
Abou‑Abbas et al. 
Journal of Orthopaedic Surgery and Research          (2024) 19:479  
https://doi.org/10.1186/s13018‑024‑04990‑8

RESEARCH ARTICLE

Unveiling distinct kinematic profiles 
among total knee arthroplasty candidates 
through clustering technique
Lina Abou‑Abbas1,2*, Nicola Hagemeister3,4, Youssef Ouakrim1,3, Alix Cagnin5, Philippe Laundry5, 
Glen Richardson6, Michael J. Dunbar6 and Neila Mezghani1,3 

Abstract 

Background: Characterizing the condition of patients suffering from knee osteoarthritis is complex due to multiple 
associations between clinical, functional, and structural parameters. While significant variability exists within this 
population, especially in candidates for total knee arthroplasty, there is increasing interest in knee kinematics 
among orthopedic surgeons aiming for more personalized approaches to achieve better outcomes and satisfaction. 
The primary objective of this study was to identify distinct kinematic phenotypes in total knee arthroplasty candidates 
and to compare different methods for the identification of these phenotypes.

Methods: Three‑dimensional kinematic data obtained from a Knee Kinesiography exam during treadmill walking 
in the clinic were used. Various aspects of the clustering process were evaluated and compared to achieve optimal 
clustering, including data preparation, transformation, and representation methods.

Results: A K‑Means clustering algorithm, performed using Euclidean distance, combined with principal component 
analysis applied on data transformed by standardization, was the optimal approach. Two unique kinematic pheno‑
types were identified among 80 total knee arthroplasty candidates. The two distinct phenotypes divided patients who 
significantly differed both in terms of knee kinematic representation and clinical outcomes, including a notable vari‑
ation in 63.3% of frontal plane features and 81.8% of transverse plane features across 77.33% of the gait cycle, as well 
as differences in the Pain Catastrophizing Scale, highlighting the impact of these kinematic variations on patient pain 
and function.

Conclusion: Results from this study provide valuable insights for clinicians to develop personalized treatment 
approaches based on patients’ phenotype affiliation, ultimately helping to improve total knee arthroplasty outcomes.
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Introduction
Knee osteoarthritis (KOA) is a leading cause of disabil-
ity among older adults, and is characterized by changes 
in joint structure, joint pain, mechanical joint dysfunc-
tion, and muscle weakness. It is a degenerative condition 
that can significantly affect the way people move, espe-
cially during weight-bearing activities such as walking 
[1]. Assessing the condition of patients suffering from 
this multifactorial disease is complex because of multiple 
associations between clinical, functional, and structural 
characteristics [2]. Knee kinematics have been largely 
studied in this population as KOA patients exhibit dis-
tinct kinematic patterns during gait compared to healthy 
individuals [3–8]. Furthermore, kinematic characteris-
tics are associated with disease progression and patient 
clinical outcomes throughout the knee OA continuum of 
care [9, 10]. This is notably the case in total knee arthro-
plasty (TKA) candidates, as knee kinematics and patient 
outcomes presurgery may contribute to outcomes post-
TKA. The interest in knee kinematics is increasing in 
the context of TKA where orthopedic surgeons aim 
towards more personalized approaches to achieve bet-
ter outcomes, as up to 20% of patients remain unsatis-
fied post-TKA [11]. While multiple surgical techniques 
have emerged these past years, opposing mechanical 
alignment and approaches aiming at restoring native 
kinematic alignment, there has been little consensus 
on the optimal strategy (i.e., technique, implant, etc.) to 
adopt based on patient characteristics [12, 13]. This can 
partially be explained by the fact that although TKA 
candidates often present similarities in terms of disease 
severity and functional impairments, significant variabil-
ity exists within this population.

The identification of phenotypes in KOA patients has 
gained interest in recent years as care continues to move 

toward personalization. This approach is based on the 
well-recognized heterogeneity of KOA patients and the 
use of clustering algorithms to partition a dataset into 
multiple clusters (i.e., or phenotypes) such that the simi-
larity within each phenotype is greater than the simi-
larity between phenotypes. In recent years, clustering 
techniques have been applied in various fields, including 
medicine, biology, and social sciences. The application 
of phenotype research in TKA candidates may provide 
valuable insights for orthopedic surgeons and help them 
base their choice of intervention on the patient’s pheno-
type affiliation. Furthermore, Spil et  al. recently defined 
a framework dedicated to KOA phenotype research to 
standardize reports on such studies [14, 15]. The pur-
pose of this study was to identify distinct phenotypes in 
TKA candidates based on knee kinematics following the 
framework of Spil et al. Furthermore, this study aimed to 
investigate the associations between the identified phe-
notypes and patient clinical characteristics.

