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Summary 

Techniques from algorithmic analysis and empirical statistics 

are used to efficiently analyze the computational problem of aliquot 

series in number theory. 

After introducing notation, definitions, and the history of 

aliquot series, the methodology and main findings in this thesis 

research are summarized. 

Several properties of the function s (the sum of the aliquot 

divisors) are next given. These include: recurrence relations for 

evaluating s ; upper and lower bounds on x in s(x) = n; con­

ditions for determining the parity of s(x) relative to x; upper 

bounds, an asymptotic formula, and the mean value for s(x)/x. 

Then the oriented graph gen~rated by s is investigated. This 

leads to concepts such as untouchable number (an n with no solu­

tions to s(x) = n ), clan (a finite generalized-cycle), and 

Goldbach solutions, and it provides graph theoretic interpretations 

to perfect numbers, unbounded aliquot series, and other number theory 

notions associated with s . 

Algorit_hms for solving s(x) = n and searching for sociable 

numbers are next specified and analyzed. Finally, the results of 

programming these algorithms on a digital computer are presented as 

empirical statistics, and interpreted in the form of computed results 

and conjectures. 
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1 . Introduction 

Problems in computational number theory are deceptive. On the 

one hand, they are often simply stated so that even an amateur can 

have success in computing a solution. Consider the example of 

amicable numbers: The smallest amicable pair is 220 and 284 be­

cause each is equal to the sum of the proper divisors of the other. 

Although amicable numbers were known to the Pythagoreans, it was 

16-year-old B. Nicolo I. Paganini who in 1867 startled mathematicians 

by discovering, probably by trial and error, the second lowest ami­

cable pair, 1184 and 1210 . (Ore 1948)* 

On the other hand, such computational problems can easily lead 

to analyses which require the most advanced techniques in mathema­

ics, probability, and statistics. For example, the existence of an 

odd perfect number (an odd number that equals the sum of its proper 

divisors) remains one of the celebrated unsolved problems in number 

theory. See (McCarthy 1957) for a summary of the many requirements 

an odd perfect must satisfy. 

Now that digital computers are readily available for solving 

number theory problems, there is this same deceptiveness. In the 

one case, a brute force application of the machine by an amateur 

can produce significant output. The straight-forward tabulation of 

all the amicable pairs below a million is such a case. See 

(Alanen, Ore, and Stemple 1967) for details; all that is required 

is a simple factorization subroutine and about one hour of IBM 

7090 machine time. 

* ,, 
The flexible system of making references to the Bibliography by 

such expressions a~ "(Ore 1948)", "by Borho (1968) 11 or "(Knuth 

1968, p.316)" is familiar and self-explanatory. 



At the other extreme, only the most "efficient" (well-planned, 

elegant, optimal, ingenious, etc.) analysis of the problem will 

allow a carefully programmed computer to make progress toward solu­

tions. Using a computer in such a fashion, Muskat (1966) has 

proved that any odd perfect number must be divisible by a prime 

power greater than 1012 • He enlisted computers both to obtain 

prime factorizations and to check the accuracy and completeness of 

the lengthy proof. 

I assert that an "efficient" analysis must employ technig_ues 

2 

1n algorithmic analysis (Knuth 1971) and empirical statistics. When 

a computer algorithm for solving a problem has been proposed, an 

analysis of the algorithm investigates the two g_uestions: 1. Does 

the algorithm work? 2. Is the algorithm any good? A correctness 

proof is used to answer the first question. A program correctness 

proof does not consist of testing the program with representative 

input data and checking the resultant output. Nor is it reading a 

program closely and then announcing that it works, As Dijkstra says 

(in Buxton and Randall 1970): "Testing shows the presence, not the 

absence of bugs." By correctness proof we mean a rigorous mathe­

matical proof which-verifies that a program is in fact correct. 

To answer the second g_uestion, a definition of what constitutes 

optimal performance must be decided upon. If computer memory is 

scarce, the algorithm will be good when a storage analysis shows 

that the program and intermediate results fit into memory. If 

running time is limited, the algorithm will be good when a fre­

g_uency analysis shows that each computational step is performed a 

reasonable number of times. Other measures of performance, such as 

minimizing factorizations or maintaining a desired accuracy, can be 

explored. 



Analysis of an algorithm will often lead to the construction 

of an improved algorithm. Such analyses are, in general, very dif­

ficult. But to demand, seek, and prefer correctness and computa­

tional efficiency in an algorithm can yield significant savings in 

both computer and programming time. Moreover the solution of a 

problem may actually be impossible before development of an optimal 

algorithm. For example, to determine that a thirty-digit integer 

n is prime by successively dividing it by 2, 3, ... , In is im­

practical on a contemporary computer; yet efficient algorithms for 

proving the primality of such an n in a few seconds of computer 

time do exist (Knuth 1969). 

3 

Descriptive statistics is the second source of techniques for 

efficient analysis of problems in computational number theory. This 

sometimes discredited statistical activity helps to arrange and con­

dense complicated sets of numbers in ways that allow you to form 

opinions and reach decisions. For getting insight or understanding 

or bright ideas, Savage (1968) encouraged the once cardinal sin of 

fooling around with the data. There should be increased interest 

in, and respect for, looking upon the data with affection and 

curiosity, or as Savage said, "really fooling around with the data 

to see whether, looked at this way, or the other way, it seems to 

spell 'Merry Christmas'." 

The author undertook to study aliquot series in order to sup­

port his assertions that algorithmic analysis should be used to be 

careful and to lay theoretical groundwork before computer experi­

ments are attempted; and that empirical statistics should be used 

to form extrapolatory conjectures, empirical theorems, and other 

inferences from the computed results. Some notation, definitions, 

and history of aliquot series follow. 
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Notation and Definitions. . . . * By the aliquot divisors of a number are 

meant the divisors, including unity, which are less than the number. 

Let s(n) denote the sum of the aliquot divisors of the nonnegative 

integer n. Define s(0) = s(1) = 0. A series of numbers 

2 n, s(n), s (n), •.• , where the exponent denotes iteration, is 

called an aliquot series with leader n. Writing n = n and 
0 

k 
~ = s (n) for the terms in this series, such series can be typed 

in one of three ways: 

(1.1) the series is purely periodic with proper period k, that 

is 

are distinct and n . 

Perfect numbers correspond to the case k = 1 and hence 

satisfy s(n) = n. For example, 6 = + 2 + 3 is perfect 

and we consider 0 perfect according to the definition 

s(0) = 0. Amicable pairs (n, n1) and crowds (n, n1 , n
2

) 

correspond to k = 2 and k = 3 , respectively. In general, 

the k distinct members of the series (1.1) are called 

sociable numbers of index k. 

(1.2) the series is ultimately, but not initially, periodic. For 

example, the series with leader 562 leads to the smallest 

amicable pair (220, 284) since s(562) = 284 Further-

more, a series like 14, 10, 8, 7, 1, 0, 0, which con-

tains a prime p always ends with zeroes since s(p) = 1 , 

* ' Terms that may be new to the reader are italicized (underlined) 

while terms introduced here but not of general use appear in 

bold face (wavy, underline). 



s(1) = 0, and s(0) = 0. 

(1.3) the series is unbounded (lim ~ = 00 ) • 

k-+«> 

It is not known whether this possibility is realized. The 

smallest n which could be the leader of an unbounded 

series is 276, and then n348 has 31 digits as calcu­

lated by the D.H. Lebmers (personal note, February 1972). 

History. Perfect and amicable numbers have been studied for cen-

5 

turies, so a history of their exploration using digital computers 

will be emphasized here. Euclid proved that the formula 2n-1(2n-1) 

always gives an even perfect number if the parenthetical expression 

is a prime. Two thousand years later, Euler proved that this 

formula gives all the even perfects. Primes of the form 2n-1 are 

called Mersenne primes and the twelfth Mersenne prime, 

discovered by E. Lucas in 1876 is the largest to have been found 

without the aid of modern computers (Gardner 1968). The 23 known 

* perfects and their corresponding Mersenne primes are listed by 

Gardner. The last perfect - which has 6,751 digits - was dis­

covered in 1963 when a computer at the University of Illinois 

determined the 23rd Mersenne prime, 211213-1 . 

Amicable numbers were known to the Pythagoreans and numerous 

rules for constructing certain types of amicable pairs have been 

published (see Lee's 1969 history) . Exhaustive computer searches 

have recently enumerated all the amicable pairs less than 

100000000 as follows: 

*) The 24th , even perfect number, was recently 

computed (Tuckerman 1971). 



Interval 

(0, 105] 

(105 , 106] 

( 106, 107 J 

( 107, 108] 

Year 

1967 

1967 

1968 

1970 

All amicable numbers in this interval 

published by 

Rolf 

Alanen, Ore, and Stemple 

Bratley and McKay 

Cohen 

6 

Sociable numbers and aliquot series are obvious generalizations 

of perfects and amicables. Two sociable series, one of index 5 

with leader 12496 and the other of index 28 with leader 14316, 

were announced by Poulet (1918). While systematically enumerating 

the amicable pairs, the above authors conducted limited computer 

searches for crowds and other sociables of higher index. In the 

interval 6 7 (10, 6.10 ), Cohen's program outputted nine sociable 

series of index 4. Borho (1969) had published one of these 

series, s4 (28158165) = 28158165 , but lacked machine time to fully 

implement his theoretical requirements on sociables of index 3 and 

4. A condensed summary of the additional sociable series, with 

certain lesser numbers and indices, whose existence has been denied 

by computer trials follows: 

(Alanen, Ore, and Stemple) Crowds with leader n < 106 • Odd-even 

amicable pairs with the odd number 

< 3469563409. 

(Borho) Sociables with n < 105 and 

2 < k < 10 . 

(Cohen) Sociable series of index 10 or less, of which the lesser 

number is smaller than 6.107 
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Computer experiments for seeking new sociable numbers and for 

tabulating aliquot series are currently being conducted by many 

scientists, so that it is difficult to keep up with very recent dis­

coveries and results. For example, the D.H. Lehmers (personal note, 

February 1972) are daily pushing the series with leader 276 for­

ward to determine if it is ultimately periodic. Also, R. David has 

recently reported (personal note, January 1972) his discovery of 

two new sociable series of index 4 • Their leaders are 209524210 

and 330003580, but details of their computation are unknown to me. 

For reference, Table 1.1 lists the thirteen known sociable series 

and their factorizations. 

A tabulation of the s function was given by Dickson (1913), 

and Poulet (1929) computed several long aliquot series until a term 

increased beyond his practical power of calculation. Both of these 

authors comitted numerous errors and were limited by the necessity 

of performing calculations by hand. The most recent work appears 

to be a table computed on Olivetti - Underwood Programma 101 

machines, of all aliquot series with leader n < 10000 (Guy and 

Selfridge 1971). 

For fixed n ,_consider solutions to the equation s(x) = n 

and denote the total number of these solutions by d(n) . Clearly 

d(O) = 2 , d(1) = 00 , and d(2) = 0 because s(x) = 0 has only 

the solutions x = 0 and x = 1 ; s(p) = 1 for every prime p; 

and s(x) = 2 is impossible. When d(n) = 0, I call n untouch­
f"V\./1./'V'v 

able. If x = n is the only solution to the equation s(x) = n, rvvv 
then n is a hermit; 28 is a hermit. Every hermit is a perfect 

1\1\NVv 

number, but not conversely since, for instance, s(25) = s(6) = 6. 

The first few untouchables were given by Dickson (1913), and 

Poulet (1929) further _listed a few small solutions to d(x) = n 



for O < n < 3. 

Next, a summary of the method of analysis and results, des­

cribed in detail throughout Section 2-7, will be given. 

Section 2 derives several properties of the function s. 

8 

First recurrence relations for evaluating s are presented, Given 

a factor of n, these relations permit calculation of s(n) in 

terms of this factor. These recurrence relations are later used 

heavily in proofs and in the construction of efficient algorithms. 

Complete conditions for determining the parity of s(x) rela­

tive to x are next specified. For example, an odd number has even 

s value only when it is a perfect square. The fact is that 

changes in the parity of aliquot series terms are related to whether 

or not a perfect square term occurs. 

Upper and lower bounds on x in s(x) = n are deduced. The 

largest value possible for x equals (n-1) 2 when n > 1 is 

fixed; this happens if n-1 is prime. The smallest value possible 

for s(x) equals x/2 when x is even; equality happens iff 

X = 2 , 

Upper bounds for the ratio s(x)/x are established and com­

pared (Table 2.1). ·An asymptotic formula is also given. These 

results are all functions of w(x) , the number of distinct prime 

factors of x. Since "round" numbers (numbers with a considerable 

number of comparatively small factors) are rare, the result of 

computing s(x) will, it turns out, rarely exceed 5x. 

Lastly, the mean value of the ratio s(x)/x is displayed as 

2 
n /6-1 , or about o.645. Hence is typically about of 

~. This suggests that, on the average, aliquot series eventually 
&• 

terminate. 

These properties of s derived in Section 2 provide inter­

esting and useful results independent of any computer computations. 
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Moreover, a little bit of theoretical work before using the machine 

can assist in the construction of more efficient and productive 

computer programs. 

Section 3 applies well-known graph theory (Ore 1965) to char­

acterize the oriented graph generated by s • This leads to such 

concepts as untouchable number, clan, and Goldbach solution. And 

it provides graph theoretical interpretations to perfect numbers, 

unbounded aliquot series, and other number theory notions asso­

ciated with s • In Figure 1.2 appears part of the generalized 

cycle which contains the perfect number 8128. Further such graphs 

have been drawn by (Guy and Selfridge 1971). The results in 

Section 3 are a theoretical characterization of these graphs rather 

than a partial empirical tabulation. For example, it is proved 

(Theorem 7) that there exist an infinite number of both even and 

odd numbers which have edges leading into them (i.e., they are 

touchable). 

When solutions to the equation s(x) = n (for fixed odd 

n > 1) are investigated, solutions composed of the product of two 

distinct primes frequently obtain. These are named Goldbach solu­

tions because Goldbach conjectured that every even integer can be 

written as the sum of two primes. The truth of a slightly strength­

ened Goldbach conjecture, which seems abundantly true empirically, 

implies that odd untouchable numbers (excepting 5) do not exist. 

No finite generalized cycles (clans) of s appear to be 

known, besides the singular hermit 28 . Because of the result 

(Theorem 6) on Goldbach solutions, a guide in searching for clans 

is to eliminate series with odd numbers from consideration • 
• 

Section 4 explores problems in solving the equation s(x) = n 

for fixed n > 1 . The straightforward procedure (enumerate s(x) 
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for all 
2 x .::_ ( n-1 ) , as based on Theorem 4) to solve this equa-

tion for n about 5000 requires around 25 million factoriza­

tions. Better algorithms are thus required for large n. Several 

efficient computer algorithms are constructed, proved correct, and 

further analyzed in this Section. They are based upon building and 

traversing a certain tree structure, called the aliquot tree for 

n, which contains all solutions to s(x) = n among its nodes. 

No numbers are factored by these efficient algorithms and for 

n = 5000 they involve fewer than 250000 "simple" computational 

steps. 

Refinements to the algorithms in Section 4 are possible if 

Goldbach solutions to s(x) = n are either not required or else 

are found as a special project using another fast computer method 

which is described. Theoretical results (Theorems 8 and 9) are 

generated to support the analyses (especially the correctness proofs) 

of these algorithms. 

Important and interesting features of the algorithms were 

brought out during their analysis. In particular, the discipline of 

proof accrued the advantages: 

1. Provided a systematic search for errors. 

2. Gave sufficient reasons why the algorithm was correct. 

3. Led to ways by which the algorithm was spectacularly improved. 

4. Made explicit the assumptions on which correctness rested. 

Hence an attempt to satisfy yourself as to the correctness of an 

algorithm should be the first and most basic part of the analysis 

of any algorithm. 

Section 5 looks into algorithms for the exhaustive systematic 

" determination of sociable series. The usual approach to detect 

sociables is to examine each aliquot series i, s(i), s 2(i), ..• 
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for i = O, 1, 2, ... , n until a term exceeds some large number N 

or until a term equals some preceding term (in which case a sociable 

series has been captured). This is Algorithm E. 

A refinement of this straightforward approach is to keep track 

of the series terms which have already been examined. Thus when 

N = n = 284 , the amicable pair (284, 220) would not be detected 

after (220, 284) is found, This is Algorithm H 

Because Algorithm R can be used to generate s values 

efficiently (that is, without factoring numbers), a faster method 

for detecting sociables is to store these s values in a table and 

then traverse the table systematically looking for sociables. This 

is Algorithm D. 

Comparisons are made between Algorithm E, H, and D. 

Table 5.1 summarizes these storage and factorization frequency com­

parisons for the "best 11 and "worst" cases. All three algorithms are 

lacking when n exceeds a million. 

Instead of systematically exhausting leader possibilities and 

computing all of their series terms up to some large value, res­

tricting conditions can be placed on the leader and/or their series 

terms, so that the total number of possibilities is reduced while 

the probability of finding a sociable series is not reduced signif­

icantly. Section 6 contains such procedures based upon heuristic 

arguments and empirical observations on aliquot series, 

Section 6 sets forth the results of computer experiments as 

empirical statistics, and interprets them in the form of computed 

results and conjectures. It begins with a description of the 

tables computed and how they were programmed. 

Statistics based on the aliquot series with leaders below 

1000 revealed seven distinct series which may be unbounded. One of 
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these, the series with leader 276, is conjectured to extend to 

over 448 terms. While examining these long series, H. te Riele (1972) 

observed that perfect numbers can appear as factors of series terms 

and when they do, they seem to remain as factors in succeeding 

terms. This suggested examining the series with leader Pq, where 

P is a perfect number and q is a prime that is relatively prime 

to p . For 6 P = 2 • 127 and q = 3 the first terms of this 

series are displayed in Table 1.3. Using Theorem 1 te Riele was 

then able to prove that the series with leader 3P, where P is 

the 24th perfect number 219936(219937-1) which has 12003 digits, 

extends to over 5000 strictly increasing even terms. Hence 

Table 1.3 gave the insight that leads to a theorem on long series 

lengths in aliquot series. 

Other statistics on series termination are provided by Tables 

6.8 and 6,9. These are based upon the series with leaders below 

40000. If we consider a series to be unbounded when a term 

exceeds 1010 , then 14% of these series were unbounded. A major­

ity of 84% lead into prime numbers so that ~ = 0. The remain­

ing 2% "bump" into sociable series. Poulet's two sociable series 

terminated numerous - (54 or 0.1%) series considering the scarcity 

of sociables, All posibilities seem to occur: Large terms only 

after many terms; termination after many terms; series which 

remain small for many terms; series which increase rapidly. 

A systematic search for new sociable series was conducted by 

implementing Algorithms H and D . Computed result 2 states that 

no further sociable series exist whose terms are below 200000. 

Conjecture 3 argues that Poulet discovered his two sociable series 

by a systematic hand~calculation of those 901 aliquot series whose 

leader is a round number below 10000 . A round number possesses 

six or more prime factors. 
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Reasons why sociable numbers usually contain round numbers are 

given. The known perfect numbers are 87% round. Of the amicables 

below 108 , 89% have at least one round number. And 85% of 

the known sociables with index over two contain round numbers. 

