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Abstract

We prove that the ordinary generating function of Bell numbers sat-

isfies no algebraic differential equation over C(x) (in fact, over a larger

field). We investigate related numbers counting various set partitions (the

Uppuluri–Carpenter numbers, the numbers of partitions with j mod i

blocks, the Bessel numbers, the numbers of connected partitions, and the

numbers of crossing partitions) and prove for their ogf’s analogous results.

Recurrences, functional equations, and continued fraction expansions are

derived.
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1 Introduction

The Bell number Bn counts the partitions of [n] = {1, 2, . . . , n}. The sequence

of Bell numbers begins

(Bn)n≥1 = (1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, . . .)

and is listed in EIS [32] as sequence A000110. It is well-known (Comtet [9,

p. 210], Lovász [22, Problem 1.11], Stanley [34, p. 34]) that the exponential

generating function of Bn is given by

Be(x) =
∑
n≥0

Bnxn

n!
= eex−1.

From ex = (B′
e/Be)′ = B′

e/Be we obtain the algebraic differential equation

B′′
e Be − (B′

e)
2 −B′

eBe = 0.

In this article we prove that, on the other hand, the ordinary generating function

(abbreviated ogf ) of Bn,

B(x) =
∑
n≥0

Bnxn = 1 + x + 2x2 + 5x3 + 15x4 + · · · ,

satisfies no algebraic differential equation (abbreviated ADE ) over the field of

rational functions C(x). Our proof uses the fact that B(x) satisfies a simple

“functional” equation which we show to be incompatible with any ADE.

The method of functional equations applies to several other combinatorial

numbers related to Bn. In Section 2 we consider five more counting sequences

besides Bn: the Uppuluri–Carpenter numbers B±
n , the numbers Bj,i

n of the par-

titions of [n] having j mod i blocks, the Bessel numbers BB
n , the numbers Bco

n

of connected partitions, and the numbers Bcr
n of crossing partitions. While Bn,

B±
n , Bj,i

n , BB
n , and Bco

n have been investigated before, Bcr
n seems new. In Propo-

sitions 2.1–2.4, 2.6, and 2.7 we give functional equations for the corresponding
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ogf’s and/or relate them to B(x). We give also recurrences for the counting se-

quences. New results are the formulas (16), (18) (or (19)), (22), (24), (27), (28),

(29), (30), and (32). Using the functional equations, we give quick derivations

of continued fraction expansions. While the expansion (6) of B(x) differs from

that found by Flajolet [11], the expansion (21) of BB(x) coincides with that

found by Flajolet and Schott [13]. (In [11] and [13] the expansions are derived

by the general method of path diagrams due to Flajolet.) The expansions (12)

of B±(x) and (17) of B0,2(x) are new. As for the equation (1) (or (2)) for B(x),

it is easily seen to be equivalent with the well-known formulas (3) and (4), and

we do not claim any originality. However, we could not find an explicit mention

of it in any of the references that we consulted. (But the literature on Bell and

Stirling numbers is vast and many references remain that we did not check.)

Proposition 3.3 in Section 3 says, roughly speaking, that in any ADE satisfied

by the ogf’s B(x) and B±(x) all derivatives can be eliminated so that just

an algebraic equation is obtained. This is used in Theorem 3.5 to prove the

announced result and in fact a stronger one: B(x) and B±(x) satisfy no ADE

over the field C{x} of analytic Laurent series. Let N(x) =
∑

n≥0 n! · xn and

∗ be the Hadamard product of power series (the coefficientwise multiplication).

Lipshitz and Rubel [21, Proposition 6.3 (ii) and Remark 5.3] gave an example

of a power series F (x) which satisfies an ADE over C(x) but F (x) ∗ N(x)

does not. Theorem 3.5 provides another (somewhat simpler) example: since

B(x) = Be(x) ∗ N(x), one can take F (x) = Be(x). In Theorem 3.7 we show

that no Bj,i(x) satisfies an ADE over C{x} and that the ogf’s Bco(x) and Bcr(x)

satisfy no ADE over C(x). As for BB(x), in Theorem 3.11 we prove a result

weaker than the previous ones: BB(x) satisfies no ADE over C{x} of order at

most one. Our methods are mostly algebraic but Propositions 3.1 and 3.4 use

analytic arguments. In Section 4 we give some concluding comments and open
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problems.

2 Bell numbers and their relatives

A partition P of a set X is a collection of nonempty and mutually disjoint subsets

of X, called blocks, whose union is X. In all partitions that we consider here X is

a finite subset of N = {1, 2, . . .}. For a, b ∈ Z with a ≤ b and n ∈ N, the symbols

[n] and [a, b] denote the sets {1, 2, . . . , n} and {a, a+1, . . . , b}, respectively. Let

X ⊂ N, |X| = k ≥ 0, and the elements of X be 1 ≤ x1 < x2 < . . . < xk. The

inner spaces of X are the k−1 intervals [x1+1, x2−1], [x2+1, x3−1], . . . , [xk−1+

1, xk − 1]. The two outer spaces are [1, x1 − 1] and [xk + 1,∞). Alltogether X

has k + 1 spaces.

The Bell number Bn is the number of all partitions of [n] (or of any other

n-element set). The Stirling number (of the second kind) S(n, k) is the number

of the partitions of [n] with exactly k blocks. Clearly, Bn =
∑n

k=1 S(n, k). For

more information and references on Bn and S(n, k) see [9, 32], Branson [6], and

Pitman [24].

Proposition 2.1 The ogf of Bell numbers B(x) =
∑

n≥0 Bnxn = 1+x+2x2 +

· · · satisfies the equations

B(x) = 1 +
x

1− x
·B(x/(1− x)) (1)

B(x/(1 + x)) = 1 + x ·B(x). (2)

Proof. Any nonempty partition P of [n], n ∈ N, decomposes in the first block

A, 1 ∈ A ∈ P , and the possibly empty partition Q of [n]\A formed by the

remaining blocks. Let k = |
⋃

Q| = n− |A|. The elements of A split into k + 1

sequences, according to the spaces of
⋃

Q in which they lie. The only restriction
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on the sequences is that the first one is nonempty. Thus

B(x) = 1 +
x

1− x
·
(∑

k≥0

Bkxk · 1
(1− x)k

)
= 1 +

x

1− x
·B(x/(1− x)).

On the first line, the term x/(1−x) accounts for the first nonempty sequence of

elements of A, 1/(1−x)k accounts for the remaining k possibly empty sequences,

and Bkxk accounts for Q. Eq. (2) follows from (1) by the substitution x →

x/(1 + x). 2

Iterating (1), we obtain the classical expansion

B(x) =
∑
k≥0

xk

(1− x)(1− 2x) . . . (1− kx)
. (3)

One can go in the other way and derive (1) from (3): (3) is invariant to the

transformation given on the right hand side of (1). So (1) and (3) (and (2)) are

equivalent. The third equivalent form of (1) and (3) is the recurrence

Bn =
n−1∑
k=0

(
n−1

k

)
Bk, n ≥ 1 and B0 = 1, (4)

obtained by comparing in (1) the coefficients at xn or by a direct combinatorial

argument. It is well-known that the kth summand of (3) is just the ogf of

Stirling numbers:∑
n≥0

S(n, k)xn =
xk

(1− x)(1− 2x) . . . (1− kx)
. (5)

Iterating (1) in a different way, we derive a continued fraction expansion of

B(x). We start with the ogf Bir(x) of the irreducible partitions (these appear,

for example, in Lehner [20]) which are the partitions P of [n] such that for every

m ∈ [n− 1] at least one block of P intersects both intervals [m] and [m + 1, n].

