the energy-dependent dimension of the Hilbert space of S , which is
commonly also called the microcanonical partition function [2]. Since SEψ∣ 〉 (1.66) is
envariant under all unitary maps we can assume without loss of generality that

=s{ }k k
Z

1
mic is a representation of the energy eigenbasis corresponding to H, and we have

〈 ∣ ∣ 〉 =s H s ek k k with = = ′E e ek k for all ′ ∈ …k k Z, {1, , }mic .
Therefore, we have identified the fully quantum mechanical representation of the

microcanonical state by two conditions. Note that in our framework the micro-
canonical equilibrium is not represented by a unique state, but rather by an
equivalence class of all maximally envariant states with the same energy: the state
representing the microcanonical equilibrium of a system S with Hamiltonian H is
the state that is (i) envariant under all unitary operations on S and (ii) fully
energetically degenerate with respect to H.

Reformulation of the fundamental statement
Before we continue to rebuild the foundations of statistical mechanics using
envariance, let us briefly summarize and highlight what we have achieved so far.
All standard treatments of the microcanonical state relied on notions such as
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probability, ergodicity, ensemble, randomness, indifference, etc. However, in the
context of (quantum) statistical physics none of these expressions are fully well-
defined. Indeed, in the early days of statistical physics seminal researchers such as
Maxwell and Boltzmann struggled with the conceptual difficulties [53]. Modern
interpretation and understanding of statistical mechanics, however, was invented by
Gibbs, who simply ignored such foundational issues and made full use of the concept
of probability.

In contrast, in this approach we only need a quantum symmetry induced by
entanglement—envariance—instead of relying on mathematically ambiguous con-
cepts. Thus, we can reformulate the fundamental statement of statistical mechanics
in quantum physics:

The microcanonical equilibrium of a system S with Hamiltonian H is a fully
energetically degenerate quantum state envariant under all unitaries.

We will further illustrate this fully quantum mechanical approach to the foundations
of statistical mechanics by also treating the canonical equilibrium.

1.3.3 Canonical state from quantum envariance

Let us now imagine that we can separate the total system S into a smaller subsystem
of interestS and its complement, which we call heat bathB. The Hamiltonian of S
can then be written as

S B S B S B= ⊗ + ⊗ + H H H h , (1.67),

where S Bh , denotes an interaction term. Physically this term is necessary to facilitate
exchange of energy between theS and the heat bathB. In the following, however,
we will assume that S Bh , is sufficiently small so that we can neglect its contribution
to the total energy, S B= +E E E , and its effect on the composite equilibrium state

SEψ∣ 〉. These assumptions are in complete analogy to the ones of classical statistical
mechanics [2, 52] and it is commonly referred to as ultraweak coupling [49].

Under these assumptions every composite energy eigenstate ∣ 〉sk can be written as
a product,

s b∣ 〉 = ∣ 〉 ⊗ ∣ 〉s , (1.68)k k k

where the states s∣ 〉k and b∣ 〉k are energy eigenstates inS andB, respectively. At this
point envariance is crucial in our treatment: all orthonormal bases are equivalent
under envariance. Therefore, we can choose ∣ 〉sk as energy eigenstates of H.

For the canonical formalism we are now interested in the number of states
accessible to the total system S under the condition that the total internal energy E
(1.66) is given and constant. When the subsystem of interest,S, happens to be in a
particular energy eigenstate s∣ 〉k then the internal energy of the subsystem is given by
the corresponding energy eigenvalue ek. Therefore, for the total energy E to be
constant, the energy of the heat bath, BE , has to obey,
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e eB = −E E( ) . (1.69)k k

This condition can only be met if the energy spectrum of the heat reservoir is at least
as dense as the one of the subsystem.

The number of states, N e( )k , accessible to S is then given by the fraction

N e
N e

N

B

S
= −E

E
( )

( )
( )

, (1.70)k
k

where NS E( ) is the total number of states in S consistent with equation (1.66), and
N eB −E( )k is the number of states available to the heat bath, B, determined by
condition (1.69). In other words, we are asking for nothing else but the degeneracy in
B corresponding to a particular energy state of the system of interest s∣ 〉k .

Example: composition of multiple qubits
The idea is most easily illustrated with a simple example, before we derive the
general formula in the following paragraph. Imagine a system of interest, S, that
interacts with N non-interacting qubits with energy eigenstates ∣ 〉0 and ∣ 〉1 and
corresponding eigenenergies Be0 and Be1 . Note once again that the composite states
∣ 〉sk can always be chosen to be energy eigenstates, since the even composite state

SEψ∣ 〉 (1.64) is envariant under all unitary operations on S .
We further assume the qubits to be non-interacting. Therefore, all energy

eigenstates can be written in the form

� ��� ���s δ δ δ∣ 〉 = ∣ 〉 ⊗ ⋯
−

s .
(1.71)

N qubits

k k k k k
N1 2

Here δ ∈ {0, 1}k
i for all ∈ …i N1, , describing the states of the bath qubits. Let us

denote the number of qubits of B in ∣ 〉0 by n. Then the total internal energy E
becomes a simple function of n and is given by,

e B B= + + −E n e N n e( ) . (1.72)k 0 1

Now it is easy to see that the total number of states corresponding to a particular
value of E, i.e. the degeneracy in B corresponding to ek, (1.70) is given by,

N e = !
! − !