Based upon these observations, a computer search was conducted, un­

successfully, for sociables with leader above the 6.107 tried by 

Cohen (1970). See the program in Figure 6.12. It should be noted 

that David's sociable series with leader 22 .5.16500179 (Table 1.1) 

would have been discovered by this program. when larger values of q 

were taken. Further understanding of this roundness property among 

sociables and additional computer searching based upon it are called 

for. 

A list of the 570 untouchable numbers below 5000 was com­

puted (Table 6.3). Empirical properties of these untouchables are 

examined. By extrapolation it appears there are an infinity of un­

touchable numbers (Conjecture 4). A significance test suggests that 

among even numbers, being untouchable and being the double of a 

prime are not independent events. 

Related to d(n) , the number of solutions to s(x) = n, is 

the number of "Goldbach decompositions" which has been studied by 

Stein and Stein (1965). This leads to the conjecture that d(2n+1) 

is unbounded for large n. A related conjecture is that the equa­

tion d(n) = k, for fixed k, has at least one odd solution .n. 

Refer to Tables 6.1, 6.2, and 6.11 for empirical tabulations of 

these solutions. 

Much data on d(n) can be found in Tables 6.1 and 6.2, which 

tabulate the solutions of s(x} = n for n up to 500. ,. 

Section 7 specifies the algorithms mentioned in Sections 4 and 

5, An effort is made to prove that each computer procedure is un-
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ambiguously specified, does terminate, has well-defined input and 

output, and can be performed in a reasonable number of steps. Cor­

rectness proofs for nontrivial program sections are outlined. A 

study of'the properties of the algorithms is attempted; for example, 

a frequency analysis (how many times each step of the algorithm is 

likely to be executed) and a storage analysis (how much memory it is 

likely to need) are specified. 

Had unlimited time and resources been available, plenty of 

further interesting things could have been done. Let me outline 

four topics, in particular, for future research in aliquot series: 

1. Find an asymptotic empirical distribution for s(n) , suitably 

rescaled; 2. Develop a theory of untouchable numbers; 3, Conduct 

heuristic searches for sociable series; 4. Support the conjectures 

in Section 6 with additional evidence. Some elaboration~ on these 

four topics follow: 

1. A splendid addition to aliquot series research would be to 

determine, possibly empirically, the asymptotic distribution of 

s(n) for large values of n. If s(n) is normalized by 

translation and scale parameters that are powers of n, then 

a limiting distribution might be obtainable empirically. 

2. One could investigate whether untouchability behaves like 

Bernoulli trials with respect to even numbers. In particular, 

are the number of runs of even untouchables of various lengths 

what is expected under the hypothesis of independent trials? 

Similarly, half the distance from one untouchable to the next 

should be distributed in a geometric distribution; what is the 

v observed phenomenon? All kinds of questions suggest themselves 

and each new answer would doubtless suggest more. Table 6.3 of 
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untouchables could be extended by suitably altering procedure 

R in Section 7. Perhaps an odd number deserves to be called 

almost untouchable if it is touched only by Goldbach solutions. 
~ 

Then comparison of the frequency of almost untouchables with 

that of truly untouchable evens could be made. 

3. I have noted that almost every known sociable series includes 

at least one round number. Another empirical observation is 

that terms in a sociable series usually contain the same number 

of digits. Therefore, it seems desirable to base sociable 

series searches on such heuristics in order to reduce the 

search domain. It.is again emphasized that a careful analysis 

should be attempted before time-consuming calculations are per­

formed to find sociable numbers. Program traps should be set to 

yield something even if not the object of greatest interest. It 

requires skill and patience to anticipate possibilities so that 

a program will trap relevant information which seems secondary 

to the main output. Data analysis is clearly an area where you 

never know ahead of time everything of interest, and yet you 

must try to anticipate and accumulate. 

4. Additional empirical evidence could be brought to bear on my 

conjectures in Section 6. For instance, according to the argu­

ments for Conjectures 1 and 2, collapse of an even series occurs 

at a certain rate. How many situations are there in which col­

lapse was not to be expected and did in fact not take place? 

Further numerical evidence will naturally suggest further con­

jectures. 

In summary, techniques in both algorithmic analysis and em­

pirical statistics have been applied to efficiently investigate 
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aliquot series computing problems in number theory. Because the 

computer computations were carefully carried out, the empirical re­

sults are asserted to be mathematical facts. Further, they provide 

valuable data for the empirical side of number theory, which is as 

indispensable to discovering mathematical theorems as demonstration 

is to establishing them. 



Table 1.1. The thirteen known sociable series, their factorizations, 

and their discoverers. 

(Poulet 1918) 

12496 4 (2 .11.71) 14316 (22.3.1193) 
14288 4 (2 .19.47) 19116 (22.34.59) 
15472 (24.967) 31704 (23.3.1321) 
14536 (23.23.79) 47616 (29.3,31) 
14264 (23. 1783) 83328 7 (2 .3.7.31) 

177792 (27.3.463) 
295488 (26.35.19) 

629072 (24.39317) 
589786 (2.294893) 
294896 (24.1.2633) 

358336 (26.11.509) 
418904 (23.52363) 
366556 (22.91639) 
274924 2 (2 .13.17.311) 
275444 (22.13.5297) 
243760 4 (·2 • 5. 11 • 277) 

376736 (25.61.193) 
381028 (22.95257) 
285778 (2.43.3323) 

152990 ( 2. 5 . 15299) 
122410 ( 2. 5. 12241 ) 

97946 (2.48973) 
48976 (24.3061) 

45946 (2.22973) 

22976 (i.359) 
22744 (23.2843) 

19916 (22. 13,383) 

17716 (22 .43.103) 



1264460 

1547860 

1727636 
1305184 

2784580 

3265940 

3707572 
3370604 

7169104 

7538660 
8292568 

7520432 

18656380 

20522060 

28630036 

24289964 

209524210 

246667790 

231439570 

230143790 

Table 1.1. (Continued) 

Borho (1969) 

28158165 

29902635 

30853845 

29971755 

Cohen (1970) 

2 ( 2 • 5 . 17 . 3719 ) 2115324 
2 (2 .5. 193.401) 3317740 

(22.521.829) 3649556 
(25.40787) 2797612 

2 (2 .5.29.4801) 4938136 
2 ( 2 • 5 . 61 • 2677) 5753864 

(22.11.84263) - 5504056 

(22.23.36637) 5423384 

(24.17.26357) 18048976 

(22.5.376933) 20100368 

(23.59.17569) 18914992 
(24 .127 .3701) 19252208 

(22.5._932819) 46722700 
2 (2 .5.13.17.4643) 56833172 
2 (2 .19.449.839) 53718220 

(22.97.62603) 59090084 

2 2 (2 ,3 .67.877) 

(22.5.165887) 

(22. 107 .8527) 
(22.331.2113) 

3 ( 2 • 7 • 109 . 809 ) 

(23.23.31271) 

(23. 17 .40471) 

(23.53.12791) 

'(24 .11.102551) 

(24.919.1367) 
4 (2 .37.89.359) 

(24 .1203263) 

2 2 ( 2 . 5 . 47. 9941) 

(22.11.52.24371) 

(22.5.2685911) 

(22.43.343547) 

David (personal note, January 1972) 

(2.5.7.19.263.599) 330003580 (22.5.16500179) 

(2.5.17.59.24593) 363003980 (22.5.18150199) 

(2.5.19.23.211.251) 399304420 (22.5.1163.17167) 

(2.5.17.499.2713) 440004764 (22.110001191) 

18 



19 

Figure 1.2. A partial drawing of some nodes and edges in the 

generalized cycle which contains the perfect cycle 8128. 

10828 
I 

14528 

14428 / 

~ 14650 

12692 L14488 

~25378 -48326 --31572 

33862 
- / 

84 70 -16934 ::...-- 32026 

I ~19336 -38666 

32314 

10682 ~36086 

~ 
19198 -25588 --34108 --30992 



Table 1.3. The aliquot series with leader n =.3P, where 

P = 26.127 is a perfect number. 

k 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 

' 46 
47 
48 

24384 
4o64o 
56896 
73152 
138176 
154432 
170688 
349504 
365760 
902208 
1568704 
1584960 
3877056 
7534656 
14443456 
14459712 
24164544 
40339264 
51994816 
52011072 
105347008 
121781824 
121798080 
326672448 
544519104 
927104064 
1570597824 
2722546752 
4537642944 
7737847872 
12896478144 
30275296320 
67104646080 
148513897536 
254239556544 
543386442816 
1393600488384 
2760715246656 
4601192142784 
4601192159040 
10122623140032 
21399210114880 
35693713768640 
55522523041600 
82173334605504 
136971954712896 
233290137724608 
403583253133632 
862499296396992 

factorization of~ 

2.2.2.2.2.2.3.127 
2.2.2.2.2.2.5.127 
2.2.2.2.2.2.7.127 
2.2.2.2.2.2.3.3.127 
2.2.2~2.2.2.17.127 
2.2.2.2.2.2.19.127 
2.2.2.2.2.2.3.7.127 
2.2.2.2.2.2.43.127 
2.2.2.2.2.2.3.3.5.127 
2.2.2.2.2.2.3.37.127 
2.2.2.2.2.2.127.193 
2.2.2.2.2.2.3.5.13.127 
2.2.2.2.2.2.3.3.53.127 
2.2.2.2.2.2.3.3.103.127 
2.2.2.2.2.2.127.1777 
2.2.2.2.2.2.3.127.593 
2.2.2.2.2.2.3.127.991 
2.2.2.2.2.2.7.127.709 
2.2.2.2.2.2.127.6397 
2.2.2.z.2.2.3.3.3.3.79.127 
2.2.2.2.2.2.13.127.997 
2.2.2.2.2.2.127.14983 
2.2.2.2.2.2.3.3.3.3.5,37,127 
2.2.2.2.2.2.3.127.13397 
2.2.2.2.2.2.3.127.137.163 
2.2.2.2.2.2.3.127.193,197 
2.2.2.2.2.2.3.41.127.1571 
2.2.2.2.2.2,3.127.111653 
2.2.2.2.2.2.3.71.127.2621 
2.2.2.2.2.2.3.127,317333 
2.2.2.2.2.2.3.3,11.11.31.47.127 
2.2.2.2.2.2.3.5.127.239.1039 
2.2.2.2.2.2.3.5.127.277.1987 
2.2.2.2.2.2.3.59.127.103231 
2.2.2.2.2.2.3.3,3.17.127.68147 
2.2.2.2.2.2.3,3,3.7.19.127.18617 
2.2.2.2.2.2.3.13.13,31.127.10909 
2.2.2.2.2.2.3.127.113218309 
2.2.2.2.2.2.127.566091553 
2.2.2.2.2.2.3.5,127,37739437 
2.2.2.2.2.2.3,3,13.127.1231.8647 
2.2.2.2.2.2.5.13.31.127.1306589 
2.2.2.2.2.2.5.29.37.127.821.997 
2.2.2.2.2.2.5.5.127.273240763 
2.2.2.2.2.2.3.127.14159.238009 
2.2.2.2.2.2.3.73.127.76949153 
2.-2.2.2.2.2.3. 73.101.127 .1297619 
2.2.2.2.2.2.3.11.13.127.743.15577 

20 
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2. Properties of s 

The following notations and conventions will be freely employed: 

o(x) = s(x) + x is the sum of the divisors of x. 

w(x) denotes the total number of distinct prime factors of x. 

n(x) equals the total number of prime factors of x. 

pi will be the i-th prime (p1 = 2, p
3 

= 3, p
3 

= 5, ... ). 

q
1 

< q2 < q
3 

< ••• denote distinct primes. 

e, e 1, e2 , e
3

, are (usually positive) integral exponents. 

i, i 1, i 2 , 1
3

, are (usually positive) integral subscripts. 

logy is the "natural" iogarithm of y. 

log2 y is the base two logarithm of y. 

In this Section are given properties of the s function which 

will be used later. Because s(x) = o(x) - x, some of the proofs 

naturally rely on properties of the o function. For example, a 

recurrence relation useful for computing s values is the expres­

sion in terms of s of the well-known multiplicativity of a. 

Theorem 1. If m and n are relatively prime, then 

s(mn) = s(m) s(n) + ms(n) + ns(m) • 

Proof: s(mn) = o(mn) - mn 

= o(m) o(n) - mn 

= [s(m) + m] [s(n) + n] - mn 

= s ( m) s ( n) + ms ( n ) + ns ( m) • 
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Obviously, s(pe) = 1 + p + ••• + pe-1 = (pe-1)/(p-1) so that 

( e+1) ( e) e s p = s p + p • Therefore, we have 

Corollary 1.1. If p is not a factor of m, then 

Corollary 1.2. If p is not a factor of m, then 

s(mp) = (1+p) s(m) + m. 

Next we examine the parity of s(x) when x is odd (even). 

Bouniakowsky (1848, p. 278) proved that for n odd, o(n) is even 

or odd according as n is not or is a square; for n even, o(n) 

is even if n is not a square or the double of a square, odd in the 

contrary case. Hence squares and their doubles are the only integers 

whose sums of divisors are odd. But for m odd and e > O , it is 

evident that: 

s(m) even iff o(m) odd, 

Therefore, the parity of s is given by 

Theorem 2. Suppose e > 0 and m is odd. Then 

s(m) even iff m = perfect square iff s(2em) odd. 

To express the next theorem conveniently, I introduce the con­

ventions: e 1 ~ e2 ~ ..• ~ ek ~ 0 denote integers; T is any per-



mutation ( i 1 , i2, 

[TJ = 

where 

... , ik) of ( 1 , 2, .•• , k) ; 

k e k e 
II T(a.) and {T} = II 

T (a.) 
Pa. q 

' a.=1 a.=1 

denote primes and p is the 
a. a.-th 

prime. With this notation, Corollary 1.1 becomes: If q is not 

a factor of {T} , then 

23 

And the customary formula (Ore 1948, p.89) for computing values of 

s in terms of the prime factorization of its argument becomes: 

( 2. 1) 
k 

s({T}) = II 
a.=1 

e ( )+1 
q T a. - 1 
_a. _____ - {T} • 

q --1 a. 

Theorem 3. min s{T} is attained when T is the identity permu­
T 

tation or any permutation that leaves the e in non­
i 

increasing order, and only for such T. 

Prior to proving Theorem 3 and its Corollary, three relevant 

Lemmas will be developed. 

Lemma 3.1. {(1 2)} < {(2 1)} if e
1 

> e2 _.:: 0. 

Proof: AsslµIle e1 > e2 > 0 . Then e -e > 1 and q1 . < q2 1 2 -

implies that 
,. e 1-e2 

(q/q2) < 1 . 
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Thus 

Lemma 3.2. s{(1 2)} < s{(2 1)} if e
1 

> e2 .::_ 0 . 

Proof: Assume e
1 

> e2 .::_ 0 and q
1 

< q
2 

• The assertion is that 

Clearly, 

e2 e2 e1 e2 . 
g_j e1 e2 

s{(1 2)} = cr( g_1 q2 ) + I I q~ g_1 q2 
i=e2+1 j=O 2 

s{(2 1 )} 
e2 e2 e1 e2 . 

g_j e1 e2 
= cr ( g_1 g_2 ) + -I .l q~ - g_2 g_1 

i=e2+1 J=O 1 

where always i > j 2:_ 0. Applying Lemma· 3.1 shows that 

each term in the double summation of s{(1 2)} is strictly 

less than its corresponding term in s{(2 1)} • Hence the 

desired result. 

Lemma 3.3. 
e

1 
e

2 
e

2 
e

1 s(m g_
1 

.g_
2

) < s(m g_
1 

q
2

) if e
1 

> e
2 

.::_ O and 

{m, g_
1

, g_
2

} are relatively prime in pairs. 

Proof: Under the assumption that m, q
1

, and ½ are relatively 

prime, Theorem 1 gives 

e
2 

e
1 s(m q

1 
g_

2
) = (s{(1 2)} - s{(2 1)}) cr(m) 

+ ({(1 2)} - {(2 1)}) s(m) 

< 0 , 



since both parenthesized terms are negative by Lemm.as 3.1 

and 3,2, assuming e
1 

> e
2 
~ 0. 
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A proof of Theorem 3 based on the above three Lemm.as follows. 

Proof: Suppose· {T} = 

such that 

e < e 
T(a) T(a+1) ' 

and interchange e T(a} 

T'(/3) = T(a+1) 
' 

Take the first a if any 

with so that 

if (3 = a+1 

if (3 = a 
r•) . 

T(/3) ' otherwise 

eT(a+1) eT{a) k eT(/3) h'} = m with m C 11 q_a q_a.+1 , q/3 
13=1 
13#a,a.+1 

Because q < q 
a a+1 are relatively prime, Lemma 

3,3 yields 

s{T'} <·s{T} . 

That is, the interchange of two adjacent exponents e 
T (a) and 

e 
,(a.+1) in {T} gives a smaller s value if e 

T(a) 
< e 

T( a,+1 ) . 
For any T 

' 
if an interchange of the form T' above is possible, 

then the new s value is smaller. The only T where this inter-

change is not possible satisfies 
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e > e -r (a) - -r ( a+ 1 ) for a = 1 , 2, •.• , k-1 ~ 

and this is a monotone decreasing series 

Hence e ( ) = e , -r a a 
or T is the identity permutation, when s{-r} 

attains a minimum. 

Corollary: 3,1. min s[-r] is attained when -r = (1 2 .•• k) or any 
T 

permutation that leaves the 

order, and only for such -r • 

e. 
1 

in nonincreasing 

In Section 4 we seek solutions x of s(x) = n. For example, 

s(x) = 6 has exactly two solutions x = 6 and x = 25 Now the 

following question arises: For fixed n, are there practical 

bounds on x such that s(x) = n? Answers are given by the next 

two theorems. 

Theorem 4. s(x) = n > 1 implies x < (n-1) 2 , with equality iff 

2 
X = p 

Proof: Assume X 1S a solution to s(x) = n > 1 . Let the prime 

k e. 
factorization of equal TI 1 for primes X q. 

i=1 1 

41 < g_2 < . . . < qk and positive exponents e. . Since 
1 

n > 1 , X 'F q1 . Thus g_1 and x/g_1 are the smallest 
(i, 

and largest proper divisors > 1 of X , respectively. 

Now if x·= 2 then s(x) 1 + so that q1 = g_1 = n , 
' 
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2 x = (n-1) . Otherwise, n = s(x) > 1 + q
1 

+ x/q
1 

, which 

implies q
1 

< n-1 and 

2 x = q1 (x/ q
1

) < ( n-1) • 

x/q < n-1 . 
1 

Hence 

2 is attained iff prime; Note the upper bound (n-1) n-1 is 

for example, s(x) = 284 only if X ~ 28l = 80089 , with 

2832 a solution because 283 is In case X 'f' p 2 the X = prime. 

bound in Theorem 4 can be improved to x ~ (n~1) 2/4 - 1 , with 

Recall that s(x) = 0 equality iff X = q q2 and q2 = q1+2 1 
, 

iff X = o, 1 , whereas s(x} = iff X is prime. The proof 

of Theorem 4 can be specialized to give: 

Corollary 4.1. If the prime p divides x, then x ~ ps(x) , 

with equality iff x = p 

Proof: Let x = pm. If m = 1 , then s(x) = 1 = x/p. Other­

wise, m > 1 and then s(x) > 1 + m > m = x/p. 

The next result gives upper bounds for s(x)/x in terms of 

w(x} , the number of distinct prime factors of x. 