We have B(x) = 1/(1−Bir(x)). By (1),

Bir(x) =
x

1− (1− x)Bir(x/(1− x))
.
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Iterating this equation and using again B(x) = 1/(1−Bir(x)), we obtain

B(x) =
1

1−Bir(x)
=

1

1−
x

1−
x− x2

1− x−
x− 2x2

1− 2x−
x− 3x2

...

. (6)

But this is not as neat as the expansion [11, p. 140].

The Uppuluri–Carpenter number B±
n is the difference between the number

of the partitions of [n] with an even number of blocks and the number of the

partitions with an odd number of blocks:

B±
n =

n∑
k=1

(−1)kS(n, k). (7)

We have

(B±
n )n≥1 = (−1, 0, 1, 1,−2,−9,−9, 50, 267, 413,−2180,−17731, . . .)

which is sequence A000587 of EIS [32]. These numbers were investigated by

Beard [3], Uppuluri and Carpenter [39], Kolokolnikova [18] (here appears the

term “Uppuluri–Carpenter numbers”), Subbarao and Verma [38], and Y. Yang

[42].

Proposition 2.2 The ogf B±(x) =
∑

n≥0 B±
n xn = 1−x+x3+ · · · of Uppuluri–

Carpenter numbers satisfies the equations

B±(x) = 1− x

1− x
·B±(x/(1− x)), (8)

B±(x/(1 + x)) = 1− x ·B±(x). (9)

Proof. By (5) and (7),

B±(x) =
∑
k≥0

(−x)k

(1− x)(1− 2x) . . . (1− kx)
.
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This expansion is invariant to the transformation given on the right hand side

of (8). Eq. (9) follows from (8) by the substitution x → x/(1 + x). 2

We will need (9) also in the form solved for B±(x):

B±(x) =
1
x

(
1−B±(x/(1 + x))

)
. (10)

It follows, completely analogously to the derivations of (4), that

B±
n = −

n−1∑
k=0

(
n−1

k

)
B±

k , n ≥ 1 and B±
0 = 1. (11)

Using (11) it is straightforward to prove that B±
n < 0 and B±

n > 0 hold for

infinitely many n ∈ N. In [42, p. 4] this fact is derived from more complicated

analytic considerations. It is open if ever B±
n = 0 for n > 2. See Canfield and

Pomerance [7] for a similar problem on S(n, k). Analogously to (6) we obtain

B±(x) =
1

1 +
x

1− 2x +
x− x2

1− 3x +
x− 2x2

1− 4x +
x− 3x2

...

. (12)

We define numbers related to B±
n . Let Bj,i

n , where j ∈ Z and i ∈ N, be

the number of the partitions of [n] whose number of blocks is congruent to j

modulo i:

Bj,i
n =

n∑
k=1

k≡j mod i

S(n, k). (13)

We set Bj,i
0 to be 1 if j ≡ 0 mod i and 0 else. Obviously, B±

n = B0,2
n − B1,2

n .

For example,

(B3,4
n )n≥3 = (1, 6, 25, 90, 302, 994, 3487, 15210, 92489, . . .).
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For i ∈ N and j ∈ Z we set Bj,i(x) =
∑

n≥0 Bj,i
n xn. Numbers Bj,i

n were

investigated by Lehmer [19] who gave for them recurrent relations and identities.

Proposition 2.3 Let, for a ∈ N and b ∈ Z, δb,a = 1 if b is divisible by a and

δb,a = 0 else. Let i ∈ N, j ∈ Z, R ⊂ Z with |R| = i be any system of all i

residues modulo i (e.g., R = [0, i − 1]), and l ∈ [0, i − 1]. Then we have the

equations

B(x) =
∑
k∈R

Bk,i(x) (14)

Bj+1,i(x) = δj+1,i +
x

1− x
·Bj,i(x/(1− x)) (15)

Bl,i(x) =
xl

(1− x)(1− 2x) . . . (1− lx)
(16)

+
xi

(1− x)(1− 2x) . . . (1− ix)
·Bl,i(x/(1− ix))

where in (14) B(x) is the ogf of Bell numbers and in (16) the first summand is

1 for l = 0.

Proof. Eq. (14) follows immediately from the definitions. By (5) and (13),

Bj,i(x) =
∑
k≥0

k≡j mod i

xk

(1− x)(1− 2x) . . . (1− kx)
.

Now (15) follows by considering the action of the substitution x → x/(1 − x)

on this expansion. Eq. (16) follows by the same way or it can be derived

combinatorially. The combinatorial derivation is a refinement of the proof of

(1). We take a partition P of [n] with l modulo i blocks and order the blocks by

their minima. The P ’s with l blocks are counted by xl/((1−x)(1−2x) . . . (1−lx))

(by (5)). If P has more than l blocks (thus at least i + l), we decompose it in

the partition A = {A1, . . . , Ai} consisting of the first i blocks and the partition

Q consisting of the remaining blocks.
⋃

A is split in k + 1 sequences, where

k = |
⋃

Q|, according to the spaces of
⋃

Q. The first sequence must be a
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partition with i blocks, which gives the factor xi/((1− x)(1− 2x) . . . (1− ix)).

The other k sequences are represented by words over the alphabet {1, 2, . . . , i},

which gives the factor 1/(1 − ix)k. The Q’s are counted by Bl,i
k xk. Summing

over k ≥ 0, we get (16). 2

Comparing in (16) the coefficients at xn, one can obtain a recurrence for Bj,i
n

that is similar to (4) but more complicated. Analogously to (6), we can derive

a continued fraction expansion for Bj,i(x). For brevity we indicate only the

case j = 0, i = 2 but the method is general. Let C = C(x) = x2 + · · · be

given by B0,2(x) = 1/(1 − C(x)) — notice that C(x) is not the ogf of the

irreducible partitions with even numbers of blocks — and T be the substitution

x → x/(1− x). Note that T j , j ∈ Z, is the substitution x → x/(1− jx). Then

(16) for l = 0 and i = 2 can be written as

B0,2 = 1 + Tx · T 2x · T 2B0,2.

This is transformed by B0,2 = 1/(1− C) to

C =
Tx · T 2x

1 + Tx · T 2x− T 2C
.

Iterating this equation, we obtain the continued fraction expansion

B0,2 =
1

1− C
=

1

1−
Tx · T 2x

1 + Tx · T 2x−
T 3x · T 4x

1 + T 3x · T 4x−
T 5x · T 6x

...

. (17)

The Bessel number BB
n is the number of the non-overlapping partitions of

[n], which are the partitions having no pair of blocks A,B such that minA <

minB < max A < max B. We have

(BB
n )n≥1 = (1, 2, 5, 14, 43, 143, 509, 1922, 7651, 31965, 139685, . . .)
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which is sequence A006789 of EIS [32]. Numbers BB
n were introduced by Flajolet

and Schott [13] who related their ogf to Bessel functions and coined their name.

Recently they resurfaced in the work of Claesson [8] as counting permutations

subject to both local and global restrictions.

Proposition 2.4 The ogf of Bessel numbers BB(x) =
∑

n≥0 BB
n xn = 1 + x +

2x2 + · · · satisfies the equations

BB(x) =
1

1− x−
x2

1− x
·BB(x/(1− x))

(18)

BB(x/(1 + x)) =
1 + x

1− x2 ·BB(x)
. (19)

Proof. Let P be a nonempty non-overlapping partition of [n], n ∈ N, and A

be its first block, 1 ∈ A ∈ P . If B ∈ P is any other block, then either maxB <

max A or min B > max A. Let the former blocks B form the partition P1 and

the latter blocks form the partition P2. P1 and P2 are both non-overlapping

and possibly empty. P decomposes uniquely in A,P1, and P2. Let k = |
⋃

P1|.

