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Quasicrystals: A New Class of Ordered Structures
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A quasicrystal is the natural extension of the notion of a crystal to structures with quasi-
periodic, rather than periodic, translational order. We classify two- and three-dimensional
quasicrystals by their symmetry under rotation and show that many disallowed crystal sym-
metries are allowed quasicrystal symmetries. We analytically compute the diffraction pattern
of an ideal quasicrystal and show that the recently observed electron-diffraction pattern of an
Al-Mn alloy is closely related to that of an icosahedral quasicrystal.

PACS numbers: 61.50.Em, 61.55.Hg, 64.70.Ew

Recently, extended icosahedral near-neighbor
bond orientational order (BOO) has been observed
in computer simulations of simple supercooled
liquids and metallic glasses at temperatures about
ten percent below the equilibrium melting point. '
This observation suggested the possibility of a
three-dimensional (3D) state with long-range
icosahedral BOO' but only short-range translational
order: the analog of the hexatic phase that has
been studied in two dimensions. The Landau ex-
pansion for the icosahedral BOO parameter was
shown to imply a first-order phase transition
(neglecting fluctuation effects) from an isotropic to
an icosahedrally oriented state. ' Nevertheless,
given that icosahedra are not space filling (i.e. , the
icosahedral group is not an allowed crystal point
group), it appeared unlikely that a state with
infinite-range icosahedral BOO could exist. Nelson
later argued that icosahedral BOO in flat space re-
quires disclination defects that can disrupt the
orientational order and he computed the maximum
range of BOO for a random arrangement of defects
with the minimum allowed density.

The 2D Penrose tiling4 5 offers a tantalizing
counterexample to these arguments. We find that
the vertices of a Penrose tiling form a nonperiodic
lattice with perfect long-range decagonal BOO even
though the decagonal group is not an allowed 2D
crystal point group. The lattice has a high density
of disclination defects that might disrupt the orien-
tational order, except that the defects are spatially
ordered such that the long-range BOO persists. The
lattice contrasts with the conventional (crystalline)
Frank-Kasper phases in which there is a low densi-
ty of defects and a limited range to the icosahedral

BOO. Nelson has suggested that the glass transi-
tion occurs as a supercooled liquid approaches a
Frank-Kasper phase. As a result of entanglement
of the defects, the liquid falls out of equilibrium
and forms a glassy state. In this sense, the Frank-
Kasper phase serves as a template for the "ideal"
(metallic) glass state. However, if a 3D icosahedral
BOO state analogous to the Penrose lattice exists, it
would not only represent a new phase of matter,
but it might also serve as a more natural template.

Motivated by this possibility, we began a long,
systematic investigation of the properties of the
Penrose lattice to see if other such lattices might
exist in 2D and 3D. We find that the Penrose lat-
tice is just one of an infinite set of 2D and 3D lat-
tices that exhibit the BOO and self-similarity prop-
erties of a crystal, but have quasiperiodic (QP),
rather than periodic, translational order. We term
such lattices "quasicrystals. " We find that the sim-
ple quasicrystals can be classified according to their
bond orientational symmetry and the minimum
number of incommensurate length scales that
characterize their QP translational order [By sim. -
ple quasicrystals or crystals we shall mean lattices
with BOO with the rotational symmetry of a regular
polygon or polyhedron; the further extension to ir-
regular polyhedra (the analog of monoclinic, triclin-
ic, etc.) and decorated lattices (fcc as opposed to
simple cubic) should be straightforward. ] This new
classification scheme is the natural extension of the
classification of simple crystals in 2D and 3D. We
find that for every allowed crystal BOO symmetry
there are an infinite number of quasicrystal lattices.
We further find that there is an infinite list of disal-
lowed crystal BOO symmetries that are allowed

1984 The American Physical Society 2477



VOLUME 53, NUMBER 26 PHYSICAL REVIEW LETTERS 24 DECEMBER 1984

quasicrystal symmetries.
Perhaps the most physically relevant example is

the 3D icosahedral quasicrystal. We have found
two polyhedra that can be packed to fill space in
only nonperiodic arrays such that the vertices form
a 3D icosahedral quasicrystal. We further find that
the diffraction pattern of the infinite, ideal simple
quasicrystal can be computed analytically. The pat-
tern is characterized by a self simila-r arrangement of
Bragg peaks (true 5 functions) which densely fill re
ciprocal space—very different from what one would
expect from a glass with long-range BOO.

