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mclust 5: Clustering, Classification and
Density Estimation Using Gaussian Finite
Mixture Models
by Luca Scrucca, Michael Fop, T. Brendan Murphy and Adrian E. Raftery

Abstract Finite mixture models are being used increasingly to model a wide variety of random
phenomena for clustering, classification and density estimation. mclust is a powerful and popular
package which allows modelling of data as a Gaussian finite mixture with different covariance
structures and different numbers of mixture components, for a variety of purposes of analysis. Recently,
version 5 of the package has been made available on CRAN. This updated version adds new covariance
structures, dimension reduction capabilities for visualisation, model selection criteria, initialisation
strategies for the EM algorithm, and bootstrap-based inference, making it a full-featured R package
for data analysis via finite mixture modelling.

Introduction

mclust (Fraley et al., 2016) is a popular R package for model-based clustering, classification, and
density estimation based on finite Gaussian mixture modelling. An integrated approach to finite
mixture models is provided, with functions that combine model-based hierarchical clustering, EM
for mixture estimation and several tools for model selection. Thus mclust provides a comprehensive
strategy for clustering, density estimation and discriminant analysis. A variety of covariance structures
obtained through eigenvalue decomposition are available. Functions for performing single E and
M steps and for simulating data for each available model are also included. Additional ways of
displaying and visualising fitted models along with clustering, classification, and density estimation
results are also provided. It has been used in a broad range of contexts including geochemistry (Templ
et al., 2008; Ellefsen et al., 2014), chemometrics (Fraley and Raftery, 2006a, 2007b), DNA sequence
analysis (Verbist et al., 2015), gene expression data (Yeung et al., 2001; Li et al., 2005; Fraley and Raftery,
2006b), hydrology (Kim et al., 2014), wind energy (Kazor and Hering, 2015), industrial engineering
(Campbell et al., 1999), epidemiology (Flynt and Daepp, 2015), food science (Kozak and Scaman,
2008), clinical psychology (Suveg et al., 2014), political science (Ahlquist and Breunig, 2012; Jang and
Hitchcock, 2012), and anthropology (Konigsberg et al., 2009).

One measure of the popularity of mclust is provided by the download logs of the RStudio
(http://www.rstudio.com) CRAN mirror (available at http://cran-logs.rstudio.com). The cran-
logs package (Csardi, 2015) makes it easy to download such logs and graph the number of downloads
over time. We used cranlogs to query the RStudio download database over the past three years. In
addition to mclust, other R packages which handle Gaussian finite mixture modelling as part of their
capabilities have been included in the comparison: Rmixmod (Lebret et al., 2015), mixture (Browne
et al., 2015), EMCluster (Chen and Maitra, 2015), mixtools (Benaglia et al., 2009), and bgmm (Biecek
et al., 2012). We also included flexmix (Leisch, 2004; Grün and Leisch, 2007, 2008) which provides a
general framework for finite mixtures of regression models using the EM algorithm, since it can be
adapted to perform Gaussian model-based clustering using a limited set of models (only the diagonal
and unconstrained covariance matrix models). Table 1 summarises the functionalities of the selected
packages.

Package Version Clustering Classification Density
estimation

Non-Gaussian
components

mclust 5.2 3 3 3 7
Rmixmod 2.0.3 3 3 7 3
mixture 1.4 3 3 7 7
EMCluster 0.2-5 3 3 7 7
mixtools 1.0.4 3 7 3 3
bgmm 1.7 3 3 7 7
flexmix 2.3-13 3 7 7 3

Table 1: Capabilities of the selected packages dealing with finite mixture models.

Figure 1 shows the trend in weekly downloads from the RStudio CRAN mirror for the selected
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packages. The popularity of mclust has been increasing steadily over time with a first high peak
around mid April 2015, probably due to the release of R version 3.2 and, shortly after, the release of
version 5 of mclust. Then, successive peaks occurred in conjunction with the release of package’s
updates. Based on these logs, mclust is the most downloaded package dealing with Gaussian mixture
models, followed by flexmix which, as mentioned, is a more general package for fitting mixture
models but with limited clustering capabilities.
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Figure 1: Number of weekly downloads from the RStudio CRAN mirror over time for some R packages
dealing with Gaussian finite mixture modelling.

Another aspect that can be considered as a proxy for the popularity of a package is the mutual
dependencies structure between R packages1. This can be represented as a graph with packages at the
vertices and dependencies (either “Depends”, “Imports”, “LinkingTo”, “Suggests” or “Enhances”) as
directed edges, and analysed through the PageRank algorithm used by the Google search engine (Brin
and Page, 1998). For the packages considered previously, we used the page.rank function available
in the igraph package (Csardi and Nepusz, 2006) and we obtained the ranking reported in Table 2,
which approximately reproduces the results discussed above. Note that mclust is among the top 100
packages on CRAN by this ranking. Finally, its popularity is also indicated by the 55 other CRAN
packages listed as reverse dependencies, either “Depends”, “Imports” or “Suggests”.

mclust Rmixmod mixture EMCluster mixtools bgmm flexmix

75 2300 2319 2143 1698 3736 270

Table 2: Ranking obtained with the PageRank algorithm for some R packages dealing with Gaussian
finite mixture modelling. At the time of writing there are 8663 packages on CRAN.

Earlier versions of the package have been described in Fraley and Raftery (1999), Fraley and
Raftery (2003), and Fraley et al. (2012). In this paper we discuss some of the new functionalities
available in mclust version ≥ 5. In particular we describe the newly available models, dimension
reduction for visualisation, bootstrap-based inference, implementation of different model selection
criteria and initialisation strategies for the EM algorithm.

The reader should first install the latest version of the package from CRAN with

> install.packages("mclust")

1See http://piccolboni.info/2012/05/essential-r-packages.html.
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Then the package is loaded into an R session using the command

> library(mclust)
__ ___________ __ _____________

/ |/ / ____/ / / / / / ___/_ __/
/ /|_/ / / / / / / / /\__ \ / /

/ / / / /___/ /___/ /_/ /___/ // /
/_/ /_/\____/_____/\____//____//_/ version 5.2
Type 'citation("mclust")' for citing this R package in publications.

All the datasets used in the examples are available in mclust or in other R packages, such as gclus
(Hurley, 2012), rrcov (Todorov and Filzmoser, 2009) and tourr (Wickham et al., 2011), and can be
installed from CRAN using the above procedure, except where noted differently.

Gaussian finite mixture modelling

Let x = {x1, x2, . . . , xi, . . . , xn} be a sample of n independent identically distributed observations. The
distribution of every observation is specified by a probability density function through a finite mixture
model of G components, which takes the following form

f (xi; Ψ) =
G

∑
k=1

πk fk(xi; θk), (1)

where Ψ = {π1, . . . , πG−1, θ1, . . . , θG} are the parameters of the mixture model, fk(xi; θk) is the kth
component density for observation xi with parameter vector θk, (π1, . . . , πG−1) are the mixing weights
or probabilities (such that πk > 0, ∑G

k=1 πk = 1), and G is the number of mixture components.

Assuming that G is fixed, the mixture model parameters Ψ are usually unknown and must be
estimated. The log-likelihood function corresponding to equation (1) is given by `(Ψ; x1, . . . , xn) =
∑n

i=1 log( f (xi; Ψ)). Direct maximisation of the log-likelihood function is complicated, so the maximum
likelihood estimator (MLE) of a finite mixture model is usually obtained via the EM algorithm
(Dempster et al., 1977; McLachlan and Peel, 2000).