N
n N n

( )
( )

. (1.73)k

Equation (1.73) describes nothing else but the number of possibilities to distribute
Bne0 and B−N n e( ) 1 over N qubits.
It is worth emphasizing that in the arguments leading to equation (1.73) we

explicitly used that the ∣ 〉sk are energy eigenstates in S and the subsystemS and heat
reservoir B are non-interacting. The first condition is not an assumption, since the
composite SEψ∣ 〉 is envariant under all unitary maps on S , and the second condition is
in full agreement with conventional assumptions of thermodynamics [2, 52].
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Boltzmann’s formula for the canonical state
The example treated in the preceding section can be easily generalized. We again
assume that the heat reservoir B consists of N non-interacting subsystems with
identical eigenvalue spectra B

=e{ }j j
m

1. In this case the internal energy (1.69) takes the
form

e B B B= + + + ⋯ +E n e n e n e , (1.74)k m m1 1 2 2

with∑ == n Nj
m

j1 . Therefore, the degeneracy (1.70) becomes

N e = !
! !⋯ !

N
n n n

( ) . (1.75)k
m1 2

This expression is readily recognized as a quantum envariant formulation of
Boltzmann’s counting formula for the number of classical microstates [53], which
quantifies the volume of phase space occupied by the thermodynamic state.
However, instead of having to equip phase space with an (artificial) equispaced
grid, we simply count degenerate states.

We are now ready to derive the Boltzmann–Gibbs formula. To this end consider
that in the limit of very large, ≫N 1, N e( )k (1.75) can be approximated with
Stirling’s formula. We have

N e ∑≃ −
=

N N n nln ( ( )) ln ( ) ln ( ). (1.76)
j

m

1

k j j

As pointed out earlier, thermodynamic equilibrium states are characterized by a
maximum of symmetry or maximal number of ‘involved energy states’, which
corresponds classically to a maximal volume in phase space. In the case of the
microcanonical equilibrium this condition was met by the state that is maximally
envariant, namely envariant under all unitary maps. Now, following Boltzmann’s
line of thought we identify the canonical equilibrium by the configuration of the heat
reservoir B for which the maximal number of energy eigenvalues are occupied.
Under the constraints,

e B∑ ∑= − =
= =

n N E n eand (1.77)
j

m

j

m

1 1

j k j j

this problem can be solved by variational calculus. One obtains

Bμ β= ( )n eexp , (1.78)j j

which is the celebrated Boltzmann–Gibbs formula. Notice that equation (1.78) is the
number of states in the heat reservoir B with energy Be j for S and B being in
thermodynamic, canonical equilibrium. In this treatment temperature merely enters
through the Lagrangian multiplier β.

What remains to be shown is that β, indeed, characterizes the unique temperature
of the system of interest, S. To this end, imagine that the total system S can be
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separated into two small systems S1 and S2 of comparable size, and the thermal
reservoir, B. It is then easy to see that the total number of accessible states N e( )k

does not significantly change in comparison to the previous case. In particular, in the
limit of an infinitely large heat bathB the total number of accessible states forB is
still given by equation (1.75). In addition, it can be shown that the resulting value of
the Lagrange multiplier, β, is unique [57]. Hence, we can formulate a statement
of the zeroth law of thermodynamics from envariance—namely, two systemsS1 and
S2, that are in equilibrium with a large heat bath B, are also in equilibrium with
each other, and they have the same temperature corresponding to the unique
value of β.

The present discussion is exact, up to the approximation with the Stirling’s
formula, and only relies on the fact that the total system S is in a microcanonical
equilibrium as defined in terms of envariance, equation (1.68). The final derivation of
the Boltzmann–Gibbs formula (1.78), however, requires additional thermodynamic
conditions. In the case of the microcanonical equilibrium we replaced conventional
arguments by maximal envariance, whereas for the canonical state we required the
maximal number of energy levels of the heat reservoir to be ‘occupied’.

1.4 Work, heat, and entropy production
Equipped with a classical understanding of thermodynamic phenomenology, the
fluctuation theorems (1.23) and understanding of equilibrium states from a fully
quantum theory, we can now move on to define work, heat, and entropy production
for quantum systems. The following treatment was first published in reference [18].

1.4.1 Quantum work and quantum heat

Quasistatic processes
In complete analogy to the standard framework of thermodynamics as discussed in
section 1.1, we begin the discussion by considering quasistatic processes during
which the quantum system, S , is always in equilibrium with a thermal environment.
However, we now further assume that the Hamiltonian of the system, λH ( ), is
parameterized by a control parameter λ. The parameter can be, e.g. the volume of a
piston, the angular frequency of an oscillator, the strength of a magnetic field, etc.

Generally, the dynamics of S is then described by the Liouville type equation
ρ ρ˙ = λL ( ), where the superoperator λL reflects both the unitary dynamics generated
by H and the non-unitary contribution induced by the interaction with the
environment. We further have to assume that the equation for the steady state,

ρ =λL ( ) 0ss , has a unique solution [49] to avoid any ambiguities. As before, we will
now be interested in thermodynamic state transformations, for which S remains in
equilibrium corresponding to the value of λ.

Thermodynamics of Gibbs equilibrium states
As we have seen above, in the the limit of ultraweak coupling the equilibrium state is
given by the Gibbs state,
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ρ β β= − = −H Z Z Hexp( )/ , where tr{exp( )}, (1.79)eq

and where β is the inverse temperature of the environment. In this case, the thermo-
dynamic entropy is given by the Gibbs entropy [2], ρ ρ β= − = −S E Ftr{ ln( )} ( )eq eq ,
whereas before ρ=E Htr{ }eq is the internal energy of the system, and β= −F Z1/ ln( )
denotes the Helmholtz free energy.