Materials and methods
The block diagram presented in Fig. 1 illustrates the dif-
ferent steps in the methodology used in this study to 
identify distinct clusters (i.e., phenotypes) from the kin-
ematic data. This sequential methodology is designed to 
ensure a comprehensive and systematic approach. The 
first step is data collection, including the capture of kine-
matic, demographic and clinical data. These data are then 
modified through a preparation process including scaling 
and dimensionality reduction to reduce their complex-
ity, making it easier to analyze and interpret them. The 
next step is the determination of clustering techniques 
aiming to identify kinematic clusters using K-means. 
This unsupervised machine-learning algorithm based on 
centroids has been largely used for analyzing kinematic 

Fig. 1 Methodology for comprehensive kinematic data analysis: A stepwise approach involving Data Preparation, Clustering using K‑Means 
with varying distance measures (Euclidean Distance or Dynamic Time Warping), and Validation using Inter‑Cluster Classification (ICC), Statistical 
Parametric Mapping (SPM), in addition to traditional statistical tests
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trajectories through clustering [16]. The clustering pro-
cess involves varying distance measures and clustering 
parameters, such as the number of clusters. Finally, the 
resulting clusters are validated for accuracy. This valida-
tion process involves using intercluster correlation and 
statistical hypothesis testing. The clusters, or phenotypes 
at this point, are evaluated based on their clinical fea-
tures, demographic data and clinical information, and the 
results are compared to determine the accuracy of the 
clustering process.

Database
The database includes demographic details (See Table 1), 
three-dimensional (3D) knee kinematic data, kine-
matic features, and clinical data from 80 candidates for 
total knee arthroplasty (TKA) with knee osteoarthritis 
(KOA) confirmed by X-ray imaging and by an experi-
enced orthopaedic surgeon after a physical exam. This 
dataset was taken from a previous study (ethics approval 
obtained by the Nova Scotia Health Authority Research 
Board, reference number: NSHA ROMEO 1016253), 
which consisted of 178 patients with moderate to severe 
KOA patient referred by their general practitioner for a 
surgical consult. Only patients that were deemed surgi-
cal candidate for a total knee arthroplasty by the ortho-
paedic surgeons were kept for the current analysis. 
Inclusion criteria were as follows: patients with primary 
KOA confirmed through X-ray imaging and by an expe-
rienced orthopedic surgeon after a physical examination. 
Exclusion criteria included patients unable to walk on a 
treadmill due to neurological or balance disorders due to 
neurological or imbalance disorder. The cohort of TKA 
candidates consisted of 51 women and 29 men, provid-
ing a diverse representation of both sexes within the 
database.

Kinematic data were captured using a Knee Kinesiogra-
phy exam with the KneeKGTM system (Emovi Inc., Can-
ada) while the patient walked on a commercial treadmill. 
This advanced technology is designed to provide accurate 
3D measurements of dynamic knee alignment, offering 

objective data for individuals with movement impair-
ments related to orthopedic conditions. The KneeKGTM 
system has received regulatory approvals, including FDA 
510(k) clearance, Health Canada licensing, and CE mark-
ing, underscoring its reliability and compliance with 
medical device standards. Unlike traditional static imag-
ing methods such as X-rays or MRI, the Knee Kinesiog-
raphy exam provides insights into joint function during 
active movement. This dynamic assessment capability 
makes the KneeKGTM system a valuable tool for evalu-
ating and managing orthopedic issues with quantifiable 
data [17]. The 3D kinematic data combined the knee 
movement in the sagittal, frontal, and transverse planes 
to form single-vector data of 300 raw points for each 
participant, with each plane containing 100 points (i.e., 
kinematic curves). In addition to these measures, 69 kin-
ematic features extracted from 3D kinematic curves were 
also included in the database. These features were identi-
fied based on an exhaustive review of the literature and 
variables commonly assessed in clinical biomechanical 
studies in KOA populations: 30 features from the fron-
tal plane (i.e., adduction/abduction or varus/valgus), 17 
features from the sagittal plane (i.e., flexion/extension), 
and 22 features from the transverse plane (i.e., internal/
external rotation). The features extracted included maxi-
mums, minima, angles at specific instants of gait, and 
ranges of motion (ROMs) throughout different phases 
of the gait cycle (e.g., loading, stance, swing, etc.). These 
features, which have been extensively studied in clinical 
biomechanics research are known to provide important 
insights into the kinematic behavior of KOA patients [2, 
7].