In the model-based approach to clustering, each component of a finite mixture density is usually
associated with a group or cluster. Most applications assume that all component densities arise from
the same parametric distribution family, although this need not be the case in general. A popular
model is the Gaussian mixture model (GMM), which assumes a (multivariate) Gaussian distribution
for each component, i.e. fk(x; θk) ∼ N(µk, Σk). Thus, clusters are ellipsoidal, centered at the mean
vector µk, and with other geometric features, such as volume, shape and orientation, determined by
the covariance matrix Σk. Parsimonious parameterisations of the covariances matrices can be obtained
by means of an eigen-decomposition of the form Σk = λkDk AkD>k , where λk is a scalar controlling
the volume of the ellipsoid, Ak is a diagonal matrix specifying the shape of the density contours with
det(Ak) = 1, and Dk is an orthogonal matrix which determines the orientation of the corresponding
ellipsoid (Banfield and Raftery, 1993; Celeux and Govaert, 1995). In one dimension, there are just two
models: E for equal variance and V for varying variance. In the multivariate setting, the volume, shape,
and orientation of the covariances can be constrained to be equal or variable across groups. Thus,
14 possible models with different geometric characteristics can be specified. Table 3 reports all such
models with the corresponding distribution structure type, volume, shape, orientation, and associated
model names. In Figure 2 the geometric characteristics are shown graphically.

Starting with version 5.0 of mclust, four additional models have been included: EVV, VEE, EVE,
VVE. Models EVV and VEE are estimated using the methods described in Celeux and Govaert (1995),
and the estimation of models EVE and VVE is carried out using the approach discussed by Browne
and McNicholas (2014). In the models VEE, EVE and VVE it is assumed that the mixture components
share the same orientation matrix. This assumption allows for a parsimonious characterisation of the
clusters, while still retaining flexibility in defining volume and shape.

Model-based clustering

To illustrate the new modelling capabilities of mclust for model-based clustering consider the wine
dataset contained in the gclus R package. This dataset provides 13 measurements obtained from a
chemical analysis of 178 wines grown in the same region in Italy but derived from three different
cultivars (Barolo, Grignolino, Barbera).
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Model Σk Distribution Volume Shape Orientation

EII λI Spherical Equal Equal —
VII λk I Spherical Variable Equal —
EEI λA Diagonal Equal Equal Coordinate axes
VEI λk A Diagonal Variable Equal Coordinate axes
EVI λAk Diagonal Equal Variable Coordinate axes
VVI λk Ak Diagonal Variable Variable Coordinate axes
EEE λDAD> Ellipsoidal Equal Equal Equal
EVE λDAkD> Ellipsoidal Equal Variable Equal
VEE λkDAD> Ellipsoidal Variable Equal Equal
VVE λkDAkD> Ellipsoidal Variable Variable Equal
EEV λDk AD>k Ellipsoidal Equal Equal Variable
VEV λkDk AD>k Ellipsoidal Variable Equal Variable
EVV λDk AkD>k Ellipsoidal Equal Variable Variable
VVV λkDk AkD>k Ellipsoidal Variable Variable Variable

Table 3: Parameterisations of the within-group covariance matrix Σk for multidimensional data
available in the mclust package, and the corresponding geometric characteristics.

EII VII EEI VEI EVI

VVI EEE EVE VEE EEV

VEV EVV VVE VVV

Figure 2: Ellipses of isodensity for each of the 14 Gaussian models obtained by eigen-decomposition
in case of three groups in two dimensions.

> data(wine, package = "gclus")
> Class <- factor(wine$Class, levels = 1:3,

labels = c("Barolo", "Grignolino", "Barbera"))
> X <- data.matrix(wine[,-1])
> mod <- Mclust(X)
> summary(mod$BIC)
Best BIC values:

EVE,3 VVE,3 VVE,6
BIC -6873.257 -6896.83693 -6906.37460
BIC diff 0.000 -23.57947 -33.11714
> plot(mod, what = "BIC", ylim = range(mod$BIC[,-(1:2)], na.rm = TRUE),

legendArgs = list(x = "bottomleft"))

In the above Mclust() function call, only the data matrix is provided, and the number of mixing
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Figure 3: BIC plot for models fitted to the wine data.

components and the covariance parameterisation are selected using the Bayesian Information Criterion
(BIC). A summary showing the top-three models and a plot of the BIC traces (see Figure 3) for all the
models considered is then obtained. In the last plot we adjusted the range of the y-axis so to remove
those models with lower BIC values. There is a clear indication of a three-component mixture with
covariances having different shapes but the same volume and orientation (EVE). Note that all the top
three models are among the models added to the latest major release of mclust.

A summary of the selected model is obtained as:

> summary(mod)
----------------------------------------------------
Gaussian finite mixture model fitted by EM algorithm
----------------------------------------------------

Mclust EVE (ellipsoidal, equal volume and orientation) model with 3 components:

log.likelihood n df BIC ICL
-3032.45 178 156 -6873.257 -6873.549

Clustering table:
1 2 3
63 51 64

The fitted model provides an accurate recovery of the true classes:

> table(Class, mod$classification)
Class 1 2 3
Barolo 59 0 0
Grignolino 4 3 64
Barbera 0 48 0

> adjustedRandIndex(Class, mod$classification)
[1] 0.8803998

The latter index is the adjusted Rand index (ARI; Hubert and Arabie, 1985), which can be used for
evaluating a clustering solution. The ARI is a measure of agreement between two partitions, one
estimated by a statistical procedure independent of the labelling of the groups, and one being the true
classification. It has zero expected value in the case of a random partition, and it is bounded above by
1, with higher values representing better partition accuracy.

To visualise the clustering structure and the geometric characteristics induced by an estimated
Gaussian finite mixture model we may project the data onto a suitable dimension reduction subspace.
The function MclustDR() implements the methodology introduced in Scrucca (2010). The estimated
directions which span the reduced subspace are defined as a set of linear combinations of the original
features, ordered by importance as quantified by the associated eigenvalues. By default, information on
the dimension reduction subspace is provided by both the variation on cluster means and, depending
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on the estimated mixture model, on the variation on cluster covariances. This methodology has
been extended to supervised classification by Scrucca (2014). Furthermore, a tuning parameter has
been included which enables the recovery of most of the separating directions, i.e. those that show
maximal separation among groups. Other dimension reduction techniques for finding the directions of
optimum separation have been discussed in detail by Hennig (2004) and implemented in the package
fpc (Hennig, 2015).