A is split into k + 1 sequences according to the spaces of
⋃

P1. If k = 0, there

is only one nonempty sequence of the elements of A. If k ≥ 1, the first and

the last sequence must be nonempty and the remaining k− 1 sequences may be

empty. The set
⋃

P2 follows after A and hence also after
⋃

P1. Thus

BB(x) = 1 +
(

x

1− x
+

x

1− x

(∑
k≥1

BB
k xk 1

(1− x)k−1

)
x

1− x

)
BB(x)

= 1 +
(

x +
x2

1− x
BB(x/(1− x))

)
BB(x). (20)

Solving this equation for BB(x), we obtain (18). Eq. (19) follows from (18) by

the substitution x → x/(1 + x). 2

Iterating (18), we obtain the continued fraction expansion of BB(x) due to

Flajolet and Schott [13, p. 424]:
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BB(x) =
1

1− x−
x2

1− 2x−
x2

1− 3x−
x2

...

. (21)

Comparing in (20) the coefficients at xn, we obtain the recurrence

BB
n = BB

n−1 +
∑

i, j, k≥0
i+j+k=n−2

(
i + j

j

)
BB

i BB
k , n ≥ 2 and BB

0 = BB
1 = 1. (22)

We say that two subsets of N cross if there are four numbers 1 ≤ a < b <

c < d such that a and c lie in one of the sets and b and d in the other. If

A,B ⊂ N and A precedes B, we write A < B. If A lies in an inner space of B,

we write A ≺ B. Clearly, if A,B ⊂ N do not cross and are disjoint, then A < B

or B < A or A ≺ B or B ≺ A. The crossing graph G(P ) of a partition P has

the blocks of P as its vertices and {A,B} is an edge of G(P ) if and only if the

blocks A and B cross. The noncrossing partitions P are those for which G(P )

has no edge. Note that every noncrossing partition is also non-overlapping but

the opposite is not in general true. An interesting survey article on noncrossing

partitions is Simion [31]. The number Bnc
n of the noncrossing partitions of [n]

is one of the many incarnations of the Catalan numbers:

Bnc
n =

1
n + 1

(
2n

n

)
,

see [31] or Stanley [35, Problem 6.19]. Here we are more interested in the

numbers of the connected partitions and of the crossing partitions. The former

are the partitions P with connected G(P ) and the latter are the partitions P

whose G(P ) has no isolated vertex (i.e., every block of P crosses another block).

We denote the number of the connected partitions of [n] by Bco
n and the number

of the crossing partitions of [n] by Bcr
n . Connected partitions were considered by
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Lehner [20], who showed that Bco
n equals the nth free cumulant of the Poisson

distribution with the parameter λ = 1, and earlier by Bender and Richmond [5]

and Bender, Odlyzko and Richmond [4] who investigated their asymptotics.

The following simple lemma helps to deal with crossing graphs of partitions.

Lemma 2.5 Let P be a partition of X ⊂ N and C1, C2 be two distinct connected

components of G(P ). Then (viewing C1 and C2 as sets of blocks of P ) the

disjoint subsets
⋃

C1 and
⋃

C2 of X do not cross. Thus
⋃

C1 <
⋃

C2 or⋃
C2 <

⋃
C1 or

⋃
C1 ≺

⋃
C2 or

⋃
C2 ≺

⋃
C1.

Proof. Let C1 and C2 be two nonempty disjoint sets of blocks of P such that

each G(Ci) is connected and
⋃

C1 and
⋃

C2 cross. This means that there are

four numbers a < b < c < d such that a, c ∈
⋃

C1 and b, d ∈
⋃

C2 (or C1

and C2 are switched). If every block of C1 lay completely in [b + 1, d− 1] or in

the complement of the interval, G(C1) would be disconnected. Hence there is a

block A1 ∈ C1 intersecting both [b + 1, d − 1] and its complement: there exist

α, β ∈ A1 such that α < b < β < d or b < α < d < β. By the same argument,

there is a block A2 ∈ C2 that intersects both the interval [α + 1, β − 1] and

its complement. But this means that the sets A1 and A2 cross and that there

is an edge in G(P ) between C1 and C2. So C1 and C2 cannot be two distinct

components of G(P ). 2

In particular, if P , C1, and C2 are as stated in the lemma and min
⋃

C1 <

min
⋃

C2, then
⋃

C1 <
⋃

C2 or
⋃

C2 ≺
⋃

C1. By this lemma, a partition P of

[n] is connected iff there is no interval I ⊂ [n], ∅ 6= I 6= [n], such that for every

block A ∈ P we have A ⊂ I or A ⊂ [n]\I.

Recall that for any power series F (x) = a1x + a2x
2 + · · · with a1 6= 0 there

is a unique power series G(x) = F (x)〈−1〉 = b1x + b2x
2 + · · · with b1 6= 0, the

compositional inverse of F (x), such that F (G(x)) = G(F (x)) = x.
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Proposition 2.6 The ogf Bco(x) =
∑

n≥0 Bco
n xn = 1+x+x2 + · · · of numbers

of connected partitions can be expressed in terms of the ogf B(x) as

Bco(x) =
x

(xB(x))〈−1〉 (23)

where 〈−1〉 denotes the compositional inverse. It satisfies the functional equation

x ·Bco(Bco(x)− 1)−Bco(x)2 + (1 + x) ·Bco(x)− x = 0. (24)

Proof. Let P be any partition of [n], with n = 0 and P = ∅ allowed, and C be

the first component of G(P ), 1 ∈
⋃

C. Let k = |
⋃

C|. By the previous lemma

and the remark after its proof, the remaining components of G(P ) split into k

groups according to the spaces of
⋃

C in which they lie (none of them lies in the

first space). The components in one group may form an arbitrary partition and

the groups are mutually independent. Thus, since C is a connected partition,

B(x) =
∑
k≥0

Bco
k xk ·B(x)k

xB(x)
x

= B(x) = Bco(xB(x)). (25)

Now (23) follows by substituting for x the power series (xB(x))〈−1〉.

We give an algebraic verification of (24) and then a combinatorial derivation.

Let U be the substitution x → (x/(1 + x)) · B(x/(1 + x)). Then, by (2) and

(25),

x ·Bco(Bco(x)− 1) U−→ x

1 + x
·B(x/(1 + x)) ·B(x)

Bco(x)2 − (1 + x) ·Bco(x) + x
U−→ 1

1 + x

(
B(x/(1 + x))2 −B(x/(1 + x))

)
.

By (2), the right hand sides are equal. Due to the inverse substitution, so are

the left hand sides. This gives (24).

Now we derive (24) combinatorially. For a connected partition P of X ⊂ N,

let a = min
⋃

P denote the first element and A ∈ P denote the first block:

14



a ∈ A. We consider the class of all partitions, called the D-partitions, which

arise from connected partitions P by deleting the first element a and marking

the elements of A0 = A\{a} by some label (so that they can be recognized).

Note that |A0| ≥ 1 whenever |
⋃

P | ≥ 2. If D(x) is the ogf of D-partitions, then

Bco(x) = 1 + xD(x). (26)

To obtain another relation between Bco(x) and D(x), consider a D-partition

D and the graph G0 that arises from G(D) by deleting the vertex A0. Let

C be any innermost component of G0, which means that
⋃

C �
⋃

C ′ for no

component C ′. It follows, since D originated from a connected partition P , that

at least one inner space of
⋃

C must contain an element of A0. We see that

D-partitions are exactly the partitions D obtained by the following recursive

construction: D is a concatenation of k ≥ 0 partitions R1, R2, . . . , Rk where⋃
R1 <

⋃
R2 < . . . <

⋃
Rk and for every i = 1, . . . , k either (i) Ri is one element

of A0 or (ii) Ri arises by taking a connected partition Q on l = |
⋃

Q| ≥ 2

elements and inserting in the l − 1 inner spaces of
⋃

Q independently l − 1

D-partitions, not all of them empty. Thus

D(x) =
∑
k≥0

(
x +

Bco(xD(x))− xD(x)− 1
D(x)

− (Bco(x)− x− 1)
)k

.