We have used conjugate gradient static relaxation
techniques to show that a 2D state with long-range
decagonal BOO is (at least) locally stable for special
binary and ternary mixtures of Lennard- Jones
atoms or for a colloidal suspension of two types of
oppositely charged polystyrene (or latex) spheres
whose atomic radii and densities are in special ra-
tios. Steric hindrance to the formation of similar
structures in 3D is expected to be less. The elec-
tronic wave functions appear to obey a modified
Bloch theorem. We have also studied the electron-
ic density of states and the phonon spectrum of the
quasicrystal, both of which appear to exhibit a self-
similar sequence of gaps. These results will be
presented in separate publications.

By comparison of our computed diffraction pat-
tern of the icosahedral quasicrystal with the electron
diffraction pattern found by Shechtman et al. ,

' for
a rapidly spin-cooled alloy of 86% Al and 14% Mn,
it is apparent that the atomic arrangements in the
alloy must be closely related to the arrangement of
lattice points in the quasicrystal ~ The position of
each electron diffraction peak matches with the po-
sition of a peak in the calculated quasicrystal pat-
tern, and a hierarchy of intensities characteristic of
quasiperiodicity is observed to several orders. It is
intriguing to note that Shechtman et at. claim that
the phase transition to the peculiar alloy state is first

order, as would be predicted by Steinhardt et al. '
Whether the QP translational order is long range, as
in a 2D hexagonal crystal, or is short range, as in a
2D hexatic phase, will be determined by high-
resolution x-ray diffraction, although relating the
width of powder averaged x-ray diffraction peaks to
the QP translational correlation length is not
straightforward. 7 In either case, the symmetries of
the icosahedral quasicrystal will play a crucial role in
determining the structural and electronic properties
of the alloy.

The defining properties of a simple quasicrystal
lattice are as follows: (i) The distance between any
two lattice points is greater than some r ) 0. Every

lattice point lies within some distance 8 ) 0 of
another lattice point. (ii) The lattice is self-similar
in the sense that one can eliminate a subset of the
lattice points and obtain another quasicrystal lattice
with nearest-neighbor distances increased by a con-
stant factor. (iii) The lattice has perfect long-range
BOO. (iv) The lattice has QP translational order
with k linearly independent (incommensurate) lat-
tice spacings along each lattice vector direction. (A
simple crystal can be thought of as the degenerate
case of a k=1 quasicrystal, in which case, "quasi-
periodicity" reduces to periodicity. )

The lattice positions of a 2D (3D) simple k quasi-
crystal are given by a set of vectors, x, such that

x e;=x;„, x ei= x.„(x ek=xk .), (I)

where n, n' (and n") run over all the integers; e;
are unit vectors along the axes of a regular polygon
(polyhedron); i & j ( & k) and i runs from I to N,
where % is the number of axes of the polygon
(polyhedron). In this paper, we shall define the
BOO of a quasicrystal according to the polygon
(polyhedron) determined by the e;, even though
two different polygons (polyhedra) may ultimately
correspond to the same BOO rotational symmetry
group (as is the case, say for pentagonal and decag-
onal quasicrys tais) .

The x;„ for each i are given by the lattice posi-
tions of a discrete, one-dimensional (1D) k-

component QP lattice, i.e. , a 1D kquasicrystal. The
lattice points can be defined in terms of the se-
quence of k incommensurate intervals, r; (where i
runs from 1 to k), that separate neighboring points.
The sequence of intervals is characterized by a sub-
stitution law, r;=M;, r, , where M is a kx k non-
singular matrix with nonnegative integer matrix ele-
ments where the characteristic polynomial cannot
be factored into polynomials with rational coeffi-
cients. If each interval, r;, in a finite or infinite QP
sequence is replaced by a string of intervals, M; r, ,
one gets another QP sequence. The most famous
example of a 1D QP sequence is for k = 2,
Mi2= M2i = Mii =1, M22=0, which is the se-
quence studied by Fibonacci and is the basis of the
Penrose tiling. " In this case, the ratio of intervals
r~/r2 is equal to r. Beginning with a QP string of
intervals (e.g. , the one-element string, r&) and
iteratively substituting rir2 for each ri and ri for
each r2 in the string, one can generate another QP
string (e.g. , rtr2rtrtr2. . .). The set of all 1D quasi-
crystals that can be generated for fixed k and M
have the following properties: (1) Both the number
of intervals of any pair of incommensurate lengths
and the lengths of any two incommensurate inter-
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FIG. 1. Computed diffraction pattern for an ideal

icosahedral quasicrystal (displaying only peaks above

some given intensity). The circles are centered at the lo-

cation of Bragg peaks and have a radius proportional to
their intensity: (a) in a plane normal to a fivefold axis (a
characteristic feature is that the peaks lie along quasi-

periodically spaced lines oriented parallel to the faces of a

pentagon); (b) in a plane normal to a threefold axis.
From Eq. (2) it can be shown that the bright peaks of
equal intensity lie at the centers of the faces of a RT.