Applying MclustDR to the wine data example, such directions are obtained as follows:

> drmod <- MclustDR(mod, lambda = 1)
> summary(drmod)
-----------------------------------------------------------------
Dimension reduction for model-based clustering and classification
-----------------------------------------------------------------

Mixture model type: Mclust (EVE, 3)

Clusters n
1 63
2 51
3 64

Estimated basis vectors:
Dir1 Dir2

Alcohol 0.11701058 0.2637302
Malic -0.02814821 0.0489447
Ash -0.18258917 0.5390056
Alcalinity -0.02969793 -0.0309028
Magnesium 0.00575692 0.0122642
Phenols -0.18497201 -0.0016806
Flavanoids 0.45479873 -0.2948947
Nonflavanoid 0.59278569 -0.5777586
Proanthocyanins 0.05347167 0.0508966
Intensity -0.08328239 0.0332611
Hue 0.42950365 -0.4588969
OD280 0.40563746 -0.0369229
Proline 0.00075867 0.0010457

Dir1 Dir2
Eigenvalues 1.5794 1.332
Cum. % 54.2499 100.000

By setting the optional tuning parameter lambda = 1, instead of the default value 0.5, only the
information on cluster means is used for estimating the directions. In this case, the dimension of
the subspace is d = min(p, G− 1), where p is the number of variables and G the number of mixture
components or clusters. In the data example, there are p = 13 features and G = 3 clusters, so the
dimension of the reduced subspace is d = 2. As a result, the projected data show the maximal
separation among clusters, as shown in Figure 4a, which is obtained with

> plot(drmod, what = "contour")

On the same subspace we can also plot the uncertainty boundaries corresponding to the MAP
classification:

> plot(drmod, what = "boundaries", ngrid = 200)

and then add a circle around the misclassified observations

> miscl <- classError(Class, mod$classification)$misclassified
> points(drmod$dir[miscl,], pch = 1, cex = 2)

Model selection

A central question in finite mixture modelling is how many components should be included in the
mixture. In GMMs we need also to decide which covariance parameterisation to adopt. Both questions
can be addressed by information criteria, such as the BIC (Schwartz, 1978; Fraley and Raftery, 1998)
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Figure 4: Contour plot of estimated mixture densities (a) and uncertainty boundaries (b) on the
projection subspace estimated with MclustDR for the wine dataset.

or the integrated complete-data likelihood criterion (ICL; Biernacki et al., 2000). The selection of the
order of the mixture, i.e. the number of mixture components or clusters, can be also performed by
formal hypothesis testing; for a recent review see McLachlan and Rathnayake (2014).

Information criteria are based on penalised forms of the log-likelihood. As the likelihood increases
with the addition of more components, a penalty term for the number of estimated parameters is
subtracted from the log-likelihood. The BIC is a popular choice in the context of GMMs, and takes the
form

BICM,G = 2`M,G(x|Ψ̂)− ν log(n),

where `M,G(x|Ψ̂) is the log-likelihood at the MLE Ψ̂ for modelM with G components, n is the sample
size, and ν is the number of estimated parameters. The pair {M, G} which maximises BICM,G is
selected. Given some necessary regularity conditions, BIC is derived as an approximation to the
model evidence using the Laplace method. Although these conditions do not hold for mixture models
in general (Aitkin and Rubin, 1985), some consistency results apply (Roeder and Wasserman, 1997;
Keribin, 2000) and the criterion has been shown to perform well in applications (Fraley and Raftery,
1998).

In the mclust package, BIC is used by default for model selection. The function mclustBIC()
allows the user to obtain a matrix of BIC values for all the available models and number of components
up to 9 (by default).

For example, consider the diabetes dataset which contains measurements on 145 non-obese adult
subjects. Recorded variables are glucose, the area under plasma glucose curve after a three hour oral
glucose tolerance test (OGTT), insulin, the area under plasma insulin curve after a three hour OGTT,
and sspg, the steady state plasma glucose level. The patients are classified clinically into three groups.

> data(diabetes)
> X <- diabetes[,2:4]
> Class <- diabetes$class
> table(Class)
Chemical Normal Overt

36 76 33

The data can be shown graphically (see Figure 5) as follows:

> clp <- clPairs(X, Class, lower.panel = NULL)
> clPairsLegend(0.1, 0.3, class = clp$class, col = clp$col, pch = clp$pch)

The following function call can be used to compute the BIC for all the covariance structures and
up to 9 components:

> BIC <- mclustBIC(X)
> BIC
Bayesian Information Criterion (BIC):

EII VII EEI VEI EVI VVI EEE EVE
1 -5863.923 -5863.923 -5530.129 -5530.129 -5530.129 -5530.129 -5136.446 -5136.446
2 -5449.518 -5327.719 -5169.399 -5019.350 -5015.884 -4988.322 -5010.994 -4875.633
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Figure 5: Pairwise scatterplots for the diabetes data with points marked according to classification.

3 -5412.588 -5206.399 -4998.446 -4899.759 -5000.661 -4827.818 -4976.853 -4858.851
4 -5236.008 -5208.512 -4937.627 -4835.856 -4865.767 -4813.002 -4865.864 -4793.261
5 -5181.608 -5202.555 -4915.486 -4841.773 -4838.587 -4833.589 -4882.812 NA
6 -5162.164 -5135.069 -4885.752 NA -4848.623 -4810.558 -4835.226 NA
7 -5128.736 -5129.460 -4857.097 NA -4849.023 NA -4805.518 NA
8 -5135.787 -5135.053 -4858.904 NA -4873.450 NA -4820.155 NA
9 -5150.374 -5112.616 -4878.786 NA -4865.166 NA -4840.039 NA

VEE VVE EEV VEV EVV VVV
1 -5136.446 -5136.446 -5136.446 -5136.446 -5136.446 -5136.446
2 -4920.301 -4877.086 -4918.500 -4834.727 -4823.779 -4825.027
3 -4851.667 -4775.537 -4917.567 -4809.225 -4817.884 -4760.091
4 -4840.034 -4794.892 -4887.406 -4823.882 -4828.796 -4802.420
5 NA NA -4908.030 -4842.077 NA NA
6 NA NA -4844.584 -4826.457 NA NA
7 NA NA -4910.155 -4852.182 NA NA
8 NA NA -4858.974 -4870.633 NA NA
9 NA NA -4930.535 -4887.206 NA NA

Top 3 models based on the BIC criterion:
VVV,3 VVE,3 EVE,4

-4760.091 -4775.537 -4793.261

In the results reported above, the NA values mean that a particular model cannot be estimated. This
happens in practice due to singularity in the covariance matrix estimate and can be avoided using
the Bayesian regularisation proposed in Fraley and Raftery (2007a) and implemented in mclust as
described in Fraley et al. (2012). Optional arguments allow finetuning, such as G for the number of
components, and modelNames for specifying the model covariances parameterisations (see Table 3 and
help(mclustModelNames) for a description of available model names). Another optional argument x
can be used to provide the output from a previous call to mclustBIC(). This is useful if the model space
needs to be enlarged by fitting more models, e.g. by increasing the number of mixture components,
without the need to recompute the BIC values for those models already fitted. Another usage of
such strategy that may be helpful to users is provided in Mclust(). For example, BIC values already
available can be provided as follows

> Mclust(X, x = BIC)

Note that by specifying the argument G and modelNames the model space can be restricted to a subset,
or enlarged to a superset. In the latter case the BIC is calculated only for the newly included models.
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The use of BIC for model selection was available in mclust since earlier versions. However, BIC
tends to select the number of mixture components needed to reasonably approximate the density,
rather than the number of clusters as such. For this reason, other criteria have been proposed for
model selection, like the integrated complete-data likelihood (ICL) criterion (Biernacki et al., 2000):

ICLM,G = BICM,G + 2
n

∑
i=1

G

∑
k=1

cik log(zik),

where zik is the conditional probability that xi arises from the kth mixture component, and cik = 1 if the
ith unit is assigned to cluster k and 0 otherwise. ICL penalises the BIC through an entropy term which
measures clusters overlap. Provided that clusters overlapping is not too strong, ICL has shown good
performance in selecting the number of clusters, with preference for solutions with well-separated
groups.

