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GEOLEARN is an interdisciplinary project that aims to develop novel machine learning algo-
rithms to analyze Earth Observation (EO) data. In the last decade, machine learning models
have helped to monitor land and atmosphere through the analysis and estimation of climate
variables and biophysical parameters. Current approaches, however, cannot deal with the par-
ticular characteristics of remote sensing data efficiently. In the upcoming years, this problem will
largely increase: several satellite missions, such as the operational EU Copernicus Sentinels
and the future Meteosat Third Generation (MTG), will be launched and we will face the urgent
need to process and understand a huge amount of complex, heterogeneous and structured
data streams in order to monitor our Planet.

GEOLEARN aims to develop the next generation of machine learning algorithms for EO data
analysis, and will be addressed in four workpackages (WP). In the first WP, we address the
problem of adapting machine learning algorithms to remote sensing (RS) data, dealing with
heterogeneous data types at different (temporal, spatial and spectral) scales and resolutions.
Multivariate outputs are also required in many EO data processing problems, in order to con-
strain algorithms to sensible predictions. Furthermore, the uncertainty in the predictions will be
improved in order to evaluate their reliability and propagation. Finally, physical knowledge will
be included in the mathematical models by means of radiative transfer models (RTMs) inversion
(also known in the field as emulation).

The second GEOLEARN WP deals with developing computationally efficient algorithms able to
manage large amounts of data quickly and accurately. The tasks in this WP will be tackled from
three complementary perspectives: (1) from a theoretical approach, by reducing the inherent
complexity of the models based on Gaussian processes, kernel methods and deep architec-
tures; (2) exploiting new hardware and software resources for parallelization; and (3) following
divide-and-conquer strategies adapted to the particularities of remote sensing data.

In the third WP we will extract knowledge from the developed algorithms through global sensitiv-
ity analysis, and will propose novel algorithms for causal inference on relevant climate science
applications.

Finally, these developments will be guided in the fourth WP by the challenging problems of
emulating radiative transfer models, estimating biophysical parameters (e.g. vegetation cover
or chlorophyll content) and atmospheric variables (e.g. temperature and ozone profiles) at both
local and global planetary scales, and the estimation of global time-resolved carbon and heat
fluxes, which will allow for a rapid development of policy responses on climate change.

The outcomes from the GEOLEARN project will provide, among others, remote sensing appli-
cations and dedicated modules to benefit the processing chains and products derived from the
sensors on board Sentinel 2 and 3 satellites of the EU Copernicus program and EUMETSAT
Meteosat satellites.

KEYWORDS: Machine learning, remote sensing, geosciences, climate science, image pro-
cessing, time series analysis, kernel methods, Gaussian processes, deep learning.
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SCIENTIFIC DOCUMENT

C.1. SCIENTIFIC PROPOSAL
C.1.1. Previous works and state of the art

Human activities, in particular those involving the combustion of fossil fuels and the conversion
of land for forestry and agriculture, have ever increased since the Industrial Revolution. These
activities have had a definite impact on the Earth’s climate system. Undoubtedly, the Earth
is experiencing important climate changes [1], and the attribution to natural or anthropogenic
causes is matter of current and intense research [2]. Nowadays, monitoring and understanding
the Earth’s climate system is one of the main challenges in Science, but also it is crucial for
adopting appropriate policies by decision-makers. Measuring key parameters of climate evo-
lution by Earth Observation (EO) satellite missions and in situ measurements, along with the
exploitation of quantitative statistical methods, are essential in current climate science. This
unique combination of data and techniques allows us monitoring our Planet at continental and
global scales. The field has obvious societal, environmental and economical implications, given
the rapidly growing demand of bio-fuels and food.

Earth Observation aims to monitoring Earth’s changes and evolution using the information pro-
vided by satellites, airborne sensors and ground measures of physical parameters. EO satel-
lites, endowed with a high temporal resolution, enable the retrieval and hence monitoring of
climate and bio-geo-physical variables [3]. With the forthcoming super-spectral Copernicus
Sentinel-2 (S2) [4] and Sentinel-3 missions [5], the upcoming Meteosat Third Generation In-
frared Sounder (MTG-IRS), as well as the planned german EnMAP [6], and European Space
Agency (ESA) Earth Explorers candidate mission FLEX [7], an unprecedented data stream for
land, ocean and atmosphere monitoring will soon become available to a diverse user com-
munity. The problem of managing and processing massive data volumes requires enhanced
processing techniques on accuracy, robustness and computational cost. In addition, the sta-
tistical models should be also self-explanatory, in the sense that they should capture plausible
physical relations and explain causal links between the climate variables and observations.

Statistical machine learning (ML) has proven successful in many disciplines of Science and En-
gineering [8]. In the last decade, statistical inference has widely contributed to the estimation
of particular essential climate variables (ECVs) and related bio-geo-physical parameters, such
as temperature, ozone, or chlorophyll content [9]. For example, current operational leaf-area-
index (LAI) global maps are typically produced with neural networks, Gross primary production
(GPP) is estimated using ensembles of random forests, neural networks and process-based
models [10, 11], biomass has been estimated with stepwise multiple regression [12], and sup-
port vector regression showed high efficiency in modelling LAl and evapotranspiration [13]. It
is worth noting that recently much attention has been payed to Gaussian Process Regres-
sion (GPR) [14], as they provided very good results in chlorophyll content estimation [15, 16],
GPP [17] and atmospheric variables [18].