The first x in the summand accounts for the case (i) and the rest accounts for

the case (ii). We sum the geometric series and replace, by (26), xD(x) with

Bco(x)− 1. Further algebraic simplifications produce (24). 2

Comparing in (25) the coefficients at xn, we obtain the recurrence

Bco
n = Bn −

n−1∑
r=1

Bco
r

∑
i1,...,ir≥1

i1+···+ir=n

Bi1−1 . . . Bir−1 (27)

where n ≥ 1. Besides numbers Bco
n it involves Bn, which is a certain aesthetical
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blemish. Using (24), we obtain a recurrence purely in terms of Bco
n :

Bco
n =

n−1∑
r=2

Bco
r

∑
i1,...,ir≥1

i1+···+ir=n−1

Bco
i1 . . . Bco

ir
−

n−2∑
i=2

Bco
i Bco

n−i (28)

where n ≥ 3 and Bco
1 = Bco

2 = 1. We have

(Bco
n )n≥3 = (1, 2, 6, 21, 85, 385, 1907, 10205, 58455, 355884, 2290536, . . .).

Proposition 2.7 The ogf Bcr(x) =
∑

n≥0 Bcr
n xn = 1+x4+5x5+· · · of numbers

of crossing partitions can be expressed in terms of the ogf B(x) as

Bcr(x) =
1
x
·
(

(1− x) · (xB(x))〈−1〉

1− x− (xB(x))〈−1〉

)〈−1〉

(29)

or

Bcr(x) =
1
x

+
1

1− x ·

((
x− x2B(x)

1− x− xB(x)

)〈−1〉 )−1 (30)

where 〈−1〉 denotes the compositional inverse.

Proof. The derivation of (29) uses the same decomposition as that of (23).

Only B(x) is replaced with Bcr(x) because now P is a possibly empty crossing

partition, and Bco(x) is replaced with Bco(x)− x/(1− x) because now the first

component C must not be a single vertex. Thus

xBcr(x)
x

= Bcr(x) = (Bco(x)− x/(1− x)) ◦ (xBcr(x)). (31)

Substituting for x the power series (xBcr(x))〈−1〉, we have

(xBcr(x))〈−1〉 =
x

Bco(x)− x/(1− x)
.

Taking the inverse again and replacing Bco(x) according to (23), we obtain (29).

To derive (30), we employ another decomposition. We call a partition P

sequential if it is empty or if there are k ≥ 1 blocks A1, . . . , Ak in P such that

A1 < A2 < . . . < Ak and for every other block B of P we have B ≺ Ai for some
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i. Let P be any partition. Consider the induced subgraph H of G(P ) formed

by the components C such that |C| ≥ 2 and
⋃

C 6≺ A for every one-vertex

component A. It follows that H is a crossing partition and for every space of⋃
H the partition lying in it is sequential. Also, this decomposition of P into

a crossing partition H on l elements and l + 1 sequential partitions is unique.

Thus

B(x) =
∑
l≥0

Bcr
l xlF l+1

1 , F1 =
1

1− F2
, F2 =

x

1− xB(x)
.

Here F1(x) counts the sequential partitions lying in a space of
⋃

H. We obtain

the relation

xB(x) = F (x) ·Bcr(F (x)) where F (x) = xF1(x) = x · 1− xB(x)
1− x− xB(x)

.

Combining both equations, we get

F (x) = x · 1− F (x) ·Bcr(F (x))
1− x− F (x) ·Bcr(F (x))

.

Substituting for x the power series F (x)〈−1〉 and solving the result for Bcr(x),

we get (30). 2

We rewrite (31) as

xBcr(x)2 − (1 + x)Bcr(x)− (xBcr(x)− 1) ·Bco(xBcr(x)) = 0.

Comparing the coefficients at xn, we obtain the recurrence

Bcr
n = Bcr

n−1 +
n−2∑
i=1

Bcr
i Bcr

n−1−i +
n∑

r=1

(Bco
r −Bco

r−1)
∑

i1,...,ir≥1
i1+···+ir=n

Bcr
i1−1 . . . Bcr

ir−1 (32)

where n ≥ 2, Bcr
0 = 1 and Bcr

1 = 0. We have Bcr
1 = Bcr

2 = Bcr
3 = 0 and

(Bcr
n )n≥4 = (1, 5, 20, 84, 388, 1951, 10529, 60478, 367953, . . .).
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3 Power series and algebraic differential equa-

tions

The ring of power series with complex coefficients C[[x]] contains the subring

C{x} of analytic (or convergent) power series; C{x} consists of all power series

F (x) = a0+a1x+a1x
2+· · · which converge absolutely in a neighborhood of zero.

Besides the ring operations, C{x} is closed also under division (if defined), dif-

ferentiation and substitutions. The next proposition follows from the standard

results of algebraic geometry on local parametrizations of plane curves by the

Puiseux series. We found the exposition in Fischer [10, chapters 6 and 7] very

readable. Ruiz [29] contains further information on analytic approximations (M.

Artin’s approximation theorem).

Proposition 3.1 Suppose that F ∈ C[[x]] is algebraic over C{x}, that is,

A0F
n + · · ·+ An−1F + An = 0

holds for some n ∈ N and some analytic coefficients Ai ∈ C{x}, A0 6= 0. Then

F is analytic too. 2

The field of fractions of C[[x]] is the field of Laurent series C((x)) consisting

of all formal sums F (x) = akxk + ak+1x
k+1 + · · · where ai ∈ C and k ∈ Z.

For F 6= 0 the requirement ak 6= 0 makes the representation unique and we

denote this k as ord(F ). We set ord(0) = ∞. We write [xn]F to denote the

coefficient of xn in the Laurent series F and use similar notation for coefficients

in polynomials in two variables. The field of fractions of C{x} consists of all

F ∈ C((x)) such that xkF ∈ C{x} for some k ∈ N. For simplicity we denote

this field by C{x} as well. Proposition 3.1 holds also for F ∈ C((x)) and this

broader understanding of C{x}.
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An ADE (algebraic differential equation) over K of order k, where K is a

subfield of C((x)) and k ≥ 0 is an integer, is the differential equation

P (X, X ′, . . . , X(k)) = 0

where P (y0, y1, . . . , yk) is a polynomial over K in k+1 variables and X ∈ C((x))

is an unknown. If F ∈ C((x)) satisfies such an equation for some k, we say that

F is differentially algebraic over K. For k = 0 this simply means that F is

algebraic over K. A power series F ∈ C[[x]] is called D-finite (or holonomic) if

it satisfies a linear differential equation over C(x), that is, it satisfies an ADE

with P = α0y0 + · · · + αkyk, αi ∈ C(x) and αk 6= 0. See Stanley [33] and

[35, chapter 6] for the importance of this class of power series for combinatorial

enumeration.

It is clear from the preceding that the substitutions x → x/(1 − x) and

x → x/(1 + x) will play an important role. We denote the latter by S. For

F (x) ∈ C((x)) we write SF for F (x/(1+x)). S is an automorphism of the field

C((x)) and ord(SF ) = ord(F ) for every F . As for the differentiation, by the

chain rule SF ′ = (1 + x)2 · (SF )′. Also, for j ∈ Z the iteration Sj is just the

substitution x → x/(1 + jx).