Clinical features comprise subjective and objective 
data collected through patient self-administered ques-
tionnaires and supervised functional tests. The Oxford 
Knee Score (OKS) was used to assess pain and function 
in activities of daily living (ADL) through a 12-item ques-
tionnaire [18]. Based on its original publication, each 
question is scored from 1 to 5, so an overall OKS can be 
calculated, ranging from 12 (best outcome) to 60 (worst 
outcome). To better understand how patients experience 
their pain, the Pain Catastrophyizing Scale (PCS) was 
used to assess the tendency to magnify, ruminate, and 
feel helpless about pain [19]. These three aspects can be 
evaluated as subscores (3 features), and an overall PCS 
score can be calculated (the higher the score is, the more 
catastrophizing the patient’s pain experience is). Finally, 
patients were invited to perform the Timed-Up-And-Go 
test (TUG-test) to objectively assess their function. The 
TUG test starts with the patient sitting in a chair, who 
then raises, walks 3 ms at a comfortable pace, turns, and 
walks back to the chair to sit back down. The score is the 
time (in seconds) it takes to perform this sequence (the 

Table 1 Demographic data

Variable Mean (M) Standard 
deviation 
(SD)

Age (years) 64.79 9.34

BMI ( Kg/m2) 33.13 7.06

Weight (Kg) 92.87 23.70

Height (m) 1.67 0.10

Pain Catastrophizing Score 17.53 13.55

Sex (Males/Females) 29/51 ‑
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greater the time is, the worse is the function). Taken 
together, these 6 clinical features can provide a complete 
picture of different aspects of important outcomes in 
KOA patients, namely, pain (impact on ADL, magnifica-
tion, and catastrophizing) and function (impact on ADL 
and subjective assessment).

Data preparation
Data transformation methods
Amplitudes in kinematic data largely vary across the 
three different planes of movement (e.g., from 0 to 
60− 70

◦ in the sagittal plane vs. from −5 to +10◦ on aver-
age for the two other planes), resulting in heterogeneous 
data existing at different scales. To address this issue, data 
transformation was used to rescale the data and remove 
any biases due to differences in the measurement scales. 
By doing so, data become more comparable and easier 
to analyze, thus facilitating a more accurate interpreta-
tion of the knee movement patterns. Two distinct data 
transformation methods were tested: standardization and 
normalization. The normalization (also known as min-
max scaler) method involves scaling the data to a fixed 
range of values, usually between 0 and 1, by subtract-
ing the minimum value and dividing it by the range. On 
the other hand, standardization (also known as standard 
scaler or z-normalization) centers the data around its 
mean and scales it by its standard deviation, resulting in 
an unit variance. While normalization is advantageous 
for preserving the original range of the data, standardi-
zation is better suited for data with a Gaussian distribu-
tion and can handle outliers more effectively. These two 
methods were compared to identify the most appropriate 
technique for scaling the data used in this study.

Kinematic representation methods
Two distinct methods for representing kinematic data 
were then evaluated: a global representation method 
and a local representation method. The global approach 
involves utilizing a vector consisting of 300 kinematic 
data points. The local approach involved using the set of 
69 kinematic features extracted from the 3D kinematic 
curves. Once again, the two approaches were compared 
to identify the most appropriate to identify clusters with 
maximal differences for this database.

Principal component analysis
Once this step was achieved, a dimensionality reduction 
phase was integrated, aiming to reduce the complexity 
of the process data by extracting essential features repre-
senting the variability of the data. We applied the princi-
pal component analysis (PCA) technique and evaluated 
its ability to capture the most important features discrim-
inating the different kinematic clusters. PCA is a popular 

technique for transforming the original data into a new 
set of orthogonal variables called principal components 
[20]. These components capture the most significant 
sources of variability in the data and are ranked accord-
ing to their contribution to the overall variance. PCA 
is widely used in pattern recognition and data mining 
because it simplifies complex datasets while retaining the 
essential information [21, 22].