For isothermal, quasistatic processes the change of thermodynamic entropy dS
can be written as

β ρ ρ β ρ= + − =dS d H dH dF d H(tr{ } (tr{ } )) tr{ }, (1.80)eq eq eq

where the second equality follows from simply evaluating terms. Therefore, two
forms of energy can be identified [21]: heat is the change of internal energy
associated with a change of entropy; work is the change of internal energy due to
the change of an extensive parameter, i.e. change of the Hamiltonian of the system.
We have,

đ đ ρ ρ= + ≡ +dE Q W d H dHtr{ } tr{ }. (1.81)eq eq

The identification of heat đQ, and work đW (1.81) is consistent with the second law
of thermodynamics for quasistatic processes (1.5) if, and as we will shortly see, only
if ρeq is a Gibbs state (1.79).

It is worth emphasizing that for isothermal, quasistatic processes we further have,

β đ đ= =dS Q dF Wand , (1.82)

for which the first law of thermodynamics takes the form

= +dE T dS dF . (1.83)

In this particular formulation it becomes apparent that changes of the internal
energy dE can be separated into ‘useful’ work dF and an additional contribution,
T dS , reflecting the entropic cost of the process.

Thermodynamics of non-Gibbsian equilibrium states
As we have seen above in section 1.3, however, quantum systems in equilibrium are
only described by Gibbs states (1.79) if they are ultraweakly coupled to the
environment. Typically, quantum systems are correlated with their surroundings
and interaction energies are not negligible [20, 22, 25]. For instance, it has been seen
explicitly in the context of quantum Brownian motion [24] that system and
environment are generically entangled.

In such situations the identification of heat only with changes of the state of the
system (1.81) is no longer correct [22]. Rather, to formulate thermodynamics
consistently the energetic back-action due to the correlation of system and environ-
ment has to be taken into account [22, 24]. This means that during quasistatic
processes parts of the energy exchanged with the environment are not related to a
change of the thermodynamic entropy of the system, but rather constitute the
energetic price to maintain the non-Gibbsian state, i.e. coherence and correlations
between system and environment.
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Denoting the non-Gibbsian equilibrium state by ρss we can write

H
E F

ρ ρ ρ ρ ρ ρ
β ρ ρ β

= − + −
= − + ∣∣ = −E F T S

tr{ ln ( )} (tr{ ln ( )} tr{ ln ( )})
[ ( ( ))] ( ),

(1.84)
ss ss ss eq ss eq

ss eq

where, as before, ρ=E Htr{ }ss is the internal energy of the system, and
F ρ ρ≡ + ∣∣F T S( )ss eq is the so-called the information free energy [42]. Further,

ρ ρ ρ ρ ρ∣∣ ≡ −S( ) tr{ (ln( ) ln( ))}ss eq ss ss eq is the quantum relative entropy [55].
In complete analogy to the standard, Gibbsian case (1.81) we now consider

isothermal, quasistatic processes, for which the infinitesimal change of the entropy
reads

H Fβ ρ ρ
β đ đ

= + −
≡ −

d d H dH d
Q Q

[tr{ } (tr{ } )]
( )

(1.85)
ss ss

tot c

where we identified the total heat as đ ρ≡Q d Htr{ }tot
ss and energetic price to

maintain coherence and quantum correlations as Fđ ρ≡ −Q d dHtr{ }c
ss .

The excess heat đQex is the only contribution that is associated with the entropic
cost,

H β đ đ đ đ= = −d Q Q Q Q, and . (1.86)ex ex tot c

Accordingly, the first law of thermodynamics takes the form

đ đ= +dE W Q (1.87)ex ex

where đ đ đ≡ +W W Qex c is the excess work. Finally, equation (1.81) generalizes for
isothermal, quasistatic processes in generic quantum systems to

H F= +dE T d d . (1.88)

It is worth emphasizing at this point once again that thermodynamics is a
phenomenological theory, and as one expects, the fundamental relations hold for
any physical system. Equation (1.88) has exactly the same form as equation (1.81),
however, the ‘symbols’ have to be interpreted differently when translating between
the thermodynamic relations and the underlying statistical mechanics.

As an immediate consequence of this analysis, we can now derive the efficiency of
any quantum system undergoing a Carnot cycle.

Universal efficiency of quantum Carnot engines
To this end, imagine a generic quantum system that operates between two heat
reservoirs with hot,Thot, and cold,Tcold, temperatures, respectively. Then, the Carnot
cycle consists of two isothermal processes during which the system absorbs/exhausts
heat and two thermodynamically adiabatic, i.e. isentropic strokes while the extensive
control parameter λ is varied.

During the first isothermal stroke, the system is put into contact with the hot
reservoir. As a result, the excess heatQex,1 is absorbed at temperatureThot and excess
workWex,1 is performed,
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F F
H H

λ λ
λ λ

= −
= −

W T T

Q T T T

( , ) ( , )

( ( , ) ( , )).
(1.89)

ex,1 2 hot 1 hot

ex,1 hot 2 hot 1 hot

Next, during the isentropic stroke, the system performs work Wex,2 and no excess
heat is exchanged with the reservoir, HΔ = 0. Therefore, the temperature of the
engine drops from Thot to Tcold,

F H
λ λ

λ
= Δ = −
= Δ − −

W E E T E T

T T T

( , ) ( , )

( ) ( , ).
(1.90)ex,2 3 cold 2 hot

hot cold 3 cold

In the second line, we employed the thermodynamic identity F H= +E T , which
follows from the definition of F . During the second isothermal stroke, the excess
work Wex,3 is performed on the system by the cold reservoir. This allows for the
system to exhaust the excess heat Qex,3 at temperature Tcold. Hence we have

F F
H H

λ λ
λ λ

= −
= −

W T T

Q T T T

( , ) ( , )