Lemma 3.2 Let r ∈ Z and G, H ∈ C((x)) be such that G = 1 + (r − 1)x + · · ·

and ord(H) = r. Then the equation

F = G · SF + H (33)

has no solution F ∈ C((x)).

Proof. Let us try a generic solution F =
∑

n≥k anxn, k = ord(F ). We have to

satisfy the equation

∑
n≥k

anxn = (1 + (r − 1)x + · · ·) ·
∑
n≥k

an

(
x

1 + x

)n

+ brx
r + · · ·
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where br, ak 6= 0. Thus

akxk + ak+1x
k+1 + R1 = akxk + (−kak + (r − 1)ak + ak+1)xk+1 + R2

+ brx
r + R3

R1 = (−k + r − 1)akxk+1 + R2 + brx
r + R3

where ord(R1), ord(R2) ≥ k+2 and ord(R3) ≥ r+1. No F satisfies the equation

because for no k ∈ Z the orders in the last equation match. The order on the

left is always ≥ k+2. For k < r−1 the order on the right is k+1. For k = r−1

the coefficient in the bracket vanishes and the order is again r = k + 1. For

k > r − 1 the order is r ≤ k. 2

Now we consider the ogf’s of Bell numbers and of Uppuluri–Carpenter num-

bers.

Proposition 3.3 Let K be a subfield of C((x)) that contains C(x) and is closed

under the substitution S. If B(x), the ogf of Bell numbers, is differentially

algebraic over K, then B(x) is algebraic over K. The same holds for B±(x).

Proof. We proceed by induction on the order k of the ADE satisfied by B =

B(x). If k = 0, B is algebraic over K by the definition. We suppose that the

statement holds for all orders ≤ k and that B satisfies an ADE over K of order

k + 1. This can be written as

P (C,C ′) = 0

where C = B(k), P ∈ L[y, z] is a nonzero bivariate polynomial, and L is the

field K(B,B′, . . . , B(k−1)) (for k = 0 we set L = K). We deduce from this that

C = B(k) is algebraic over L. Then B satisfies an ADE over K of order at most

k and we are done by the inductive assumption.

We look first at the action of S on C and C ′. By (2),

SB = 1 + xB and SB′ = (1 + x)2(SB)′ = (1 + x)2B + x(1 + x)2B′.
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It follows easily by differentiation that for l ≥ 0

SB(l) = αl + βlB
(l) and SB(l+1) = γl + δlB

(l) + εlB
(l+1)

where the coefficients αl, γl ∈ K(B,B′, . . . , B(l−1)) and βl, δl, εl ∈ K satisfy

α0 = 1, β0 = x, γ0 = 0, δ0 = (1 + x)2, ε0 = x(1 + x)2 and

αl+1 = γl + δlB
(l),

βl+1 = εl,

γl+1 = (1 + x)2(γ′l + δ′lB
(l)),

δl+1 = (1 + x)2(δl + ε′l),

εl+1 = (1 + x)2εl.

Thus

SC = α + βC and SC ′ = γ + δC + εC ′

where α, γ ∈ L and β, δ, ε ∈ Z[x]. The field L is closed under S. The recurrences

show that β, δ, ε 6= 0, εβ−1 = (1+x)2, ε = x+ · · ·, and ord(δ) = 0, δ(0) = k +1.

We take the polynomial P (y, z), which vanishes on C,C ′, to be minimal in

the sense that b = degz(P ) is smallest among all such P and also the degree a of

[zb]P ∈ L[y] is smallest among all such P with z-degree b. If b = 0, C is algebraic

over L and we are done. We assume that b ≥ 1 and derive a contradiction. The

action of S on P (C,C ′) = 0 produces the identity

Q(C,C ′) = 0

where Q ∈ L[y, z] is given by

Q(y, z) = (SP )(α + βy, γ + δy + εz).

It follows, crucially, that Q is also minimal in our sense and [yazb]Q = βaεb(Sτ)

where τ = [yazb]P . Let ρ = βaεb(Sτ)τ−1. Consider the polynomial

R(y, z) = ρP (y, z)−Q(y, z).
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R(C,C ′) = 0 and hence R must be identically zero; otherwise it would contradict

the minimality of P (and Q). So P must satisfy the identity

ρP (y, z) = (SP )(α + βy, γ + δy + εz). (34)

We show that it is contradictory.

Let zd be the second largest power of z that appears in P with a nonzero

coefficient. It follows from (34) that the case d < b − 1 is impossible. Hence

d = b − 1. Let c = degy([zb−1]P ) and σ = [yczb−1]P . Comparing in (34) the

coefficients at yczb−1, we obtain the equation

ρσ = (Sσ)βcεb−1 if a + 1 < c (35)

ρσ = (Sσ)βcεb−1 + (Sτ)βabδεb−1 if a + 1 = c. (36)

(It follows from (34) that we cannot have a + 1 > c.) Dividing eq. (35) by

ρτ = βaεb(Sτ), we obtain the identity

στ−1 = S(στ−1) · βc−aε−1.

But ord(στ−1) = ord(S(στ−1)) (S preserves orders) and ord(βc−aε−1) = ord(βc−a−1·

βε−1) > 0 because ord(β) = 1 and βε−1 is a unit. We have a contradiction.

Manipulating (36) in the same way, we obtain the identity

στ−1 = S(στ−1) · βε−1 + bδε−1.

We have βε−1 = (1 + x)−2 = 1 − 2x + · · · and bδε−1 = b(k + 1)x−1 + · · ·.

Applying Lemma 3.2 with r = −1, F = στ−1, G = βε−1, and H = bδε−1, we

see that this identity is also contradictory. We have shown that b ≥ 1 always

leads to a contradiction.

For B±(x) the previous proof needs only minor adjustments: now β0 = −x,

δ0 = −(1 + x)2 and ε0 = −x(1 + x)2. Thus ε = −x + · · · and δ(0) = −(k + 1).

Everything else is as before, in particular εβ−1 = (1 + x)2 and ord(δ) = 0. 2
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To apply this proposition in combination with Proposition 3.1, we need to es-

tablish that B(x) 6∈ C{x} and B±(x) 6∈ C{x}.

Proposition 3.4 The power series B(x) and B±(x) are nonanalytic.

Proof. We begin with B±(x) and approach it by means of (8) and (10).

Suppose, for the contradiction, that B±(x) is analytic and has the radius of

convergence r > 0. By (8) (or by (9)), B±(x) cannot be a polynomial (take

x → ∞) and therefore |B±
n | ≥ 1 for infinitely many n ∈ N. So r ≤ 1. B±(x)

defines in the disc |z| < r an analytic function B±(z). Let α ∈ C, |α| = r, be a

singularity of B±(z) on the circle of convergence |z| = r. A simple calculation

shows that

{z ∈ C : |z| = r & | z
1−z | < r} = {z ∈ C : |z| = r & Re(z) < 1

2r2}

and

{z ∈ C : |z| = r & | z
1+z | < r} = {z ∈ C : |z| = r & Re(z) > − 1

2r2}.

If Re(α) < 0, we use (8) to continue analytically B±(z) to a neighborhood of

α, which contradicts the definition of α. For Re(α) ≥ 0 we use (10) to obtain

the same contradiction. Since α 6= 1 in the former case, α 6= −1 in the latter

case, and never α = 0, we need not worry about the poles z = −1, 0, 1 in (8)

and (10). For every location of α one of (8) and (10) leads to a contradiction.

Thus r = 0 and B±(x) is nonanalytic.