Clustering
K‑means
As already described, clustering is used to identify dis-
tinct clusters by segregating data (i.e., 3D kinematic 
data here) into consistent groups, with the intention of 
extracting the knee kinematic phenotypes by averaging 
the kinematic curves within each group. This enables 
the formation of more homogeneous groups with mean 
patterns that are representative of each phenotype. The 
clustering algorithm used in this study is K-means, which 
is commonly used in unsupervised learning to partition 
data into K clusters, minimizing the sum of the squared 
distances between the data points and their assigned 
cluster centroid [23]. The process begins by selecting K 
centroids at random, then iteratively assigning each data 
point to its closest centroid and adjusting the centroid 
position accordingly. The algorithm terminates when the 
centroids no longer change, or the maximum number of 
iterations is reached.

Distance between data points
Two different methods were tested to set the optimal 
distance between the data points and each cluster to 
which they were assigned: the Euclidian distance and 
dynamic time warping (DTW). The Euclidean distance 
is a measure of the straight-line distance between two 
data points in an Euclidean space. It is calculated as 
the square root of the sum of the squared differences 
between the corresponding features or variables of two 
points. This distance metric assumes that the dimen-
sions are independent and equally weighted, which 
makes it a useful option for clustering when the data 
are continuous and uniformly scaled. However, it may 
not be the best choice for datasets with high dimen-
sionality or when the variables are not independent 
or equally weighted. DTW is a distance metric that is 
often used in time series analysis, including kinematic 
or motion capture data. DTW measures the similar-
ity between two sequences of data points, even when 
they have different lengths and warping (i.e., when one 
sequence is distorted or shifted with respect to the 
other). It finds the optimal alignment of sequences by 
stretching or compressing them in time to minimize 
the distance between the corresponding points [24]. 
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DTW can be useful for clustering time-series data with 
irregular shapes and is often used in applications such 
as speech recognition, gesture recognition, and motion 
analysis [25].

Validation
To assess the quality of the clusters produced by the 
clustering algorithms, we used both internal and 
external cluster evaluation methods. For the internal 
evaluation, we calculated the intraclass correlation 
coefficient (ICC) to measure the similarity among the 
observations within each cluster. The ICC is a com-
monly used measure to evaluate the reliability or con-
sistency of measurements within a single cluster and 
can provide insight into the internal validity of the 
clusters produced by the algorithm. Additionally, we 
employed Statistical Parametric Mapping (SPM) by 
[26]) to evaluate the statistical significance of the dif-
ferences between the clusters in terms of the features 
or variables used for clustering. This approach involves 
analyzing 1-D continuous data without preconceived 
hypotheses, allowing the detection of any potential 
differences or patterns that may not have been previ-
ously considered by [26]. For the external evaluation, 
we used statistical significance tests such as Student’s 
t tests and ANOVAs to identify any significant dif-
ferences between clusters in terms of demographic, 
clinical, and kinematic data. A p-value <0.05 was con-
sidered to indicate statistical significance. These two 
evaluation methods were also applied to determine the 
best number of clusters.

Results
Data transformation methods
K-means clustering algorithm was subsequently first 
used on the database with applied standardization 
(also referred to as standard scaling) and subsequently 
with normalization using min-max scaling to compare 
both transformation methods. Figures  2 and 3 illustrate 
the kinematic phenotypes, which were determined by 
averaging the 3D kinematic curves within two distinct 
clusters with the standardization and normalization 
methods, respectively. Within each figure, the second 
line of the graphs shows the results of the 1D-SPM statis-
tical analysis, displaying the kinematic curve differences 
between clusters in each plane. The analysis revealed a 
significant difference throughout the entire gait cycle in 
the abduction/adduction plane when the standardiza-
tion method was used, while this difference was observed 
only for 17% of the gait cycle in the same plane with the 
normalization method. While the results on both other 
planes were similar and more limited in terms of signifi-
cance (i.e., difference for less than 30% of the gait cycle at 
maximum), the results in the abduction/adduction plane 
were used to choose the standardization method as the 
best one to scale the data.