( ( , ) ( , )).
(1.91)

ex

ex c

,3 4 cold 3 cold

,3 cold cold 3 cold

Finally, during the second isentropic stroke, the cold reservoir performs the excess
workWex,4 on the system. No excess heat is exchanged and the temperature of the
engine increases from Tcold to Thot,

F H
λ λ

λ
= Δ = −
= Δ + −

W E E T E T

T T T

( , ) ( , )

( ) ( , ).
(1.92)ex,4 1 hot 4 cold

hot cold 1 hot

The efficiency of a thermodynamic device is defined as the ratio of ‘output’ to
‘input’. In the present case the ‘output’ is the total work performed during each
cycle, i.e. the total excess work, = +W W Qex c. There are two physically distinct
contributions: work in the usual sense,W, that can be utilized, e.g. to power external
devices, andQc, which cannot serve such purposes as it is the thermodynamic cost to
maintain the non-Gibbsian equilibrium state. Therefore, the only thermodynami-
cally consistent definition of the efficiency is

∑
η η= = − ≡

W

Q
T
T

1 , (1.93)i
ex,i

ex,1

cold

hot
C

which is identical to the classical Carnot efficiency.

1.4.2 Quantum entropy production

Having established a conceptual framework for quantum work and heat, the next
natural step is to determine the quantum entropy production. To this end, we now
imagine that S is initially prepared in an equilibrium state which, however, is not
necessarily a Gibbs state (1.79) with respect to the temperature of the environment.
For a variation of the external control parameter λ we can write the change of
internal energy ΔE and a change of the von Neumann entropy as
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H βΔ = + Δ = + ΣE W Q Qand , (1.94)

where here Q is the total heat exchanged during the process with the environment at
inverse temperature β. Thus, we can write for the mean nonequilibrium entropy
production,

H β βΣ = Δ − Δ +E W . (1.95)

Now, expressing the internal energy with the help of the Gibbs state ρeq (1.79) we
have

β β ρ ρ ρ= = − +E H Ztr{ } tr{ ln ( )} ln ( ), (1.96)ss ss eq

Thus, we can write for a process that varies λ from λ0 to λ1 (compare with the
classical expression (1.39) and the quantum case (1.81))

∫

∫

β β λ ρ λ λ

λ ρ λ ρ λ

= ∂

= − ∂ − +

λ

λ

λ

λ

λ

λ

W d H

d Z Z

tr{ ( ) ( )}

tr{ ( ) ln ( ( ))} ln ( ) ln ( ).
(1.97)

ss

ss eq
1 0

0

1

0

1

Combining equations (1.95)–(1.97), we obtain the general expression for the entropy
production along a nonequilibrium path (compare figure 1.2),

∫
ρ λ ρ λ ρ λ ρ λ

λ ρ λ ρ λ

Σ = ∣∣ − ∣∣

− ∂
λ

λ

λ

S S

d

( ( ) ( )) ( ( ) ( ))

tr{ ( ) ln ( ( ))}.
(1.98)

ss
0

eq
0

ss
1

eq
1

ss eq

0

1

Equation (1.98) is the exact microscopic expression for the mean nonequilibrium
entropy production for a driven open quantum system weakly coupled to a single
heat reservoir. It is valid for intermediate states that can be arbitrarily far from
equilibrium.

1.4.3 Two-time energy measurement approach

Having identified expressions for the average, work, heat, and entropy production,
we can now continue building quantum stochastic thermodynamics. In complete
analogy to the classical case, quantum stochastic thermodynamics is built upon
fluctuation theorems. Conceptually, the most involved problem is how to identify
heat and work for single realizations—and even what a ‘single realization’means for
a quantum system.

The most successful approach has become known as two-time energy measure-
ment approach [3]. In this paradigm, one considers an isolated quantum system that
evolves under the time-dependent Schrödinger equation

ψ ψℏ ∂ ∣ 〉 = ∣ 〉i H . (1.99)t t t t

As before, we are interested in describing thermodynamic processes that are induced
by varying an external control parameter λt during time τ, so that λ=H H ( )t t .
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Within the two-time energy measurement approach quantum work is determined by
the following protocol: at initial time t = 0 a projective energy measurement is
performed on the system; then the system is let to evolve under the time-dependent
Schrödinger equation, before a second projective energy measurement is performed
at τ=t .

Therefore, work W becomes a stochastic variable, and for a single realization of
this protocol we have

λ λ∣ 〉 ∣ 〉 = − τW m n E E[ ; ] ( ) ( ), (1.100)m n0

where ∣ 〉m is the initial eigenstate with eigenenergy λE ( )m 0 and ∣ 〉n with λτE ( )n denotes
the final state.

The distribution of work values is then given by averaging over an ensemble of
realizations of the same process,

P δ= 〈 − ∣ 〉 ∣ 〉 〉W W W m n( ) ( [ ; ]) , (1.101)

which can be rewritten as

P δ= ⨋ − ∣ 〉 ∣ 〉 ∣ 〉 → ∣ 〉W W W m n p m n( ) ( [ ; ]) ( ). (1.102)
m n,

In the latter equation the symbol ⨋ denotes that we have to sum over the discrete
part of the eigenvalue spectrum and integrate over the continuous part. Therefore,
for systems with spectra that have both contributions the work distribution will have
a continuous part and delta-peaks, see for instance for the Morse oscillator in
reference [37].

Further, ∣ 〉 → ∣ 〉p m n( ) denotes the probability to observe a specific transition
∣ 〉 → ∣ 〉m n . This probability is given by [37],

ρ∣ 〉 → ∣ 〉 = Π Π Πτ τ
†p m n U U( ) tr{ }, (1.103)n m m

eq

where ρeq is the initial, Gibbsian density operator (1.79) of the system2, and τU is the
unitary time-evolution operator, T ∫= − ℏτ

τ
>U i dt Hexp( / )t0

. Finally, Πν denotes
the projector into the space spanned by the νth eigenstate. For Hamiltonians with
non-degenerate spectra we simply have ν νΠ = ∣ 〉〈 ∣ν .