The same argument, using (1) and (2), applies to B(x). In fact, now we need

only (2) because α = r > 0 would be a singularity of B(x) if it were analytic

(by Pringsheim theorem). Alternatively, we can use Stirling numbers S(n, k)

and the set of words W (n, k) = {w ∈ [k]∗ : |w| = n & w uses every i ∈ [k]} to

give a lower bound to Bn. For every n ≥ k ≥ 1,

Bn ≥ S(n, k) =
|W (n, k)|

k!
≥ kn − k · (k − 1)n

k!
=

kn

k!
− (k − 1)n

(k − 1)!
.
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This shows again that B(x) is nonanalytic. 2

For |B±
n | no simple combinatorial lower bound seems available. Our proof gives

lim supn→∞ log |B±
n |/n = +∞. Subbarao and Verma [38] used the exponen-

tial generating function B±
e (x) = e1−ex

and proved, among other results, the

stronger bound lim supn→∞ log |B±
n |/(n log n) = 1 (in fact, they proved it for

more general numbers). Y. Yang [42] proved, among other results, that the se-

quence (|B±
n |)n≥1 is not eventually monotone, log |B±

n | ≤ log Bn−π2n/(2 log2 n)+

O(n(log log n)2/ log3 n), and #{n ≤ x : B±
n = 0} = O(x2/3) (but perhaps this

set has always just one element).

Theorem 3.5 The ogf B(x) of Bell numbers and the ogf B±(x) of Uppuluri–

Carpenter numbers satisfy no algebraic differential equation over C{x}.

Proof. C{x} contains C(x) and is closed under the substitution S. Suppose,

for the contradiction, that B(x) satisfies an ADE over C{x}. By Proposi-

tion 3.3, B(x) is algebraic over C{x}. By Proposition 3.1, it is analytic. But

this contradicts Proposition 3.4. The same for B±(x). 2

Proposition 3.1 is appealing and nice in its generality but it has a lengthy proof.

One can avoid it and prove the transcendence of B = B(x) and B±(x) over C{x}

directly as follows. Suppose, for the contradiction, that Bk+A1B
k−1+· · ·+Ak =

0 where Ai ∈ C{x} and k ≥ 1 is minimum. We can assume that k ≥ 2. The

substitution S and (2) give us another equation Bk + k+SA1
x Bk−1 + · · · = 0. If

k+SA1
x 6= A1, we subtract both equations and obtain a contradiction with k ≥ 2

or with the minimality of k. Else we have the equation SA1 = xA1 − k. It has

a unique solution A1 ∈ C((x)). The analytic continuation argument from the

proof of Proposition 3.4 shows that the solution is nonanalytic. So A1 6∈ C{x},

which contradicts the assumption A1 ∈ C{x}. The same for B±(x).
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If K is a subset of C((x)), we denote

AK = {F ∈ C((x)) : F satisfies an ADE over K}.

In the next proposition we collect the closure properties of AK needed to handle

the ogf’s Bj,i(x), Bco(x), and Bcr(x). These are standard results of differential

algebra (see, for example, Ostrowski [23, §5]) but for the reader’s convenience

we prove them here. We say that M ⊂ C((x)) is closed under substitutions if

F,G ∈ M , G(0) = 0, always implies F (G) ∈ M . Similarly, M is closed under

compositional inverses if F 〈−1〉 ∈ M whenever F ∈ M and F 〈−1〉 exists.

Proposition 3.6 1. For every differential subfield K of C((x)), AK is a (dif-

ferential) subfield of C((x)). 2. Let K be a differential subfield of C((x)) that

is closed under substitutions. Then F (G) ∈ AK whenever F ∈ AK and G ∈ K,

G(0) = 0. 3. AC(x) is closed under compositional inverses.

Proof. 1. First note that if F ∈ C((x)) satisfies an ADE over K of order

at most n, then every derivative F (n+1), F (n+2), . . . can be expressed rationally

over K in terms of F, F ′, . . . , F (n). Second, any n + 1 rational functions in

n variables A1, A2, . . . , An+1 ∈ L(y1, . . . , yn) (L is an arbitrary field) must be

algebraically dependent over L: P (A1, . . . , An+1) = 0 for some nonzero poly-

nomial P with coefficients in L. (The vanishing of P (A1, . . . , An+1) translates

to a homogeneous linear system whose unknowns are the coefficients of P . If

P has large degree, the system has more unknowns than equations.) Now we

suppose that F and G satisfy an ADE over K of order at most n and want

to show that also FG ∈ AK . By the Leibniz formula and the first remark,

(FG)(m) ∈ K(F, F ′, . . . , F (n), G,G′, . . . , G(n)) for every m ≥ 0. By the second

remark, FG, (FG)′, . . . , (FG)(2n+2) are algebraically dependent over K and thus

FG ∈ AK . Similarly for F + G and F/G.
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2. We suppose that F satisfies an ADE over K of order at most n, take

a G ∈ K with G(0) = 0, and we want to show that F (G) ∈ AK . Since

F (m) ∈ K(F, F ′, . . . , F (n)) for every m ≥ 0, by the assumption on K we have

that for every m ≥ 0 also F (m)(G) ∈ K(F (G), F ′(G), . . . , F (n)(G)). By the

chain rule, F (G)(m) ∈ K(F (G), F ′(G), . . . , F (n)(G)) for every m ≥ 0. So

F (G), F (G)′, . . . , F (G)(n+1) are algebraically dependent over K.

3. Suppose that F satisfies an ADE over C(x) of order at most n and F 〈−1〉

exists. Thus F (m) ∈ C(x, F, F ′, . . . , F (n)) for every m ≥ 0. Differentiating

(F 〈−1〉)′ = 1/F ′(F 〈−1〉), we express every (F 〈−1〉)(m), m ≥ 1, rationally over C

in terms of F ′(F 〈−1〉), . . . , F (m)(F 〈−1〉). So

(F 〈−1〉)(m) ∈ C(F 〈−1〉, x, F ′(F 〈−1〉), . . . , F (n)(F 〈−1〉))

for every m ≥ 0. It follows that F 〈−1〉, (F 〈−1〉)′, . . ., (F 〈−1〉)(n+1) are alge-

braically dependent over C(x). 2

Theorem 3.7 For every i ∈ N and j ∈ Z, the ogf Bj,i(x) satisfies no ADE

over C{x}. The ogf’s Bco(x) and Bcr(x) satisfy no ADE over C(x).

Proof. Let i ∈ N be fixed. Suppose that for some j, 0 ≤ j < i, Bj,i(x) satisfies

an ADE over C{x}. C{x} meets the hypotheses of 1 and 2 of Proposition 3.6

and x/(1− x) belongs to C{x}. Using (15) and 1 and 2 of Proposition 3.6, we

get that Bj,i ∈ AC{x} for every j ∈ [0, i− 1]. By (14) and 1 of Proposition 3.6,

we get B ∈ AC{x}. But this contradicts Theorem 3.5. As for Bco(x), by (23)

we have B(x) ∈ C(x, (x/Bco)〈−1〉). By 1 and 3 of Proposition 3.6, Bco ∈ AC(x)

would imply B ∈ AC(x), which is impossible. For Bcr(x) we argue similarly,

using (29) or (30). 2

It is a natural question if in the last theorem the result for Bco(x) and Bcr(x)

holds also for the wider field of analytic coefficients C{x}.
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We proceed to the last ogf, BB(x). The difficulty is that (18) and (19) are,

in contrast to the equations for B(x) and B±(x), nonlinear.

Proposition 3.8 The power series BB(x) is nonanalytic.

Proof. Let n ∈ N and Q = {C1, C2, . . . , Cm}, m ≤ n, be any partition of

[n + 1, 2n]; we have ordered the blocks so that minC1 = n + 1 < minC2 <

. . . < minCm. We set Cm+1 = · · · = Cn = ∅ and Ai = {i, 3n − i + 1} ∪ Ci,

i = 1, 2, . . . , n. P = {A1, . . . , An} is a non-overlapping partition of [3n] and

different partitions Q give different partitions P . Thus BB
3n ≥ Bn for every

n ∈ N and BB(x) is nonanalytic by Proposition 3.4. 2

We need a slight generalization of Lemma 3.2. Its proof is very similar and

is left to the interested reader.