Despite all these advances in the statistical treatment of EO data, current ML algorithms do
not cope efficiently with some data characteristics. We identify three main aspects that require
urgent attention in the current and upcoming scenario of Earth monitoring with ML techniques,
and that we will approach in this project: namely, (i) how to improve model’s accuracy that
respects both data structures and physical facts, (ii) how to scale to huge EO data streams,
and, more importantly, (iii) how to extract knowledge from EO machine learning models to gain
in problem understanding.

Adapting machine learning to EO data characteristics.

Very often, regression algorithms are applied blindly to remote sensing (RS) data with few,
or none, adaptation to respect data characteristics [9]. From a pure machine learning point
of view, EO data is essentially structured, multisource, and multimodal [19]. However, few
approaches have considered fusion of multisensor data for climate variable prediction, and
only recently we have imposed spatial or temporal structures in the retrieval models [17, 20],
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and work with exogenous time series with proper regression models [21, 22]. From a signal
processing standpoint, the acquired time series of, e.g. carbon, heat and water fluxes, exhibit
heteroscedastic relations, strong correlations between observations, and the bio-geo-chemical
processes occur at different temporal and spatial scales. When models do not match the
time/space structures, not only prediction but also uncertainty estimation are compromised,
with strong implications on further studies that rely on previous models. Strikingly enough, the
international Global Climate Observation System (GCOS) [23] panel recommends less than
20% of prediction uncertainty in the models, but this is still difficult to achieve for the estimation
of many important ECVs. Poor uncertainty estimates directly reflect an ubiquitous problem:
statistical models do not incorporate physical knowledge and a prioriinformation. This hampers
current machine learning models being widely accepted by the EO community as the preferred
model to generate products. Actually, they are typically used just as first guess estimators for
data assimilation with physical models. We posit that machine learning methods should be
constrained by physical models to provide sensible and consistent predictions.

Scaling machine learning regression models to huge data streams.

Dealing with this unprecedented amount of EO data requires efficient implementations of the
algorithms ready to handle this immense and heterogeneous data volume. ESA Sentinels’ [15,
24] will deliver improved spectral and temporal resolutions, while the MTG-IRS infrared sounder?
[25] will acquire each pixel (field of view) in about 1800 spectral dimensions. Yet, also the out-
put variable space is increasing: for instance, ECVs and time series of carbon, water and
heat fluxes in the FLUXNET activities® [26] need to be predicted simultaneously to attain con-
sistent models, and atmospheric state vectors define hundreds of correlated and structured
output variables, such as the temperature or moisture values across the atmospheric column.
This upcoming EO data streams requires new automatic tools and algorithms able to adapt
and exploit the relevant information within the data. Machine learning algorithms could be of
paramount importance in solving these new challenges. Currently, the used state-of-the-art
kernel methods and Gaussian Process Regression (GPR) models do not scale well to more
than a few thousand points, and need intensive training in cluster facilities. This hampers adop-
tion of ML by regular users, and keep this technology obscure to organizations such as ESA
and EUMETSAT.

Unveiling knowledge in machine learning EO models.

Statistical learning models should be transparent and provide information about the learned
relations, as process-based and physical models do. Unfortunately, machine learning has tra-
ditionally focused on fitting rather than understanding. On the one hand, very few works have
studied the relative relevance of advanced statistical retrieval methods [27, 26], but it is still
unclear if the identified relations are too naive or even biased, given the limited datasets con-
sidered to train the models. On the other hand, a quite limited number of works have explained
causal relations between vegetation variables via graphical models: [28] used Bayesian mod-
elling to assess the impact of climate change on biofuel production, while [29] used constrained
structure learning to derive hypotheses of causal relationships between prominent modes of
temporal atmospheric variability, and very recently [30] used the causal counter-factual theory
for the attribution of weather and climate-related events. Again, the methods rely on limited
amount of data, use standard structure learning algorithms driven by uni-variate dependence
estimates, and seldom identify new drivers or confounding factors.

Monitoring land, vegetation and atmosphere with advanced machine learning.

The aforementioned deficiencies are common to many geoscience and EO problems. In this
project, we will focus on three selected meta-studies for global monitoring with statistical infer-
ence, in which we are experts: (1) Estimation of vegetation parameters in the context of the
upcoming Sentinels missions; (2) Estimation of atmospheric temperature and moisture profiles
in the context of the upcoming MTG-IRS super-spectral infrared sounder; and (3) Estimation of

'https://sentinel.esa.int
2http://esamultimedia.esa.int/docs/MinisterialCouncil/MC-MTG_1811.pdf
3http://fluxnet.ornl.gov/
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global time-resolved carbon and heat fluxes in the context of FLUXNET activities. These appli-
cations of global monitoring are ideal testbeds for the proposed methodological developments.
They are challenging, large scale, structured input-output domains in Earth climate science that
may lead to important and ground-breaking achievements.