In mclust the ICL can be computed by means of the mclustICL() function:

> ICL <- mclustICL(X)
> ICL
Integrated Complete-data Likelihood (ICL) criterion:

EII VII EEI VEI EVI VVI EEE EVE
1 -5863.923 -5863.923 -5530.129 -5530.129 -5530.129 -5530.129 -5136.446 -5136.446
2 -5450.004 -5333.689 -5169.732 -5023.533 -5016.010 -4994.986 -5012.758 -4876.295
3 -5415.983 -5219.627 -4999.693 -4910.963 -5011.423 -4839.130 -4985.448 -4875.992
4 -5238.797 -5224.698 -4939.741 -4847.524 -4876.784 -4823.308 -4867.650 -4809.169
5 -5190.524 -5226.204 -4923.986 -4865.230 -4854.347 -4859.162 -4895.412 NA
6 -5171.561 -5158.411 -4901.823 NA -4865.106 -4820.076 -4846.827 NA
7 -5136.220 -5152.330 -4872.644 NA -4870.151 NA -4817.584 NA
8 -5146.628 -5156.135 -4871.975 NA -4897.172 NA -4834.074 NA
9 -5180.744 -5145.708 -4911.346 NA -4883.199 NA -4872.677 NA

VEE VVE EEV VEV EVV VVV
1 -5136.446 -5136.446 -5136.446 -5136.446 -5136.446 -5136.446
2 -4927.621 -4885.421 -4920.413 -4844.590 -4826.796 -4834.539
3 -4866.976 -4793.271 -4927.563 -4821.068 -4828.535 -4776.086
4 -4869.658 -4823.020 -4956.077 -4847.034 -4839.703 -4830.658
5 NA NA -4948.787 -4869.279 NA NA
6 NA NA -4884.720 -4849.505 NA NA
7 NA NA -4947.190 -4878.445 NA NA
8 NA NA -4890.913 -4895.286 NA NA
9 NA NA -5007.250 -4919.228 NA NA

Top 3 models based on the ICL criterion:
VVV,3 VVE,3 EVE,4

-4776.086 -4793.271 -4809.169

As discussed above for mclustBIC(), the output from a previous call to mclustICL() can be provided
as input with the argument x to avoid recomputing the ICL for models already fitted.

Both criteria can be shown graphically with (see Figure 6):

> plot(BIC)
> plot(ICL)

In this case BIC and ICL selected the same final model.

Other information criteria are available in the literature. For example, members of the Generalised
Information Criteria (GIC) family (Konishi and Kitagawa, 1996) are not computed by the package, but
they can be easily obtained using the information returned by the Mclust() function.

In addition to the information criteria just mentioned, the choice of the order of a mixture model
for a specific component-covariances parameterisation can be carried out by likelihood ratio testing
(LRT). Suppose we want to test the null hypothesis H0 : G = G0 against the alternative H1 : G = G1
for some G1 > G0; usually, G1 = G0 + 1 as it is a common procedure to keep adding components
sequentially. Let Ψ̂Gj be the MLE of Ψ calculated under Hj : G = Gj (for j = 0, 1). The likelihood ratio
test statistic (LRTS) can be written as

LRTS = −2 log{L(Ψ̂G0 )/L(Ψ̂G1 )} = 2{`(Ψ̂G1 )− `(Ψ̂G0 )},

where large values of LRTS provide evidence against the null hypothesis. However, standard regularity
conditions do not hold for the null distribution of the LRTS to have its usual chi-squared distribution
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Figure 6: Plots of BIC and ICL model selection criteria for the diabetes data.

(McLachlan and Peel, 2000, Chap. 6). As consequence, LRT significance is often estimated by a
resampling approach in order to produce a p-value. McLachlan (1987) proposed the using of the
bootstrap to obtain the null distribution of the LRTS. The bootstrap procedure is the following:

1. a bootstrap sample x∗b is generated by simulating from the fitted model under the null hypothesis
with G0 components, i.e. from the GMM distribution with the vector of unknown parameters
replaced by MLEs obtained from the original data under H0;

2. the test statistic LRTS∗b is computed for the bootstrap sample x∗b after fitting GMMs with G0 and
G1 number of components;

3. steps 1. and 2. are replicated several times, say B = 999, to obtain the bootstrap null distribution
of LRTS∗.

A bootstrap-based approximation to the p-value may then be computed as

p-value ≈
1 + ∑B

i=1 I(LRTS∗b ≥ LRTSobs)

B + 1

where LRTSobs is the test statistic computed on the observed sample x, and I(·) denotes the indicator
function (which is equal to 1 if its argument is true and 0 otherwise).

The above bootstrap procedure is implemented in the mclustBootstrapLRT() function. We need
to specify at least the input data and the model name we want to test:

> LRT <- mclustBootstrapLRT(X, modelName = "VVV")
> LRT
Bootstrap sequential LRT for the number of mixture components
-------------------------------------------------------------
Model = VVV
Replications = 999

LRTS bootstrap p-value
1 vs 2 361.186445 0.001
2 vs 3 114.703559 0.001
3 vs 4 7.437806 0.938

The number of bootstrap resamples can be set by the optional argument nboot; if not provided,
nboot = 999 is used. The sequential bootstrap procedure terminates when a test is not significant
at the level specified by level (by default equal to 0.05). There is also the option for a user to fix
the maximum number of mixture components to test via the argument maxG. In the example above
the bootstrap p-values clearly indicate the presence of three clusters. Note that models fitted on the
original data are estimated via the EM algorithm initialised by the default model-based hierarchical
agglomerative clustering. Then, during the bootstrap procedure, models under the null and the
alternative hypotheses are fitted on bootstrap samples using again the EM algorithm. However, in
this case the algorithm starts with the E step initialised with the estimated parameters obtained at the
convergence of the EM algorithm on the original data.
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The bootstrap distributions of the LRTS can be shown graphically (see Figure 7) using the associated
plot method:

> plot(LRT, G = 1)
> plot(LRT, G = 2)
> plot(LRT, G = 3)
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Figure 7: Histograms of LRTS bootstrap distributions for testing the number of mixture components
in the diabetes data. The dotted vertical lines refer to the sample values of LRTS.

Bootstrap inference

There are two main approaches to likelihood-based inference in mixture models, namely information-
based and resampling methods (McLachlan and Peel, 2000). In information-based methods, the
covariance matrix of the MLE Ψ̂ is approximated by the inverse of the observed information matrix
I−1(Ψ̂), i.e.

Cov(Ψ̂) ≈ (I−1(Ψ̂)).

However, “the sample size n has to be very large before the asymptotic theory applies to mixture
models” (McLachlan and Peel, 2000, p. 42). Indeed, Basford et al. (1997) found that standard errors
obtained using the expected or the observed information matrix are unstable, unless the sample size is
very large. For these reasons, they advocate the use of a resampling approach based on the bootstrap.
For a recent review and comparison of different resampling approaches to inference in finite mixture
models see O’Hagan et al. (2015).

The bootstrap (Efron, 1979) is a general, widely applicable, powerful technique for obtaining an
approximation to the sampling distribution of a statistic of interest. The bootstrap distribution is
approximated by drawing a large number of samples (bootstrap samples) from the empirical distribution,
i.e. by resampling with replacement from the observed data (nonparametric bootstrap), or from a para-
metric distribution with unknown parameters substituted by the corresponding estimates (parametric
bootstrap).

