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A mode-coupling theory for dense polymeric systems is developed which unifyingly incorporates the
segmental cage effect relevant for structural slowing down and polymer chain conformational degrees
of freedom. An ideal glass transition of polymer melts is predicted which becomes molecular-weight
independent for large molecules. The theory provides a microscopic justification for the use of the Rouse
theory in polymer melts, and the results for Rouse-mode correlators and mean-squared displacements
are in good agreement with computer simulation results.
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Polymeric materials often find applications as amor-
phous solids or glasses. During their processing, the
structural relaxation in polymeric melts plays an important
role because it affects transport and viscoelastic proper-
ties. An understanding of conformational dynamics is also
required for single-chain diffusional processes. Whereas
a number of phenomenological concepts have been in-
vented, no microscopic theory exists which successfully
explains the slow structural and conformational relaxations
of polymeric melts close to the glass transition, as, for
example, studied in detailed computer simulations of
model systems [1].

We present a first-principles theory for structural and
conformational dynamics of unentangled polymer chains
using the site formalism which has already provided a
good description of their static packing [2]. Building upon
the mode-coupling theory (MCT) for simple and low-
molecular systems [3–5], our macromolecular exten-
sion captures the segmental “cage effect” which causes a
(asymptotically) molecular-weight-independent ideal glass
transition driven by steric hindrance on microscopic length
scales. A decoupling of local collective structural re-
laxation from single-chain conformational fluctuations is
obtained, leading to a first-principles derivation of the
Rouse model [6]. This widely used model assumes a
chain to be in a Markovian heat bath, and therefore its
applicability requires a time-scale decoupling which our
theory achieves. Entanglement effects [6] are neglected
in our work because we do not ensure uncrossability of
chains and consider only local isotropic forces [7].

A system of n chains, consisting of N identical
monomers or segments, distributed with density r is con-
sidered. In the site formalism [8], the structural variables
are the monomer-density fluctuations for wave vector �q,
r

a
�q �

Pn
i�1 exp�i �q ? �ra

i �, where �ra
i denotes the position

of the ath monomer in the ith chain. Structural dynam-
ics shall be described by coherent density correlators,
Fab

q �t� � �r
a
�q �t��r

b
�q ��n. Here �· · ·� denotes canonical

averaging for temperature T . A single (or tagged)
polymer (labeled s) exhibits density fluctuations r

a
�q,s �
02-1 0031-9007�02�88(18)�185702(4)$20.00
exp�i �q ? �ra
s �, and correlators, Fab

q,s�t� � �r
a
�q,s�t��r

b
�q,s�,

characterize the single-chain dynamics.
We apply MCT equations in the site representation [5]

to flexible macromolecules, expecting them to capture in-
termolecular caging in polymeric melts. The required in-
puts are the static structure factors Sab

q � Fab
q �0�, wab

q �
Fab

q,s�0�, and the direct correlation functions cab
q [8]. There

are severe difficulties to solve the (N 3 N)-matrix MCT
equations for polymers because the degrees of polymer-
ization N of interest are large. The simplifications adopted
here are to neglect chain-end effects for cab

q [2], cab
q �

cq, and to consider the site-averaged correlator, Fq�t� �
�1�N �

PN
a,b�1 Fab

q �t�, which deals with the total monomer-
density fluctuations. This mean-field-like approximation
replaces the site-specific surroundings of a segment by
an averaged one. It is supported by the observation that
Sq � Fq�0� captures the static correlations on the segmen-
tal length scale [2].

We find a set of scalar equations for the normalized
coherent correlator fq�t� � Fq�t��Sq:

≠2
t fq�t� 1 V2

qfq�t� 1

V2
q

Z t

0
dt0 mq�t 2 t0�≠t 0fq�t0� � 0 , (1)

mq�t� �
1
2

Z
d �k V � �q; �k, �p�fk�t�fp�t� . (2)

Here V2
q � q2y2�Sq and V � rmSqSkSp� �q ? ��kck 1

�pcp�	2��2p�3q4 with y denoting the monomer thermal
velocity, rm � Nr, and �p � �q 2 �k. These equations are
formally identical to the ones for simple systems [3]. On
the other hand, one finds for the single-chain dynamics:

≠2
t Fq,s�t� 1 V2

q,sFq,s�t� 1

V2
q,s

Z t

0
dt0 mq,s�t 2 t0�≠t 0Fq,s�t0� � 0 , (3)

mab
q,s�t� �

X
c

wac
q

q2

Z
d �k Vs� �q; �k, �p�Fcb

k,s�t�fp�t� . (4)
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Here V2
q,s � q2y2w21

q and Vs � rm� �q ? �p�q�2Spc2
p�

�2p�3.
A traditional description of the single-chain dynamics

is in terms of Rouse modes [6]. For discrete chains,
Rouse-mode correlators are defined by Cpp 0�t� � � �Xp�t� ?
�Xp 0��3N with �Xp �

p
2�N

PN
a�1 �ra

s cos��a 2 1�2�pp�
N �. Since r

a
�q,s 
 1 1 i �q ? �ra

s for small �q, Cpp 0�t� can be
expressed as a linear combination of Fab

q,s�t� for q ! 0.
Here, it is neither assumed that Cpp 0�t� are diagonal nor as-
sumed that the decay is exponential. Therefore, our micro-
scopic theory can test the validity of the Rouse theory.