C.1.2. Hypothesis and general objective

The GEOLEARN project is aimed to develop a new generation of machine learning algorithms
for Earth Observation global monitoring. We advocate that machine learning algorithms for EO
applications need to be guided both by data and by prior physical knowledge. This combination
is the way to restrict the family of possible solutions and thus to obtain non-parametric flexible
models that respect the physical rules governing the Earth climate system. Current algorithms
need to be adapted to the particular specifics of the EO data streams, i.e. need to deal with
multivariate outputs, spatial and temporal complex structures, and massive datasets. We are
equally concerned about the ‘black-box’ criticism to statistical learning algorithms, for which we
aim to design self-explanatory models and take a leap towards the relevant concept of causal
inference from empirical EO data. The guiding hypothesis of GEOLEARN is illustrated in Fig. 1.

Physical EO Data Priors

EO Data
¢ Constraints Knowledge

Machine Machine Learning
Learning Multivariate outputs
Spatial & temporal structures
¢ Large scale
Inference ¢

Physically-consistent
& efficient Inference

Figure 1: Traditional algorithms are fed with remote sensing data to perform inferences, but no attention
is payed to the underlying physical processes (left). In the proposed approach (right), machine learning
models include physically meaningful constraints and prior knowledge about the time and spatial scales
of the processes, and scale to large datasets. The approach will deliver a framework in which models
will leverage efficient, and physically-consistent inferences.

The advances in the GEOLEARN project will represent an improvement in future machine
learning models for regression and causation, and could answer relevant questions in today’s
Climate Science:

e Impact of climate and remote sensing variables. What is the impact of warmer temperatures
to soil mineralization? What is the relative relevance of nitrogen to the terrestrial carbon
uptake? How the change in land use impacts uncertainty estimation of GPP [10, 11]?

e Impact of alternative variables. Are bio/geo-diversity variables directly mediated by gross/net
production? And viceversa: Can biodiversity indicators constitute good covariates for GPP
estimation?

e Sun-induced fluorescence (SIF) as potential ECV. Assessing whether the observed SIF-GPP
relations at the leaf-level also hold at the synoptic/monthly scale, and what vegetation and
meteorological variables drive the SIF and GPP signals. This is still an elusive problem,
mainly due to the difficulty in retrieval and validation [31-33].

C.1.3. Specific goals

The main goal of the GEOLEARN project is to develop new machine learning models for the
efficient treatment of biophysical land parameters and related covariates at continental and
global scales. This main scientific goal translates into the following specific objectives:

1. Improve prediction models by adaptation to Earth Observation data characteristics.
Current practice apply off-the-shelf machine learning algorithms directly for biophysical pa-
rameter estimation problem as a regression problem. Models do not respect relevant EO
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data characteristics, such as non-Gaussianity, presence of heteroscedastic and nonstat-
ionary processes, and non-i.i.d. (spatial and temporal) relations. Models must be improved
in terms of accuracy, reduced uncertainty of the estimates, and consistency of multiple out-
put predictions. In addition, ML models need to encode prior (physical) knowledge. Emula-
tion of physical radiative transfer models with nonparametric algorithms will be approached
here. We will also design regularizers that enforce structure in phenological cycles and in-
clude rules from physical vegetation models. Advanced structured, multioutput Gaussian
processes and deep nets will be developed here as well (see Fig. 2 for a real example).

2. Scaling Machine Learning for EO data processing. Efficiency of algorithms is also tied to
computational burden given the large heterogeneous data streams. We will tackle this EO
‘big data’ problem from three complementary perspectives: (1) from a theoretical approach,
by reducing the inherent complexity of the models, (2) from a computational perspective,
using new hardware and software resources for parallelization, and (3) adapting divide-and-
conquer strategies to EO data specifics (see Fig. 3 for a real example).

3. Extract knowledge from Earth observation data and models. Explaining the potentially
complex interactions between the involved covariates for ECV estimation is essential to un-
derstand the climate mechanisms. So far, statistical models are treated as pure black box
models. There is an urgent need both to unveil the knowledge encoded in non-parametric
retrieval models, and to advance in the evaluation of potentially useful alternative covariates.
We will investigate feature selection and ranking, in the form of sensitivity analysis of the pre-
dictive mean/variance of GPs and deep nets, as well as regression-based causal schemes
applied to large heterogeneous EO data streams (see Fig. 4 for a real example).

C.1.4 Proposed methodology.
Work Package 1 (WP1). Improvement of algorithms.