(2)

vals must be in ratios that are algebraic numbers of
degree k; that is, they satisfy a polynomial equation 0 0

with integer coefficients of degree k, but no lower.
For k ) 1 this is necessarily irrational, and so clear-
ly the quasicrystal cannot be periodic. (2) There o Q ~ ~ Q o

0 0 0
are no uncountable number of distinct k quasicrys-
tals, only a finite number of which have a distinct
"center. " Any finite sequence of intervals in one k 0 0 Q

quasicrystal appears an infinite number of times in
every other. (3) If one builds a QP lattice out to a
distance I., the sequence of intervals that may be

Q Q
added to extend the lattice is "rather restricted"
out to arbitrarily large distances beyond the edge of
the original lattice.

0 0 0 Q 0
All of these properties carry over to the 2D and

3D quasicrystals. The last would undoubtedly play
an important role in the nucleation and growth of

7 0 0
an atomic quasicrystal. 0

For a quasicrystal in greater than 1D there are the
additional restrictions required to have BOO and yet
maintain quasiperiodicity and self-similarity. We
have determined a set of conditions that is neces-
sary to satisfy all restrictions, but we have not yet
rigorously proven that the conditions are sufficient.

0 0 0 0
However, all known 2D and 3D quasicrystals satisfy
these conditions. We have shown that the condi-
tions are satisfied for all k for 2D and 3D quasicrys- 0

0 0 0 0
tais with a BOO that corresponds to an allo~ed sim-
ple crystal rotational symmetry. For all disallowed
crystalline symmetries in 2D constructed from

o 0 0
some regular polygon with Eedges, a quasicrystal is
possible for E=8, p, or 2p, where p is a prime
number greater than 3; then k = [E/2] for E odd
and [E/4] for E even, where [n] is the greatest in-
teger less than n. A similar argument can be used
for 3D to show that icosahedral, tetrahedral, and
octahedral quasicrystals are possible with k = 2.

Because of their possible relation to metallic
glasses, ' we have studied the 3D icosahedral
quasicrystal in some detail. The quasicrystal is gen-
erated by the same 1D QP sequence as the Penrose
tiling. We have generated a pair of polyhedra which
are the analog of the Penrose tiles; our polyhedra or
"bricks" can form space-filling volumes of infinite
extent, but only ones which are nonperiodic. The
resulting structure can be decomposed into overlap-
ping clusters of rhombic triacontahedra (RT).7 It is
our conjecture that for each k quasicrystal lattice
there is a set of k polygons (polyhedra) that can fill
the plane (space) only nonperiodically.

The diffraction pattern of a quasicrystal lattice is given by the Fourier transform, F(k), of $,5(x —x'),
where x ' are given by Eq. (1). For 3D,

F(k) = X F&(k u&k)F&(k ujkl)Ft(k ukj)
iQ j&k
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where u;ik= elx ek/[e; (el&& ek)]. The trans-
form is simply related to the Fourier transform of a
1D quasicrystal, Ft (k). We have proven that
Ft(k) is given by a countably infinite number of 8
functions with positions in reciprocal space that
densely fill the real line. The peaks obey a scaling
relation so that their positions, heights, and phases
are analytically calculable. For the Fibonacci se-
quence, for example, we find that the 5-function
peaks lie at k=2m. (m+ m' r)/J5, where 7 = (1
+JS)/2 is the "golden mean" and m and m' are
integers.

Substituting Ft(k) into Eq. (2), we can compute
the 3D diffraction pattern (see Fig. I).ts The pat-
tern is composed of Bragg peaks which densely fill

reciprocal space in a self-similar pattern. The posi-
tions of the diffraction peaks of the Al-Mn alloy ob-
served by Shechtman et al. ' correspond exactly
with Fig. 1, up to experimental resolution. This
very strongly suggests that the alloy not only has
icosahedral BOO, but is in a quasicrystal phase.
From our study of the icosahedral quasicrystal
bricks, we conjecture that an atomic arrangement
with quasicrystal symmetries should be less dense
than a dense-random-packed solid, with confined
vacant volumes distributed quasiperiodically
throughout the structure.

If real quasicrystalline materials exist (with short-
or long-range QP order), as suggested by Shecht-
man et al. , they are sure to possess a wealth of re-
markable new structural and electronic properties.
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