Theorem 5. s(x)/x < w(x) and s(x)/x < 4/w(x)/TI - 1 . 

Proof: Let 

that 

k e. 
IT 

i be the X = q. 
i=1 i 

q1 < q < . . . < qk 2 

k q. cr(x) 
--< IT i 

i=1 qi-1 . X 

prime factorization of X such 

. Meissner (1903) noted that: 



(2.2) 

(2.3) 

Since o(x} = s(x) + x and q. > p. > i+1 (for i _> 1}, 
l. - l. -

this yields: 

s(x) 
X 

k q_. 
< JI _l._ - 1 

i=1 q.-1 
l. 

k p. 
< JI l. 1 p.-1 -

i=1 l. 

< (k+l)! - 1 = k = w{x) . 
k! 

Furthermore, p. > 2i-1 
l. 

for 1. > 2 , so that: 

k p. k- 1 2i+1 2(2k-1)! JI _l._ < 2 JI ~ = ______ ..__ =--___. ____ _ 

i=1 pi-l - i=1 22k-2(k-1}! (k-1)! 

Using the double inequality (Feller 1957) 

/2;r 

1 1 
n+l -n+ 12 1 n+l -n+ --

2 n+ , r;:;,--2 n 2 e 12n n e < n. < vcn , 

28 

we will overestimate (2k)! and underestimate k! to get 

= (2k) ! < 2
2

k exp(-
4
1 _ 2 ) 

(k! )2 /.iii 2 k l2k+1 

since the parenthesized exponent 1.s clearly negative, Thus 

s(x} < 4jk - 1 • 
X n 



An asymptotic formula for (2.2) follows from the two 

results: 

II 
p<x 

. 
(Hardy and Wright, 

Merten's theorem), 

29 

pk~ k log k (Hardy and Wright, Theorem 8). 

It is obviously 

k p. 
II 1 1 ~ ey log k - l 

i=1 pi-1 -
ask+ oo, 

where y is Euler's constant 0,57721+. 

Since "round" numbers (Hardy and Wright) are extremely rare, 

the result of computing s(x) will rarely exceed. 5x, by Theorem 

5. (See Section 6 for justification of t4e definition: x is round 

iff n(x) .:. 6 ' 
where n(x) equals the total number of prime 

factors of X . ) When X < 2. 3, 5 ..• P10 = 6469693230 , w(x) < 10; 

thus 9x is an upper bound on s(x) for X < 6469693230 , that is, 

for those numbers X with fewer than 10 prime factors. On the 

other hand, if, for example, s(x) = 105 
' 

then Theorem 4 guarantees 

that x < 1010 , so that w(x) < 10 which implies that 

s(x)/w(x) .:_ 104 . X > 

A tabulation of the upper bounds (2.2), (2,3) and (2.4) on 

s(x)/x and the asymptotic value (2.5) appears in Table 2.1. 

We conclude this Section with some remarks on the behavior of 

s(n) for large values of n. Hardy and Wright prove that 

o(n) = O(n log log n) ; that is, there exists a positive constant 



30 

K such that cr(n} .::_K.n log log n. Therefore, an upper bound of 

the same form holds for s: s(n} = cr(n) - n = O(n log log n) • The 

mean M{f(n)} of a number theoretic function f is defined as the 

limit (if it exists) 

M{f(nl} 
1 N 

= lim N l f(n) • 
N-+<x> n=1 

Using the result (Hardy and Wright) that 

it is easy to see that 

= lim -N1 r cr(n)-n = M{fillU.} - 1 
N-+<x> n=1 n n 



Table 2.1. Upper bounds, derived from (2.2), (2,3), and (2.4) 

for s{x)/x, and the asymptotic formula (2.5). 

w(x) 
w(x) p. 

IT -
1

- 1 
. 1 p.-1 
1= J. 

4/w(x)hr .: 1 ey log w(x) - 1 

1 1 1.25676 -1 
2 2 2.19154 0.23455 

3 2.75 2.90882 0.95671 
4 3,375 3.51352 1. 46909 

5 3.8125 4.04627 1.86653 

6 4.21354 4.52791 2. 19125 

7 4.53939 4.97082 2.46581 

8 4.84713 5,38308 2.70364 

9 5. 11291 5,77027 2.91342 

10 5,33123 6.13650 3.10107 

11 5.54227 6.48482 3.27083 

12 5.72400 6.81764 3.42580 

13 5.89210 7. 13686 3.56836 

14 6.05620 7,44402 3.70035 

15 6.20959 7,74039 3.82323 

30 7.71308 11.36077 5.05778 

60 9. 18962 16.48077 6.29232 

120 10.64801 23,72155 7.52687 

240 12.09158 33,96155 8.76141 

480 13. 51709 48.44310 9,99596 

960 14.92599. 68.92310 11.23051 

31 
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3. Aliquot Graphs 

The function s is studied in this Section from the graph­

theory point of view. A reader who wanta a more formal intro­

duction to the definitions and results for the graph of a many-to­

one correspondence of a set into itself will find them in Ore 

( 1965). 

Our directed graph G = G(V) with vertex set 

V = { O, 1 , 2, 3, ••• } has a single directed edge ( v, s (v) ) 

issuing from each vertex v € V. Define s(O) = s(1) = O , as 

always in this paper. An edge (v,v) is called a loop and loops 

correspond to perfect numbers. 

Denote by d(v) the number of incoming edges at a vertex v. 

Hence d(v) , called the in-degree of G at v, equals the num-

ber of edges having terminal vertex v. For example, d(6) = 2 

since the only solutions of s(x) = 6 are x = 6 and x = 25 

An untouchable number v has d(v) = 0 and is never a terminal 
N\/V'VV'Vv\A 

vertex of an edge. The number of outgoing edges from any vertex 

always equals 1 , for s is single-valued; s is not onto V 

because untouchable numbers, like 2 and 5 , exist. The follow­

ing theorem implies it is quite probable that every odd number 

except 5 has positive in-degree. 

Theorem 6. If every even integer n > 6 is a sum of two distinct 

odd primes, then for every odd integer v > 7, 

d(v) > O and s(x) = v for some odd solution x > v. 

Proof: If v ~ 9 is odd, the hypothesis assures the existence of 

primes q
1 

> q
2 
~ 3, so that v-1 = q

1 
+ q2 and hence 



V • 

Obviously, q
1
q2 - v = {q

1
-1){q2-1) - 2 > 0. Thus 

d(v) > 0 because x = q
1
q

2 
> v satisfies s{x) = v. 
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Note that (2,1), (4,3), (8,7) E G. Using this and Theorem 6, 

we have that every odd integer v # 5 has d(v) > O (assuming the 

hypothesis of Theorem 6 holds). The hypothesis of Theorem 6 is a 

strengthened form of the Goldbach conjecture and from the empirical 

point of view (Shen 1964; Stein and Stein 1965) seems abundantly 

true. Numbers which are the product of two distinct odd primes 

will be called Goldbach solutions. Experimental evidence on the 
~ 

number of Goldbach solutions, and hence on a lower bound for d(v) 

when v is odd, is presented in Section 6. 

Several elementary properties of the in-degree function are 

contained in the next theorem. 

Theorem 7. (1) The only number with infinite in-degree is unity; 

that is 

d(v) = oo iff V = 1 . 

(2) If the strengthened Goldbach conjecture (see the 

hypothesis of Theorem 6) is true, then 

d(v) = 0 implies v = 5 or v is even. 

(3) There exist an infinite number of touchable even 

numbers; that is, 



Proof: 

d(v} > 0 for an infinity of even v. 

(4} There exist an infinite number of touchable odd 

numbers; that is, 

/' 

1 d(v} > 0 for an infinity of odd v. 

34 

(1) follows from the bound 2 d(v} < (v-1) , when v > 1 , 

of Theorem 4 and from the fact that s(p) = 1 for every 

prime p. 

(2) is immediate from the remark after Theorem 6. 

To show (3), let p > 2 be prime. Then v = p + 1 is 

even and 2 s(p) = V • Since there are an infinity of odd 

primes, the result follows. 

The odd numbers vi= 4 + pi+
2 

for i > 1 satisfy (4), 

because implies d(v.) > 0 • 
1 

Each vertex n defines a unique directed sequence of edges 

passing through the successive vertices 

( 3.1) 2 n
2 

= s (n) , • • • • 

The smallest k > O such that ~ = n, if there is one, yields a 

finite cycle of length k passing through the vertices 
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Loops (perfect numbers) correspond to cycles of length 1 , amicable 

pairs make up the cycles of length 2, and cycles of length k 

constitute a series of sociable numbers of index k • 
. 

If, on the other hand, the vertices in (3.1) never repeat, then 

n is said to belong to the infinite cycle defined by (3.1). In-

finite cycles correspond to unbounded aliquot series. An infinite 
/'VVVV"V"-

reverse cycle is a directed sequence of edges passing through the 
('VV'V'\JV'VVVV 

infinity of distinct vertices n
0

, n_
1

, n_
2

, ••• in the backward 

direction, where s(n . ) = n
1 

. for i > 1 • Furthermore, if a 
-1 -1 

cycle is infinite in both directions 

then it will be called a two-way infinite cycle. 

There exists a decomposition of the vertex set 

V =IV. 
1 

1 

into disjoint sets such that in each v. 
1 

all vertices are con-

nected (ignoring edge direction) while no vertices belonging to two 

different sets are c.onnected. It induces the direct decomposition 

of the graph G into disjoint connected subgraphs G. = G(V.) 
1 1 

called the generalized cycles of s • Two important results (Ore 

• 1962, Theorem 4.4.2 and 4.4.3) for the connected components 

G are: 

G. 
1 

of 
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1. Each generalized cycle contains at most a single fin~te cycle. 

2. A finite generalized cycle always contains a finite cycle. 

We shall now describe, by specializing the general results in 

Ore (1962, section 4.4}, the form of the graph G of s • Assume 

first that G. is one of its generalized cycles, u¢*ti~ining the 
J. ·,~,;/:-:,'·'., 

finite cycle C of (3.2). For each v EV. not in C there is 
J. 

a smallest exponent h > 0 such that 

h s (v) = n. E C 
J 

and it defines a unique directed path of length h from v to 

n .. Hence at each vertex n. in C there will be attached a 
J J 

finite or infinite tree with the root n .• In the case where the 
J 

generalized cycle contains no finite cycle, it follows 

tree with infinite cycles. (See Figures 3,1 and J.2). 

G. 
J. 

is a 

No finite generalized cycles (clans of G) are known to the 
IV'VV"-

author other then the singular hermit 28: 

0 
Theorem 6 provides a guide in searching for clans; it implies a 

clan cannot contain an odd number. For clearly 1, 3, 5 and 7 

are vertices in the infinite generalized cycle which contains all 

the primes, whereas every odd vertex v > 7 will (assuming the 

strengthened Goldbach hypothesis of Theorem 6) define an infinite 

tree with v as root and hence also belong to infinite generalized 

cycles. 



Thus, if Goldbach 1 s conjecture (slightly extended) holds, 

every odd v ~ 5 leads to at least one infinite reverse cycle. 
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A generalized cycle which contains no finite cycle always defines 

an infinity of infinite cycles. But existence of infinite or two­

way infinite cycles is an open question. 
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Figure 3.1. Generalized cycle with finite cycle. 



0 

0 

0 

Figure 3,2. Generalized cycle with no finite cycle. 

39 
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4. Solving s(x) = n 

To show that n is untouchable is to show that s(x) = n has 

no solution x To find which numbers Rave s-values equal to n 

is to find all the solutions of s(x) = n. Theorem 4 provides the 

dogged forthright approach to these problems; simply enumerate 

s(x) for X = 1, 2, 3, ... , 2 (n-1) • For n = 13 this requires 

factorization of 122 
= 144 numbers and evaluation of their 

s-values. Algorithm R of Section 7 computes only 46 s-values 

and does not factor any numbers; it uses the recurrence relations 

of Corollaries 1.1 and 1.2 to evaluate these 46 s-values effi­

ciently. 

Before Algorithm R is fully analysed we define the aliquot 

tree of n > 1 , describe how t~ generate it, and give rules for 

traversing it. Roughly speaking, at level k > 0 of the aliquot 

tree of n are the numbers (arranged in a partiaular lexicographic 

order and excluding primes exceeding n-1 with s-values < n 

and precisely k distinct prime factors. The root of the entire 

tree is 1 and it is the only node at level O. Some nomencla­

ture of Knuth (1968) for tree structures will be reviewed before 

aliquot trees are rigorously defined. 

Let us define an (ordered) tree formally as a finite set T 

of one or more nodes (integers) such that 

(a) There is one specially designated node called the root of the 

tree, root(T) ; and 

(b) The remaining nodes (excluding the root) are partitioned into 

an ordered sequence of m > 0 sets T1 , ... ,Tm, and each 

of these sets in turn is a tree. 
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The trees T
1

, ••• , Tm are called the subtrees of the root T; 

when m > 2 we call T2 the "second subtree" of the root, etc. 

Every node of a tree is the root of some subtree and the number of 

such subtrees is called the degree of that node. A terminal node 

(leaf} has degree zero, whereas a nonterminal node is called a 

branch node. The level of a node with respect to T is defined 

thusly: The root has level O, and other nodes have a level that 

is one higher than they have with respect to the subtree of the 

root, T. , which contains them. 
J 

We hereafter always draw trees with the root at the top and 

leaves at the bottom. For descriptive terminology to talk about 

trees, each root is said to be the father of the roots of its sub­

trees, and the latter are said to be brothers, and they are~ of 

their father. Tree structure wil1 be represented notationally by 

nested parentheses: A tree is represented by the information written 

in its root T, followed by the representation of the ordered sub-

trees T ) 
m 

of T . 
' 

the representation of 

is a parenthesized ordered list of the representations of its trees, 

separated by commas. For example, the tree in Figure 4.1 has repre­

sentation 

(4 .1) 2 3 2 3 1(2(2.3, 2.5, 2.7), 2 , 2 , 3(3.5, 3.7), 3, 3, 
2 2 2 5(5.7}, 5 , 7, 7, 11, 11 ) . 

Note: The tree of (4.1) has 15 terminal nodes, six of them (2,3, 

2.5, 2.7, 3.5, 3,7, and 5,7) at level 2 . Branch node 5 is the 

father of 5.7 , as well as the root of the seventh subtree of 1 . 

Leaves 2.3, 2.5, and 2.7 are brothers, all sons of 2. 

, A sequence of trees is traversed in preorder when we visit its 

nodes as follows: 



Preorder Traversal 

(a) Visit the root of the first tree; 
(b) Traverse the subtrees of the first tree (in preorder) 
(c) Traverse the remaining trees (in preorder). 

These tree recursive steps in which preorder traversal proceeds 

would visit the nodes of tree (4.1) in the sequence 

1, 2, 2.3, 2.5, 2.7, 22 , 23 , 3, 3.5, 3.7, 32 , 33 , 

2 2 2 
5,5-7,5,7,7,11,11. 
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This is simply the representation (4.1) with the right parentheses 

removed and the left parentheses replaced by commas. 

The search for all possible solutions of s(x) = n for a 

given n is greatly simplified by constructing a certain tree 

T[n] , the nodes of which are (with unimportant omissions) the 

integers x for which s(x) < n and having all the solutions of 

s(x) = n among its leaves. 

We are prepared to define the aliquot tree, T[n] , for 
{VVVv\.NV'\AA . 

n > 1 by giving rules for building the sons of an arbitrary father 

node. The root of T[n] is always unity, that is, 

root(T[n]) = 

(4.2) 

Assume that 

k e. 
l 

II Pr. 
i=1 l 

for e. > 0 
l 

and 

is any node at level k > 0 . Define - 1 • Then all the sons 

of ~ are the set of integers 

(4.3) B = {~p~: e > 0 and l > I and p. < n and s(~p~) < n} 
k l 

follows: The 
e1 

and 
e2 

and they are ordered as sons ~pi ~pj are 

the roots of the i -th 1 
and i 2-th subtrees, respectively, if and 

only if (1) 1 < j implies i 1 < i 2 , and (2) 1 = J and 



~ 

~GJ 5. 7\ 

Figure 4.1. Aliquot tree, T[13] , for ~ = 13. In the nested parentheses representation, 

, 2 3 2 3 2 2 2 T[13J = 1(2(2,3, 2.5, 2,7), 2 , 2 , 3(3,5, 3,7), 3, 3 , 5(5.7), 5 , 7, 7 , 11, 11 ) • 

.i::-­
w 



Figure 4.2. Aliquot tree, T[6] , for n = 6. In nested 

parentheses representation, 

2 2 2 
T[ 6 ] = 1 ( 2 ( 2 • 3 ) , 2 , 3 , 3 , 5 , 5 ) . 

1 A - Pointer to T[6J 

2 A 4 A 3 A 25 A 

6 A 

Figure 4.3. Picture of list representation for 

T[ 6] = 1 ( 2 ( 6) , 4, 3, 9, 5 , 25) • Links are shown 

by arrows, except the null link A. 

44 



45 

e
1 

< e
2 

implies i
1 

< i
2

• 

Obviously, conditions (1) and (2) are sufficient to order the 

elements of B, so that· the subtrees whose roots are the sons of 
. 

~ will also be ordered. This ordering also guarantees that 

certain sons of ~ will have ordered s values, because e > 0 , 

p < q, and p,q not factors of ~ implies: 

e 
s(~p ) 

e O O e = s(~p q) < s(~p q) = by Theorem 3, 

S( Ape+1) ( e) ( e+1) ( e) -K = S ~p + ~s p > s ~p , by Corollary 1.1. 

Furthermore, the requirements that s(A p~) < n and p. < n ensure -K 1 - 1 

B is finite at each level. For not that p. > n implies 
1 -

s(~p~) ~~ + p~ > n, except when ~ = e = 1 • Since ~ = 1 

iff k = 0 , the requirement p. < n prevents all primes p. 
1 1 

(i = 1, 2, •.. ) from being sons of the root 1 ; it implies 

i .::_ 1r(n-1) , where the prime function 1r(x) denotes the number of 

primes not exceeding x. Then excluding these prime nodes at 

level 1 only a finite number of e 
will satisfy , p. 

1 

e 2 4. 1 < s(~pi) < n 
' 

namely at most (n-1) by Theorem And the 

terminal nodes of T[n] cannot have level numbers exceeding the 

maximum k for which s(p1 pk).::_ n. Hence the nodes of T[n] 

also comprise a finite set. See ( 4. 1) or Figure 4. 1 for T[ 13]. 

It is apparent that a solution X of s(x) = n > 1 would 

appear as a leaf of T[n] , if it appeared in T[n] at all, 

because nonterminal nodes always have s-values less then n. 

~hat every solution x of s(x) = n is to be found among the 

terminal nodes of T[n] will next be shown. Assume that x has 



the factorization Ak as defined by (4.2). Then Corollary 1.1 

yields the ordering 

s(1) 
e1 e1 e2 

< s(x) = 0 < s(pI ) < s(pI Pr ) < . . . = n . 
1 1 2 

Hence, by the way T[n] lS constructed, A = 0 - 1 is the father 

e1 
the father of 

e1 e2 
is the father of the Pr lS Pr Pr lS 

1 1 2 

father of X , in the aliquot tree of n that lS, 
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of 

node A. 
1 

is the son of A. 1 1-
for i = 1,2, ... ,k. 