This task will develop new algorithm regression models (mainly based on GPs and deep ar-
chitectures) to cope with the shortcomings identified before. All the tasks will be consistent
with the particular needs of the problems described in WP4. We detail the ideas and foreseen
developments in what follows.
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Figure 2: Predictive mean maps (top) and associated predictive variance (bottom) for three important
biophysical parameters (chlorophyll content, leaf area index and fractional coverage) describing vegeta-
tion status generated with Gaussian Processes using a hyperspectral CHRIS image [17, 27]. Current
uncertainty maps fairly meet the Global Climate Observing System (GCOS) prescriptions of an uncer-
tainty maximum 20% [23], and can be used as a quality mask. However, current GP models are very
limited as they do not exploit neither the spatial or temporal information, models are generated indepen-
dently for each observed variable, and are so far guided by data alone, without any inclusion of prior
physical knowledge.
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Figure 3: Prediction error profiles across the atmospheric column using linear regression (LR), Kernel
Ridge Regression (KRR), and a physically-based optimal estimation (OE) using IAS! infrared sounder
data for temperature (left) and moisture (right) [25]. Current machine learning models are highly com-
petitive in RMSE terms (solid) and bias (dashed) versus OE and extremely efficient nowadays at the
prediction test: OE takes 8.19 sec per pixel, while KRR only 0.043 sec, a gain of x190. However,
current statistical models do not scale well for training, and do not take physical constraints into account.
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Figure 4: Spatial patterns of maximum monthly GPP using random forests and maximum monthly
SIF with linear regression [33] (left). Improvements in advanced regression methods are expected in
GEOLEARN when exploiting structure and non-stationarity in the models. GEOLEARN will also develop
feature rankings of drivers that impact essential climate variables (right).

e WP1.1 Structured multiscale and multiresolution domains. Earth observation data are
mainly structured data, i.e. it exhibits clear and strong spatial, temporal and spectral corre-
lations at different scales and hierarchies that need to be exploited. Very often such obvious
observation is not respected, and data (images of different spatial-spectral resolutions, times
series of fluxes, biophysical/atmospheric parameters) are wrongly treated as i.i.d. objects,
and are processed with fixed ad hoc receptive fields and time embeddings. In recent years,
we have proposed a series of algorithms, based on kernel methods [34], Gaussian Pro-
cesses [14] and deep learning [35] to account for spatial and temporal structures [36—38],
multiple temporal resolutions [20], multiple tasks [39] and multimodal fusion [40], in RS data.
We plan to extend some of these models to other relevant settings in RS, by developing (1)
tensorial convolutional nets in space-spectrum domains that better match the properties of
the EO data in both optical and infrared microwave sensors [9]; (2) spatio-temporal finite im-
pulse response (FIR) deep nets [41], as a novel alternative to the current use of convolutional
nets plus Long Short-Term Memory (LSTM) units; and (3) structured deep kernel regression
without the need of pre-images extending [42].

o WP1.2 Multivariate outputs. Bio-geo-physical parameter estimation are fundamentally multi-
output regression problems in which the output covariates are typically correlated and show
dependencies. For example, plant density parameters like LAl and fCover are correlated,
but very often they are predicted using different regression models that lead to inconsisten-
cies. Another paradigmatic case is the extremely high output correlation in atmospheric state
vectors: typical sampling of the atmospheric column yields between 100 and 200 outputs
that can be compressed into 6 to 10 principal components. Developing individual models
or linear compression of the output space do not constrain predictions to sensible (and bio-
physically consistent) levels, nor account for nonlinear correlations. Actually, constraining
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the predictions to sensible and consistent levels might have relevant implications in posterior
climate prediction models [43]. In machine learning, the field is known as structured-output
learning, and is tightly related to multitask learning, in which we have developed novel im-
plementations for data classification [39, 44]. Extension to the regression setting is far from
being a trivial task, as the number of constraints increases cubically with the number of sam-
ples and outputs. In this sub-task, we will (1) extend Gaussian process regression networks
(GPRN) [45] in order to account for explicit physically-inspired output constraints; and (2)
propose orthonormalized kernel feature extraction methods [46] as efficient alternatives to
both GPRN and PCA projections of the output space. The algorithms will be exploited in
WP4 to generate global scale products of carbon, energy and/or heat fluxes simultaneously,
to estimate atmospheric profiles, and for the inversion of physical models.

e WP1.3 Uncertainty estimation and propagation.* An important cornerstone in geoscience
model analysis is related to the analysis of uncertainty of the estimates [47, 48]. Two different
approaches will be followed here: On the one hand, we will take advantage of developments
in previous tasks to derive tighter predictive variances for GPs than we did before [15, 49]. In
these works, the associated uncertainty provided information about the success of transport-
ing a locally-trained model to other sites and conditions [50]. However, the trustworthiness of
GP posteriors has been questioned [51] given that GP covariances leverage global models
not necessarily capturing the data manifold local structure. We will approach this important
problem in two ways: (1) by exploring our coarse-to-fine unsupervised covariances [52] in
the context of GPs; and (2) exploring combination of experts via standard averaging [53] or
by sophisticated geometric distance weighting to approximate the prior far from the sampled
space [54]. In both cases, we will adapt algorithms to emulators of vegetation and atmo-
sphere (see WP4.1 and WP4.2). On the other hand, a direct measure of the uncertainty
in the prediction is the Jacobian of the transformation, which characterizes the variation of
the prediction given the input data. A high determinant of the Jacobian means that a small
change in the input will affect the prediction drastically. We have explored these issues to
derive average feature rankings and sensitivity maps in GPs (see more in WP3.2). We will
extend the analysis to deep architectures that incorporate unsupervised sparse dictionary
learning [40, 55], multi-task [56] and time-dependent [41] regularizers in the context of car-
bon and heat fluxes upscaling [26] (see WP4.3). Results obtained in this task can be very
useful to meet GCOS recommendations on EO products [23], that have clear implications on
vegetation, ecosystem, and crop yield models, and to constrain subsequent climate models
that need tight uncertainty estimates [43].