The polymers considered here shall be modeled as fol-
lows. First, chains are assumed to be Gaussian, for which
wac

q � exp�2q2ja 2 cjb2�6� with the statistical segment
length b. Second, each monomer is modeled as a hard
sphere of diameter d and mass m, and we set b � d.
All equilibrium properties are then specified by the pack-
ing fraction w � prmd3�6 and the degree of polymeriza-
tion N . Third, Sq and cq are evaluated from the polymer
reference-interaction-site-model theory [2]. Let us add that
the value of w can become larger than 1 for very dense
systems since corrections due to nonphysical intrapoly-
mer monomer overlap [9] are not taken into account in
this Letter. From here on, the units will be chosen so that
d � y � m � 1.

The derived MCT equations (1) and (2) exhibit an ideal
liquid-glass transition upon increasing w at a critical value
wc as discussed for simple systems [4,10]. The solid line
in Fig. 1 exhibits the resulting glass-form factors fc

q �
fq�t ! `� at wc for N � 10, and the dashed line exhibits
Sq multiplied by 0.15. The fc

q also measure the ampli-
tude of the slow structural relaxation in the liquid state.
Inspection of Eq. (2) shows that the liquid-glass transition
is driven mainly by the changes of Sq for qmax 
 7, where
fc

q is maximal, i.e., by local fluctuations connected to the
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FIG. 1. The solid line exhibits the glass-form factors fc
q at

w � wc for N � 10 along with the simulation result (circles)
for a similar system taken from Ref. [14]. The dashed line
denotes Sq multiplied by 0.15. The inset shows wc�N� rescaled
by winf

c � wc�N ! `� 
 1.309 as a function of log10N .
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average nearest-neighbor monomer distance (the cage ef-
fect). With varying q, fc

q oscillates in phase with Sq as
found in simple systems [4,10]. The circles denote the
result of molecular-dynamics simulation performed for a
similar system [11–14]. The agreement is semiquantita-
tive especially for q 
 qmax, which is the relevant q range
for the ideal glass transition [15]. The inset demonstrates
that wc�N� becomes independent of N for large N . This is
because the glassy arrest is driven by the local cage effect,
and the global chain size plays a gradually smaller role for
larger N [16].

For packing fractions w close to but below wc, correla-
tor fA�t� of any variable A coupling to density fluctuations
exhibits slow structural relaxation and decays in two steps:
the decay towards the plateau fc

A, followed by the decay to
zero (so-called a decay) [3,4]. Detailed analysis of fq�t�
and Fab

q,s�t� will be presented in later publications. Here,
only the Rouse-mode correlators Cpp 0�t� shall be studied.
Typically, their off-diagonal elements are found to be much
smaller (at most only a few percent) compared to the di-
agonal ones at all times. Therefore, the normalized diago-
nal elements, cp�t� � Cpp�t��Cpp�0�, shall be considered.
Figure 2 exhibits representative results for N � 10 for a
reduced packing fraction �w 2 wc��wc � 21022.

The curves shown in Fig. 2 do not clearly exhibit
the two-step relaxation scenario. This is because the
plateaus of cp�t� are so large, fc

p . 0.9, that only less
than 10% of the decay is left for the relaxation towards
the plateau. Thus, most of the relaxation of cp�t� occurs
in the a regime. Let us characterize the a time scale by
cp�tp� � fc

p�20. The corresponding a time scale tq max

shall be introduced for the coherent correlator fq�t�
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FIG. 2. Rouse-mode correlators cp�t� of p � 1 (solid line),
p � 5 (dashed line), and p � 9 (dotted line) for N � 10 and
�w 2 wc��wc � 21022. The horizontal lines mark the plateaus
fc

p . The inset shows the ratio tp�tq max of the a-relaxation times
(circles) and the stretching exponent bp (squares) as a function
of p. The dotted line denotes a fitting based on the formula
tp � z �12 sin2�pp�2N�.
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for q � qmax, characterizing the local dynamics of the
surrounding medium. The ratio tp�tq max is shown in the
inset as a function of p. For small p, the scales tp are
much larger than the local scale tq max.

The Rouse theory assumes that all dynamical correla-
tions in the surroundings are much faster than the single-
chain dynamics [6]. Since a polymer is surrounded by
identical polymers, the assumption of the time-scale sepa-
ration cannot be justified a priori. Our microscopic theory
verifies this central assumption. The Rouse theory pre-
dicts, within our units, tp � z�12 sin2�pp�2N �, where z

denotes the monomer friction. This formula, using z as
a fit parameter, is shown as the dotted line, and we found
z�tq max � 16.5.