Kinematic representation methods
SPM differences and ICCs were calculated for both 
the set of 69 kinematic features (i.e., local represen-
tation) and the 300 kinematic raw points (i.e., global 
representation) from the sagittal, frontal, and trans-
verse planes. According to the local representation 
Fig. 4, SPM analysis revealed a significant difference in 

Fig. 2 Identification of kinematic phenotypes through K‑means clustering and standardization‑based data rescaling, followed by 1D‑SPM statistical 
analysis
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abduction-adduction throughout the entire cycle, for 
27% of the gait cycles in the flexion/extension plane and 
for 88% in the external-internal rotation plane between 
the two distinct clusters. On average, SPM showed sig-
nificant differences between clusters using the local 
approach for 71.67% of the gait cycle when combining 
the three planes. For the global representation, an aver-
age significant difference between the two clusters was 
observed for 77.33% of the gait cycle (Fig. 5). The ICCs 
for both the local and global representations are pre-
sented in Table 2.

Fig. 3 Identification of kinematic phenotypes through K‑means clustering and normalization‑based data rescaling, followed by 1D‑SPM statistical 
analysis

Fig. 4 Kinematic phenotypes identified using K‑means and standardization, with 1D‑SPM statistical analysis using 69 features from 3D kinematic 
data (local representation)

Table 2 Intraclass correlation coefficients for the local and 
global representations of 3D knee kinematics

ICCs ICC Local ICC Global

Cluster 1 Cluster 2 Cluster 1 Cluster 2

Abduction/adduction 0.845 0.755 0.873 0.562

Flexion/extension 0.643 0.649 0.799 0.683

External/internal rotation 0.559 0.726 0.5 0.641
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Our findings revealed a statistically significant correla-
tion within the kinematic clusters with both approaches, 
with ICC values ranging from 0.643 to 0.845, indicating a 
moderate to strong relationship. This finding implies that 
patients within the same cluster exhibit patterns of knee 
joint movement during the walking task, similar to those 
of patients in other clusters. Therefore, the kinematic 
data used in this study are consistent and reliable, further 
supporting the relevance of identifying kinematic pheno-
types in TKA candidates. Considering the similar ICCs 
between both approaches, SPM differences were used to 

choose the global representation as a slightly more effec-
tive method to discriminate clusters and for subsequent 
analyses.

Distance between data points
Comparisons in terms of the Euclidean distance and 
dynamic time-warping approaches (DTW) are presented 
in Figs. 5 and 6 respectively.

Figure 5 shows that the Euclidean distance was signif-
icantly different throughout 90% of the gait cycle in the 
abduction/adduction plane, 100% of the gait cycle in 

Fig. 5 Kinematic phenotypes identified using K‑means and standardization, with 1D‑SPM statistical analysis using 300 data points (global 
representation) from 3D kinematic data using Euclidean distance

Fig. 6 Kinematic phenotypes identified using K‑means and standardization, with 1D‑SPM statistical analysis using 300 data points (global 
representation) from 3D kinematic data using Dynamic Time Warping
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the rotation plane and 42% of the gait cycle in the flex-
ion/extension plane. The DTW results in Fig. 6 show a 
significant difference throughout the entire gait cycle 
in the abduction/adduction plane, for 86% of the gait 
cycles during rotation, but no significant differences 
were observed in flexion/extension. The ICCs for both 
techniques ranged from 0.5 to 0.873, demonstrating 
once again a significant correlation between the vari-
ous knee kinematic curves within the clusters. Based 
on these results, the Euclidean distance method was 
deemed the most effective for this step of the method-
ology and was used for subsequent steps of the cluster-
ing process.

Optimal number of clusters
To further improve the analysis, signal decomposition 
with PCA was applied on the data. Through a series of 
experiments,different numbers of components from 3 
to 10 were tested, reaching an optimal outcome using 
8 components. With this set-up for the PCA algorithm 
and using the most effective transformation, represen-
tation, and data-points distance methods, ICCs and 
SPM differences were assessed to determine the opti-
mal number of clusters to achieve the best cluster-
ing process.Two and three clusters were subsequently 
identified.