¢ WP1.4 Including physical knowledge via emulation of physical radiative transfer mod-
els. Traditional approaches to remote sensing data problems from machine learning are
too naive: out-of-the-shelf algorithms are fed with data and do inferences in the form of
predictions and ideally error bars. In our proposed approach, we aim to include physically-
meaningful constraints and prior knowledge about the time and spatial scales of feature
relations. The approach will deliver a framework in which models will leverage physically-
consistent inferences. To do this, we will rely on building machine learning models that emu-
late their physical models counterparts. These ML models are known in the RS field as emu-
lators. Emulators are essentially function approximation algorithms trained to mimic physical
models (commonly referred in the literature as radiative transfer models, RTMs). Emula-
tors are currently capturing much attention because they act as extremely fast surrogates of
expensive (in computational terms) RTMs: rather than using memory and CPU expensive
physical models or ad hoc look-up tables (LUTs), a flexible ML method can replace RTMs
efficiently. But, more importantly than just the computational convenience, we advocate that
emulators provide us with readily useful non-parametric models that incorporate physical
knowledge. We will develop a full toolbox of emulators for common RTMs: (1) for vegetation
applications, such as the case of the widely used coupled soil-leaf-canopy model over the
solar reflective domain, PROSAIL [57]; and (2) for atmospheric applications we will invert the

“Workpackages marked in gray as this one were proposed in the original document but discarded later after the
concesion of the project. Most likely we won’t have enough human resources to complete them under this project,
but we are still interested and we will try to carry out them.
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standard Optimal Spectral Sampling (OSS) [58], which is a well-suited method for both RS
applications and assimilation of satellite observations in numerical weather prediction mod-
els. In both cases, efficiency and accuracy in the calculation of radiances and Jacobians
will be studied. We will consider standard multi-output regression models and the proposed
advances, and will resort to closed-form kernel-based solutions for the Jacobians [17].

Work Package 2 (WP2). Efficient implementations.

Earth observation data come in huge quantities, and multimodalities of diverse spatial, spec-
tral and temporal resolutions. The algorithms in GEOLEARN will deal with large quantities of
samples that must be processed in operational times. We will tackle this particular ‘big data’
problem from three complementary directions: (1) redesign the algorithms to make them capa-
ble to handle big EO data, (2) using new hardware resources, like multicore CPUs and GPUs,
for implementing the algorithms to process big data in operational times, and (3) following
divide-and-conquer strategies adapted to the particularities of remote sensing data.

e WP2.1 Engineering kernel and deep architectures for EO big data. Despite the good
accuracies obtained by kernel methods in EO data processing [38], they have high com-
putational cost in terms of time and memory requirements. The naive implementation of
kernel methods, such as GP regression, requires the inversion of a kernel matrix, which has
complexity O(n®) in computation and O(n?) in storage, where n denotes the number of sam-
ples to build the model. This makes their use unfeasible when dealing with a relatively high
number of samples (e.g., n > 10,000). Most strategies deal with this issue by using approx-
imate kernel functions instead of the exact ones, and are typically based on the Incomplete
Cholesky Factorization (ICF) or the Nystrdom method [59]. Specifically to kernel methods,
most approaches are based on approximating the kernel function using a series of inducing
variables [60], which allows to express the original n input variables as a weighted combina-
tion of m inducing variables, where m <« n, reducing notably the computational and storage
costs. Other methods to reduce the kernel matrix rank are based on approximating the
kernel function using m random basis functions [61]. Extending the same idea, Fastfood ker-
nels [62] replace the kernel function using a combination of random and Walsh-Haddamard
matrices, which reduces the computational cost further to O(nlog d). Although all these ap-
proaches work well for any dataset in general, in this project we will exploit the statistical
spatial-spectral spectrum of remote sensing data [9]. In particular, we will optimize the set of
inducing variables and random features for the particular characteristics of remote sensing
data (see WP4). For instance, emulation of RTMs spectra (WP4.1, WP4.2) requires paying
more attention to critical (absorption) spectral regions, where model should be more accurate
and yield lower predictive variances. We will allocate more inducing variables in those critical
regions following physical [17], optimal coding [63], and interpolation [64] approaches. Equiv-
alently, atmospheric profiles (WP4.2) change smoothly, suggesting that using more Fourier
basis functions in low frequencies would describe better the data.

e WP2.2 Adapting the algorithms for multicore CPUs and GPUs. One of the reasons Deep
Neural Networks (DNN) have become so popular in the last years is because of the increase
in computational power available nowadays. In particular, the use of multi-core processors
and co-processors, together with Graphic Processing Units (GPUs), has reduced the training
process to a reasonable amount of time. The aim of this project is to adapt our current and
proposed algorithms to make full profit of this multi-core hardware architectures. To this end,
we will use of the facto standard libraries, such as NVIDIA’s CUDA®, as well as ready-to-use
high-level implementations present in Pyhton, such as Theano® or MATLAB(tm)”.