Thus x is a node of T[n] • 

In addition, the aliquot tree T[n] contains all solutions to 

1 < s(x) .::_ n among its nodes. This follows immediately from the 

fact that every node of T[n-1] qualifies as a node of T[n] • 

In Section 7 algorithms will be given for exploiting the 

trees T[n] . Algorithm T there is a precise expression of the 

procedure for building T[nJ while visiting its nodes in preorder. 

This algorithm is introduced merely as a logical step; for it is 

soon replaced by a modification, Algorithm R, that takes 

advantage of the fact that evaluation of s values can be done 

without factoring numbers. If the reader will attempt to play 

through Algorithm T using the aliquot tree (4.1) as a test case, 

he will easily see the reasons behind the procedure: Just before 

visiting a node N at level k > 0 in step A2 , we save it on 

~ stack A with pointer k. When we get to step T3 , we want 

to traverse the subtrees whose roots are the sons of N. This is 

done by successively visiting in preorder the sons of N and their 



respective subtrees, using the rules (4.2)-(4,3) for building the 

sons of an arbitrary father node of T[n] . After visiting these 

subtrees we will return to step T3 with the value N on top of 

stack A again. Then the stack is popped up at step T8 and we 

seek further sons of a node at one lower level, k-1 • 
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Algorithm R in Section 7 is a modified version of Algorithm 

T to take advantage of the fact that s is a "top-down" locally­

defined function of the nodes of T[n] ; that is, s has the 

property that its value at a node x can be computed from the 

value x and the value of s at the father of x. Thus s 

should be evaluated at the father of a node before it is evaluated 

at the node as specified by Theorem 1. Then the evaluation of s 

values in Algorithm R is accomplished without factoring numbers. 

A refinement to Algorithms T and R is possible if Goldbach 

solutions to s(x) = n are not required. We use the result 

k e. 
Theorem 8. Let Ak = II 

1 with k 2 qk :::_ v'n , and q. > , 
i=1 

1 

sC\_) .:_ n . Then (i) e = 
k 1 and (ii) k > 2 

implies g_1 , ... , g_k-1 < rn . 

Proof: Under the first two assumptions 

which holds only if ek = 1 • so that 

Hence (i). If k > 2 and, contrariwise, q. > In for 
1-

some 1 < k-1 , then 
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which contradicts the third assumption. Hence (ii). 

k e. 
Corollarr 8. 1. Let ~ = II 

i with k > 2 qk > /n , and q. 
i=1 i 

s(~) = n . Then 

Proof: ek = 1 by Theorem 8. By Corollary 1.2, 

Now if Algorithm R is employed only to solve s(x) = n, we 

can replace step R3 with 

R3'. [Terminate?] If p[i] .::_ /2", then go to step R4. If 

k = 0, then terminate. Set t + (n-A[k])/S[k]-1. If 

t > /n and t is prime, then s(A[k]t) = n. Go to step 

R6. 

and use "p. < In" 
i -

in place of "p. < n" 
i -

in step R 1 , thereby 

gaining considerable savings in the number of nodes trave~sed, at 

the expense of not finding all Goldbach solutions to s(x) = n. 

Although the algorithm would now omit certain solutions where x 

is the product of two primes, a check for these can be done by 

( 1 } test n-1 prime (if it is, = n ), and (2) test 

n-1-p prime for some p < n/2 (if it is, s(p(n-1-p)) = n ). The 



latter test can be programmed for high speed by using a packed bit 

table where the k-th bit is, iff 2k+1 is prime. Then the 

test is made by anding the entries to a corresponding bit table for 

n-1-p. Or by foregoing these "product of two primes" solutions, 

the number o~ primes needed by the algorithm is reduced from 

1r(n-1)+1 to 1r(ln)+1 • 

The next result can be used to further reduce the number of 

nodes in T[n] when n is even and only those nodes x satisfy­

ing s(x) = n are being sought: 

Theorem 9. Let s(x) = n be even. Then for all k > 0 and p 

Proof: 

odd, 2k+1 is never the first term 
e1 

the prime p g_1 in 
e. 

factorization II 
i of g_. X . i 

i 

Suppose, contrariwise, that 2k+1 x = p m and m has no 

prime factor .::_ p Then 

( 2k+2) s(p2k+1) But n and s p h are even, w ereas is odd. 

Hence m must be even, which contradicts our hypothesis 

that m has only prime factors > p. 

Applying this result to the case n = 6 (see Figure 4.2), the nodes 

3, 33 , 5, and 53 , along with their subtrees, never need to be 

considered as solutions to s(x) = 6. 
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5. Searching for sociable numbers 

The usual approach to detect cycles is to examine the aliquot 

series starting successively with i (i·= O, 1, 2, 3, ..• , n), 

and to compute this series i, s(i), s 2(i), until a term ex-

ceeds some large number N or until a term equals some preceding 

term (in which case a cycle has been captured). In this approach 

one can stop with a particular series after detecting a cycle with­

out missing other cycles because a generalized cycle of s con­

tains at most one finite cycle. Algorithm E specifies the de­

tails. 

A refinement of this straightforward approach is to keep 

track of the series elements which have already been examined; 

thus when N = n = 284 , the cyc~e (284, 220) vould not be de­

tected after (220, 284) is found. Refer to Algorithm H for 

details. 

Because Algorithm R can be used to generate efficiently 

(that is, without factoring numbers) all O < x < N for which 

s(x) .s._ N , a fast method for detecting cycles is to store these 

s-values in a table S[O], S[1], .•. , S[N] and then traverse this 

table systematically looking for cycles. Algorithm D gives de­

tails. 

Comparisons between Algorithms E, H, and D will be made 

at this point. All three algorithms yield the finite cycles whose 

numbers do not exceed N and whose leader is < n. Algorithm E 

actually requires the least memory, but factors many numbers and 

always duplicates its work when a series leads into another one 
• 

previously completed. Algorithm H also factors many numbers, but 

avoids duplication of s-value computations at the cost of memory; 
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it requires an additional Boolean array B of N+1 elements (or 

(N+1)/b locations if B is packed into computer words of b 

bits). Algorithm D coupled with Algorithm R requires no fac-

torizations and less memory than Algorithm H Table 5.1 summa-

rizes these memory and factorization comparisons between the three 

algorithms for the "best" and 11worst 11 cases. 

Number of factorizations Memory locations for arrays 

Algorithm minimum maximum minimum maximum 

* 

** 

E n+1 (n+1) (N+1) 1 N+1 

* * H n+1 N+1 N+2 2(N+1) 

D ** ** N+1 N+1 N+1 N+1 

If array B is packed into b bit computer words, then the 

minimum and maximum become (N+1)/b+1 and (N+1)(1+1/b) , 

respectively. 

Or O if Algorithm R is used to generate the S array. 

Table 5.1. "Best" and "worst" case analyses for data storage and 

for evaluation of s-values in Algorithms E, H, and 

D • 

It is unfortunate that the crude procedure of Algorithm E 

seems to be the only feasible one for systematically detecting 

cycles when n > 106 , because then both Algorithms H and D 

require too much storage even under ideal conditions, whereas 

Algorithm E requires that large numbers be repeatedly factored 
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and the a.mount of computer time to do this rapidly exceeds prac­

tical limits. Instead of systematically exhausting leader possi­

bilities from 1 to n and computing all of their series terms up 

to some large value N, restricting conditions can be placed on 

the leaders and/or their series terms, so that the total number of 

possiblities examined is reduced while the probability of finding 

a cycle is not reduced significantly. For example, Cohen tried 

all leaders to n = 6.107 but stopped computing their series after 

ten terms; even then his computer program ran for "around three 

weeks full time". Further conditions are considered in Section 6 

and are based upon heuristic arguments and empirical observations 

on aliquot series. 
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6. Computed results 

Programs to compute results of this Section were written 

entirely in ALGOL 60 (Grune 1970) for an Electrologica XS computer 

(cycle time of 2,5 micro-seconds; 64K core memory of 27 bit 

words). Advanced features of ALGOL 60 such as recursion and 

Jensen's device were never used, so it is possible to code the 

algorithms directly in other high-level programming languages like 

FORTRAN, BASIC or MAD. Whenever machine time to compute a result 

exceeded 10 minutes, total time for that calculation is given to 

the nearest minute. The computer experiments which generated the 

statistics to follow are asserted to be both reliable and repro­

ducible; for they are based upon algorithms analysed 1n Section 7 

and they require only minimal am~unts of machine time. 

A description of the Tables in this Section follows. Table 

6.1 lists every solution x and its prime factorization to the 

equation s(x) = n for n from O to 100. For each n the 

number of such solutions, d(n) , is also given. Table 6.2 ex­

tends Table 6.1 to values of n between 101 and 500 , only 

with the omission of Goldbach solutions x = p.p. (i # j). These 
1 J 

solutions were omitted as uninteresting and to conserve space; 

they are easily computed separately by using the procedure set 

forth before Theorem 9 in Section 4. Table 6.6 restricts its 

pairs of values (n, d(n)) to the minimal odd values n .::_ 500 

for which s{x) = n has only Goldbach solutions x. Table 6.4 

gives the minimal odd solution n to d(n) = k for k from 0 

to 28. Table 6.3 presents every untouchable number, along with 

its prime factorization, below 5001 . Table 6.10 tabulates the 

frequency distribution of the distances between successive un-
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touchable numbers below 5000. Table 6.8 shows how many aliquot 

series lead into primes, perfect numbers, amicable numbers, 

Poulet's sociable series, or terms exceeding 1010 
based upon 

series leaders from 0 to 10000 and 1000 unit intervals of 

these leaders. Table 6.9 extends Table 6.8 to leaders up to 

40000 , using 10000 unit intervals. Table 6.5 sets forth those 

seven leaders n < 1000 which define series with "large" terms. 

Table 6.7 specifies the distribution of round numbers (those having 

six or more prime factors) among the amicable pairs below 108 • 

Lastly, Table 6.11 tabulates the number of solutions n to 

s(n) = k for k = 0, 1, 2, ... and for n E [0,500] 

A summary of how the Tables of this Section were programmed 

will now be given. Tables 6.1 and 6.2 were obtained by using 

Algorithm R as a subroutine to-generate all x values such that 

1 < s(x) .::_ 500. More explicitly, with n = 500 each time 

Algorithm R visited a node x of T[n] , the'pair (x,s(x)) 

was saved in an array L . 
' 

then L was sorted and the values of 

d(x) were determined. Running time was 10 minutes. Tables 6.4 

and 6.6 are readily derived as a byproduct. 

Table 6.3 was also prepared by using Algorithm R as a sub­

routine, only with n = 5000. After initializing a 5000 element 

Boolean array B to "false", each time a node x of T[5000] 

was visited, B[s(x)J was set "true". Finally, x is untouchable 

if and only if B[x] = "false" . Running time was 18 minutes. 

Note that the straightforward method (based on Theorem 4) of com­

puting s(x) for all x .::_ 49992 = 24990001 to find the untouch­

ables below 5000 would require days of computer time. 

Table 6.5 was the result of simply modifying Algorithm E 

with n = 1000 and N = 1099511627775 = 240-1 to output the 
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appropriate information. Running time was 10 minutes. 

Tables 6.8 and 6.9 were computed in 3 hours by simply 

enumerating the series n, n
1

, n2 , ... for each n < 40000 until 

it either became periodic or a term exceeded 10 10 . 

Table 6.10 was derived by hand from Table 6.3, while Table 6.7 

was also hand constructed from the literature on amicable numbers 

in the interval 8 (0,10 J • 

Next follow some conjectures and computed results which 

derive from the computational experiments described above. Each 

conjecture has been put into a form in which it can be further 

tested on a computer; numerical evidence is supplied for these 

conjectures. A computer can, of course, best settle a conjecture 

by finding a counterexample to it! However, there is meaning in 

allowing a computer to verify an -infinite existence conjecture 

up to some high case, even though this verification can-

not be duplicated by humans. For if the computer program 

used has been proved correct, then this program and its execution 

can be viewed as a finite, definite, and effective (Knuth 1968, 

pp. 4-6) process. Compare, for example, the "mathematically pre­

cise" result that an i-th prime always exists, although the case 

i = 1080 cannot be exhibited. Indeed, only a computer experiment 

can provide even the first million primes with "sufficient rigor" 

for some people, and I would add the phrase "complete rigor" when 

a program correctness proof is supplied. When the correctness of 

a program, its compiler, and the hardware of the computer are all 

precisely established, then the output of that program can be 

~iewed with the confidence of mathematical certainty. Thus the 

result of a careful computation is a mathematical fact and the 

cumulative results of calculations provide valuable data for an 
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empirical mathematical study. 

Dickson (1913) tabulated most aliquot series with leader 

n < 1000 , but his tables contain many errors and he gave up when­

ever a series term exceeded 107 . Calculating every aliquot 

series with leader n < 1000 by computer showed that these series 

are all periodic, except possibly for the six values of n dis­

played in Table 6.5 along with any series which lead into one of 

these six series. For example s 116(696) = 2133148752623068133100 

and also s
2

(276) = s(396) = 696; indeed, n = 276 is the 

smallest leader for which the behaviour of the series is unknown 

(Cohen has also calculated to s 118 (276) ). We state this new com­

puted result equivalently as: 

Computed result 1. An aliquot series with leader n < 1000 is 

periodic if it does not contain a term equal 

to one of the series terms whose leaders are 

660, 696, 780, 840, 888, 966, or 990. 

Using multiple precision arithmetic along with methods 

(Knuth 1969) for factoring large numbers by computer, the series 

with leader 276 could be extended. Nevertheless, any series with 

a large even term will usually continue to have large even terms 

for a while. 

Conjecture 1, The series with leader 276 extends to over 188 

terms. 

Evidence: Successive even terms of a series do not decrease 

rapidly. For by Corollary 4.1, as long as 
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even, nk+ 1 .::_ ~/2; hence a series with leader n and 

all even terms cannot lead to 2 in fewer than 

L1og2 nJ terms. Furthermore, an even term ~ rarely 

leads to an odd (Theorem 2 states that is 

odd iff every odd prime factor of ~ enters to an even 

power), so with high probability the series with leader 

n = 276 is neither a cycle, nor terminates, for at 

least 

terms beyond n 118 = 2133148752623068133100. 

According to the argument for Conjecture 1 applied to the maximum 

term n117 = 179931895322 of the series with leader n = 138 , 

there would be at least L1og2 n117J = 37 terms after n117 · In 

fact, the final five terms of this series are: 

n174 = 200 

n175 = 265 

n176 = 59 

n177 = 1 

n178 = 0 

with all 57 terms from n
118 

to n
174 

being even. 

, It has been recently reported (personal note, February 1972) 

that the D.H. Lehm~rs have pursued the series 276 to its 349-th 

term, which has 31 decimal digits. Since llog2 1 o30J = 99 , 
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we can update Conjecture 1 to: 

Conjecture 2. The series with leader 276 extends to over 448 

terms. 

In further recent unpublished work, H. te Riele has shown that 

the series with leader n = 3P, where P is the largest perfect 

number currently known, must have at least 3000 strictly monotone 

increasing terms. 

Further work in tabulating aliquot series with leader n < 

has recently been done by Guy and Selfridge ("Interim report on 

aliquot series", November, 1971). They also report that a table 

of aliquot series through n = 3040 was deposited by G.A. Paxson 

in the UMT file in 1956. 

A search for new sociable series was conducted by imple-

menting Algorithms H and D. With N = n = 200000 , Algorithm 

H ran for 1.1 hours without discovering something new; a more 

precise formulation of this statement is: 

Computed result 2. The only sociable series 

,, 

with ni < 200000 (0,:_i<k) 

are the well-known perfect numbers, amicable 

pairs, and two cycles of Poulet. 

With N = n = 52000, the output of Algorithm D supported this 

result. See Figure 7,3 for the corresponding profile. 
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Table 6.5. Values of n .::_ 1000 such that the series with leader 

n may not terminate, or at least reaches a large term 

~ which is difficult to factor. All values of 

n 

660 

696 

780 

840 

888 

966* 

n < 1000 which do not appear below are known to be 

leaders of series which either terminate or else lead 

into one of the series below. 

k nk 

134 357914540801318244984 

116 2133148752623068133100 

149 11666515530384271818 

95 2243091044561433020754 

105 40219935174977155764 

130 495428635818378741108 

* This series is strictly monotone increasing up to ~. 
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It would be int:eresting to know precisely - or even roughly -

how Pou.let (1918) discovered the two sociable series with leaders 

12496 and 14316. Pou.let's series with leader n = 12496 has 

index 5 and the other has index 28. See Table 1.1. Because 

these two cycles both contain round numbers (Hardy and Wright, 

section 22.14), the following possibility exists: 

Conjecture 3. The two sociable series announced in 1918 by 

Pou.let were determined by a systematic hand-cal­

culation of those aliquot series whose leader is a 

round number n < 10000. 

Evidence: A number n will be called round iff n(n) .:::_ 6. This 

definition is based upon the function Q (the number of 

prime factors) as a natural measure of "roundness". 

Because Q(n) is usually about log log n (Hardy and 

Wright, Theorem 436), a number near 107 will usually 

have about 3 prime factors and a number near 1080 

about 5 or 6. Thus n(n) .:::_ 6 and n < 10000 

imply that n is the product of a considerable number 

of comparatively small factors, which is the vague des­

cription of "roundness" for n. 

Such round numbers (there are 901 of them) are 

easily read from a factor table to 10000. 

Given a round leader n < 10000 and the available 

factor tables, the series could 

have Qeen hand-computed until one of the following con­

ditions was met: 



(1) nk = 1 

(2} ~ > 106 (factor tables to ten million existed 

in 1909) 

(3) k > 30 

(4) nk repeats a previous term. 
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This computation is amenable to humans and yields the 

two desired cycles, because s(9464) = 12496 and 

s(7524) = 14316. Further using Dickson's 1913 table of 

aliquot series with leaders < 1000 clearly allows one 

to also stop when 

(5) ~ < 1000 . 

That a cycle (including perfect and amicable numbers) usually con­

tains at least one round number is suggested by ~he two observa­

tions: 

(i} n, n
1

, •.• , nk a cycle implies n. = s{n. 
1

) > n. 
1 ]. ].- - J.-

for 

some i > 1 (that is, there exists at least one term m in 

the series such that s{m) > m ); 

(ii) a round number m often satisfies s(m) > m, whereas non­

round numbers usually do not. 

The 24 known perfect numbers are even and, except for the first 

three (6, 28 and 496), they are round; indeed, every even 

perfect number n is known to be of the form 

n = where is a Mersenne prime, 
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so that n(n) = p , which yields a round number for p .=:_ 7 . 

Among the 236 pairs of amicables whose lesser number is 

below 108 , there are 211 (89%) pairs which contain at least 

one round number. Refer to Table 6.7 for the distribution of round 

numbers among these 236 pairs less than 108 • 

Note that a current digital computer requires an hour to work 

out by factorization every series with leader < 10000 and terms 

< 1010 . 

It has been observed that the known perfect numbers and ami­

cable pairs usually include round numbers. This property also 

holds for the thirteen known sociable series. The two sociable 

series of Poulet contain 2 and 10 round numbers, respectively. 

The eleven sociable series of index four contain a total of 16 

round numbers; only two of thes-e series contain none, though they 

are rich in nearly round numbers. 