Let Ψ̂ be the estimate of a set of GMM parameters Ψ for a given model M, i.e. covariance
parameterisation, and number of mixture components G. A bootstrap estimate of the corresponding
standard errors can be obtained using the following procedure:

• Obtain the bootstrap distribution for the parameters of interest by:

1. drawing a sample of size n with replacement from the empirical distribution (x1, . . . , xn)
to form the bootstrap sample (x∗1 , . . . , x∗n);

2. fitting a GMM (M, G) to get the bootstrap estimates Ψ̂∗;

3. replicating steps 1–2 a large number of times, say B, to obtain Ψ̂∗1 , Ψ̂∗2 , . . . , Ψ̂∗B estimates
from B resamples.

• The bootstrap covariance matrix is then approximated by

Covboot(Ψ̂) ≈ 1
B− 1

B

∑
b=1

(Ψ̂∗b − Ψ̂
∗
)(Ψ̂∗b − Ψ̂

∗
)>
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where Ψ̂
∗
=

1
B

B

∑
b=1

Ψ̂∗b .

• The bootstrap standard errors for the parameter estimates Ψ̂ are computed as the square root of
the diagonal elements of the bootstrap covariance matrix, i.e.

seboot(Ψ̂) =
√

diag(Covboot(Ψ̂)).

Consider the hemophilia dataset (Habbema et al., 1974) available in the package rrcov, which
contains two measured variables on 75 women belonging to two groups: 30 of them are non-carriers
(normal group) and 45 are known hemophilia A carriers (obligatory carriers).

> data(hemophilia, package = "rrcov")
> X <- hemophilia[,1:2]
> Class <- as.factor(hemophilia$gr)
> plot(X, pch = ifelse(Class == "normal", 1, 16))
> legend("bottomright", legend = levels(Class), pch = c(16,1), inset = 0.03)

The last command plots the observed data marked by the known classification (see Figure 8a).

In analogy with the analysis of Basford et al. (1997, example II, Sec. 5), we fitted a two-components
GMM with unconstrained covariance matrices:

> mod <- Mclust(X, G = 2, modelName = "VVV")
> summary(mod, parameters = TRUE)
----------------------------------------------------
Gaussian finite mixture model fitted by EM algorithm
----------------------------------------------------

Mclust VVV (ellipsoidal, varying volume, shape, and orientation) model with 2 components:

log.likelihood n df BIC ICL
77.02852 75 11 106.5647 92.85533

Clustering table:
1 2
39 36

Mixing probabilities:
1 2

0.5108084 0.4891916

Means:
[,1] [,2]

AHFactivity -0.11627884 -0.36656353
AHFantigen -0.02457577 -0.04534792

Variances:
[,,1]

AHFactivity AHFantigen
AHFactivity 0.01137602 0.00659927
AHFantigen 0.00659927 0.01239353
[,,2]

AHFactivity AHFantigen
AHFactivity 0.01585986 0.01505449
AHFantigen 0.01505449 0.03236079

Note that in the summary() function call we used the optional argument parameters = TRUE to retrieve
the estimated parameters.

The clustering structure identified is shown in Figure 8b and can be obtained as follows:

> plot(mod, what = "classification", main = FALSE)

Bootstrap inference for GMMs is available through the function MclustBootstrap(), which re-
quires the user to input an object returned by a call to Mclust(). Optionally, the user can also provide
the number of bootstrap resamples nboot and the type of bootstrap to perform. By default, nboot =
999 and type = "bs" for the nonparametric bootstrap. Thus, a simple call for computing the bootstrap
distribution of the GMM parameters is the following:
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Figure 8: True class membership (a) and estimated classification using GMM (b) for the hemophilia
dataset.

> boot <- MclustBootstrap(mod, nboot = 999, type = "bs")

Note that for the sake of clarity we have included the arguments nboot and type, but they can be
omitted since they are set at their defaults.

The function MclustBootstrap() returns an object which can be plotted or summarised. For
instance, to graph the bootstrap distribution for the mixing proportions and for the component means
we may use the code:

> par(mfrow = c(1,2))
> plot(boot, what = "pro")
> par(mfrow = c(2,2))
> plot(boot, what = "mean")
> par(mfrow = c(1,1))

The resulting plots are shown, respectively, in Figures 9 and 10.
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Figure 9: Bootstrap distribution for the mixture proportions. The vertical dotted lines refer to the
MLEs for the GMM fitted to the hemophilia data.

A numerical summary of the bootstrap procedure is available through the summary method, which
by default returns the standard errors of GMM parameters:

> summary(boot, what = "se")
----------------------------------------------------------
Resampling standard errors
----------------------------------------------------------
Model = VVV
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Figure 10: Bootstrap distribution for the mixture component means. The vertical dotted lines refer to
the MLEs for the GMM fitted to the hemophilia data.

Num. of mixture components = 2
Replications = 999
Type = nonparametric bootstrap

Mixing probabilities:
1 2

0.1249357 0.1249357

Means:
1 2

AHFactivity 0.04028375 0.04137370
AHFantigen 0.03262182 0.06456482

Variances:
[,,1]

AHFactivity AHFantigen
AHFactivity 0.007018580 0.004690481
AHFantigen 0.004690481 0.003155312
[,,2]

AHFactivity AHFantigen
AHFactivity 0.005757398 0.005897374
AHFantigen 0.005897374 0.009654623

The summary method can also return bootstrap percentile confidence intervals. For the generic
GMM parameter ψ of Ψ, the percentile method yields the intervals [ψ∗α/2, ψ∗1−α/2], where ψ∗q is the qth
quantile (or the 100qth percentile) of the bootstrap distribution (ψ̂∗1 , . . . , ψ̂∗B). These can be obtained by
specifying in the summary call the argument what = "ci" and, optionally, the confidence level of the
intervals (by default, conf.level = 0.95). For instance:

> summary(boot, what = "ci")
----------------------------------------------------------
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Resampling confidence intervals
----------------------------------------------------------
Model = VVV
Num. of mixture components = 2
Replications = 999
Type = nonparametric bootstrap
Confidence level = 0.95

Mixing probabilities:
1 2

2.5% 0.3193742 0.1785054
97.5% 0.8214946 0.6806258

Means:
[,,1]

AHFactivity AHFantigen
2.5% -0.22915526 -0.09784996
97.5% -0.07315876 0.02481681
[,,2]

AHFactivity AHFantigen
2.5% -0.4573113 -0.1571624
97.5% -0.2747451 0.1318332

Variances:
[,,1]

AHFactivity AHFantigen
2.5% 0.004743597 0.007012672
97.5% 0.032144767 0.019245540
[,,2]

AHFactivity AHFantigen
2.5% 0.003981163 0.006049076
97.5% 0.027297495 0.045854646

The function MclustBootstrap() has also the provision for using the weighted likelihood boot-
strap (Newton and Raftery, 1994). This is a generalisation of the nonparametric bootstrap which
assigns random (positive) weights to sample observations; it can be viewed as a generalized Bayesian
bootstrap. The weights are obtained from a uniform Dirichlet distribution, i.e. by sampling from
n independent standard exponential distributions and then rescaling by their average. Then, the
function me.weighted() in mclust allows one to apply a weighted EM algorithm. This approach
may yield benefits when one or more components have small mixture proportions. In that case, a
nonparametric bootstrap sample may have no representatives of them, but the weighted likelihood
bootstrap will always have representatives of all groups.