e WP2.3 Divide-and-conquer strategies for remote sensing data. Divide-and-conquer strate-
gies can be defined either at an algorithm level (related to the approximation techniques de-
scribed above), or at a data/high level. We will consider the second strategy in GEOLEARN.
In particular, a direct approach consists in dividing the input dataset in parts and analyze
(i.e., develop a model for) each part locally. Despite of being a straightforward methodology,

Shttps://developer.nvidia.com/cuda-zone
®http://deeplearning.net/software/theano/
"http://es.mathworks.com/products/parallel-computing/
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it readily has important advantages, and actually is used for instance in local GPs [65] with
good results. Among the main advantages of this approach, we should mention (i) local mod-
els are small in size, thus faster to train and use in prediction; (ii) local models are accurate
in their defined regions, usually better than global models that try to cover all regions; (iii)
it is straightforward to obtain a parallelized implementation; and (iv) local models are often
simpler and easier to interpret. On the other hand, they have some issues like presenting
discontinuities in the boundaries of defined regions, and show low accuracies far from the
regions where they have been trained in. In this project, we will design optimal ways to par-
tition remote sensing data to distribute its analysis among several machine learning models.
For instance, spatial and time structures in EO data are of crucial importance, and a proper
definition of local data batches may make a huge difference.

We want to stress the fact that the three approaches are not exclusive, but rather complemen-
tary, and they can and will be used in this project together to further improve processing times
and the ability to process more quantities of data.

Work Package 3 (WP3). Extracting information from models.

e WP3.1 Feature ranking and global sensitivity analysis. Sensitivity analysis evaluates the
relative importance of each input variable and can be used to identify the most influential
in determining the variability of model outputs. In local sensitivity analysis, also known as
‘One-factor-at-a-time’ (OAT), one changes one input variable at a time whilst holding all other
at their central values. OAT methods do not cover the whole input variable space, so they
are inadequate for analyzing complex models, which may have many variables and may be
high-dimensional and/or non-linear. On the contrary, global sensitivity analysis explores the
full input variable space. The contribution of each input variable to the variation in outputs is
averaged over the variation of all input variables, i.e. all input variables are changed together.
Global sensitivity analysis (GSA) techniques, which quantify the relative importance of each
input variable to model outputs, can help setting safe default values for those less influential
input variables. GSA can greatly simplify model calibration through enabling the most influ-
ential variables to be targeted for data acquisition and refinement. Essentially, GSA: (i) is a
useful tool to gain insight into radiative transfer fluxes and model performances; (ii) enables
to configure simplified models for retrieval of specific outputs (e.g. sun-induced fluorescence
signal); and (iii) constitute a useful tool to identify RTM key and non-influential variables. De-
pending on the RTM, not only insight in driving variables along spectral domain, but also of
fluxes. In this task, we will (1) develop GSA techniques for the predictive mean and variance
in GPs for several covariance functions, and study explicit closed-form solutions for the sen-
sitivity of the predictive mean and variance in the GP framework [26]; (2) introduce kernel
versions of standard methods for GSA mainly based on estimating Euclidean distances in
input spaces [66, 67]; and (3) analyze the sensitivity scores for physical RTM emulators and
its optimization [17].

e WP3.2 Inspecting deep features. One of the key points in the next years regarding DNNs
will be to interpret the model in order to extract information about the studied problem. We
will extract information from the learned model by analyzing the learned transformation at
each layer. This transformation will tell us how the different input variables are combined and
therefore we will obtain information on which input variables should be related and what is
the amount of relation between them. This is straightforward in the first layer. For the next
layers, we will employ a similar strategy than the uncertainty propagation analysis employed
in WP1, i.e. study how variations (i.e., the Jacobian) affect the outputs and the inputs. This
will give us numerical values of the relative importance of the information transmitted by the
deep filters.

e WP3.3 Causality. Establishing causal relations between random variables from empirical
data is perhaps the most important challenge in today’s Science. In this task, we will explore
several pathways to establish causal relations in important geoscience problems. We will
work on inferring cause-effect links between random variables from empirical data, given
that an interventional framework is obviously not possible in climate science. We will work in
non-deterministic, empirical data-driven approaches:
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1. Regression. We will follow the framework in [68], which exploits nonlinear, non-parametric
regression to assess the plausibility of the causal link between two random variables in
both forward (predicting y from x) and barckward (x from y) directions: statistically signifi-
cant residuals in just one direction indicate the true data-generating mechanism. We have
recently shown that heteroscedastic and warped GPs can better identify such causal re-
lations, as they ‘discount’ the signal-dependent noise effects [17, 69]. We will deploy
the algorithms developed in previous tasks to extend the framework to multi-dimensional
problems (with possibly dependent —but also confounder— co-variates). Accounting for the
estimated (eventually tighter) predictive variances might improve identifiability and trust-
worthiness (application in WP4.2).