Lemma 3.9 Let r ∈ Z and G, H ∈ C((x)) be such that G = 1 + (r − 1)x + · · ·

and ord(H) = r. Then the equation

F1 = G · SF1 + H + F2

has no solution F1, F2 ∈ C((x)) with ord(F2) ≥ ord(F1) + 2. 2

C((x)) is a subfield of the field of Puiseux series

C((x))P = {
∑

n≥kanxn/r : k ∈ Z, r ∈ N, and an ∈ C}.

C((x))P is the algebraic closure of C((x)) (see, for example, Fischer [10, The-

orem 7.2] or Walker [40]). A Puiseux series ρ(x) is analytic if ρ(xr) ∈ C{x}

for some r ∈ N. Analytic Puiseux series form the field C{x}P. In the proof of

Theorem 3.11 we need the result that C{x}P is the algebraic closure of C{x}

([10, Complement of Theorem 7.2]). This is a strengthening of Proposition 3.1.

The substitution S is an automorphism of the fields C((x))P and C{x}P and it

preserves order.
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Equations of the type P (F, SF ) = 0, where P ∈ C((x))[y, z] and F ∈ C((x))

is an unknown, play an important role in our approach. In (2) P is linear and

B(x) is the unique solution of (2) in C((x)); similarly for (9) and (16). In

(33) P is linear too but Lemma 3.2 tells us that in some situations there is no

solution. In (19) P is nonlinear and (19) has in C((x)) two solutions: BB(x) =

1+x+2x2+5x3+· · · and BB(x) = x−2−BB(−x) = x−2−1+x−2x2+5x3−· · ·.

One easily checks that BB(x) solves (19) by writting BB(x) = x−2 − MBB,

where M is the substitution x → −x, and using the relation SM = MS−1.

It is convenient to replace BB(x) with F (x) ∈ C((x)) given by

F (x) =
1

xBB(x)
(37)

because this change of variables turns (19) into the simpler equation

SF = x−1 − F−1. (38)

Eq. (38) can be written equivalently as F = UF where

UF =
1

x−1 − SF
. (39)

We extend the transformation U to C((x))P. Uρ is defined for every ρ ∈

C((x))P, except for ρ∗ = S−1x−1 = x−1 − 1, and U is a bijection between

C((x))P\{ρ∗} and C((x))P\{0}. For the proof of Theorem 3.11 we need to

know that the equations ρ = U jρ, j ∈ N, have in C((x))P only nonanalytic

solutions ρ.

Lemma 3.10 For every j ∈ N, the equation ρ = U jρ has in C((x))P exactly

two solutions: ρ = F (x) = 1/(xBB(x)) = x−1 − 1− x− 2x2 − 5x3 − 15x4 − · · ·

and ρ = F (x) = 1/(xBB(x)) = 1/(x−1−xBB(−x)) = x+x3−x4 +3x5−7x6 +

20x7 − · · ·. Both are nonanalytic.

Proof. By the above discussion, F and F are solutions of (38) and of ρ = Uρ.

Thus they solve also ρ = U jρ for every j ∈ N. F and F are nonanalytic since
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BB is (by Proposition 3.8). It remains to be shown that ρ = U jρ has in C((x))P

at most two solutions. This equation is equivalent to the system

Sρi = x−1 − ρ−1
i+1, i = 1, 2, . . . , j

where ρ1 = ρ and ρj+1 = ρ1 = ρ. Let ki = ord(ρi) ∈ Q. If kr > 1 for

some r, then the r-th equation of the system implies that kr+1 = 1 and the

remaining equations imply that all ki are equal to 1, which is a contradiction. If

kr < 1 for some r, then the (r − 1)-st equation implies that kr−1 = −1 and the

remaining equations imply that all ki are equal to −1. Thus either (i) all ki are

−1 or (ii) all ki are 1. For a Puiseux series η we let ford(η) denote the smallest

e ∈ Q\Z such that xe has in η a nonzero coefficient; we set ford(η) = ∞ if

η ∈ C((x)). Clearly, ford(Sη) = ford(η) and ford(η−1) = ford(η) − 2 · ord(η)

(for η 6= 0). Suppose that we have the case (i) and ford(ρi) < ∞ for some i. We

take the largest fractional order ford(ρr) < ∞. The (r − 1)-st equation gives

us ford(ρr−1) = ford(ρr) + 2, which contradicts the maximality of ford(ρr). In

the case (ii) we get a similar contradiction taking the smallest ford(ρi) < ∞.

Thus in the solution all ρi must be Laurent series. We denote, for n ∈ Z

and 1 ≤ i ≤ j, an,i = [xn]ρi. In the case (i) the equations imply a−1,i = 1

for every i. For n > −1 the comparison of the coefficients at xn in the i-th

equation gives us a relation P (a−1,i, . . . , an,i, a−1,i+1, . . . , an−2,i+1) = 0 where

P is an integral polynomial (depending on n but not on i) in which an,i appears

only as the monomial an,i. Thus all j an,i’s are uniquely determined by the

previously computed am,i’s, m < n and 1 ≤ i ≤ j, and in the case (i) there

is a unique solution in C((x)) (which must lie in Z((x))), namely ρi = F . A

similar argument shows that in the case (ii) there is a unique solution in C((x)),

ρi = F . 2
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Theorem 3.11 The ogf BB(x) of Bessel numbers satisfies no ADE over C{x}

of order at most one.

Proof. We replace BB(x) with the F (x) given by (37). It is clear that BB(x)

satisfies an ADE over C{x} of order at most one if and only if F (x) does.

We assume that P (F, F ′) = 0 for a nonzero polynomial P ∈ C{x}[y, z] and

derive a contradiction. Let b = degz(P ) be minimum. By Propositions 3.1 and

3.8, BB(x) is transcendental over C{x}. Thus F (x) is also transcendental over

C{x} and b ≥ 1. We make P monic in z: P (y, z) = zb + R(y)zb−1 + · · · where

R ∈ C{x}(y); now P ∈ C{x}(y)[z]. From (38) we have SF ′ = (1+x)2 ·(−x−2+

F ′/F 2). So the action of S on P (F, F ′) = 0 yields the identity Q(F, F ′) = 0,

where Q ∈ C{x}(y)[z] is given by

Q(y, z) = (SP )(α− 1/y, β + γz/y2)

with

α = x−1, β = −(1 + x)2/x2, and γ = (1 + x)2. (40)

Eliminating the power zb, we obtain the identity W (F, F ′) = 0 where W =

P −γ−by2bQ. Since degz(W ) ≤ b−1, W must be identically zero. In particular,

[zb−1]W = 0, which means that

γR(y)
y2

− bβ − (SR)(α− 1/y) = 0 (41)

where α, β, γ ∈ C(x) are given in (40), b ∈ N, and R = [zb−1]P ∈ C{x}(y).

Our task is now to show that no R satisfies (41).

Suppose, for the contradiction, that R ∈ C{x}(y) satisfies (41). Then R 6= 0

and R can be written as

R(y) = δ ·
∏k

i=1(y − ρi)ni∏l
i=1(y − ρk+i)nk+i

(42)

where δ ∈ C{x} is nonzero, ni ∈ N, and ρi are k + l mutually distinct analytic

Puiseux series. First we show that l = 0, that is, the denominator of R is 1.
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The substitution y → α− 1/y and the action of S in (41) transform the factor

y − ρ to α− y−1 − Sρ = −y−1 if ρ = ρ∗ = x−1 − 1 and to (Uρ)−1y−1(y − Uρ)

if ρ 6= ρ∗, where U is defined in (39). The factorization (42) is transformed to

(SR)(α− 1/y) = ε ·
∏k

i=1(y − Uρi)ni∏l
i=1(y − Uρk+i)nk+i

· ynk+1+···+nk+l−n1−···−nk (43)

where ε ∈ C{x} is nonzero and we use the convention that y − Uρi = 1 for

ρi = ρ∗.