The ICCs for the 2-cluster and 3-cluster approaches 
are detailed in Table  3, demonstrating a correlation 
between the various knee kinematic curves within the 
clusters, ranging from 0.36 to 0.874. The mean kine-
matic curves for the 2-cluster and 3-cluster approaches 
are displayed in Figs.  7 and 8 respectively. According 
to the SPM analysis, the two clusters largely differed 
throughout the entire gait cycle, with minimal differ-
ences occurring in the flexion/extension plane where 
they differed for 47% of the gait cycle. Considering the 
three clusters, the pairwise comparisons revealed more 
limited differences after Bonferroni correction. Indeed, 
for each pairwise comparison, the minimal differences 

corresponded to clusters differing for less than 40% of 
the gait cycle in at least one plane (i.e., 40% in flexion/
extension between clusters 1 and 2, 12% in adduction/
abduction between clusters 2 and 3, and 12% in flexion/
extension between clusters 1 and 3).

Finally, differences in demographic, kinematic, and 
clinical data were assessed using the 2-cluster and 3-clus-
ter approach, respectively. No significant differences were 
found between clusters in any approach for age, BMI, or 
sex (all p− values>0.05). The comparison of kinematic 
features revealed that, for the 2-cluster approach, 43 out 
of 69 features differed between clusters, mainly in the 
frontal (63.3% of the features from this plane) and trans-
verse planes (81.8%; t test p-values p ≤ 0.05 ). For the 
3-cluster approach, only 36 features differed between 
clusters. Regarding the clinical features, 3 out of the 6 fea-
tures differed between clusters for the 2-cluster approach, 
while no features differed between the three identified 
clusters. Although similar trends were observed for the 
other clinical features, differences in the OKS-Overall, 
PCS-Rumination, and PCS-Helplessness scores were not 
significant (all 0.07 < p < 0.29,see Table 4).

Discussion
The evaluation and comparison of ICCs, SPM, kinematic, 
and clinical differences between clusters suggested that 
the two-cluster approach was optimal, leading to the 
phenotypes displayed in Fig. 7. This approach captures a 
more distinct and representative characterization of the 
TKA candidates’ phenotypes, as the 3-cluster phenotype 
may introduce more complexity and potentially dilute 
the specific phenotypic patterns that are of interest in the 
context of TKA. Compared to Phenotype 2, Phenotype 1 
(N=42 out of 80 patients) showed greater dynamic varus 
alignment ( 9.9◦ vs. 3.0◦ ) and greater dynamic flexion con-
tracture at heel strike ( 16.3◦ vs. 13.6◦ ) and stance ( 11.3◦ 
vs. 5.7◦ ). Interestingly, such kinematic features are known 
to be associated with poorer outcomes (i.e., satisfaction) 
post-TKA [27, 28]. Furthermore, these dysfunctions, 
or protective strategies to stabilize an unsteady knee in 
regard to stiff knee gait, appeared to be associated with 
pain catastrophizing, especially the magnification of 
pain, rather than its intensity or impact on the ability to 
perform ADLs. An accentuated varus alignment may 
also increase this lack of confidence in the knee and play 
a role in the poorer function reported on the TUG test. 
Thus, the determination of this particular phenotype may 
allow clinicians to identify patients who presented more 
severe dynamic malalignment, an accentuated protective 
strategy, and higher pain catastrophizing scores. Know-
ing that all these factors are associated with or predictors 
of poor outcomes post-TKA, identifying such patients 

Table 3 Intraclass Correlation Coefficients (ICC) for each cluster 
using Principal Component Analysis (PCA) with 2 clusters and 
PCA with 3 clusters

 ICCs PCA-2clusters PCA-3clusters

Cluster1 Cluster2 Cluster1 Cluster2 Cluster3

Abduction/
adduction

0.874 0.8 0.771 0.862 0.787

Flexion/extension 0.565 0.672 0.585 0.614 0.36

External/internal 
rotation

0.514 0.642 0.615 0.571 0.461
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could inform the need for personalized prehabilitation 
strategies to potentially improve surgical outcomes.