2. Time series. Canonical causal inference in Hume terms reduces to identify the arrow of
time in a set of exogenous time series. Many methods have been proposed for this, be-
ing the Granger causal analysis the most well-known approach. The approach typically
exploits (linear) auto-regressive models, such as VAR or ARMA. Linearity and Gaussian-
ity are however strong assumptions. In this subtask, we will rely on our kernel-based
framework for signal processing [70], and in particular on kernel ARMA modeling in ei-
ther implicit [71] or explicit reproducing kernel Hilbert spaces [21], to account for richer
dynamic structures to identify the direction of the time series (application in WP4.3).

3. Asymmetries. Causal inference can be cast as a problem about finding asymmetries in
the density function of the effect given the uniform density of the cause variable. Ac-
tually, establishing such asymmetries extends to the important issue of independence
between the cause and the mechanics that generated the data. Both problems boil down
to the challenging (and still unsolved) problem of estimating (eventually conditional) mul-
tidimensional densities from a finite number of observations. In this subtask, we plan to
approach this with (conditional) density estimation using our multivariate Gaussianization
method [72], which allows invertible transformations and explicit calculation of the Jaco-
bian, that may lead to improved identifiability. Applications in WP4.2 and WP4.3 will show
the validity of the approach.

Work Package 4 (WP4). Applications for remote sensing and geosciences.

The last technical WP is devoted to the adaptation and application of the previous algorithms in
three particularly challenging research domains in Climate Science, in which we have solid ex-
pertise: vegetation monitoring in the context of the upcoming Sentinels missions® [15, 24, 50],
atmospheric variable prediction (temperature and moisture atmospheric profiles and emissiv-
ities) in the context of the upcoming MTG-IRS sensor® [25, 73], and the upscaling of carbon
and heat fluxes from eddy covariance measures and remote sensing data in the context of
the FLUXNET activities'® [26, 74]. We are deeply involved in all these applications through
specific projects (ESA, EUMETSAT, consortia), but neither the proposed approaches nor the
GEOLEARN goals are addressed therein. In fact, these previous works allowed us identifying
urgent needs and plausible improvements on the machine learning techniques adapted to the
particularities of EO data. In all three application domains, the key steps of data collection are
ensured by our external collaborators and our own databases. We show in Table 1 the methods
used in each one of the meta-application domains. In what follows we specify the subtasks of
WP4,

Table 1: Methods and developments that will be used in each metacase study.

WP1 WP2 WP3
Structure |Multioutput|Uncertainty | Emulate | Efficient| Rank | Deep|Causal
WP4.1. Vegetation X Vv Vv Vv Vv Vv X Vv
WP4.2. Atmosphere Vv Vv Vv Vv Vv VAR RV Vv
WP4.3. Carbon/heat vV Vv V X v/ Vv X vV

8https://sentinel.esa.int
%http://esamultimedia.esa.int/docs/MinisterialCouncil/MC-MTG_1811.pdf
Ohttp://fluxnet.ornl.gov/
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e WP4.1. Sentinel 2/3 data processing through RTM emulation. Plant and atmospheric
RTMs are currently used in End-to-End simulators that function as a virtual laboratory in the
development of new optical sensors, for instance in preparation of the upcoming Sentinels
missions. Over the last three decades, a large number of RTMs have been developed with
different degrees of complexity, and gradual improvements and increase in complexity have
diversified RTMs from simple turbid medium RTMs towards advanced Monte Carlo RTMs
that allow for explicit of 3-D representations of complex atmospheric models or canopy archi-
tectures. This evolution resulted in an increase in the computational requirements to run the
model, and therefore in our ability to invert the model [17, 75]. In this context, we will develop
accurate and efficient RTM emulators with machine learning algorithms in preparation of the
Sentinel 2/3 data. This calls for the generation of consistent and diverse databases from
accurate (but expensive) RTMs. We will focus on the inversion of the PROSAIL RTM, which
is the combination of the PROSPECT leaf optical properties model and the SAIL canopy
bidirectional reflectance model. Essentially, PROSAIL links the spectral variation of canopy
reflectance, which is mainly related to leaf biochemical contents, with its directional varia-
tion, which is primarily related to canopy architecture and soil/vegetation contrast. This link
is key to simultaneous estimation of canopy biophysical/structural variables for applications
in agriculture, plant physiology, and ecology at different scales. PROSAIL has become one
of the most popular radiative transfer tools due to its ease of use, robustness, and consis-
tent validation by lab/field/space experiments over the years. In our previous work [18] we
already used PROSAIL to generate 1,000,000 pairs of Sentinel-2 spectral (13 channels) and
7 associated parameters. We used random kitchen sinks [61] to do the inversion with dif-
ferent basic structures, but the algorithm suffered in this challenging multi-output regression
problem, given the diversity in outputs uncertainty and uneven observation dependencies.
We here plan (1) to generate richer RTM data pairs through the use of ancillary phenological
models of crop evolution; (2) to exploit the advances in WP1 on structured models and sensi-
ble uncertainty estimation; and (3) to improve computational efficiency of algorithms following
smart physically-inspired inducing features allocation (see WP2.1).