The shape of cp�t� in the a regime is often characterized
by the stretching exponent bp of the Kohlrausch-law fit:
cp�t� ~ exp�2�t�t0

p�bp �. We found bp . 0.9 for all p, as
shown in the inset. For small p, bp is close to 1 due to the
large separation of the scales tp and tq max, as discussed
above. bp decreases as p increases since for large p
the scales tp become comparable to tq max. However, bp

remains close to 1 even for large p. This is because the
plateaus fc

p are high, as explained in Ref. [17]. Thus, all
our cp�t� exhibit nearly Debye relaxation as assumed by
the Rouse theory. Let us note that the found features for
cp�t� hold also for N � 100, and are in agreement with
simulation results [12].

Of interest are the monomer mean-squared displacement
(MSD) ga�t� � ���ra

s �t� 2 �ra
s �0��2� and the center-of-mass

MSD, gC�t�. Let us also introduce the monomer-
averaged MSD, gM �t� � �1�N�

PN
a�1 ga�t�. Figure 3 ex-

hibits gM�t� and gC �t� for N � 10 and 100 for �w 2 wc��
wc � 21022. For short times, the MSD exhibits ballistic
motion: gX �t� ~ t2 (X � M or C). As the time increases,
the MSD begins to be suppressed due to the cage effect
and there appears the so-called b regime, where gX �t�
is close to the square of the critical localization length,
gX �t� 
 6�rc

X�2. For this regime, there holds [3,4,18]

gX�t� � 6�rc
X �2 2 6hXG�t�, X � M, C , (5)

where G�t� denotes the b correlator and hX denotes the
critical amplitude. Thus, gM �t� and gC �t� cross their
plateaus 6�rc

X�2 at the same time. The value rc
M 
 0.077,

quantifying the monomer localization, for both N � 10
and 100 is consistent with Lindemann’s melting criterion.
rc

C is reduced by about 1�
p

N compared to rc
M , as expected

for independent motions of constituent monomers. The
asymptotic law (5) for each MSD is drawn as a dashed
line, and its range of validity is indicated by diamonds.
The trends in gX �t� up to the b regime are qualitatively
similar to the ones for a sphere in a simple system [18].

The increase of gX�t� above the plateau 6�rc
X �2 towards

the diffusion asymptote, gX �t� 
 6Dt with the diffusivity
D, is the a process of the MSD. In contrast to gC�t�, gM�t�
in this regime is significantly affected by chain connectiv-
ity since the segments participate in the conformational
185702-3
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FIG. 3. Double logarithmic presentation of the MSDs gM�t�
and gC�t� (solid lines) for N � 10 (upper panel) and 100 (lower
panel) for �w 2 wc��wc � 21022. The dashed lines denote the
asymptotic formula given in Eq. (5). The open diamonds mark
the points where the dashed lines differ from the solid ones by
10%. The dash-dotted lines exhibit the diffusion law, 6Dt. The
dotted lines show the power laws, �tx , with x specified in each
panel. The horizontal dotted lines from bottom to top succes-
sively mark the plateau 6�rc

C�2 for gC�t�, the plateau 6�rc
M �2 for

gM �t�, the radius of gyration R2
g, and the end-to-end distance

R2. The insets exhibit the ratio g1�t��gN�2�t�.

motion and most of the relaxation of cp�t� occurs here, as
explained above. As a result, there appears a subdiffusive
(�tx ) regime in gM�t�. For N � 10, the exponent x is
0.60, which is close to the value (0.63) found in the men-
tioned simulations [12]. For N � 100, we find x � 0.5,
as predicted by the Rouse model and by the asymptotic
evaluation of our theory. The different value for N � 10
can be attributed to finite N effects. Thus, we find a
strong polymer-specific effect for the beginning of the a

process, while no such effect is reflected in gM �t� up to the
b process.

The insets of Fig. 3 show the ratio of the MSD for end
and central monomers, g1�t��gN�2�t�. The ratio starts from
185702-3
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1 in the ballistic regime, exhibits a maximum for interme-
diate times, and tends to 1 in the diffusion regime. It is
seen that the ratio remains close to 1 also within the b
regime. This is because the dynamics here does not reflect
the chain connectivity, as explained above. The Rouse the-
ory predicts the maximum to be 2 within the time regime
where the monomer MSD exhibits the t1�2 law, i.e., in
the a regime. The result for N � 100 clearly indicates
this behavior, while the maximum for N � 10 is slightly
smaller (1.8) due to finite N effects. The shape of the ratio
for N � 10 in the b and a regimes is in semiquantita-
tive agreement with the mentioned simulation results [19].
Thus, the chain-end effect is properly taken into account
in our theory even though neglecting that effect for cab

q .
This is because the matrix structure of Eqs. (3) and (4) is
preserved for describing the single-polymer dynamics.

In summary, a first-principles theory for structural slow-
ing down of dense polymer systems has been presented
which also provides a microscopic derivation of the Rouse
model for unentangled chain melts. Chain connectivity is
seen to cause polymer-specific long-time anomalies of the
a process. We use the concept of an ideal MCT glass tran-
sition, familiar for simple liquids and colloidal suspensions
[20], and our results agree well with simulation studies of
simple (coarse-grained) polymer models. Our theory thus
provides insights into dynamical aspects typical for poly-
mer melts which are also observed in models [21,22] with
a more realistic local chemistry.
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