The quantum Jarzynski equality
It is then a relatively simple exercise to show that such a definition of quantum work
fulfills a quantum version of the Jarzynski equality. To this end, we compute the
average of the exponentiated work

2Generally, the initial state can be chosen according to the physical situation. However, in quantum stochastic
thermodynamics it is often convenient to assume an initially thermal state.
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P∫β β

β

〈 − 〉 = −

= ⨋ ∣ 〉 ∣ 〉 ∣ 〉 → ∣ 〉

W dW W W

W m n p m n

exp( ) ( ) exp( )

exp( [ ; ]) ( ).
(1.104)

m n,

Using the explicit expression for the transition probabilities (1.103) and for the
Gibbs state (1.79), we immediately have

β β〈 − 〉 = − ΔW Fexp( ) exp( ). (1.105)

The latter theorem looks analogous to the classical Jarzynski equality (1.45).
However, quantum work is a markedly different quantity than work in classical
mechanics. It has been pointed out that work as defined from the two-time
measurement is not a quantum observable in the usual sense, namely that there is
no Hermitian operator whose eigenvalues are the classical work values [50, 51]. The
simple reason is that the final Hamiltonian does not necessarily commute with the
initial Hamiltonian, ≠τH H[ , ] 00 . Rather, quantum work is given by a time-ordered
correlation function, which reflects that thermodynamically work is a non-exact, i.e.
path dependent quantity.

Neglected informational cost
Another issue arises from the fact that generally the final state ρτ is a complicated
nonequilibrium state. This means, in particular, that also ρ ρ λ=τ τ( ) does not
commute with the final Hamiltonian Hτ, and one has to consider the back-action
on the system due to the projective measurement of the energy [38]. For a single
measurement, Πn, the post-measurement state is given by ρΠ Πτ p/n n n, where

ρ= Π τp tr{ }n n . Thus, the system can be found on average in

∑ρ ρ= Π Πτ τ . (1.106)
n

M
n n

Accordingly, the final measurement of the energy is accompanied by a change of
information, i.e. by a change of the von Neumann entropy of the system

H ρ ρ ρ ρΔ = − + ⩾τ τ τ τ{ }( ) { }tr ln tr ln ( ) 0. (1.107)M M M

Information, however, is physical [33] and its acquisition ‘costs’ work. This addi-
tional work has to be paid by the external observer—the measurement device. In a
fully consistent thermodynamic framework this cost should be taken into
consideration.

Quantum work without measurements
To remedy this conceptual inconsistency arising from neglecting the informational
contribution of the projective measurements, an alternative paradigm has been
proposed [11]. For isolated systems quantum work is clearly given by the change of
internal energy. As a statement of the first law of thermodynamics this holds true no
matter whether the system is measured or not.
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Actually, for thermal, Gibbs states (1.79) measuring the energy is superfluous as
state and energy commute. Hence, an alternative notion of quantum work can be
formulated that is fully based on the time evolution of energy eigenstates. Quantum
work for a single realization is then determined by considering how much the
expectation value for a single energy eigenstate changes under the unitary evolution.
Hence, we define

λ˜ ≡ 〈 ∣ ∣ 〉 −τ τ τ
†W m U H U m E ( ). (1.108)m m 0

We can easily verify that the so-defined quantum work (1.108), indeed, fulfills the
first law. To this end, we compute the average work P〈 〉 ˜W ,

P ρ

ρ ρ

〈 〉 = ⨋〈 ∣ ∣ 〉 −

= − = 〈 〉

τ τ τ

τ τ

˜
† { }

{ } { }

W m U H U m p H

H H W

tr

tr tr ,
(1.109)m

m 0
eq

0

ss
0
eq

0

where β λ= −p E Zexp( ( ))/m m 0 0 is the probability to find the system in the mth
eigenstate at time t = 0. It is important to note that the average quantum work
determined from two-time energy measurements is identical to the (expected) value
given only knowledge from a single measurement at t = 0. Most importantly,
however, in this paradigm the external observer does not have to pay a thermo-
dynamic cost associated with the change of information due to measurements.

Modified quantum Jarzynski equality
We have now seen that the first law of thermodynamics is immune to whether the
energy of the system is measured or not, since projective measurements of the energy
do not affect the internal energy. However, the informational content of the system
of interest, i.e. the entropy, crucially depends on whether the system is measured.
Therefore, we expect that the statements of the second law have to be modified to
reflect the informational contribution [10]. In this paradigm the modified quantum
work distribution becomes

P δ˜ = ⨋ − ˜W W W p( ) ( ) , (1.110)
m

m m

where, as before, β λ= −p E Zexp( ( ))/m m 0 0. Now, we can compute the average
exponentiated work,

Pβ β〈 − 〉 = ⨋ − 〈 ∣ ∣ 〉τ τ τ˜
†( )W

Z
m U H U mexp( )

1
exp . (1.111)

m0

The right side of equation (1.111) can be interpreted as the ratio of two partition
functions, where Z0 describes the initial thermal state. The second partition function,

β˜ ≡ ⨋ − 〈 ∣ ∣ 〉τ τ τ τ
†( )Z m U H U mexp , (1.112)

m
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corresponds to the best possible guess for a thermal state of the final system given
only the time-evolved energy eigenbasis. This state can be written as