In our data example the weighted likelihood bootstrap can be easily obtained by specifying type
= "wlbs" in the MclustBootstrap() function call:

> wlboot <- MclustBootstrap(mod, nboot = 999, type = "wlbs")
> summary(wlboot, what = "se")
----------------------------------------------------------
Resampling standard errors
----------------------------------------------------------
Model = VVV
Num. of mixture components = 2
Replications = 999
Type = weighted likelihood bootstrap

Mixing probabilities:
1 2

0.1323612 0.1323612

Means:
1 2

AHFactivity 0.03977347 0.04192182
AHFantigen 0.02989056 0.06897928

Variances:
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[,,1]
AHFactivity AHFantigen

AHFactivity 0.007074450 0.004686432
AHFantigen 0.004686432 0.003254011
[,,2]

AHFactivity AHFantigen
AHFactivity 0.005511614 0.005746981
AHFantigen 0.005746981 0.009883791

In this case the differences between the nonparametric and the weighted likelihood bootstrap are
negligible. We can summarise the inference for the components means obtained under the two
approaches with the following graphs of bootstrap percentile confidence intervals:

> boot.ci <- summary(boot, what = "ci")
> wlboot.ci <- summary(wlboot, what = "ci")
> par(mfrow = c(1,2), mar = c(4,4,1,1))
> for(j in 1:mod$G)

{ plot(1:mod$G, mod$parameters$mean[j,], col = 1:mod$G, pch = 15,
ylab = colnames(X)[j], xlab = "Mixture component",
ylim = range(boot.ci$mean,wlboot.ci$mean),
xlim = c(.5,mod$G+.5), xaxt = "n")

points(1:mod$G+0.2, mod$parameters$mean[j,], col = 1:mod$G, pch = 15)
axis(side = 1, at = 1:mod$G)
with(boot.ci, errorBars(1:G, mean[1,j,], mean[2,j,], col = 1:G))
with(wlboot.ci, errorBars(1:G+0.2, mean[1,j,], mean[2,j,], col = 1:G, lty = 2))

}
> par(mfrow = c(1,1))
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Figure 11: Bootstrap percentile intervals for the means of the GMM fitted to the hemophilia dataset.
Solid lines refer to nonparametric bootstrap, dashed lines to the weighted likelihood bootstrap.

Initialisation of the EM algorithm

The EM algorithm is an easy to implement and numerically stable algorithm which has reliable global
convergence under fairly general conditions. However, the likelihood surface in mixture models tends
to have multiple modes and thus initialisation of EM is crucial because it usually produces sensible
results when started from reasonable starting values (Wu, 1983).

In mclust the EM algorithm is initialised using the partitions obtained from model-based hier-
archical agglomerative clustering (MBHAC). In this approach, hierarchical clusters are obtained by
recursively merging the two clusters that provide the smallest decrease in the classification likeli-
hood for Gaussian mixture model (Banfield and Raftery, 1993). Efficient numerical algorithms have
been discussed by Fraley (1998). Using MBHAC is particularly convenient because the underlying
probabilistic model is shared by both the initialisation step and the model fitting step. Furthermore,
MBHAC is also computationally advantageous because a single run provides the basis for initialising
the EM algorithm for any number of mixture components and component-covariances parameterisa-
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tions. Although there is no guarantee that the EM initialized by MBHAC will converge to the global
optimum, it often provides reasonable starting points.

A problem with the MBHAC approach may arise in the presence of coarse data, resulting from the
discrete nature of the data or from continuous data that are rounded when measured. In this case, ties
must be broken by choosing the pair of entities that will be merged. This is often done at random, but
regardless of which method is adopted for breaking ties, this choice can have important consequences
because it changes the clustering of the remaining observations. Moreover, the final EM solution may
depend on the ordering of the variables.

Consider the Flea beetles data available in package tourr. This dataset provides six physical
measurements for a sample of 72 flea beetles from three species:

> data(flea, package = "tourr")
> X <- data.matrix(flea[,1:6])
> Class <- factor(flea$species, labels = c("Concinna","Heikertingeri","Heptapotamica"))
> table(Class)
Class

Concinna Heikertingeri Heptapotamica
21 31 22

> col <- mclust.options("classPlotColors")[1:3]
> clp <- clPairs(X, Class, lower.panel = NULL, gap = 0,

symbols = c(16,15,17), colors = adjustcolor(col, alpha.f = 0.5))
> clPairsLegend(x = 0.1, y = 0.3, class = clp$class, col = col, pch = clp$pch,

title = "Flea beatle species")

As can be seen from Figure 12, the observed values are rounded (to the nearest integer presumably)
and there is a strong overplotting of points.
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Figure 12: Scatterplot matrix for the Flea beetles data with points marked according to the true classes.

> mod1 <- Mclust(X)
> summary(mod1)
----------------------------------------------------
Gaussian finite mixture model fitted by EM algorithm
----------------------------------------------------

Mclust EEE (ellipsoidal, equal volume, shape and orientation) model with 5 components:

log.likelihood n df BIC ICL
-1292.308 74 55 -2821.339 -2825.769

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 306

Clustering table:
1 2 3 4 5
21 2 20 20 11
> adjustedRandIndex(Class, mod1$classification)
[1] 0.7675713

> mod2 <- Mclust(X[,6:1])
> summary(mod2)
----------------------------------------------------
Gaussian finite mixture model fitted by EM algorithm
----------------------------------------------------

Mclust EEE (ellipsoidal, equal volume, shape and orientation) model with 5 components:

log.likelihood n df BIC ICL
-1287.027 74 55 -2810.777 -2812.702

Clustering table:
1 2 3 4 5
22 21 22 7 2
> adjustedRandIndex(Class, mod2$classification)
[1] 0.8131206

By reversing the order of the variables in the fit of mod2, the initial partitions differ due to ties in the
data, so the EM algorithm converges to different solutions of the same EEE model with 5 components.
The second solution has a higher BIC and better accuracy.

In situations like this we may want to assess the stability of results by randomly starting the
EM algorithm. The function randomPairs() may be called to obtain a random hierarchical structure
suitable to be used as initial clustering partition:

> mod3 <- Mclust(X, initialization = list(hcPairs = randomPairs(X, seed = 123)))
> summary(mod3)
----------------------------------------------------
Gaussian finite mixture model fitted by EM algorithm
----------------------------------------------------

Mclust EEE (ellipsoidal, equal volume, shape and orientation) model with 4 components:

log.likelihood n df BIC ICL
-1298.211 74 48 -2803.017 -2807.713

Clustering table:
1 2 3 4
16 15 22 21
> adjustedRandIndex(Class, mod3$classification)
[1] 0.7867056

Using a random start we obtain a EEE model with 4 components, which has a higher BIC but a lower
ARI. However, a better initialisation may be found using the approach discussed in Scrucca and
Raftery (2015). The main idea is to project the data through a suitable transformation which enhances
separation among clusters before applying the MBHAC at the initialisation step. Once a reasonable
hierarchical partition is obtained, the EM algorithm is run using the data on the original scale. For
instance, a GMM started using the scaled SVD transformation is obtained with the following code:

> mod4 <- Mclust(X, initialization = list(hcPairs = hc(X, use = "SVD")))
> summary(mod4)
----------------------------------------------------
Gaussian finite mixture model fitted by EM algorithm
----------------------------------------------------

Mclust EEE (ellipsoidal, equal volume, shape and orientation) model with 3 components:

log.likelihood n df BIC ICL
-1304.552 74 41 -2785.572 -2785.574

Clustering table:

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 307

1 2 3
21 31 22
> adjustedRandIndex(Class, mod4$classification)
[1] 1

In this case we achieve both the highest BIC and a perfect classification of the fleas into the actual
species.