o WP4.2. Estimation of atmospheric profiles with super-spectral infrared sounders. We
will focus on some of the most important state vectors in climate science: temperature and
water vapor are critical atmospheric parameters for weather forecast and atmospheric chem-
istry studies [76]. Observations from space-borne high spectral resolution infrared sound-
ing instruments can be used to calculate the profiles of such atmospheric parameters with
unprecedented accuracy and vertical resolution [77]. EUMETSAT will provide remote sens-
ing and meteorological data for statistical retrieval of temperature and humidity from super-
spectral infrared sounders, in which we have large experience. We will use data coming from
the Infrared Atmospheric Sounding Interferometer (IASI) that provides radiances in 8461
spectral channels [78]. Its spatial resolution is 25 km at nadir with an Instantaneous Field of
View (IFOV) size of 12 km at an altitude of 819 km. The data used in this task will be both
real data (IASI and resampled to MTG-IRS resolutions, plus ECMWF re-assimilation profiles)
and simulated data, using appropriate RTMs, such as OSS [58]. The huge datasets typically
require computationally efficient processing techniques. The sub-tasks here will involve ex-
tensive dedication to data collection and harmonization. Then, two main applied objectives
will be tackled here: (1) to deliver more accurate predictions of relevant atmospheric state
vectors with advanced statistical models; and (2) to develop efficient emulators for the stan-
dard OSS RTM. To accomplish these goals, we will rely on algorithms in WP1 and their
efficient implementations described in WP2.

e WP4.3. Estimation of global time-resolved carbon and heat fluxes. Estimations on the
biosphere-atmosphere fluxes at continental and global scales are currently essential for a
rapid development of policy responses on climate change. In the last decade, global spatial-
temporal fields of FLUXNET derived carbon and energy fluxes are increasingly used for
analyzing variations of the global carbon and energy cycles, and to evaluate global land sur-
face models. Model/process-based and data-driven algorithms are the two main approaches
to upscale data acquired from flux towers [10, 11]. In the last few years, nevertheless, data-
driven statistical learning algorithms have attained outstanding results in the estimation of cli-
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mate variables and related bio-geo-physical parameters at local and global scales [9]. These
algorithms avoid complicated assumptions and provide flexible nonparametric models that
fit the observations using massive heterogeneous data. In a recent work [26] we estimated
global flux products derived from upscaling FLUXNET eddy covariance observations using
GP models, and also assessed the relative relevance of the remote sensing and meteoro-
logical variables. For this we used the global long time series of MODIS satellite data and
La Thuile FLUXNET synthesis data set, which is composed of half-hourly FLUXNET eddy
covariance measurements processed using standardized procedures of gap-filling and qual-
ity control [79, 80]. The fluxes were subsequently aggregated into 8-daily means to conform
to the temporal resolution of MODIS products. This is actually an important limitation when
trying to understand the processes and inter-relations, as the seasonal variability may be con-
sidered as a strong co-founder. In this project we plan to extend this database to situations of
increased sampling, thus going for hourly upscaling datasets. Additionally, analysis of rele-
vant variables and causality will also be explored using the methodologies proposed on WP3.
Dealing with such huge amount of data, uneven resolutions and scales, and noise sources,
constitutes an extremely challenging problem for current prediction algorithms and causal in-
ference approaches. Of course, this is the most risky task in the GEOLEARN project, but at
the same time an ideal testbed for our methodological proposals, and if successful, it would
make a definite leap towards understanding essential climate variables through automatic

reasoning.

Work Package 5 (WP5). Project management and technology transfer.

The GEOLEARN project will involve some managerial as well as technological transfer tasks.
The general managerial activities of GEOLEARN will involve: (1) coordination of members
and manage all activities in the group, as data collection and algorithm design are mutu-
ally dependent; (2) control the overall project schedule as some tasks are also timely; and
(3) ensure timeliness of all deliverables (e.g. software packages should be available for fur-
ther applications) and planned reports. For dissemination, we will design and implement a
website/wiki for the GEOLEARN project, as we did before in previous projects, e.g. see
http://isp.uv.es/projects.htm. Frequent follow-up meetings in the group will be minuted
in a three-monthly basis. In summary, the WP5 will imply three main activities:

e WP5.1 Reports and documentation. We will generate a bi-annual progress report that puts
together the scientific/technical achievements, and summarizes ongoing activities, identified
risks and contingency plans/ideas, as well as the dissemination plan. We typically publish
pre-print versions of relevant papers in ArXiv (areas: stat.ML, cs.CV, physics.geo-ph), and
we plan to continue with this philosophy in green open access.

e WP5.2 Open software, toolboxes, and harmonized databases. We will release a number
of open source software packages and standardized databases for the sake of reproducibility
of the attained results in http://isp.uv.es/soft.htm. Code will be also eventually released
at https://github.com/ and http://mloss.org/.

e WP5.3 Special sessions and a workshop. We plan to organize special sessions in flag-
ship conferences both on remote sensing (e.g. IEEE IGARSS, AGU) and machine learning
(NIPS or ICML). In addition, a dedicated small workshop will disseminate the main achieve-
ments of the project, trying to get together key scientists in the fields (remote sensing and
machine learning), users (cartographic institutes, members of international organizations),
and interested stakeholders.
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