ρ β˜ ≡ ˜ ⨋ − 〈 ∣ ∣ 〉 ∣ 〉〈 ∣τ
τ

τ τ τ τ τ
† †( )

Z
m U H U m U m m U

1
exp , (1.113)

m

which differs from the true thermal state, ρ β= −τ τ τH Zexp( )/eq .
As noted above, in information theory the ‘quality’ of such a best possible guess is

quantified by the relative entropy [55], which measures the distinguishability of two
(quantum) states. Hence, let us consider

ρ ρ ρ ρ ρ ρ˜ ∣∣ = ˜ ˜ − ˜τ τ τ τ τ τ{ }( ){ }S( ) tr ln ( ) tr ln , (1.114)eq eq

for which we compute both terms separately. For the first term, the negentropy of ρ̃τ
we obtain,

⎧⎨⎩
⎫⎬⎭ρ ρ β ρ

β

˜ ˜ = − ˜ − ˜ ⨋〈 ∣ ∣ 〉 ∣ 〉〈 ∣

= − ˜ − ˜

τ τ τ τ τ τ τ τ
† †{ } Z m U H U m U m m U

Z E

tr ln ( ) ln( ) tr

ln( ) ,

(1.115)m

where we introduced the expected value of the energy, Ẽ , under the time-evolved
eigenstates,

β˜ = ˜ ⨋ − 〈 ∣ ∣ 〉 〈 ∣ ∣ 〉τ τ τ τ τ τ
† †( )E

Z
m U H U m m U H U m

1
exp . (1.116)

m

The second term, the cross entropy of ρ̃τ and ρτ
eq, simplifies to

⎧⎨⎩
⎫⎬⎭ρ ρ β β

β

˜ = − − ⨋ ˜ − 〈 ∣ ∣ 〉 ∣ 〉〈 ∣

= − − ˜

τ τ τ τ τ τ τ τ τ

τ

† †{ } ( )( ) Z
Z

m U H U m U m m U H

Z E

tr ln ln ( ) tr
1

exp

ln ( ) .

(1.117)
eq

m

Hence, the modified quantum Jarzynski equality (1.111) becomes

Pβ β ρ ρ〈 − 〉 = − Δ − τ̃ τ˜ ( )( )W F Sexp( ) exp( ) exp , (1.118)eq

where, as before, βΔ = − τF Z Z1/ ln ( / )0 . Jensen’s inequality further implies,

β β ρ ρ〈 〉 ⩾ Δ + τ̃ τ( )W F S (1.119)eq

where we used P〈 〉 = 〈 〉˜W W .
By defining quantum work as an average over time-evolved eigenstates we obtain

a modified quantum Jarzynski equality (1.111) and a generalized maximum work
theorem (1.119), in which the thermodynamic cost of projective measurements
becomes apparent. These results become even more transparent by noting that
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similar versions of the maximum work theorem have been derived in the thermo-
dynamics of information [42]. As mentioned above, it has proven useful to introduce
the notion of an information free energy,

ρ ρ β˜ = + ˜τ τ τ τ( )F F S . (1.120)eq

Here, τ̃F accounts for the additional capacity of a thermodynamic system to perform
work due to information [10]. Note that in equation (1.120) τ̃F is computed for the
fictitious equilibrium state ρ̃τ.

We can rewrite equation (1.119) as

β β〈 〉 ⩾ Δ ˜W F . (1.121)

The latter inequality constitutes a sharper bound than the usual maximum work
theorem, and it accounts for the extra free energy available to the system. Free
energy, however, describes the usable, extractable work. In real-life applications one
is more interested in the maximal free energy the system has available, than in the
work that could be extracted by intermediate, disruptive measurements of the
energy. Therefore, this treatment could be considered thermodynamically more
relevant than the two-time measurement approach.

1.4.4 Quantum fluctuation theorem for arbitrary observables

Another issue with the two-time energy measurement approach is that in many
experimental situations projective measurements of the energy are neither feasible
nor practical. Rather, only other observables such as the spatial density or the
magnetization are accessible. Then, the natural question is whether there is a
fluctuation theorem for the observable that can actually be measured.

To answer this question, let us consider a more general paradigm, which was first
published in reference [30]: information about a quantum system and its dynamics is
obtained by performing measurements on S at the beginning and end of a specific
process. Initially a quantummeasurement is made of observableΩi, with eigenvalues
ωm

i . As before, Πm
i denote the orthogonal projectors into the eigenspaces of Ωi, and

we have ωΩ = ∑ Πi
m m

i
m
i . Note that the eigenvalues ω{ }m

i can be degenerate, so the
projectors Πm

i may have rank greater than one. Unlike the classical case, as long as
ρ0 and Ωi do not have a common set of eigenvectors—i.e. they do not commute—
performing a measurement on S alters its statistics. Measuring ωm

i maps ρ0 to the
state ρΠ Π p/m

i
m
i

m0 , where ρ= Π Πp tr{ }m m
i

m
i

0 is the probability of the measurement
outcome ωm

i . Generally accounting for all possible measurement outcomes, the
statistics of S after the measurement are given by the weighted average of all
projections,

∑ρ ρ= Π ΠM ( ) . (1.122)
m

i
m
i

m
i

0 0

If ρ0 commutes with Ωi, it commutes with each Πm
i , so ρ ρ ρ= ∑ Π Π =M ( )i

m m
i

m
i

0 0 0
and the statistics of the system are unaltered by the measurement. After measuring
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ωm
i , S undergoes a generic time evolution, after which it is given by ρΠ Π p( )/m

i
m
i

m0 .
Here  represents any linear (unitary or non-unitary) quantum transformation,
which is trace-preserving and maps non-negative operators to non-negative oper-
ators. Moreover, we require that this holds whenever  is extended to an operation

E⊗  on any enlarged Hilbert space H HE⊗S ( E being the identity map on HE).
Such a transformation is called a completely positive, trace-preserving (CPTP)
map [38].