We conclude by noting that in the case of large datasets, i.e. having a large number of observations
or cases, a subsample of the data can be used in the MBHAC phase before applying the EM algorithm
to the full data set. This is easily done by providing an optional argument to Mclust() or mclustBIC()
(as well as many other functions) as a vector, say s, of logical values or numerical indices specifying
the subset of data to be used in the initial hierarchical clustering phase:

> Mclust(X, initialization = list(subset = s))

Density estimation

Density estimation plays an important role in applied statistical data analysis and theoretical research.
Finite mixture models provide a flexible semi-parametric model-based approach to density estimation,
which makes it possible to accurately approximate any given probability distribution. mclust provides
a simple interface to Gaussian mixture models for univariate and multivariate density estimation.

Izenman and Sommer (1988) considered the fitting of a Gaussian mixture to the distribution of the
thickness of stamps in the 1872 Hidalgo stamp issue of Mexico 2. A density estimate based on GMM
can be obtained using the function densityMclust():

> data(Hidalgo1872, package = "MMST")
> Thickness <- Hidalgo1872$thickness
> Year <- rep(c("1872", "1873-74"), c(289, 196))
> dens <- densityMclust(Thickness)
> summary(dens$BIC)
Best BIC values:

V,3 V,5 V,4
BIC 2983.791 2974.939223 2972.19349
BIC diff 0.000 -8.852019 -11.59775
> summary(dens, parameters = TRUE)
-------------------------------------------------------
Density estimation via Gaussian finite mixture modeling
-------------------------------------------------------

Mclust V (univariate, unequal variance) model with 3 components:

log.likelihood n df BIC ICL
1516.632 485 8 2983.791 2890.914

Clustering table:
1 2 3

128 171 186

Mixing probabilities:
1 2 3

0.2661410 0.3011217 0.4327374

Means:
1 2 3

0.07215458 0.07935341 0.09919740

Variances:
1 2 3

0.000004814927 0.000003097694 0.000188461484

2The Hidalgo stamp data is available at the home page for the book by Izenman (2008) at http://astro.temple.
edu/~alan/MMST/datasets.html, or through the package MMST. The latter has been archived on CRAN, so it
must be installed using the following code:

> install.packages("http://cran.r-project.org/src/contrib/Archive/MMST/MMST_0.6-1.1.tar.gz", repos
= NULL, type = "source")
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The model selected is a three-component mixture with different variances. A graph of the density
estimated is shown in Figure13a and is obtained with the code:

> br <- seq(min(Thickness), max(Thickness), length = 21)
> plot(dens, what = "density", data = Thickness, breaks = br)

Here a histogram of the observed data is also drawn by providing the optional argument data and
with breakpoints between histogram cells specified in the argument breaks. From the graph, three
modes appear at the means of the mixture components: one with larger stamp thickness, and two
corresponding to thinner stamps.

Additional information can also be used. In particular, thickness measurements can be grouped
according to the year of consignment; the first 289 stamps refer to the 1872 issue, and the remaining
196 stamps to the years 1873–1874. We may draw a (suitable scaled) histogram for each year-of-
consignment and then add the estimated components densities as follows:

> h1 <- hist(Thickness[Year == "1872"], breaks = br, plot = FALSE)
> h1$density <- h1$density*prop.table(table(Year))[1]
> h2 <- hist(Thickness[Year == "1873-74"], breaks = br, plot = FALSE)
> h2$density <- h2$density*prop.table(table(Year))[2]
> x <- seq(min(Thickness)-diff(range(Thickness))/10,

max(Thickness)+diff(range(Thickness))/10, length = 200)
> cdens <- predict(dens, x, what = "cdens")
> cdens <- t(apply(cdens, 1, function(d) d*dens$parameters$pro))
> col <- adjustcolor(mclust.options("classPlotColors")[1:2], alpha = 0.3)
> plot(h1, xlab = "Thickness", freq = FALSE, main = "", border = FALSE, col = col[1],

xlim = range(x), ylim = range(h1$density, h2$density, cdens))
> plot(h2, add = TRUE, freq = FALSE, border = FALSE, col = col[2])
> matplot(x, cdens, type = "l", lwd = 1, add = TRUE, lty = 1:3, col = 1)
> box()

The result is shown in Figure 13b. Stamps from 1872 show a two-regime distribution, with one
corresponding to the component with the largest thickness, and one whose distribution essentially
overlaps with the bimodal distribution of stamps for the years 1873–1874.

Thickness

D
en

si
ty

0.06 0.08 0.10 0.12 0.14

0
20

40
60

(a)
Thickness

D
en

si
ty

0.06 0.08 0.10 0.12 0.14

0
10

20
30

40
50

60
70

(b)

Figure 13: (a) Histogram with mixture-based density estimate curve, and (b) histograms by group-year
with estimated mixture-component densities, for the Hidalgo1872 stamps dataset.

As an example of bivariate density estimation, consider the well-known ‘Old Faithful’ data set
which provides the waiting time between eruptions (waiting) and the duration of the eruptions
(eruptions) for the Old Faithful geyser in Yellowstone National Park, Wyoming, USA. The dataset
can be read and data plotted as follows:

> data(faithful)
> plot(faithful, cex = 0.5)

A bivariate density estimate for the Faithful data is obtained with the commands:

> dens <- densityMclust(faithful)
> summary(dens)
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Figure 14: Plot of the Old Faithful data (a), mixture-based density estimate contours (b), image plot of
density estimate (c) and perspective plot of the bivariate density estimate (d).

-------------------------------------------------------
Density estimation via Gaussian finite mixture modeling
-------------------------------------------------------

Mclust EEE (ellipsoidal, equal volume, shape and orientation) model with 3 components:

log.likelihood n df BIC ICL
-1126.361 272 11 -2314.386 -2360.865

Clustering table:
1 2 3

130 97 45

Model selection based on the BIC selects a three-component mixture with common covariance matrix
(EEE). One component is used to model the group of observations having both low duration and low
waiting times, whereas two components are needed to approximate the skewed distribution of the
observations with larger duration and waiting times.

Figure 14b-d shows some of the available graphs in mclust for a bivariate density estimated by
GMM. These can be obtained with the commands:

> plot(dens, what = "density", data = faithful, grid = 200, points.cex = 0.5,
drawlabels = FALSE)

> plot(dens, what = "density", type = "image", col = "steelblue", grid = 200)
> plot(dens, what = "density", type = "persp", theta = -25, phi = 20,

border = adjustcolor(grey(0.1), alpha.f = 0.3))

Note that the same procedure using the function mclustDensity() can also be used to obtain
density estimates for higher dimensional datasets.
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Supervised classification

In supervised classification or discriminant analysis the aim is to build a classifier (or a decision rule)
which is able to assign an observation with an unknown class membership to one of K known classes.
For building a supervised classifier, a training dataset {(x1, y1), . . . , (xn, yn)} is used for which both
the features xi and true classes yi ∈ {C1, . . . , CK} are known.

Mixture-based discriminant analysis models assume that the density for each class follows a
Gaussian mixture distribution

fk(x) =
Gk

∑
g=1

πgkφ(x; µgk, Σgk),

where πgk are the mixing probabilities for class k (πgk > 0, ∑Gk
g=1 πgk = 1), µgk the means for component

g within class k, and Σgk the covariance matrix of component g within class k. Hastie and Tibshirani
(1996) proposed Mixture Discriminant Analysis (MDA) where it is assumed that the covariance matrix
is the same for all the classes but is otherwise unconstrained, i.e. Σgk = Σ for all g and k. The number
of mixture components is assumed known for each class.