Let M1,M2, and M3 be the sets of poles of R(y), y−2R(y), and (SR)(α−1/y),

respectively. Since the left hand side of (41) is identically zero, we must have

M2 = M3, including the multiplicities. M2 is M1 with possibly added 0 and,

by (43), M3 = {Uρ : ρ ∈ M1 & ρ 6= ρ∗} with possibly added 0. If ρ∗ ∈ M1,

then M1 ⊃ M = {U−1ρ∗, U−2ρ∗, . . .}. The set M is infinite because U−jρ∗ 6= 0

for every j ∈ N (clearly, ord(U j0) = 1 for every j ∈ N). This contradicts

the finiteness of M1 and thus ρ∗ 6∈ M1. Suppose that M1 6= ∅ and take an

arbitrary ρ ∈ M1. Since UM1 ⊂ M1, U is injective, and M1 is finite, we have

for some j ∈ N the cycle U jρ = ρ. By Lemma 3.10, ρ = F or ρ = F and ρ is

nonanalytic. But this contradicts the assumption ρ ∈ C{x}P (ρ = ρi for some

i, k + 1 ≤ i ≤ k + l). Hence M1 = ∅.

We have derived so far that R ∈ C{x}[y]. The multiplicity of 0 ∈ M2 is at

most 2 and the multiplicity of 0 ∈ M3 is, by (43) and Uρi 6= 0, deg(R). Thus

deg(R) ≤ 2 and

R(y) = A2y
2 + A1y + A0

for some Ai ∈ C{x}. Substituting this into (41), we obtain the system

γ ·A2 − α2 · SA2 − α · SA1 − SA0 − βb = 0

γ ·A1 + 2α · SA2 + SA1 = 0

γ ·A0 − SA2 = 0.
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We replace in the first two equations A2 with the expression A2 = S−1γA0

obtained from the third equation. Then, applying S−1 again, we express from

the first equation A1 in terms of A0 and substitute the expression in the second

equation. Using (40), we obtain this equation for A0:

B1 · S−2A0 + B2 · S−1A0 + B3 ·A0 + B4 · SA0 + B5 = 0

where

B1 =
x2

(1− 2x)2
, B2 =

x2 + x− 1
1− x

, B3 = −x2 − x + 1,

B4 = −x2(1− x)
(1 + x)2

, and B5 = b(2− x).

We recast the equation as

S−1A0 =
−B3

B2
·A0 −

B5

B2
− B1 · S−2A0 + B4 · SA0

B2
.

Note that the order of the third summand on the right is at least ord(S−1A0)+2.

Lemma 3.9, applied with r = 0, G = −B3/B2 = 1 − x and H = −B5/B2 =

2b + · · ·, tells us that the last equation has no solution F1 = S−1A0 ∈ C((x)).

We have arrived at a contradiction. 2

4 Concluding remarks

The identity Be(x) = B(x)∗ex (∗ is the Hadamard product), whose modification

B(x) = Be(x) ∗N(x) we mentioned in the introduction, leads to a quick proof

that B(x) is not D-finite. Differentiating Be(x) = eex−1, one sees easily that

Be(x) is not D-finite (this is stated in [35, p. 191] as an example). Clearly,

ex =
∑

n≥0 xn/n! is D-finite. Since the class of D-finite power series is closed

to the Hadamard product ([35, Theorem 6.4.12]), it follows that B(x) is not

D-finite. The same argument applies to B±(x) and Bj,i(x).
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The example of Lipshitz and Rubel [21] that we also mentioned in the intro-

duction is quite interesting: θ(x) = 1+2
∑

n≥1 xn2 ∈ AC(x) as proved by Jacobi

in 1847 (Jacobi [14], for the ADE satisfied by θ(x) see [35, p. 282] or Rubel

[27, p. 45]) but 1+2
∑

n≥1 n2! ·xn2 6∈ AC(x) since the growth of the coefficients

violates a bound derived by Mahler. For more information and problems on

ADE’s see Rubel [27, 28].

We conjecture that the ogf BB(x) of Bessel numbers is not differentially

algebraic over C{x}. Banderier et al. [1, Example 20] noted that BB(x) is

not D-finite because the asymptotics of BB
n , found in [13], is incompatible with

the possible growths of the coefficients of D-finite power series as determined in

Wimp and Zeilberger [41]. Is there an algebraic proof of this fact?

We mention two more applications of B(x). 1. Reducing (3) modulo any

given m ∈ N, we get an expansion of a rational function. It follows from this

that the sequence (Bn mod m)n≥0 is eventually periodic. But much more is

known on the modular behaviour of Bn, see Kahale [15] and Shparlinskiy [30]

and the references they give. 2. Let us call, for a given k ∈ N, a partition P

of [n] k-sparse if x − y ≥ k whenever x > y lie in the same block of P . Of the

B4 = 15 partitions of [4] only 5 are 2-sparse: 1/2/3/4, 13/2/4, 14/2/3, 1/24/3,

and 13/24. That 5 = B3 is not an accident. If B
(k|
n denotes the number of

k-sparse partitions of [n], then for n ≥ k always B
(k|
n = Bn−k+1. This was

proved by W. Yang [43] and earlier by Prodinger [25]; see also [34, Problem

1.4.29] and Prodinger [26]. One can easily prove B
(2|
n = Bn−1 by means of

(2): since B(x) = B(2|(x/(1 − x)) (every partition of [n] is uniquely obtained

by “blowing up” the elements of a 2-sparse partition of [m],m ≤ n), by (2)

indeed B(2|(x) = 1 + xB(x). Similarly, denoting B
B,(k|
n the number of k-sparse

non-overlapping partitions of [n], the equations BB(x) = BB,(2|(x/(1− x)) and
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(19) imply the identity

BB,(2|
n =

n−2∑
i=0

B
B,(2|
i ·BB

n−i−2 (n ≥ 2).

So (BB,(2|
n )n≥1 = (1, 1, 2, 4, 10, 27, 80, 255, 870, . . .).

Connected and crossing matchings are the corresponding partitions in which

all blocks have two elements. Connected matchings were investigated and enu-

merated by Stein [36] and others; see Klazar [17] or Flajolet and Noy [12] for

more references and results. Crossing matchings appear briefly in Stoimenow

[37, p. 217] (the condition of crossing — every chord crosses another chord —

is important in the investigation of Vassiliev knot invariants by chord diagrams,

see Bar-Natan [2]) and are enumerated also in [17]. In [17] we prove that the

ogf’s of connected and crossing matchings are not D-finite. It is a consequence

of the fact that these ogf’s, in contrast to the partition case, satisfy certain

ADE’s over C(x), in fact of order 1. Except for the class of noncrossing par-

titions, not much seems to be known about enumeration of partition classes

defined by forbidden substructures. For example, let us call a partition P of

X ⊂ N 3-noncrossing if G(P ) has no triangle. In other words, P has no three

mutually crossing blocks. What can be said about the numbers of 3-noncrossing

partitions of [n]? What is their asymptotics? Similarly one can consider the

numbers of k-noncrossing partitions, k ≥ 3. It follows from the more general

bounds in Klazar [16] that these numbers grow only exponentially. However,

the exact asymptotics or enumeration seem not to be known even for the case

of matchings.
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