After this evolution, a measurement of a second (not necessarily the same)
observable, ωΩ = ∑ Πf

n n
f

n
f , is performed on S . The probability of measuring ωn

f ,

conditioned on having first measured ωm
i , is ρ= Π Π Π∣ p ptr{ ( )}/n m n

f
m
i

m
i

m0 .
Accordingly, the joint probability distribution →pm n reads

ρ∣ 〉 → ∣ 〉 = · = Π Π Π∣ { }( )p m n p p( ) tr . (1.123)m n m n
f

m
i

m
i

0

We are interested in the probability distribution of possible measurement outcomes,
P ωΔ( ), where ω ω ωΔ = −n m n

f
m
i

, is a random variable determined in a single
measurement run. Its probability distribution is given by averaging over all possible
realizations,

P ∑ω δ ω ω δ ω ωΔ = 〈 Δ − Δ 〉 = Δ − Δ ∣ 〉 → ∣ 〉( ) ( ) p m n( ) ( ). (1.124)
m n,

n m n m, ,

To derive the integral fluctuation theorem we follow another standard approach and
compute its characteristic function, G s( ), which is the Fourier transform of P ωΔ( ) [3]

G P∫ ω ω ω

ρ

= Δ Δ Δ

= Ω − Ω{ }( )

s d is

is M is

( ) ( ) ( ) exp( )

tr exp( ) ( )exp( ) .
(1.125)

f i i
0

Choosing s = i, we obtain the identity

ω ε〈 −Δ 〉 =exp( ) . (1.126)

Since it is explicitly dependent on the map  , the quantity ε accounts for the
information lost by not measuring the environment,

ε ρ= −Ω Ω{ }( )Mtr exp( ) ( )exp( ) . (1.127)f i i
0

which has been called the quantum efficacy.
We emphasize that equation (1.126) is not an integral fluctuation theorem in the

strict sense. Generally, the quantum efficacy (1.127) explicitly depends on the choice
of the observables, Ωi and Ω f , the initial state ρ0, and the CPTP map  . In a
fluctuation theorem the right-hand side, i.e. ε should be a c-number independent of
the details of the measurement protocol.

However, it is also easy to see when equation (1.126) becomes a fluctuation
theorem. This is the case, if the initial state ρ0 is proportional to −Ωexp( )i , and if the
CPTP map is unital, which means =  ( ) . These conditions are naturally fulfilled
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for initial Gibbs states (1.79), energy measurements, and unitary Schrödinger
dynamics. However, we also immediately observe that the quantum Jarzynski
equality (1.105) remains valid in purely decohering or purely dephasing models
[1, 19, 43, 44, 47].

1.4.5 Quantum entropy production in phase space

We conclude this section with an alternative approach to stochastic thermodynamics
of quantum systems, which was first published in reference [8]. We have seen above
that for classical systems the irreversible entropy production is defined along a path
in phase space (1.43). If we want to define an analogous entropy production for a
quantum process, we have to choose a representation of quantum phase space.

A particularly convenient representation of quantum states is given by the Wigner
function [58],

⎜ ⎟⎛
⎝

⎞
⎠W ∫π

ρ=
ℏ

−
ℏ

+ −x p dy
i

py x
y

x
y

( , )
1

2
exp

2 2
. (1.128)t t

TheWigner function contains the full classical information, and its marginals are the
probability distributions for the position x and the momentum p, respectively. In
addition,W x p( , )t contains the full quantum information about a state, as, e.g. areas
in phase space where W x p( , )t takes negative values are indicative for quantum
interference.

In complete analogy to the classical case, the quantum Liouville equation can be
written as

W L W∂ Γ = Γλt t( , ) ( , ), (1.129)t

where Γ = x p( , ) denotes again a point in phase space. It is worth emphasizing that a
Liouvillian, Lλ, does not generally exist for all quantum systems. In particular, for a
thermally open harmonic oscillator it was shown in [31] that the existence and
explicit form of Lλ are determined by the initial preparation of the environment.

The stationary solution of equation (1.129) is determined by

L W λΓ =λ ( , ) 0. (1.130)stat

Generally the stationary Wigner functionW λΓ( , )stat for an open quantum system in
equilibrium is not given by the Wigner representation of the Gibbs state (1.79). For
instance, the exact master equation for a harmonic oscillator coupled to an
environment consisting of an ensemble of harmonic oscillators is known [25] and
can be solved analytically [16]. In a high-temperature approximation the quantum
Liouville equation (1.129) becomes, in leading order of ℏ, [13]

L γ= − ∂ + ′ ∂ + ∂ + ∂ + ∂( )p
m

V x t p D D( , ) (1.131)t x p p pp p xp xp
2

where γ is again the coupling coefficient to the environment, γ β= +D m /pp

βγ ω γℏ −m ( )/122 2 2 , and βγ= ℏD /12xp
2 . Note that in the high-temperature limit,
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β ωℏ ≪ 1, equation (1.131) reduces to the classical Klein–Kramers equation (1.34).
The stationary solution can be written as

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟
⎞
⎠
⎟⎟W γω

π γ

γ ω
γ

=
+

− +
+( )

x p
m

D D m D

p
D

m x
D m D

( , )
2

1
exp

2
. (1.132)

pp pp xp pp pp xp
stat

2 2 2 2

We will now prove that the quantum entropy production Σ for any quantum
dynamics described by equation (1.129) and defined as

W
W∫λ λ λ

λ
Σ Γ ≡ − ˙ ∂ Γ

Γτ τ

τ
λdt[ ; ]

( , )
( , )

, (1.133)t
t t

t t0

stat

stat

fulfills an integral fluctuation theorem. Note that writing Σ as a functional of a
trajectory in (quantum) phase space is a mathematical construct, which is convenient
for the following proof. More formally, we understand the entropy produced along a
quantum trajectory in analogy to Feynman path integrals. Here a quantum trajectory
is a mathematical tool defined as a generalization of the classical trajectory. Physical
quantities are given by averages over an ensemble of such trajectories.