Bensmail and Celeux (1996) proposed the Eigenvalue Decomposition Discriminant Analysis
(EDDA) which assumes that the density for each class can be described by a single Gaussian component
(i.e. Gk = 1 for all k) with the component covariance structure factorised as

Σk = λkDk AkD>k .

Several models can be obtained from the above decomposition. If Σk = λDAD> (model EEE), then
EDDA is equivalent to linear discriminant analysis (LDA). If Σk = λkDk AkD>k (model VVV) then
EDDA is equivalent to quadratic discriminant analysis (QDA).

Consider the UCI Wisconsin breast cancer diagnostic data available at http://archive.ics.
uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic). This dataset provides data for 569
patients on 30 features of the cell nuclei obtained from a digitized image of a fine needle aspirate (FNA)
of a breast mass (Mangasarian et al., 1995). For each patient the cancer was diagnosed as malignant
or benign. Following Fraley and Raftery (2002) we considered only three attributes: extreme area,
extreme smoothness, and mean texture. The dataset can be downloaded from the UCI repository
using the following commands:

> data <- read.csv("http://archive.ics.uci.edu/ml/machine-learning-databases/breast-
cancer-wisconsin/wdbc.data", header = FALSE)
> X <- data[,c(4, 26, 27)]
> colnames(X) <- c("texture.mean", "area.extreme", "smoothness.extreme")
> Class <- data[,2]

Then, we may randomly assign approximately 2/3 of the observations to the training set, and the
remaining ones to the test set:

> set.seed(123)
> train <- sample(1:nrow(X), size = round(nrow(X)*2/3), replace = FALSE)
> X.train <- X[train,]
> Class.train <- Class[train]
> table(Class.train)
Class.train
B M

238 141
> X.test <- X[-train,]
> Class.test <- Class[-train]
> table(Class.test)
Class.test
B M

119 7 1

The function MclustDA() provides fitting capabilities for the EDDA model, but we must specify
the optional argument modelType = "EDDA". The function call is thus the following:

> mod1 <- MclustDA(X.train, Class.train, modelType = "EDDA")
> summary(mod1, newdata = X.test, newclass = Class.test)
------------------------------------------------
Gaussian finite mixture model for classification
------------------------------------------------
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EDDA model summary:

log.likelihood n df BIC
-2989.967 379 12 -6051.185

Classes n Model G
B 238 VVI 1
M 141 VVI 1

Training classification summary:

Predicted
Class B M

B 237 1
M 19 122

Training error = 0.05277045

Test classification summary:

Predicted
Class B M

B 116 3
M 5 66

Test error = 0.04210526

The EDDA mixture model selected by BIC is the VVI model, so each group is described by a
single Gaussian component with varying volume and shape, but same orientation aligned with the
coordinate axes. Note that in the summary() function call we also provided the features and the known
classes for the test set, so both the training error and the test error are reported. A cross-validation
error can also be computed using the cvMclustDA() function, which by default use nfold = 10 for a
10-fold cross-validation:

> cv <- cvMclustDA(mod1)
> unlist(cv[c("error", "se")])

error se
0.052770449 0.007930516

EDDA imposes a single mixture component for each group. However, in certain circumstances
more complexity may improve performance. A more general approach, called MclustDA, has been
proposed by Fraley and Raftery (2002), where a finite mixture of Gaussian distributions is used within
each class, with number of components and covariance matrix structures (expressed following the
usual decomposition) being different between classes. This is the default model fitted by MclustDA:

> mod2 <- MclustDA(X.train, Class.train)
> summary(mod2, newdata = X.test, newclass = Class.test)
------------------------------------------------
Gaussian finite mixture model for classification
------------------------------------------------

MclustDA model summary:

log.likelihood n df BIC
-2937.586 379 29 -6047.361

Classes n Model G
B 238 EEV 2
M 141 VVI 2

Training classification summary:

Predicted
Class B M

B 236 2
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M 7 134

Training error = 0.0237467

Test classification summary:

Predicted
Class B M

B 114 5
M 2 69

Test error = 0.03684211

A two-component mixture distribution is fitted to both the benign and malignant observations, but
with different covariance structures within each class. Both the training error and the test error are
slightly smaller than for EDDA, a fact also confirmed by the 10-fold cross-validation procedure:

> cv <- cvMclustDA(mod2)
> unlist(cv[c("error", "se")])

error se
0.021108179 0.007648168

A plot method which produces a variety of graphs is associated with objects returned by MclustDA.
For instance, pairwise scatterplots between the features, showing both the known classes and the
estimated mixture components, are drawn as follows (see Figure 15a–c):

> plot(mod2, what = "scatterplot", dimens = c(1,2))
> plot(mod2, what = "scatterplot", dimens = c(2,3))
> plot(mod2, what = "scatterplot", dimens = c(3,1))

Another interesting graph can be obtained by projecting the data on a dimension reduced subspace
(Scrucca, 2014) with the commands:

> drmod2 <- MclustDR(mod2)
> summary(drmod2)
-----------------------------------------------------------------
Dimension reduction for model-based clustering and classification
-----------------------------------------------------------------

Mixture model type: MclustDA

Classes n Model G
B 238 EEV 2
M 141 VVI 2

Estimated basis vectors:
Dir1 Dir2 Dir3

texture.mean -0.00935540 -0.044384467 -0.0006607120
area.extreme 0.00049997 0.000071676 -0.0000088494
smoothness.extreme 0.99995611 -0.999014521 0.9999997817

Dir1 Dir2 Dir3
Eigenvalues 0.67718 0.28159 0.013928
Cum. % 69.61869 98.56810 100.000000
> plot(drmod2, what = "boundaries", ngrid = 200)

The graph produced by the last command is shown in Figure 15d. The two groups are largely separated
along the first direction, with the group of malignant cases showing a higher variability.

Finally, note that the MDA model is equivalent to MclustDA with Σk = λDAD> (model EEE) and
fixed Gk ≥ 1 for each k = 1, . . . , K. For instance, a MDA with two mixture components for each class
can be fitted as:

> mod3 <- MclustDA(X.train, Class.train, G = 2, modelNames = "EEE")
> summary(mod3, newdata = X.test, newclass = Class.test)
------------------------------------------------
Gaussian finite mixture model for classification
------------------------------------------------
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Figure 15: Pairwise scatterplots between variables for the Wisconsin breast cancer data (panels a–c).
Points are marked by cancer diagnosis (benign = •, malignant = �), whereas ellipses correspond to
covariances of mixture components estimated with MclustDA. Plot of data projected along the first two
estimated directions obtained with MclustDR, and uncertainty classification boundaries (d).

MclustDA model summary:

log.likelihood n df BIC
-2968.077 379 26 -6090.531

Classes n Model G
B 238 EEE 2
M 141 EEE 2

Training classification summary:

Predicted
Class B M

B 235 3
M 12 129

Training error = 0.03957784

Test classification summary:

Predicted
Class B M

B 113 6
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M 2 69

Test error = 0.04210526

Summary

mclust is one of the most popular R packages for Gaussian mixture modelling. Since its early
developments (Banfield and Raftery, 1993; Fraley and Raftery, 1998, 1999), mclust has seen major
updates through the years, which expanded its capabilities and features, increasing its popularity and
widening its area of utilisation.

Here we have presented the most salient new features introduced in version ≥ 5, namely new
covariance parameterisations, subspace data visualisation, different model selection criteria, bootstrap-
based inference and EM algorithm initialisation. We showed their application on a collection of
different datasets, pointing out their utility in different contexts.
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