Regarding the methodological aspect of this study, the 
results provide insights into the use of data transforma-
tion methods and clustering algorithms for knee kinemat-
ics analysis. While the study did not directly compare its 
results with those of other state-of-the-art works, some 
comparisons can be drawn based on existing research. 
For instance, previous studies have used K-means clus-
tering and rescaling methods, including standardization 
and min-max normalization, to analyze knee kinematics 

data [29, 30]. Similar to the current study, these studies 
found that the choice of data transformation can influ-
ence the clustering results. For instance, Visalkchi et  al. 
[31] reported that no unique normalization procedure 
could yield better quality clusters for all datasets and that 
every dataset supported a specific method. DTW can be 
computationally expensive, especially for large datasets, 
and may not be the best choice when the data are linear 
or when the shapes of the data points are more consist-
ent. Other studies have also used principal component 
analysis (PCA) for feature extraction and clustering of 

Table 4 Between‑cluster differences on the 6 clinical features with the 2‑cluster approach: Number of samples (N), mean value, 
standard deviation (SD), standard error (SE), p‑value, and significance. The clinical features include Oxford Knee Score (OKS‑overall), Pain 
Catastrophizing Scale (PCS overall), rumination, magnification, helplessness, and the Timed‑Up‑And‑Go test (TUG‑test)

Group statistics

Clinical features Cluster N Mean Std.deviation Std. error mean p-value Significative 
Yes/No

OKS‑Overall 1 39 38.23 7.28 1.17 0.29 No

2 41 36.34 8.60 1.34

 PCS‑Overall 1 32 20.85 13.39 2.37 0.05 Yes

2 34 14.41 13.14 2.25

PCS‑Rumination 1 32 6.75 4.40 0.78 0.17 No

2 34 5.206 4.58 0.79

PCS‑Magnification 1 32 5.000 3.41 0.60 0.01 Yes

2 34 2.91 3.17 0.54

PCS‑Helplessness 1 32 9.10 6.51 1.15 0.07 No

2 34 6.294 5.99 1.03

TUG‑test 1 38 10.83 3.71 0.60 0.01 Yes

2 41 9.01 2.36 0.37

Fig. 7 Kinematic phenotypes identified using K‑means and standardization, with 1D‑SPM statistical analysis using Principal Component Analysis‑ 2 
clusters
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knee kinematics data [21, 22]. Similarly to the current 
study, authors reported that PCA can improve clustering 
performance by reducing the dimensionality of the data. 
In addition, authors in [32, 33] identified four distinct 
gait profiles in knee OA patients using machine-learning 
algorithms and principal component analysis. This high-
lights the potential for gait kinematics to reveal diverse 
movement patterns and inform clinical decisions. Their 
findings complement ours by demonstrating the clinical 
relevance of differentiating gait profiles based on kin-
ematic representation.

However, the specific results may differ based on the 
dataset and clustering algorithm used. Overall, the find-
ings of the current study align with previous research 
on knee kinematics analysis and provide further insights 
into the importance of normalization methods and fea-
ture extraction techniques for accurate clustering results. 
Through the analysis of gait patterns, it is possible to 
categorize TKA candidates into two distinct subgroups, 
each exhibiting unique kinematic characteristics, as well 
as clinical differences. This method of classification can 
provide a deeper understanding of the diverse biome-
chanical changes that occur in patients with KOA, help-
ing clinicians to move toward more personalized care 
based on the patients’ affiliation.

Conclusion
This study identified distinct kinematic phenotypes in 
TKA candidates using the K-means clustering technique. 
After assessing different transformation, representa-
tion, and data-point distance methods, the optimal clus-
tering process consisted of a K-means algorithm using 

Euclidean distance, combined with standard deviation 
scaling and PCA. These phenotypes based on 3D kin-
ematic data obtained with the KneeKGTM system allowed 
us to differentiate two profiles of patients who differed 
kinematically and clinically, reinforcing the relevance 
and potential of such an approach to provide surgeons 
with valuable insights for their choice of the most effec-
tive intervention. Findings may assist clinicians in more 
personalized treatment approaches which may ultimately 
improve surgical outcomes. While this approach may 
need to be applied on other databases to validate these 
phenotypes in TKA candidates, future work could also 
aim at exploring the potential of established machine 
learning techniques for the classification of the two clus-
ters generated and to implement deep learning algo-
rithms. Nonetheless, the results from this study highlight 
the feasibility of identifying kinematic phenotypes in 
KOA patients and provide a roadmap for future research 
in this domain.
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