Another empirical observation is that the Known sociables 

contain 29 terms of the form 

q > p > 2 , 

among their 77 numbers. Only two sociable series fail to con­

tain a term of this form. Furthermore, it is an empirical fact 

that within each sociable series, except the Poulet series of index 

28, the series terms all have the same number of digits. Based 

upon these observations, a computer search was conducted for so­

ciables with leader n above the 6.107 limit tried by Cohen 

,.( 1970) • Recall that he abandoned a series computation when the 

number of terms exceeded ten. In our computer search starting 

with leaders of the form 



n = 2ipq > 6.107 (i = 2,3, or 4 q > p > 2) ' 

a series calculation n, n
1

, ... , ~ was halted whenever any one 

of the following three conditions obtained: 

(i) the number of decimal digits in ~ does not equal that 

in n. 

(ii) the number of series terms exceeds thirty (k .:::_ 30) . 

(iii) a series term has a prime factor exceeding 108 • 

The details are specified by the program in Figure 6.12. Execution 

time was 15 hours and no new sociables were discovered. The 

large running time was caused by the factorizations of many eight 

to ten digit numbers; an average of eight terms were computed for 

each of the 3.167.200 = 100200 series considered. Nevertheless, 

this computer time is small compared to the "around 500 hours" 

of a Honeywell 516 (0.96 micr 

ported he used. 

; cycle time) which Cohen re-

How many aliquot series lead into prime numbers (and hence 

end in 1,0 }? Do many series result in terms so large that com­

putation of further terms becomes difficult? What is the frequency 

with which series "bump" into cycles such as perfect numbers, 

amicable pairs, and Poulet's two sociable series? To partially 

answer these questions, the series with 

leader n < 40000 were computed until either: 

( 1 ) nk = 0 ; (2) nk > 1010 ; or 

(3) n = k a term of some sociable series. 

Cc 

Table 6.8 shows the frequency of these three cases for n within 

1000 unit intervals from 0 to 10000 , and Table 6.9 does the 

same for the four intervals of 10000 units from 0 to 40000. 
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Figure 6.12. Program to find those sociable series n, n1, ... , ~k 

comment 

integer 1, ]. , 

for l:= 4, 8, 

with leader 
. i 

n = 2 pg_ i = 2, 3 or 4 

3 ,:_ p ,:_ 9973 g_ eg_ual to the first 200 prime 

values such that n > 6.107 ; k < 30; and each 

term n. having the same number of digits as n. 
J 

p[i] = i-th prime, procedure s computes s-values, 

procedure digits computes the number of decimal 

digits in its argument, and procedure nextprime 

eg_uals the index to the first prime> its argument; 

J, jmin, n, x, k; 

16 do 

for i:= 2 step 1 until 168 do 

begin jmin:= nextprime ( ( 6* 1 ot7) -. (l*p[iJ)); 

end· __ , 

for j:= jmin step 1 until jmin +199 do 

begin n:= x:= 1 * p[i] * p[j]; k:= 1; 

end 

x:= (2*1-1) * (1+p[i]) * (1+p[j]) - x; 

fork:= k+1 while k ~ 29 Ax~ n A digits{x) = 

digits(n) do x:= s(x); 

if x = n then print(n) 
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Computer time used was three hours. 

A summary of facts gleaned from computing Tables 6.8 and 6.9 

follows. Over 85% of the series with leader to 40000 terminated 

in a cycle. A great number (a mean of 68.75 per 10000 , with 

standard deviation 5,5) of these series ended in the perfect 

number 6 , whereas only three (220, 284, and 562) ended in 

the amicable number 220. On the other hand, Poulet's two 

sociable series terminated numerous (0.1%) series considering 

the scarcity of such sociables; for instance, s(17496) = 

s(18696) = 31704 and s
28

(3360) = s 28
(5784) = 376736 , both 

terms in the sociable series of index 28 Slightly more than 

14% lead to terms exceeding 1010 ; for example, s44 (3876) > 

> 1010 and s 21 (840) > 2.10 10 . Some of these large terms occur 

only after many terms (s213 (14oo41 = 17565705600, and 

s 117(138) = 179931895322 which is the maximum term for the 

series with leader 138 before it goes "downhill" to the prime 

59 at the term number 177 ), but a series can also terminate 

after many terms (s208 (9126) = s 210 (7686) = 59) or it can remain 

small (1723148 from 3876 in 100 steps). The final possibil­

ity, a series which increases rapidly, also obtains (840 reaches 

5.1011 in 26 steps). 

Next, we investigate the behaviour of the in-degree function 

d(n} , which equals the number of solutions x to s(x) = n. 

The case d(n) = O is of particular interest for it means that n 

is untouchable. A list of the 570 untouchable numbers below 

5000 is given in Table 6,3, After examining some empirical 

prdperties of these untouchables, we will return to consider the 

number of solutions n to d(n) = k for k = 1, 2, 3, .••• 



Interval ~=0 ~>1010 ~= n = 
k ~= 

perfect amicable Poulet 

sociable 

(o, 1000] 948 30 19 3 0 

(1000, 2000] 891 83 11 15 0 

(2000, 3000] 878 96 10 15 1 

(3000, 4000] 875 101 10 13 1 

(4000, 5000] 874 108 8 10 0 

(5000, 6000] 871 107 5 15 2 

(6000, 7000] 864 117 5 14 0 

(7000, 8000] 851 120 11 16 2 

(8000, 9000] 841 141 7 10 1 

(9000,10000] 853 127 7 10 3 

(0, 10000] 8746 1030 93 121 10 

percentage 1.2% 0.1% 

Table 6.8. Distribution of "final" terms ~ in series 

n, n
1

, ••• , nk whose leaders n fall in 1000 

unit intervals from 0 to 10000. 
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Interval n =0 k 
n >1010 

k I\= n = 
k I\= 

perfect •amicable Poulet 

sociable 

( 0, 10000] 8746 1030 93 121 10 

(10000,20000] 8342 1417 79 144 18 

(20000,30000] 8300 1496 75 121 8 

(30000,40000] 8062 1733 78 109 18 

(o,4ooooJ 33450 325 495 54 

percentage 83.6% 14.2% 0.8% 1.2% 0.1% 

Table 6.9. Distribution of "final" terms nk in series 

n, n
1

, ... , nk whose leaders n fall in 10000 

unit intervals from 0 to 40000. 
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Except for the case n = 5 , the untouchable numbers in 

Table 6.3 are even in conformity with Theorem 6 and the extended 

Goldbach conjecture, so any two consecutive untouchables must have 

a distance that is at least equal to 2. Pairs of untouchables 

with this shortest distance will be called untouchable twins; 
fVVVVV\/VVVVV 

for instance 

(246, 248), (288, 290), (304, 306), ... , (4982, 4984) . 

Similarly, triples of untouchable numbers such as 

(322, 324, 326), (516, 518, 520), ... , (4980, 4982, 4984) , 

and quadruples of untouchable numbers such as 

(892, 894, 896 , 898), .•. , (4316, 4318, 4320, 4322) , 

which have minimum distance exist. The greatest distance between 

any two successive untouchable numbers below 5000 is the 62 

units for the pair (2642, 2704) . Table 6.10 displays the fre­

quency f(x) of occurrences of distance x between successive 

untouchables in the interval (0,5000] . The graph of nonzero f 

values looks roughly exponential and has a mean 8.8 , standard 

deviation 7.8 , mode 2 , and median 6. There is no tendency 

for these distances to increase or decrease systematically as one 

considers larger untouchable pairs. 



Table 6.10. Frequency distribution f of distances x between 

successive untouchable numbers below 5000. All 

values of x not listed have frequency f(x) = 0. 

X 2 3 4 6 8 10 12 14 16 18 20 22 24 

f(x) 150 1 69 76 57 59 48 25 17 15 8 7 11 

X 26 28 30 32 34 36 38 40 47 62 

f(x) 4 3 6 3 2 2 2 2 
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The frequency distribution for the 570 untouchable numbers 

in the interval (0,5000] is relatively uniform; there is a mean 

of 11.4 untouchables per 100 numbers, with standard deviation 

3. 16 , mim.mum 5 , maximum l 8 , and median 12 • 

y = f(x) be the number of untouchables in the interval 

Using the ten observed values (500, 38), (1000, 89), 

Let 

( 0 ,x]. 

(1500, 144), 

(2000, 196), (2500, 263), (3000, 318), (3500, 379), (4000, 443), 

(4500, 509), (5000, 570) of (x,y) , it is easy to see that a 

straight line provides a good fit for estimating y from x in 

the interval (0,5000] . Indeed, the least squares straight line 

through the origin is y = o.10978x, while y = -32.67 + 0,1191x 

if this least squares estimator is not forced through (0,0) • By 

extrapolation it appears there are an infinity of untouchable num­

bers; we conjecture the stronger result: 

Conjecture 4. There exists an infinite number of untouchable 

numbers of the form 2p, where p is an odd 

prime. 

Evidence: Based on Table 6.3, for the 70 values 

p = 73, 103, 131 , •.. , 2441 , 

the numbers 2p are untouchable. These account for 

over 12% of the 570 untouchable numbers below 5000. 

Since ~(2500) = 367 , over 14% of all even numbers 

below 5000 are the doubles of primes. This suggests 

that amoµg even numbers, being untouchable and being 

the double of a prime are not independent events. The 
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following 2x2 contingency table yields a chi-squared 

value of 3.08 (with Yates' correction), so that the 

hypothesis of independence is rejected at the 90% level 

2 
(x0 •

90 
= 2.71 with 1 degree of freedom): 

n = 2p for prime p > 1 . 
YES NO 

YES 70 499 569 

n untouchable 

NO 297 1634 1931 

367 2133 2500 

Contingency table for all positive even n :._ 5000. 

Related to the number, d(n) , cf solutions x to s(x) = n 

is the function studied by Stein and Stein (1965), and 

Benedetti (1967). A "Goldbach decomposition" of the positive even 

integer 2n is defined to be any pair of primes 

ing the equation P· + p. = 2n. 
1 J 

The possibility 

{p. ,p.} 
1 J 

p. = 1 
1 

satisfy-

is 

allowed. Then equals the number of distinct Goldbach de-

compositions of 2n, and has been tabulated for all even arguments 

in the range 2n < 200000. This table (Stein and Stein, TABLE IV) 

indicates that V > 50 2n if 2n > 4688, is true. 

d(2n+1) ~ 49 for 4688 < 2n < 200000 , 

Accordingly, 

since the two cases p. = p. and p. = 1 must be excluded. 
1 J 1 

Experimentally, increases with n so that, for example, 



it further appears that v2n > 500 when 2n > 85616. A prescrip­

tion for predicting v2n is put forth by Stein and Stein. And 

obviously their table of v2n versus 2n serves to bound d(2n+1) 

since, in general, d(2n+1) > V -2. - 2n 

Theorem 6 and leads to: 

Conjecture 5. lim d(2n+1) = 00 • 

n-+oo 

This inequality ties in with 
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By comparing d(2n+1) with v2n, checks on Tables 6.1, 6.2 and 6.6 

are possible. For instance, d(197) = 9 = v
196 

and in fact the 

9 solutions of s(x) = 197 each yield Goldbach decompositions of 

196. 

Conjecture 6. For every integer k > 0 there exists at least one 

odd number n such that d(n) = k. 

Evidence: Based on the data of Table 6.4, it is true for all 

k < 28. Stein and Stein conjectured a similar result for 

v 2n and indeed, for O < k .::_ 1911 , the number of 

solutions of the equation V = k 2n is quite respectable. 

Furthermore, Table 6.6 suggests that these two conjectures 

are related because for positive k < 24 there exist odd 

numbers 2n + 1 such that s(x} = 2n + 1 has only 

Goldbach solutions and hence d(2n+1) = v2n = k holds. 

An empirical tabulation, based on Tables 6.1 and 6.2, of 

the number of n such that d(n) = k can be found in 

Table 6.11. 
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Table 6.11. Tabulation of the number of n which satisfy d(n) = k 

for k = O, 1, 2, ... , 00 • Based on Tables 6.1 and 6.2. 

k nECO, 100] (100,200] (200,300] (300,400] (400,500] [0,500] 

0 5 5 12 8 8. 38 
1 31 21 16 22 23 113 
2 25 18 17 12 14 86 
3 14 5 3 6 3 31 
4 7 3 2 0 1 13 
5 7 11 0 2 1 21 
6 6 5 4 2 0 17 
7 1 5 4 2 0 12 
8 2 6 3 1 1 13 

9 2 6 13 6 2 29 
10 0 3 7 6 2 18 
11 2 2 6 4 14 

12 3 1 4 4 12 

13 5 1 2 5 13 
14 1 0 4 9 14 

15 1 3 1 1 6 

16 0 4 1 2 7 
17 2 1 3 6 

18 1 2 0 3 

19 1 1 3 
20 4 3 0 7 
21 0 3 3 6 
22 0 4 4 

23 2 3 5 
24 1 0 1 

25 1 0 1 

26 0 2 2 

27 1 0 1 
28 0 1 1 

29 0 0 

30 1 1 
31 0 0 
32 2 2 

33 0 0 

00 0 0 0 0 



Table 6.1. Solutions of s(x) = n for O 2. n 2. 100 . 

n ~ The d(n) values and prime factorizations of x such 

that s(x) = n • 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 
14 

15 
16 

17 
18 

19 
20 

21 
22 

23 
24 

25 
26 

27 
28 

29 

30 

2 

00 

0 

1 

1 

0 

2 

1 

2 

1 

1 

1 

1 

2 

2 

2 

2 

2 

1 

2 

2 

3 

2 

2 

1 

3 

1 

2 

1 

2 

1 

0(0), 1(1). 
2(2), and every odd prime p. 

untouchable. 

4(22). 

9(32
). 

untouchable. 
2 6(2.3), 25(5 ). 

8( 23}. 
2 10(2,5), 49(7 ). 

15(3.5). 
14(2.7). 

21(3.7). 

121(11 2). 
3 27(3 ), 35(5.7). 

22(2.11), 169(132). 

16(24), 33(3.11) 
2 12(2 .3), 26(2.13). 

39(3.13), 55(5.11). 

289( 172) 

65(5.13), 77(7.11). 
34(2.17), 361(192). 

2 18(2.3 ), 51(3,17), 91(7.13). 
2 20(2 .5), 38(2.19). 

57(3.19), 85(5.17). 

529(232). 

95(5.19), 119(7.17), 143(11.13), 
46(2.23). 

69(3.23), 133(7.19), 
2 28(2 .7). 

115(5.23), 187(11.17). 

841 (292). 
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n d(n) The d(n) values and prime factorizations of x such 

that s(x) = n. 

31 

32 

33 
34 

35 
36 

37 
38 

39 
40 

41 
42 

43 
44 
45 
46 

47 
48 

49 

50 

51 

52 

53 
54 

55 

56 

5 

2 

3 

3 

4 

3 

4 

2 

5 
2 

3 

2 

3 

6 

2 

4 

0 

3 

2 

6 

57 5 
58 

59 3 

60 1 

61 ' 6 

32(25), 125(53), 161(7,23), 209,(11.19), 221(13,17), 

58(2.29), 961(31 2). 
2 45(3 .5), 87(3.29), 247(13.19). 

62(2.31). 

93(3.31), 145(5.29), 253(11.23). 
24(23.3}. 

155(5.31), 203(7.29), 299(13.23), 323(17.19), 

1369( 3722. 
217(7.31). 

44(22.11), 74(2.37), 81(34). 
2 63(3 .7), 111(3,37), 319(11.29), 391(17,23) 

2 30(2.3,5), 168(41) . 

50(2.52), 185(5.37), 341(11,31), 377(13,29), 437(19.23), 

82(2.41), 1849(432). 

123(3.41), 259(7,37), 403(13.31). 
2 52(2 .13), 86(2.43). 

129(3.43), 205(5.41), 493(17.29). 

2209( 472). 
2 75(3,5 ), 215(5.43), 287(7.41), 407(11.37), 527(17.31), 

551 ( 19 ,29). 
40(23.5), 94(2.47). 

141(3.47), 301(7,43), 481(13.37), 589(19.31). 
untouchable. 

235(5.47), 451(11.41), 667(23.29). 

42(2,37)., 2809(532).. 

36(22.32), 329(7.47), 473(11.43), 533(13.41), 

629(17.37), 713(23.31). 

106(2.53). 

99(32.11), 159(3.53), 343(73), 559(13.43), 703(19.37). 
2 68( 2 . 17). 

265(5.53), 517(11.47), 697(17.41). 

3481(59)2. 

371(7.53), 611(13.47), 731(17,43), 779(19.41), 

851(23.37), 899(29.31). 
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n d(n) The d(n) values and prime factorizations of x such 

that s(x) = n. 

62 

63 

64 

65 

66 

67 

68 

69 
70 

71 

2 

3 

3 

6 

1 
6 

2 

1 

5 

118(2.59), 3721(61 2). 
64(26), 177(3.59), 817(19.43). 

3 2 56(2 .7), 76(2 .19), 122(2.61). 

117(32.13), 183(3.61), 295(5,59), 583(11.53), 

799(17.47), 943(23.41). 
3 54(2,3 ). 

305(5.61), 413(7.59), 689(13,53), 893(19.47), 
989(23.43), 1073(29.37). 

4489( 672). 
427(7.61), 1147(31,37). 

134(2.67). 

201(3.67), 649(11.59), 901(17.53), 1081(23.47), 

11 89 ( 29 . 4 1 ) . 

5041 (71 2). 

76 

72 

73 

1 

8 
2 2 98(2.7 ), 175(5 .7), 335(5.67), 671(11.61), 767(13.59), 

74 

75 
76 

77 

78 

79 

80 

81 

82 

83 
84 

85 

3 

4 

3 

5 

1 

7 

1 

6 

4 

8 

1007(19.53), 1247(29.43), 1271(31.41). 
70(2.57), 142(2.71), 5329(732). 

213(3,7t), 469(7.67), 793(13.61), 1333{31.43). 
4 2 48(2 .3), 92(2 .23), 146(2.73). 

219(3,73), 355(5.71), 1003(17.59), 1219(23.53), 

1363(29.47). 
66 ( 2 • 3 . 11 ) . 

365(5.73), 497(7.71), 737(11.67), 1037(17.61), 

1121(19.59), 1457(31.47), 1517(37.41). 
6241 (792

). 

147(3.72), 153(32.17), 511(7.73), 871(13.67), 

1159(19.61), 1591(37,43). 
158(2.79). 
237(3.79), 781(11.71), 1357(23.59), 1537(29.53). 

6889(832). 

395(5.79}, 803(11.73), 923(13,71), 1139(17.67), 

1403(23.61), 1643(31,53), 1739(37,47), 1763(41.43). 

166 ( 2. 83). 



n d(n} The d(n) values and prime factorizations of x such 

that s(x} = n. 

87 

88 

89 

90 

91 

92 

93 
94 

9? 
96 

97 

5 

0 

5 

2 

9 

2 

4 

1 

4 

0 

9 

105(3.5,7}, 249(3.83), 553(7.79), 949(13.73), 

1273( 19.67). 
untouchable. 

171(32.19), 415(5.83), 1207(17.71), 1711(29.59), 

1927 ( 4 1 . 4 7 ) . 

78(2,3.13), 7921(892). 

581(7.83), 869(11.79), 1241(17.73), 1349(19.71), 

1541(23.67), 1769(29.61), 1829(31.59), 1961(37,53), 
2021(43.47). 

88(23.11), 178(2.89). 