Consider the accumulated entropy σ produced up to time t, ∫σ λ= − ˙t ds( )
t

s0

W W∂λ /stat stat, and thus σ τ = Σ( ) . Then the joint (quasi) probability distribution for
the point in phase space and the accumulated entropy production, σΓP t( , , ),
evolves according to,

Lσ λ σ∂ Γ = − Γ ∂ Γλ σP t j P t( , , ) [ ( , ) ] ( , , ), (1.134)t tstat

where λΓj ( , )tstat is the (quasi) probability flux associated with the accumulated
entropy production σ,

W
W

λ λ λ
λ

Γ = ˙ ∂ Γ
Γ

λj ( , )
( , )

( , )
. (1.135)t t

t

t
stat

stat

stat

Now we define the auxiliary density Ψ Γ t( , ) which is the exponentially weighted
marginal of σΓP t( , , ). We have

∫ σ σ σΨ Γ = Γ −t d P t( , ) ( , , ) exp( ), (1.136)

for which the evolution equation (1.134) becomes

L λ∂ Ψ Γ = − Γ Ψ Γλt j t( , ) [ ( , )] ( , ). (1.137)t tstat

It is easy to see that a solution of equation (1.137) is given by the stationary solution
of the original master equation (1.129) and we obtain

W λΨ Γ = Γt( , ) ( , ). (1.138)tstat

Using the normalization of the stationary Wigner function we calculate with the
latter solution for Ψ Γ t( , ),
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W∫ ∫λ τ= Γ Γ = Γ Ψ Γ = 〈 −Σ 〉τd d1 ( , ) ( , ) exp( ) , (1.139)stat

which concludes the proof. For any quantum system, open or closed, the entropy
production fulfilling an integral fluctuation theorem is given by equation (1.133).

1.5 Checklist for ‘The principles of modern thermodynamics’
1. Thermodynamics is a phenomenological theory to describe the average

behavior of heat and work.
2. Reversible processes can be understood as paths on the thermodynamic

manifold described by the equation of state.
3. Systems can be locally in equilibrium and at the same time not in equilibrium

with the rest of the Universe.
4. Heat, work, and entropy can be defined along single trajectories of classical

systems.
5. Fluctuation theorems are symmetry relations for the distribution of work

values expressing that ‘violations’ of the second law are exponentially unlikely.
6. Statistical mechanics can be built from a purely quantum framework using

symmetries of entanglement.
7. Quantum work is not an observable in the usual sense.
8. There are many different and equally justifiable notions of quantum work

and entropy production.

1.6 Problems
A phenomenological theory of heat and work (section 1.1)

[1] Consider a single quantum particle in an infinite square well, and whose
density operator is a Gibbs state. Compute the equation of state for the length
of the box L, the temperature T, and the mass m, and plot the thermody-
namic manifold. How does the manifold change if an additional (identical)
particle is added? Does it matter whether the particles are fermions of bosons?

[2] Quantum heat engines are thermodynamic devices with small quantum
systems as working medium. A stereotypical example is a single quantum
particle trapped in a harmonic potential. The natural external control
parameter is the angular frequency. Determine the equation of state
assuming that the quantum particle is ultraweakly coupled to a thermal
environment, which means the density operator is a Gibbs state. Compute
the efficiency of such a device as it undergoes an Otto cycle.

The advent of stochastic thermodynamics (section 1.2)

[1] Consider a one-dimensional, classical harmonic oscillator, whose dynamics
is described by the classical Liouville equation (1.40). Compute the
probability density function of the work done during a variation of the
angular frequency, if the oscillator was initially prepared in a Maxwell–
Boltzmann distribution. Verify the Jarzynski equality (1.45).
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[2] Consider a one-dimensional classical harmonic oscillator in contact with a
thermal bath, whose dynamics is described by the classical Klein–Kramers
equation (1.34). Compute the probability density function of the work while
dragging the oscillator along the x-axis, if the oscillator was initially
prepared in a Maxwell–Boltzmann distribution. Verify the Crooks fluctua-
tion theorem (1.58).

Foundations of statistical physics from quantum entanglement (section 1.3)

[1] Illustrate the concept of envariance for a Universe consisting of two
harmonic oscillators and parity preserving unitary maps.

[2] Repeat the arguments leading to equation (1.78), but by including the next
two terms of the Stirling approximation

π! ≃ − + +n n n n n
n

ln ( ) ln ( )
1
2

ln (2 )
1

12
.

How would one identify the temperature in this case?

Work, quantum heat, and quantum entropy production (section 1.4)

[1] Consider a thermally isolated, quantum harmonic oscillator in one dimen-
sion. Compute the probability density function for the work done during an
infinitely slow variation of the angular frequency, if the oscillator was
initially prepared in a Gibbs state.

[2] Consider a one-dimensional quantum harmonic oscillator in contact with a
thermal bath, whose dynamics is described by the quantum Klein–Kramers
equation (1.131). Compute the probability density function of the entropy
production while dragging the oscillator along the x-axis. Verify the
quantum fluctuation theorem (1.139).
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