267(3.89), 1027(13.79), 1387(19.73), 1891(31.61). 

11 6 ( 22 . 29 ) . 

445(5.89}, 913(11.83), 1633(23,71), 2173(41.53). 

untouchable. 

245(5.l), 215(52.11L 623(1.89), 1019(13.83), 
1343(17,79), 1679(23.73), 1943(29.67), 2183(37.59), 

2279(43.53), 

98 9409(972). 

99 
100 

3 

2 

1501(19.79), 2077(31.67), 2257(37.61). 

124(22.31), 194(2.97). 
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Table 6.2. Non-Goldbach solutions of s(x) = n for 

101 2._n 2,. 500. 

n d(n) The non-Goldbach solutions and prime factorizations of 

x such that s(x) = n. 

101 6 

102 10201(101 2). 

103 

104 

105 

106 

8 

2 

7 

4 

107 5 

108 

109 

110 

2 

9 

2 

111 6 

112 1 

113 7 

114 2 

115 10 

116 

117 7 

118 1 

119 5 

120 0 

121 13 

122 1 

123 5 

124 0 

125 5 

126 

127 11 

128 

129 4 ,, 
130 2 

131 8 

202(2.101), 10609(1032 ). 
3 2 135(3 .5), 207(3 .23). 

4 3 80(2 .5), 104(2 .13), 110(2.5.11), 206(2.103). 

60(22 .3.5), 11449(1072 ). 

325(52 .13), 

214(2.107), 11881(1092 ). 

218 ( 2 . 1 09 ) • 

226 ( 2 . 113 ) • 

100( 2
2

• 52
). 

148 ( 22 . 37) . 

untouchable. 

243(35). 

130(2.5.13). 
3 2 ) 72(2 ,3 }, 165(3,5.11 . 

untouchable. 

114(2.3.19). 

128(27 ). 

16129( 127
2

). 

261 ( 32 . 29) . 

164(22 .41), 254(2.127). 
3 . 

189(3 .7). 
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n d(n) The non-Goldbach solutions and prime factorizations of 

132 1 

133 11 

134 3 

135 5 
136 2 

137 6 
138 1 

139 8 
140 3 

141 8 
142 1 

143 7 
144 

145 13 
146 O 

147 5 
148 2 

149 5 

150 2 

151 12 

152 2 

153 5 

154 3 
155 8 

156 2 

157 12 

158 1 

159 4 
160 1 

161 10 

162 0 

163 10 

16li 1 

165 5 

166 2 

x such that s(x) = n. 

17161(131 2). 

425(52.17), 1331(11 3). 
3 136(2 .17), 154(2.7.11), 262(2.131). 

4 2 112(2 .7), 172(2 .431, 

279(32.31). 

18769( 1372). 

84(22.3.7), 274(2.137), 19321(1392). 

195(3.5.13). 
278(2. 139). 

2 90(2. 3 . 5). 

475(52.19), 539(72.11). 
untouchable. 

298(2.149), 22801(151 2). 

231 ( 3 . 7. 11 ) . 
170(2.5.17), 182(2.7.13), 302(2.151). 

96(25.3), 625(54). 

242 ( 2. 1 12) . 

24649( 1572). 

314(2. 157). 

333(32,37), 637(72.13). 
untouchable. 
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n d(n) The non-Goldbach solutions and prime factorizations of 

X such that s(x) = n • 

167 5 
168 27889( 1672}. 

169 15 363(3. 11 2}. 

170 2 190(2.5.19), 334(2.167). 

171 9 
172 108(22 .33). 

173 6 

174 29929( 1732). 

175 12 273 ( 3. 7. 13) . 

176 2 184(23.23), 346(2.173). 

177 9 
2 255(3.5.17), 369(3 .41). 

178 225(l. 52). 

179 6 

180 1 3204 1 ( 1792) . 

181 14 

182 2 358(2.179), 32761(181 2). 

183 8 297(33.11), 2197(133). 

184 2 236(22.59), 362(2.181). 

185 9 387(32.43). 

186 2 2 126 ( 2 . 3 . 7 ) , 17 4 ( 2 . 3 . 29 ) • 

187 13 
188 0 untouchable. 

189 5 
190 1 244(22.61). 

191 9 385 ( 5. 7. 11 ) • 

192 36481 ( 191 2) . 

193 13 605(5.11 2), 833(72.17). 

194 3 238(2.7.17), 382(2.191), 37249(1932). 

195 7 28 5 ( 3. 5 . 19) . 

196 3 2 140(2 .5.7), 176(24.11), 386(2.193). 

197 9 
198 2 186(2.3.31), 38809( 1972). ,, 

199 13 
200 2 394(2.197), 39601(1992). 



201 10 

202 2 

203 9 

204 

205 15 

206 0 

207 6 

208 1 

209 9 

210 0 

211 20 

212 1 

213 6 

214 2 

215 7 

216 0 

217 16 

218 4 

219 7 

220 

221 9 

222 1 

223 11 

224 1 

225 9 

226 3 

227 6 

The non-Goldbach solutions and prime factorizations of 

x such that s(x) = n. 

4 2 162(2.3 ), 423(3 .47). 

230(2.5.23), 398(2.199). 

196(i. 7
2

). 
2 132 ( 2 . 3 . 11 ) . 

725(5
2

.29). 

untouchable, 

268(22 .67}. 

351(33.13), 931(7
2

.19). 

untouchable. 

338(2. 13
2). 

44521 (21 l). 

266(2.7.19), 422(2.11). 

untouchable. 
2 2 

4 5 5 ( 5. 7. 13) , 77 5 ( 5 . 31 ) , 84 7 ( 7 . 11 ) . 

160(25.5), 232(23.29), 250(2.53), 286(2.11.13), 

357 ( 3, 7. 17). 

284(22 .71). 

2 
150(2.3,5 ). 

49129 ( 22l). 

477(32 ,53), 507(3.13
2

). 

208(24 .13), 292(22.73), 446(2.223). 

228 51529(2272). 

229 12 

230 2 

231 10 

232 2 

233 7 

234 2 

454(2.227), 52441(2292). 

345(3.5.23). 

248(23.31), 458(2.229). 
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n d(n) The non-Goldbach solutions and prime factorizations of 

X such that s(x} = n • 

235 15 

236 2 2 156(2 .3.13), 466(2.233). 

237 9 
238 0 untouchable. 

239 9 
240 2 3 120(2 .3.5), 57121(2392). 

241 20 2 399(3.7,19), 1127(7 .23). 

242 2 478(2.239), 58081(241 2). 

243 9 429 ( 3 . 11 . 1 3 ) . 

244 2 316(22.79), 482(2.241). 

245 9 
246 0 untouchable. 

247 16 

248 0 untouchable. 

249 8 3 2 375(3,5 ), 531(3 .59). 

250 1 290(2.5.29). 

251 9 
252 1 63001 (251 2). 

253 18 845(5.132), 925(52.37). 

254 2 322(2.7.23), 502(2.251). 

255 9 256(28). 

256 1 332(22 .83). 

257 9 549(i.61). 

258 2 246(2.3:41), 66049(2572). 

259 15 144(24 .i). 

260 514(2.257). 

261 11 459(33.17). 

262 0 untouchable. 

263 8 

264 1 69169(2632). 

265 17 200(23.52}. 

266 2 310(2.5.31), 526(2.263). 

267, 8 

268 0 untouchable. 



83 

n d{x) The non-Goldbach solutions and prime factorizations of 

269 10 

270 3 

271 19 

272 

273 

274 

2 

7 

4· 

275 10 

276 O 

277 17 
278 

279 6 
280 2 

281 16 

282 1 

283 16 

284 3 

285 10 

286 2 

287 13 

288 0 

289 20 

290 0 

291 JO 

292 0 

293 9 
294 2 

295 20 

296 1 

297 9 
298 

299 10 

300 2 ,. 
301 21 

302 2 

x such that s{x) = n. 

595 ( 5. 7. 17). 
198(2.32.11), 258(2.3.43), 72361(269

2
). 

3 2 296(2 ,37), 356(2 .89), 374(2.11.17), 542(2.271). 

untouchable. 

1025(52 .41). 

76729(2772). 

224(25.7), 554(2.277). 
603(32.67), 1183(7.132). 

78961 (281 2). 

220(22.5.11), 562(2.281), 80089(2832). 

435(3.5.29), 483(3.7.23). 

272(24.17), 566(2.283). 

513 ( 33. 19) . 
untouchable. 

1075(52.43), 1421(72.29), 1573(11
2

.13). 

untouchable. 

untouchable. 

715(5.11.13). 
282(2.3.47), 85849(2932). 

665 ( 5. 7. 19). 

586(2.293). 

639(32 .71). 

388( 22. 97). 

2 2 2 204 ( 2 . 3. 17) , 441 ( 3 . 7 ) . 

3 328(2 .. 41), 418(2.11.19). 



n 

303 

304 

305 

306 

307 

308 

309 

310 

10 

0 

12 

0 

16 

1 

9 

2 

311 12 

312 3 

313 18 

314 5 

315 8 

316 5 

317 10 

318 1 

319 15 

320 1 

321 12 

322 0 

323 11 

324 0 

325 20 

326 o 

327 6 

328 2 

329 11 

330 1 

331 24 

332 ,, 

333 

334 

2 

7 

3 

The non-Goldbach solutions and prime factorizations of 

x such that s(x) = n. 

465 ( 3. 5. 31 ) , 561 ( 3. 11. 17) . 

untouchable. 

657(32.73), 1519(72 ,31). 
untouchable. 

4913(173). 

94249(3072). 
2 315(3 .5.7). 

404(22.101), 614(2.307). 

168(23.3.7), 234(2.32 ,13), 96721(311 2). 

1175(52.47). 

370(2.5.37), 406(2.7.29), 442(2.13.17), 622(2.311), 

97969(3132). 

192(26.3), 304(2
4

.19).,-344(23.43), 412(22.103), 

626(2.313). 

1 00489 ( 3172} . 

634(2.317). 
4 405 ( 3 . 5). 

untouchable. 

untouchable. 

untouchable. 

2 2 260(2 ,5.13), 428(2 .107). 

111 < l. 19 l. 
318(2.3.53). 

228(22.3.19), 109561(331 2). 

627 ( 3. 11 . 19) . 
2 434(2.7.31), 436(2 .109)., 662(2,331). 
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n d(n) The non-Goldbach solutions and prime factorizations of 

335 10 

336 o 

337 21 

338 1 

339 10 

340 1 

341 13 

342 0 

343 19 

344 1 

345 12 

346 3 

347 9 

348 1 

349 17 

350 2 

351 14 

352 

353 11 

354 1 

355 20 

356 

357 10 

358 1 

359 9 

360 

361 25 

362 2 

363 7 

364 2 

365 14 

366 3 ,, 
367 18 

x such that s(x} = n. 

untouchable. 

1859( 11. 1i), 2057( 11
2 

.17). 

113569( 337
2

). 

621(33 .23), 

674(2.337). 

untouchable. 
2 

578(2.17 ), 1001(7.11.13). 

376(23 .47). 
2 

663(3.13.17), 747(3 .83). 
2 

410(2.5.41), 452(2 .113), 494(2.13.19). 

805(5.7.23). 

120409(34l). 

1325(5
2

,53). 

694(2.347), 121801(349
2

). 

609(3.7.29). 

698(2.349). 

1813(7
2

.37). 

124609(35i). 

706(2.353). 

555(3,5.37). 

506 ( 2. 11. 23). 

128881 ( 359
2

). 

867(3.17
2

), 935(5.11.17), 2299(11
2

.19). 

430(2.5.43), 718(2.359). 

2 6 
308(2 .7.11), 729(3 ). 

2 2 180(2 ,3 .5), 210(2.3.5.7), 354(2.3.59). 



86 

n d(n} The non-Goldbach solutions and Erime factorizations of 

X such that s(x) = n • 

369 9 801 (32 .89). 

370 1 734(2.367). 

371 14 

372 0 untouchable. 

373 20 3 651(3.7,31), 875(5 .7). 

374 139129(37i}, 

375 10 

376 2 368(24.23), 746(2,373). 

377 11 

378 1 366 ( 2 . 3 . 61 ) . 

379 23 741 ( 3. 13. 19}. 

380 1 J43641(3792). 

381 14 6859( 193). 

382 1 758(2.379). 

383 9 -

384 2, 216(23.33), 146689(3832). 

385 21 1475(52.59), 2009(72.41). 

386 2 424(23.53), 766(2.383). 

387 11 

388 1 508(22. 127). 

389 9 
390 2 2 294 ( 2 . 3 . 7 ) , 151321 (389

2
). 

391 27 

392 1 778(2. 389). 

393 13 615(3.5.41), 759(3.11.23), 

394 3 
2 350(2.5 .7), 470(2.5.47), 518(2.7.37). 

395 11 1045 ( 5. 11 . 19) . 

396 2 
2 2 276(2 .3.23), 306(2,3 .17). 

397 23 1445(5.172
), 1525(52.61). 

398 151609 < 39l) . 

399 6 

400 3 524(22.131), 794(2.397), 2401(7
4

). 

401 17 567(34.1), 873(32.97), 2107(72.43). 



87 

n d(n) The non-Goldbach solutions and Erime factorizations of 

X such that s(x) = n . 

402 1 160801 (401 2). 

403 17 
4o4 2 5 352(2 .11), 802(2.401). 

405 11 

406 0 untouchable. 

407 14 1105 ( 5. 13. 17) . 

408 0 untouchable. 

409 21 2783( 11 2 .23). 

410 2 598(2.13.23), 167281(4092). 

411 14 645(3.5.43). 

412 1 818(2.409). 

413 11 
414 402(2,3.67). 

415 21 

416 1 2 340 ( 2 . 5 . 17) . 

417 12 783(33.29), 909(32.101). 

418 1 548(22.137). 

419 12 1309 ( 7. 11 . 17) . 

420 2 364(22.7.13), 175561(4192). 

421 32 722(2.192), 2873(132.17). 

422 2 838(2.419), 177241(421 2). 

423 10 

424 2 556(l.139), 842(2.421). 

425 14 927 ( 32. 103) , 1015(5.7.29). 

426 0 untouchable. 

427 21 

428 1 472(23 .59). 

429 9 
430 0 untouchable. 

431 14 

432 185761 (431 2). 

433 22 1675(52.67), 2023(7.172), 2303(72.47). ,, 

434 4 574(2.7.41), 646(2.17.19), 862(2.431), 187489(4332). 

435 13 



n d(n} The non-Goldbach solutions and prime factorizations of 

x such that s(x) = n. 

436 866(2.433). 

437 11 
438 2 

439 22 
440 2 

441 17 

442 5 

443 14 
444 

445 22 
446 1 

447 14 

448 o 

449 15 

450 3 
451 28 

452 

453 12 
454 2 

455 11 
456 1 

457 26 

458 

459 8 
460 3 
461 16 

462 

463 30 
464 2 

465 13 
466 3 ,, 
467 13 

2 342(2.3 .19), 426(2.3.71}. 

777 ( 3 . 7 . 37 ) . 
280(23.5.7), 192721(4392). 

495(32.5.11), 963(32.107), 1083(3.192). 
6 3 320(2 .5), 488(2 .61), 530(2.5.53), 638(2.11,29), 

878(2.439). 

837(33.31). 
196249(44i). 
1235(5, 13.19). 
886(2.443). 

2 2 484(2 .11 ), 705(3.5.47), 879(3.13.23). 

untouchable. 

981(32.109), 3211(132,19). 
270(2.33.5), 438(2.3.73), 201601(4492). 

1085(5,7.31). 
898(2.449). 

2 596(2 .149), 602(2.7.43). 

3 264(2 .3.11). 

1463(7.11.19), 1775(52.71). 

208849(4572). 

2 2 380(2 .5.19), 604(2 .151), 914(2.457). 

212521 (461 2). 
3 2 392(2 ,7 ), 1265(5.11.23). 

922(2.461), 214369(4632). 

10n<i .113). 
416(25.13), 464(24.29), 926(2.463). 

2 525(3,5 .7). 
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n d(n) The non-Goldbach solutions and prime factorizations of 

X such that s(x) = n . 

468 1 218089(4672). 

469 26 1547(7 .13. 17), 1825(52.73), 

470 2 682(2,11.31), 934(2.467), 

471 16 969(3. 17 .19). 

472 0 untouchable. 

473 13 

474 0 untouchable. 

475 23 

476 
2 2 

1 252(2 ,3 .7). 

477 14 

478 1 628 ( 22. 157 ) . 

479 10 

480 1 229441 ( 4792). 

481 32 1805(5.192), 2597(72,53), 3509(11
2

.29). 

482 958(2.479). 

483 12 861 ( 3. 7. 41 ) , 957 ( 3. 11 . 29) . 

484 536(23 .67). 

485 14 

486 474(2.3.79). 

487 23 

488 237169(487
2

). 

489 9 
490 2 590(2.5.59), 974(2.487), 

491 19 

492 2 348(22.3.29), 241081(491 2). 

493 22 

494 2 658(2.7.47), 982(2.491). 

495 13 

496 2 496(24.31), 652(22.163}. 

497 14 1375(53.11). 

498 0 untouchable. 

499 23 ,, 
249001 ( 4992) . 500 1 



Table 6.3. Untouchable numbers n 2- 5000. 

Values and prime factorizations of n such that s(x} = n has no 

solution. 

2(2) 406(2.7.29) 738(2.32.41) 

5(5) 408(23.3.17) 748( 22. 11 . 17) 

52(22 .13) 426(2.3.71) 750(2.3.53) 
88(23.11). 430(2.5.43) 756(22.33.7) 
96(25.3) 448(26.7) 766(2.383) 

120(23.3.5} 472(23.59) 768(28.3) 
124(22.31) 474(2.3.79) 782(2.17.23) 
146(2.73) 498(2.3.83) 784(24.12) 
162(2.34} 516(i.3.43) 192<23.l.11) 
188(22.47) 518(2.7.37) 802(2.401) 

206(2.103) 520(23.5.13) 804(22.3.61) 

210(2.3.5.7) 530(2.5.53) 818(2.409) 

216(23.33) 540(22.33.5) 836(22.11.19) 

238( 2. 7. 17) 552(23.3.23) 848(24.53) 
246(2.3.41) 556(22.139) 852(22.3.71) 
248(23.31) 562(2.281) 872(23.109) 
262(2.131) 576(26 .i) 892(22.223) 
268(22.67) 584(23.73) 894(2.3.149) 

276(22.3.23) 612 ( 22. i. 17) 896(27.7) 
288(25.32) 624(24.3.13) 898(2.449) 

290(2.5.29) 626(2.313) 902 ( 2 . 11 . 4 1 ) 

292(22.73) 628(22.157) 926(2.463) 

304(24.19) 658(2.7.47) 934(2.467) 

306<2.l. 11) 668(22 .167) 936(23.l.13) 
322(2.7.23) 670(2.5.67) 964 ( 22. 241 ) 
324(22.34) 708(22.3.59) 966(2.3.7,23) 
326(2.163). 714(2.3.7.17) 976(24.61) 

336(24,3.7). 718(2.359). 982(2.491) 

342<2.l.19) 726(2.3.1 ,2) 996(22.3.83) 
372(22.3.31) 732(22.3.61) 1002(2.3.167) ,, 
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Values and prime factorizations of n such that s(x) = n has no 

solution. 

1028(22.257) 

1044(22.}.29) 

1046(2.523) 

1060(22.5.53) 

1068(22.3.89) 

1 07 4 ( 2 . 3 . 17 9 ) 

1078(2.72.11) 
1080(23.33,5) 

1102(2.19.29} 

1116(22.}.31) 

1128(23.3.47) 

1 1 34 ( 2 . 3 4 . 7 ) 
1146 ( 2 . 3 . 191 ) 

1148(22.7.41) 

1150(2.52 .23) 

1160(23.5.29) 

1'162(2.7.83) 

1168(24.73) 

1180(22.5.59) 

1186(2.593) 

1192(23.149) 

1200(24.3.52) 

1212(22. 3. 101) 

1222(2.13.47) 

1236(22.3.103) 

1246(2.7.89) 

1248(25.3.13) 

1254 ( 2. 3, 11 . 19) 

1256(23.157) 

1258(2. 17 ,37) 
1266(2.3.211) 

1272(23.3.211} 

128'8(23.7.23) 

1296(24.34) 
1312(25.41) 

1314(2.}.73) 

1316(22.7.47) 

1318(2.659) 
1 326 ( 2 . 3 . 1 3 . 17 ) 

1332(22.}.37) 
1342(2.11.61) 

1346(2.673) 

1348(22.337) 

1360(24 .5. 17) 
2 1380(2 .3,5.23) 

1388(22.347) 

1398(2.3.233) 

1404(22.33.13) 

1406(2.19.37) 

1418(2.709) 

1420(22.5.71) 

1422(2.}.79) 

1438(2.719) 

1476(22.}.41) 

1506(2.3.251) 

1508(22.13.29) 
1510(2.5.151) 

1522(2.761) 
1528(23.191) 

1538(2.769) 

1542(2.3.257) 

1566(2.33.29) 

1578(2.3.263) 

1588(22.397) 
2 1596(2 ,3,7.19) 

1632( 25. 3. 17) 

1642(2.821) 
2 1650(2.3,5 .11) 

4 1680 ( 2 . 3. 5. 7) 

1682(2.292) 

1692(22.i.41) 

1716(22.3.11.13) 

1718(2.859) 

1728(26.33) 

1732(22 .433) 

1746(2.32.97) 

1758(2.3.293) 
1766(2.883) 

1774(2.887) 

1776(24.3,37) 
1806(2.3.7.43) 

1816(23.227) 
2 1820 ( 2 . 5. 7. 13) 

1822(2.911) 

1830(2.3,5,61) 

1838(2.919) 

1840(24 .5.23) 

1842(2.3,307) 

1844(22.461) 

1852(22.463) 
2 1860(2 .3.5,31) 

1866(2.3,311) 

1884(22.3.157) 

1888(25.59) 

1894(2.947) 

1896(23.3.79) 

1920(27.3.5) 

1922(2.31 2) 

1944(23.35) 
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92 

Values and prime factorizations of n such that s(x) = n has no 

solution. 

1956(22.3.163) 2196(22,32.61) 2454(2,3.409) 

1958(2.11.89) 2198(2.7.157) 2464(25.7.11) 
1960(23.5.72) 2212(22.7.79) 2482(2.17.73) 

1962 < 2. l. 109) 2218(2.1109) 2 3 2484(2 ,3 .23) 

1972(22 .17 .29) 2226(2.3,7,53) 2490(2.3.5.83) 
1986(2.3,331) 2228(22.557) 2496(26.3.13) 

1992(23.3.83) 2232(23.l.31) 2498(2.1249) 

2008(23.251) 2248(23.281) 2500(22.54) 

2010(2.3.5.67) 2258(2.1129) 2502(2.i.139) 

2022(2.3,337) 2262(2.3.13.29) 2514(2.3.419) 

2024(23.11.23) 2302(2.1151) 2518(2.1259) 

2036(22.509} 2304(i.i) 2530(2.5.11.23) 

2048(2 11 ) 2306(2.1153) 2564(22.641) 

2050(2.52.41) 2316(22.3.193) 2568(23.3.107) 

2052(22.33.19) 2322(2.33.43) 2572(22.643) 

2058(2.3.73) 2324(22.7.83") 2576(24.7.23) 
2062 ( 2. 1031 ) 2330(2,5,233) 2586(2.3.431) 

2068(22.11.47) 2338(2,7 .167) 2588(22.647) 

2078(2.1039) 2356(22 .19.31) 2590(2.5.7,37) 

2096(24.131) 2364(22.3.197) 2600(23.52.13) 

2098(2.1049) 2366 ( 2. 7. 132) 2602 ( 2. 1301 ) 

2108(22.17.31) 2376(22.33.11) 2606(2.1303) 

2118(2.3.353) 2388(22.3.199) 2608(24.163) 

2120(23.5.53) 2404(22.601) 2614(2.1307) 

2128(24.7.19) 2408(23.7.43) 2628(22.32.73) 

2136(23.3.89) 2410(2.5.241) 4 2640 ( 2 . 3. 5 . 11 ) 

2148(22.3.179) 2416(24.151) 2642 ( 2. 1 321 ) 

2152(23.269) 2422(2. 7 .173) 2704(24.1i) 

2158(2.13.83) 2430(2.35.5) 2718 ( 2. 32. 151 ) 

2168(23.271) 2432(27.19) 2724(22.3.227) 

2174(2.1087} 2 2436(2 ,3,7.29) 2726(2.29.47) 

2118<2.l .11 2) 2446(2.1223) 2736(24.i.19) 

2190(2.3.5,73) 2452(22.613) 2748(22.3.229) 
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Values and prime factorizations of n such that s(x} = n has no 

solution. 

27 5 8 ( 2 . 7 . 1 97 ) 

2760(23.3.5.23) 

2762(2.1381) 

2766(2.3.461) 

2774(2.19.73) 

2784(25.3.29) 
2788(22 .17 .41) 

2808(23.33.13) 

2824(23.353) 
2828(22. 7. 101) 

2 2850(2.3.5 .19) 
3 2856(2 ,3,7.17) 

2874(2.3.479) 

2876(22.719) 

2894(2.1447) 

2902(2.1451) 

2914(2.31.47) 

2922(2.3.487) 

2932(22.733} 

2944(27.23) 

2946(2.3.491) 

2950(2.52.59) 

2952(23.32.41) 

2968(23.7.53) 

2978(2.1489) 

2982(2.3.7,71) 

2984(23.373) 

2992(2
4 

.1 J. 17) 

2994(2.3.499) 

2996(22.7.107) 

3008(i.47) 

3018(2.3.503} 

30~8(22.757} 

3036 ( 22. 3. 11 . 23) 
2 2 3060(2 ,3 ,5. 17) 

3072(210 .3) 

3076(22.769) 

3078(2.34.19) 

3102( 2. 3, 11 . 47) 

3104(25.97) 

3114(2.32 .173) 
3126(2.3.521) 

3132(22.33.29) 

3136(26.72) 

3142(2.1571) 
3144(23 ,3, 131) 

3152(2
4

.197) 

3156(22.3.263) 

3162(2.3.17.31) 

3174(2.3.2/) 

3186(2.33.59) 
3198(2,3, 13.41) 

3202(2.1601) 

3208(23.401) 

3228(22.3.269) 
2 3234(2.3.7 .11) 

3236(22.809) 

3238(2.1619) 

3246(2.3.541) 

3266(2.23.71) 

3270(2,3,5, 109) 
2 2 3276(2 .3 .7.13) 

3278(2.11.149) 

3292(22.823) 

3296(25 .103) 

3306(2.3.19.29) 

3312<24.l.23) 

3318(2.3,7,79) 

3328(28.13) 

3340(22.5.167) 

3356(22.839) 

3366(2.32. 11. 17) 

3378(2.3.563) 
3384(23.l.41) 
3388(22.7.11 2) 

3396(22.3.283) 

3400(23. 52. 17) 
3402(2.35.7) 

3406(2.13.131) 

3412(22.853) 
2 5 3420(2 .3 .5.19) 

3422(2.29.59) 

3428(22.857) 

3430(2.5.73) 

3432(23.3.11.13) 
3448(23.431) 

3454(2.11.157) 

3476(22.11.79) 

3484(22.13.67) 

3486(2.3.7.83) 

3488(25.109) 

3504(24.3.73) 

3506(2.1753) 
3 3510(2.3 .5.13) 

3524(22.881) 

3538(2.29.61) 

3556(22.7.127) 

3564(22.34.11) 

3576(23.3.149) 



Values and prime factorizations of n such that s(x) = n has no 

solution. 

3580(22.5.179) 

3588(22 .3. 13.23) 

3590(2.5.359) 

3592(23.449) 
3600(24.32.52) 

3604(i. 17. 53) 
2 3630(2.3.5.11 ) 

3636(22.32.101) 
3642(2.3.607) 

3648(26 .3.19) 

3650(2.52.73) 
3652(22.11.83) 

3656(23.457) 
3666(2,3.13.47) 

3670(2.5.367) 

3682(2.7.263) 

3684(22.3,307) 

3708(22 ,32 . 103) 

3738(2.3.7.89) 

3744(25 .l .13) 

3746(2.1873) 

3748(2
2

.937) 

3752(23.7.67) 

3758(2.1879) 

3760(24.5.47) 

3774(2.3.17.37) 

3786(2.3.631) 

3788(22.947) 

3792(24.3.79) 

3808( 25. 7. 17) 

3812(22.953) 

3816<23.l.53) 

381'8(2.23.83) 

3820(22.5.191) 

3828(22.3.11.29) 

3832(23.479) 

3842(2.17 .113) 

3860(22.5.193) 

3862(2.1931) 

3868(22.967) 

3872(25.11 2) 

3876(22.3.17.19) 

3888(24.35) 
2 2 3900(2 ,3,5 , 13) 

3902(2.1951) 

3904(26.61) 

3936(25.3.41) 

3940(22. 5. 197) 

3942(2.33.7:3) 

3954(2.3.659) 

3958(2.1979) 
3 2 3960(2 ,3 .5.11) 

3972(22.3.331) 

3974 ( 2. 1987) 
3982 ( 2. 11 . 181 ) 

3986(2.1993) 

4018(2.72.41) 

4026(2,3.11.61) 

4032(26.32.7) 

4036(22.1009) 

4o46 ( 2. 7. n2) 

4048(24.11.23) 

4056(23.3.1i) 

4062(2.3.677) 
4068(22.32.113) 

4070(2.5.11.37) 

4072(23.509) 

4078(2.2039) 
4086(2.32.227) 

4088(23.7,73) 

4098(2,3.683) 

4104 ( 23. 33. 19) 

4116(22.3.73) 

4120(23.5.103) 
4148(22.17.61) 

4168(23.521) 

4170(2.3.5. 139) 

4172(22.7.149) 

4184(23.523) 

4188(22.3.349) 

4190(2.5.419) 

4198(2.2099) 
4206(2.3.701) 

4216023 .17 ,31) 

4224(27.3.11) 

4238(2. 13.163) 
4248(23.32.59) 

4258(2.2129) 

4268(22.11.97) 

4280(23.5.107) 

4296(23.3.179) 

4302(2.l.239) 

4304(24.269) 

4308(22.3.359) 

4312(23.72.11) 

4316(22. 13.83) 

4318(2. 17 .127) 

4320(25.33.5) 

4322(2.2161) 
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Values and prime factorizations of n such that s(x) = n has no 

solution. 

4336(24.271) 4630(2.5.463) 4882(2.441) 
4344(23.3.181) 4648(23.7.83) 4884(22.3.11.37) 
4356(22.32.11 2) 2 4662(2.3 .7.37) 4886(2.7.349) 

4 4 368 ( 2 . 3 . 7 . 13 ) 4668(22.3.389) 4896(25 .i. 17) 
4370(2.5.19.23) 4672(26.73) 4898(2.31.79) 

2 4380(2 .3.5,73) 4678(2.2339) 4908(22.3.409) 
4382(2.7,313} 4686 ( 2. 3. 1 l • 71 ) 3 4914(2.3 .7.13) 
4386(2.3.17.43) 4688(24.293} 4916(22.1229) 
4388(22.1097) 4690(2.5.7.67) 4926(2.3.821) 

4396(22.7.157) 4700(22.52.47) 4928(26.7.11) 
4402(2.31.71) 4710(2.3,5.157) 4942(2.7.353) 
4406(2.2203) 3 4712(2 .19.31) 2 4956(2 ,3,7.59) 
4416(26.3,23) 4718(2.7,337) 4962(2.3.827) 

4430(2.5.443) 4738(2.23.103) 4964( 22. 17. 73) 
4462(2.23.97) 2 4740(2 ,3.5,79) 2 4980(2 ,3,5.83) 
4472(23.13,43) 

-
4742(2.2371) 4982(2.47.53) 

2 4J.,,76(2 ,3,373) 4748(22.1187) 4984(23.7.89) 
4480(27.5.7) 4750(2.53.19) 2 4998(·2. 3. 7 . 17) 
4488(23.3.11.17) 4758(2.3. 13,61) 

4490(2.5.449) 4764(22,3,397) 
4492(22.1123) 2 4770(2.3 ,5,53) 

4498(2. 13.173) 4772(22.1193) 
4500(22.i.53) 4782(2.3.797) 
4506(2,3.751) 4808(23.601) 

4512(25.3.47) 4830(2.3,5,7.23) 

4530(2.3.5.151) 4838(2.41.59) 
4534(2.2267) 4840(23.5.11 2) 

4574(2.2287) 4842(2,32.269} 

4580(22.5.229} 4850(2.52.97) 
4588(22.31,37) 4854(2.3.809) 

4612(22.1153) 4856(23.607) 
4614(2.3,769) 4869(22.35.5) 
46 l8 ( 2. 2309) 4868(22. 1217) 
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n d(n) n d(n) 

5 0 169 15 

3 1 217 16 

13 2 265 17 

21 3 253 18 

37 4 271 19 

31 5 211 20 

49 6 301 21 

79 7 433 22 

73 8 379 23 

91 9 33J 24 

115 10 361 25 

127 11 457 26 

151 12 391 27 

121 13 451 28 

181 14 

Table 6.4. The minimum odd solution n to d(n) = k for each 

k < 28. 
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n d(n} n ~ 

9 1 187 13 

17 2 181 14 

25 3 235 15 

37 4 247 16 

71 5 403 17 

61 6 367 18 

79 7 271 19 

85 8 325 20 

91 9 301 21 

115 10 493 22 

223 11 475 23 

151 12 331 24 

Table 6.6. The minimum odd solution n to d(n} = k , for 

each positive k .::_ 24 , such that every one of the 

d(n) solutions to sfx) = n is a Goldbach solution. 



Table 6.7. Distribution of round numbers (x: n(x) .::_ 6) among 

Interval 

( 0, 105 J 

(105,106] 

(106,107 J 

( 107' 108] 

(0,108] 

. 1 . 1 8 am.icab e pairs whose esser number .::_ 10 . 

Number of Both num-

amicable bers of 

Single num- Neither num­

bers of pair bers of pair 

pairs pair round round round 

13 2(15%) 6(46%) 5(38%) 

29 8(28%) 18(62%) 3(10%) 

66 27(41%) 27(41%) 12(18%) 

128 83(65%) 40(31%) 5(4%) 

236 120(51%) 91(39%) 25(11%) 
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7 . · · Algori tbms 

Contained in this Section are the five Algorithms mentioned in 

Sections 4 and 5. The format chosen for the Algorithms is based 

upon the style in (Knuth 1968, page 2). An effort is made to 

analyse these Algorithms so the reader will be convinced-that each 

computer procedure is unambiguously specified, does terminate, has 

well-defined input and output, and can be performed in a reasonable 

number of steps. Correctness proofs for nontrivial program sections 

are outlined. In addition, a study of the properties of the 

Algorithms is attempted; for example, a frequency analysis (how 

many times each part of the algorithm is likely to be executed) 

and a storage analysis (how much memory it is likely to need) is 

specified. The general principles used in the field of algorithmic 

analysis are described in (Knuth 1971). 

An analysis is designed to measure relevant factors about the 

performance of an algorithm by studying properties of that algorithm. 

For examples, consider the frequency analysis (Figure 7,2) of 

Algorithm R and the storage analysis (Figure 5,1) of Algorithm D. 

With n = 5000 , Algorithm R requires 268074 steps versus 

the 24990001 steps if straightforward enumeration is used. 

Algorithm D is efficient with respect to factorization steps, but 

its memory requirements exceed practical bounds for large n, say 

n > 105 . Thus, the analysis of these two Algorithms directly 

assists in measuring their computational efficiency in terms of 

"steps" executed and auxiliary memory required. 



start 

T1. k + I + 
0 

A + 1 
0 

T2. Visit~ 

i + I +1 
k 

T3. 

NO 

T6. 1 + I 
k 

k + k-1 

i + i+1 

0 

YES T4. 
YES T5 . k + k+1 

YES done 
NO 

YES 

Figure 7.1. Flowchart of Algorithm T , which visits every 

node of the aliquot tree T[n] in the preorder 

sequence. 
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Algorithm T. (Traverse T[n] in preorder.) Let n > 1 . This 

algorithm traverses the aliquot tree of n in preorder; that is, 

it visits every node of T[n] in the preorder sequence. Variable 

k equals the current level number and stack A contains items such 

that A[j] is a son of A[j-1] for 1 .::_ j < k. Stack I cor­

responds to A in the sense that p[I[j]J is the largest prime 

factor of A[j] . 

T1. [Initialize.] Set k + I[O] + 0 and A[O] + 1 . 

T2. [Visit A[k] and save index to next prime.] Visit A[k] and 

set i + I[k] + 1 . 

T3. [Terminate?] If p[i] < n, then go to step T4. If k = 0, 

then terminate; otherwise go to step T6. 

T4. [Does node A[k] have another son?] If s(A[k]p[i]) > n, 

then go to step T6. 

T5, [Node A[k]p[i] is a son of A[k].] Set k + k+1 , 

I[k] + i , A[k] + A[k-1]p[i] , and go to step T2. 

T6. [Does node A[k-1] have another son?] Set i + I[k] . If 

s(A[k]p[IJ) > n, then go to step T8. 

T7. [Node A[k]p[i] is a brother of A[k].] Set A[k] + A[k]p[i] 

and go to step T2. 

T8. [Backtrack.] Set k + k-1 , i + i+1 , and go to step T3. 

t"l;:,~;"if':Mi•.-:-i~'!!:.!·; 

AMSTERC,\M 
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Analysis of Algoritrun T. We attempt to prove that Algoritrun T 

traverses the N > 0 nodes of T[n] in preorder by using induction 

on N. To motivate and simplify this correctness proof for 

Algoritrun T, the following relatively straightforward assertion 

is offered without formal verification. (Remark: The flowchart of 

Algoritrun T will be helpful in distinguishing the four cases of 

assertion A.) 

A. 

A1. 

A2. 

A3. 

A4. 

Starting at step T6 with e 
mpa, , where 

e ~ 1 , and a= Ik > Ik_1 , the procedure of steps T2-T8 

will either arrive at step T2 (case A1 or A2), step T6 (case 

A3), or terminate (case A4). In all cases, the items 

A
0

, ... , ~-1 , I
0

, ... , Ik_1 remain unchanged. The state of 

affairs for each case are: 

e+1 
= mp

0 
and s(~) .::_ n (which implies p < n); that is 

a, 

is the "next II son of A --k-1 after 

A__ - mp 
-K - a.+1 ' P < n a.+1 , 

e mp 
a, 

( e+1) s mp
0 

> n , and 

Ik =a+ 1 that is, 1\. is the "next" son of J\._1 after 

e 
mpa. 

k is decreased 

s(mp
0

+1) > n) ; 

by 1 , 

that J.S, 

k = 0 ( e+1) > , s mp n , a, 

originally 1 and AO= 

( e+1) > n and (pa.+1 ~ n s mp , or a, 

has after e m no more sons mpa . 

and P
0

+1 .::_ n ; that J.S, k was 

1 has no more sons after e m = Pa, . 
If the reader will now attempt to play through Algoritrun T 

beginning at step T6 with the above assumptions, he will easily 

arrive at each one of the four cases depending upon the tests at 

steps T3, T4, and T6: When control passes from step T6 to T7, 

case A1 obtains; otherwise, from step T6 we get to step T8 and 
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then step T3, where either case A3 or A4 obtains, or else we reach 

step T5 and hence case A2 holds. These are the mutually disjoint 

and exhaustive possibilities. 

Now our correctness proof is readily established if we can 

prove the slightly more general assertion: 

"Starting at step T2 with k > 0 and p[I[k]] the largest prime 

factor of the node A[k] which is at level k of T[n] , the 

procedure of steps T2-T8 will traverse in preorder that subtree 

of T[n] with N > 0 nodes whose root is A[k] , and will then 

arrive at step T6 (or terminate iff k = 0 with k returned to 

its original value and stack entries A[O], ... , A[k], I[OJ, ••. , 

I [k] unchanged". 

This statement is obviously true when N = because step 

T2 visits A[k] and then we reach T6 since p. > n or 
l 

s(A[k]p.) > n for all i > I[k] when A[k] has no sons. If 
i 

N > 1 , we first visit the root A[k] at step T2 and it remains 

to show that each subtree defined by a son of A[k] is visited in 

preorder. Clearly these subtrees must have < N-1 nodes, so the 

induction hypothesis ensures that they will be traversed in pre­

order if we successively enter step T2 with their ordered roots, 

the sons of A[k] . From visiting A[k] we proceed via steps T3 

and T4 to T5 because A[k] has at least one son and its first son 

must in fact be A[k]p[I[k]+1] At step T5 we store this son into 

A[k+1] and set I[k+1] = I[k] + 1 ; next we go to step T2 where 

(using the induction hypothesis) the subtree defined by it is 

traversed; then we arrive at step T6 with k the index to the 

first son of our original root A[k] . Now assertion A is of use 

for it guarantees that all the ordered brothers of the first son 



will also reach step T2 in preorder (cases A1 and A2) until there 

are none remaining (case A3 or A4), at which time control reaches 

step T6 or terminates (iff k = 0). This completes the proof. 
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Step T1 clearly accomplishes the proper initialization so that 

the entire tree T[n] would be traversed in preorder, according 

to the general assertion just proved. 

Coding Algorithm T in a programming language is easy when 

subscript ranges for array p and stacks A, I are specified. 

The primes used pass test p. < n-1 
i 

in step T3 except for one. 

Hence i < n(n-1)+1 Pointer k to stacks A and I never 

exceeds the highest level number of T[n], equal to 

Understanding and proving correctness of Algorithm T can both 

be enhanced by the elegance of a so:.called "recursive solution" to 

traversing the nodes of T[nJ in preorder. To motivate a 

recursive statement of Algorithm T, we first clarify how trees 

can be represented and traversed recursively in preorder within a 

computer. 

A comm.on computer representation for a tree uses nodes which 

contain two links, a left link LLINK(P) pointing to the first son 

of NODE(P) and a right link RLINK(P) pointing to the next 

ordered brother of NODE(P) . A null link is denoted by A • 

Pictorially 

p LLINK(P) INFO(P) RLINK(P) 

NODE(P) 

where, of course, INFO(P) contains the information in the tree 

node. See Figure 4.3 for the corresponding picture of the aliquot 



tree T[6] • 

Using this representation for aliquot trees, the previously 

defined notion of traversing a tree in preorder can be restated 

more precisely by the following recursive procedure: 

Algorithm TRAVERSE(P) . 

105 

T1, If P = A , then skip the next three steps (i.e., do nothing). 

T2. "Visit" NODE(P) . 

T3. TRAVERSE(LLINK(P)) 

T4. TRAVERSE(RLINK(P)) 

We next adapt the TRAVERSE algorithm to aliquot trees, using 

ALGOL 60 notation: 

procedure T(A,i,e); value A,i,e; integer A,i,e; 

begin integer y; if -. (A=1 A p[i] ~ n A e=1) then 

begin y:= Axp[i]te; VISIT(y); 

if s(yxp[i+1]) 2._ n then T(y,i+1 ,1); 

if s(yxp[i]) 2.. n then T(A,i ,e+1) 

else if s(Axp[i+1 ]) 2._ n then T(A,i+1, 1) 

end 

end· --' 

The calling sequence is "VISIT( 1) ;T( 1, 1, 1 )" to visit all the 

nodes of T[n] in preorder. When n = 6 , the operation of 

procedure T proceeds in the following fashion: 

T(1,1,1) - VISIT(2);T(2,2,1);T(1,1,2) 

T(2,2,1) - VISIT(6) 

T(1,1,2) - VISIT(4);T(1,2,1) 
,, 

T(1,2,1) - VISIT(3);T(1,2,2) 

T(1,2,2) - VISIT(9);T(1,3,1) 



T(1,3,1) _ VISIT(5);T(1,3,2) 

T(1,3,2) - VISIT(25);T(1,4,1) - VISIT(25) 

Hence, with n = 6 , we have the desired result: 

VISIT ( 1 ) ; T ( 1 , 1 , 1 ) = VISIT ( 1 ) ; VISIT ( 2) ; VISIT ( 6) ; VISIT ( 4) ; VISIT ( 3) ; 

VISIT(9);VISIT(5);VISIT(25) • 
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A formal correctness proof that procedure T does indeed traverse 

T[n] in preorder would be based upon the following considerations: 

(1) Pointer Pin the TRAVERSE Algorithm is replaced by the 

3-tuple (A,i,e) corresponding to node e 
y = Ap. ; 

1. 
(2) The initial 

conditional in procedure T ensures that traversal terminates at 

the first node y = P· > n; 1. -
(3) 

to the first son of node 
e 

y = Ap. , 
1. 

LLINK(P) 

which is 

in TRAVERSE points 

e 
Ap.p. 1 1. 1. + iff 

s(YP. 
1

) < n; (4) RLINK(P) 1.n TRAVERSE points to the next, 
1.+ -

ordered brother of node 
e 

y = Ap. , 
1. 

which is eithe:r: (i) A 
e+1 

p. 
1. 

iff s(yp.) < n, or else (ii) A iff 1. - Pi+1 s(Api+1 ) 2,. n ; 

(5) Invoking T(1,1,1) starts traversal of T[n] at node y = 2; 

(6) Arguments for finiteness of T[n] and termination of traversal 

stated in the proof of Algorithm T apply also to procedure T. 

Just as Algorithm R is a modification of Algorithm T which 

evaluates s values without factoring numbers, we can rewrite 

procedure T as procedure R to take advantage of the top-down 

locally-defined function s . Furthermore, to reduce the possibly 

large recursion depth of procedure T , two of the recursive calls 

of procedure T have been replaced in procedure R by iteration, 

so that procedure R clearly has a maximum recursion depth equal ,, 

to 

max {k: s(p1 p2 .•. pk)< n} , 
k 
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which is the highest level number of T[n] • Because our aims in 

~estating Algorithms T and R as procedures T and R are 

clearer expression and easier correctness proofs,~ to statements 

have been avoided (the Boolean variable LOOP in procedure R is 

our mechanism for structuring the iteration therein without using 

undesirable jumps). 
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Procedure R. (Procedure T with recurrence relations to evaluate 

values of s and with two recursive calls replaced by iteration.) 

procedure R(A,i,e,sA); value A,i,e,sA; integer A,i,e,sA; 

begin integer y,sy; Boolean LOOP; 

LOOP:= true; 

for i:= i while LOOP A ---, (A=1 A p[i] ~ n A e=1) do 

begin y:= Axp[i]te; VISIT(y); 

end 

end· __ , 

sy:= sAxTABLE[i,e+1] + AxTABLE[i,e]; 

if syxTABLE[i+1 ,2] + y .::_ n then R(y 0i+1, 1 ,sy); 

if sAXTABLE[i,e+2J + AxTABLE[i,e+1J .::_ n then e:= e+1 

else if sAxTABLE[i+1 ,2] + A < n then 

begin i:= i+1; e:= end 

else LOOP:= false; 

comment Array element TABLE[i,e] equals s(p[i]te) and could be 

replaced by a procedure TABLE(i,e) that computes 

1 + p[i] + p[i]t2 + .•. + p[i]t(e-1) • Formal parameter 

sA and variable sy have values s(A) and s(y) , 

respectively. The calling sequence "VISIT(1), R(1,1,1)" 

will traverse T[n] in preorder sequence; 
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Figure 7.2. Profile of Algorithms T and R. The unknowns a, S, 

y have the following characteristics: 

Step 

a = Number of nodes in T[n] ; S = Number of "node 

groups" in T[n] ; y = Number of nodes in T[n] 

which are divisible by the largest prime less than n. 

Times each step J.S executed for given n . 

n = jJ_ 50 500 5000 general 

T1 ,R1 1 1 1 

T2,R2 19 114 3157 134550 a 

T3,R3 30 203 6160 268077 a+S 

T4,R4 27 198 6157 268074 a+l3-y-1 

T5,R5 11 89 3003 133527 13 

T6,R6 18 113 3156 134549 a-1 

T7,R7 7 24 153 1022 a-13-1 

T8,R8 11 89 3003 133527 13 

The above profile was derived as follows. Firstly, with 

being executed x. times, the eight unknowns 
l 

step Ti (Ri) 

( x1 , ... , x8) were reduced by application of "Kirchoff's" con-

servation law for flowcharts (Knuth 1968, section 2.3.4.1). This 

yielded: 

Step Times Step Times 

T1 ,R1 T5,R5 X -X -1 
2 7 

T2,R2 T6,T6 ~+x8 

,, T3,R3 T7,R7 ~ 
T4,R4 T8,R8 x8 
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Next, it follows that x
5 

= x8 = x2-x
7

-1 because k is initialized 

to zero (step T1) and then the algorithm terminates only when 

k = 0. Thus for every time k is increased by one in step T5, 

k must be decreased by one in step T8. There remain three un­

knowns and these can be interpreted by relating them to pertinent 

characteristics of the aliquot tree of n. Let 

a= number of nodes in T[n] 

S = number of "node groups" in T[n] 

y = number of nodes in T[n] which are divisible by the 

largest prime less than n. 

f e1 ek f1 
Two nodes and r belong to the same p. p. p. p. 

11 lk J1 Jr 

"node group" if and only if k = r it = jt for 1 < t < k _, - - ' 
and 1 < t < k-1 • (Thus they differ only in their last exponents 

and The root is not considered par~ of a node 

group. 

For example, we have a = 19 nodes, a = 11 node groups, 

and y = 2 ( for the two nodes 11 and 1l) in the aliquot tree 

T[13] of Figure 4. 1. 

Step T5 is clearly executed once for each node group in T[n] 

Hence x5 = f3 • 

Step T2 visits every node of T[n] precisely once. Hence 

x2 = a • 

Step T4 is entered only when p. < n 
l 

in the test of step T3. 

Further, step T3 is performed x2 + x8 =a+ a times so that 

step T3. 

where y is the number of times that p. > n 
l 

Obviously, the only time that p. > n obtains is when 
l 

in 

the last node visited has a factor equal to the largest prime less 

. 



than n. Hence y = y + 1 =a+ S - x4• (There is one extra 

test where p. > n and k = 0 .) 
i -
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We remark on the behaviour of the quantities a, S, and y 

as n increases. The quantity y is obviously very small; indeed, 

when n-1 is prime, y = 2 . The quantity a-S seems to grow as 

n°· 815 , which predicts observed values within relative error 3%. 

Finally, increases a little faster than 1.6 
0.2 n so that 

Algorithms R and T would perform about 107 steps to handle 

the case n = 50000 
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Algorithm .R. (Algorithm T with recurrence relations to evaluate 

values of s .} Like Algorithm T , for input n > 1 the aliquot 

tree T[n] is traversed in preorder. In addition, calculation of 

s-values at each node is speeded up by using a table of values 

s(p~), a stack E whose item E[j], for O 2._j 2.,k, corres-
l. 

ponds to the exponent of factor p[I[j]J in A[j] , and a stack 

S with S[j] = s(A[j]) . 

R1. [Initialize.] Generate entries of TABLE[i,e] = s(p~) for all 
l. 

( e-2) p. < n and s p. < n. 
l. - l. -

Set S[O] + k + I[O] + 0 and 

A[O] + 1 . 

R2. [Visit A[k] and save index to next prime.] Visit A[k] 

(Note S[k] = s(A[k])) and set i + I[k] + 1 . 

R3. [Terminate?] If p[i] < n, then go to step R4. If k = 0 , 

then terminate; otherwise go to step R6. 

R4. [Does node A[k] have another son?] Set t + A[k] + 

+ S[k].TABLE[i,2] . If t > n, then go to step R6. 

R5. [Node A[k]p[i] is a son of A[k].] Set k + k+1 , I[k] + i , 

E[k] + 1 , A[k] + A[k-1]p[i] , S[k] + t , and go to step R2. 

R6. [Does node A[k-1] have another son?] Set i + I[k] , 

e + E[k] + 1 , and t + S[k-1].TABLE[i,e+1] + 

+ A[k-1].TABLE[i,e] . If t > n, then go to step R8. 

R7, [Node A[k]p[i] is a brother of A[k].J Set E[k] + e , 

A[k] + A[k]p[i] , S[k] + t , 9.Ild to step R2. 

R8. [Backtrack.] Set k + k-1 , i + i+1 , and go to step R3. 
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Analysis of Algorithm R. Because Algorithm R is one-to-one 

with Algorithm T we will only show that steps R4 and R5 evaluate 

values of s correctly. First, at step R4 we have 

t = A[k] + S[k].TABLE[i,2] 

= A[k] + s(A[k]) s(p~) 
l 

= (1+p.) s(A[k]) + A[k] 
l 

= s(a[k]p.) , 
l 

by application of Corollary 1.2. Using Corollary 1.1 and the 

relation 

A[j] = A[j-1]p[I[j]]E[j] for 1 < j < k , 

at step R6 yields 

t = S[k-1].TABLE[i,e+1] + A[k-1].TABLE[i,e] 

= s(A[k-1]) s(p~+l) + A[k-1] s(p?) 
l l 

= s(A[k-1]p?) = s(A[k]p.) . 
l l 

Memory requirements for array TABLE increase rapidly with n. 

A space saving alternate approach is to make TABLE into a sub­

routine with two arguments (i,e) that computes 

e-1 + p 

= 1 + p(1+p(1+ ••• p)). 

Stacks E and S require the same storage as stack A, except 

E[O] is never referenced. 



Algorithm E. (Examine aliquot series for cycles.) Let 

N > n > O. This algorithm examines and detects cycles in every 

aliquot series with leader < n and with terms < N. List A 

with index k serves to save the series terms, while i and x 

are the current series leader and term, respectively. 

E1. [Initialize.] Set i + -1 . 
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E2. [Done?] Set i + i+1 If i > n, then terminate; other-

wise set x + i k + 1 , and A[1] + x. 

E3. [Series terminates?] If s(x) = 1 or s(x) > N or s(x) < n, 

then go to step E2. 

E4. [Cycle?] If s(x) 4 {A[j]: 1 ,:_ j ,:_ k} , then go to step E5, 

otherwise, a cycle is captured in the A list; if 

s(x) = A[j] , then (A[j], A[j+1], •.. , A[k]) is a cycle of 

length k-j+1 with terms < N . Go to step E2. 

E5. [Move along series.] Set x + s(x) , k + k+1 , A[k] + x, 

and go to step E3. 
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Algorithm H. (Search for cycles and keep a history.) Given 

N > n > 0 this algorithm gives the same output as Algorithm. E , 

except it keeps a history in the Boolean list B of which numbers 

have been previously encountered in a series, so that no series or 

subseries is visited more than once. 

H1. [Initialize. J Set B[i] + "false" for O < i < N • Set 

i + -1 • 

H2. [Done?] Set i + i+1 • If 1 > n, then terminate; other­

wise set x + 1 and initialize the A list to x. 

H3. [Previous series?] If B[x] = "true" , then go to step H2. 

H4. [Series terminates?] If s(x) > N , then set B[x] + "true" 

and go to step H2. 

H5. [Cycle detected?] If s(x) not in A list, then go to step 

H6. Otherwise, a cycle is captured in the A list; set 

B[x] + "true" and go to step H2. 

H6. [Move along series.] Set B[x] + 11 true11
, x+ s(x), add x 

to the A list, and go to step H3. 
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Algorithm D. (Detect cycles after computing and savings-values.) 

For inputs N ~ n ~ 0 , this algorithm p:['.oduces exactly the same 

output as Algorithm H • The difference is that it computes and 

saves all necessary s-values in array S before seeking cycles. 

Remark: Marking is to be idempotent; that is, marking a marked 

element of S simply leaves it as originally marked. 

D1. [Initialize.] For O < i .::_N , set S[i] + s(i) ; if 

D2. 

s(i) = 1 or s(i) > N , then set S[i] + 0 • Each S entry 

is assmn.ed initially ·unmarked. Set i + 0 and output trivial 

(0) • cycle 

[Done?] 

wise set 

Set i + i+1 • If 1 > n , 

k + 1 and mark S[k] • 

then terminate. Other-

D3. [Delete series?] If S[k] #-0, then go to step D4. Other­

wise, delete cycle candidate series i, S[i], S[S[i]], ••• , k 

by setting their S entries to zero; return to step D2. 

D4. [Cycle detected?] If S[S[k]] is not marked, then go to step 

D5. Otherwise, output the cycle (S[S[k]], S[S[S[k]]], ••• , k); 

then set S[k] + 0 and go to step D3. 

D5. [Mark S entry.] Mark S[k] , set k + S[k] , and go to 

step D3. 
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Analysis of .Algorithm. D. The method of frequency counts has been 

applied to Algorithm D in order to determine the number of times 

each step was actually performed for various inputs. 

Table 7.3 is the resultant profile (collection of frequency counts) 

of Algorithm D for the case where N = n. The colUIDn headed 

"Times" represents the number of times the corresponding step will 

be executed during the course of the algorithm. 

From the profile of Figure 7.3, it is clear that once the S 

array has been set up (step D1), the running time of Algorithm. D 

is proportional to n when N = n • 
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Figure 7.3. Profile of Algorithm D when N = n. The unknown a 

and S have the following important characteristics: 

a= Number of cycles outputed; S = Number of zero 

entries in list S after step D1 is performed. 

Step Times each step J.S executed for given N = n • 

N = n = 10 100 1000 10000 52000 general 

D1 1 1 1 1 1 1 

D2 11 101 1001 10001 52001 n+1 

D3 15 167 1766 18160 95452 2n-S 

D4 5 67 766 8160 43452 n-S 

D5 4 65 762 8151 43439 n-S-a+1 

2 3 5 10 14 Cl, 

5 33 234 1840 8548 s 
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