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SUMMARY 

A microscopic statistical dynamical theory of the slow dynamics of entangled macro- 
molecular fluids has been formulated at the level of effective generalized Langevin equa- 
tions-of-motion of a tagged polymer. A novel macromolecular version of mode-coupling 
theory is employed to approximately capture the cooperative motions of entangled poly- 
mers induced by the long range, self-similiar interchain correlations. Polymer integral 
equation methods are used to determine the required equilibrium structural input. Entan- 
glements arise due to time and space correlations of the excluded volume forces exerted 
by the surrounding matrix on a tagged macromolecule. A spatially resolved description 
of entanglement constraint amplitudes relates the fluctuating forces to fluid structure. 
Constraint relaxation proceeds via three parallel processes: probe center-of-mass transla- 
tion and shape fluctuations, and collective matrix relaxation. Asymptotic scaling law pre- 
dictions for the molecular weight and concentration dependences of transport coefficients 
and relaxation times of chain polymer solutions and melts are in qualitative agreement 
with the phenomenological reptation theory. Predictions for finite frequency properties 
such as anomalous diffusion, and shear stress and dielectric relaxation, are derived. 
Enhanced, power law dissipation for properties controlled by conformational relaxation 
is predicted, with the corresponding frequency scaling exponents in good agreement with 
experiments but differing from reptation behavior. For experimentally accessible chain 
lengths strong finite size corrections for the transport coefficients arise due to entangle- 
ment constraint porosity and constraint release. Successful quantitative applications to 
many experimental data sets suggest the theory provides a unified microscopic under- 
standing of the non-asymptotic scaling laws observed for the viscosity, dielectric relaxa- 
tion time, and solution self and tracer diffusion constants. Generalization to fractal 
macromolecular architectures allows semi-quantitative treatment of ring and spherical 
microgel melts, and tracer diffusion in gels. A theory for the influence of concentration 
fluctuations in entangled polymer blends and diblock copolymers has also been devel- 
oped. Self-diffusion in blends is quantitatively suppressed due to dynamical constraints 
associated with domain formation. Much stronger suppression of diffusion and chain 
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relaxation is predicted near and well below the order-disorder transition of diblock copo- 
lymer melts due to microdomain formation. New dynamical scaling laws are predicted, 
and quantitative agreement of the theory with recent measurements on polyolefin 
diblocks is demonstrated. Limitations of the theory, open problems, and possible future 
directions are discussed. 

I. Introduction 
The dynamics of solutions and melts composed of long chain polymers is very 

unusual due to the phenomenon of “entanglement”’-3). At the microscopic scale, 
entanglement arises as the dynamical consequences of chain connectivity and back- 
bone uncrossability due to intermolecular repulsive excluded volume forces. A dra- 
matic, nearly universal slowing down of long time conformational relaxation and 
transport processes occurs, and a rubber-like elastic response emerges over a wide 
intermediate time scale. New scaling laws for the degree of polymerization and con- 
centration dependences of transport coefficients and relaxation times are found, 
along with anomalous short time translational diffusion and extended power law fre- 
quency dependences of stress, dielectric, and other dynamic response functions. 
Crossovers between early timekmall displacement (short chain) “unentangled” 
dynamics, and longer timellarger displacement (long chain) entangled dynamics 
occurs in a manner which depends on nonuniversal features of molecular structure, 
polymer density, and the specific dynamic property of interest. Distinctive nonlinear 
rheological phenomena also emerge’-3). 

The entanglement phenomenon is not unique to long chain polymers. It also 
occurs for many different macromolecular  architecture^^^^), such as cyclic rings6), 
star-branched  polymer^^,^), rigid rods3’, comb and H-like molecules’), and even 
melts of non-interpenetrating microgel particlesg) or “rubber balls”. The key require- 
ment is simply a sufficiently dense collection of mutually repelling macromolecules, 
most often with a large number of internal degrees of freedom (“flexibility”). Many 
qualitative aspects of entangled dynamics, particularly at long times, depend on the 
global macromolecular architecture. However, short time features (e. g., rubbery pla- 
teau modulus), and some particular systems for all times (e.g., ring and chain 
melts6)), exhibit common, nearly architecture-independent behavior. Slow dynamics 
also occurs in more complex fluids such as polyelectrolytes’O’, where excluded 
volume and Coulombic forces are both present, and polymer blends”), self-assem- 
bling block copolymersI2), and associating polyrner~’~) (e. g., ionomers) where long 
range concentration fluctuations and (micro)domain formation can result in a strong 
coupling of thermodynamic and entanglement constraints. 

The traditional qualitative interpretation of the physical origin of entanglement 
phenomena is that a transient network emerges due to “topological interactions” 
amongst the long and interpenetrating random coils’”). The transient network struc- 
ture severely retards the conformational relaxation of individual chains. The slowing 
down phenomena are viewed as of purely dynamical origin, not related to any equi- 
librium structural constraints. Many phenomenological theories have been con- 
structed for the linear chain case based on strikingly different ansatzes for real space 
motion’-5’ 14-19). The elegant reptatiodtube theory of deGennes2), and its further 
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quantification and extension by Doi and Edwards3), is the most developed and 
widely applied approach. It focuses on the motion of a single chain in an effectively 
static field of “topological constraints” due to the surrounding polymers, the “tube”. 
A chain disentangles by a stochastic sliding motion. The hallmark of the tube model 
is the postulate of a type of dynamic localization into a reduced space (the static ran- 
dom walk tube), with escape via coherent anisotropic diffusion along its own 
(coarse-grained) contour. Many qualitative predictions of the simplest version of 
reptation theory are in good, or reasonable, accord with experiment5). The descrip- 
tion of several of the nonlinear rheological phenomena, and generalization of the 
tube ideas to entangled suspensions of rods and branched macromolecules, are parti- 
cularly noteworthy and useful3-’). Although widely accepted, there remain contro- 
versies about the literal veracity of the reptation idea and its  elaboration^^.'^). It is 
not our purpose here to focus on such issues, but several are worth mentioning. 

There are significant discrepancies between simple or “pure” reptation model pre- 
dictions and experiments on chain For example, the experimental shear 
viscosity’) and melt dielectric relaxation time2” scale with degree of polymerization, 
N, as NY with y = 3.5 2 0.2, self and tracer diffusion in solutions and gels as 
D - N-’ with x = 2.3-3,  the pre-terminal frequency dependence of the dielectric2’) 
and loss moduli do not agree with each other and are both much broader 
than the pure reptation prediction, and the surprising similiarity of viscoelastic prop- 
erties of melts of linear chains, (non-reptating) polymer rings, and/or non-fractal 
microgels (rubber balls)6p9). Many attempts over the past 20 years have been made 
to construct “extended” reptatiodtube models which incorporate alternative non- 
reptative motions based on guesses about the meaning of entanglements and the con- 
fining tube3-’). These include processes known as “contour length fluctuations” 3x 23), 

“reptons”24), “double reptation” 25), “constraint re lea~e”~) ,  “tube dilatiodplastiza- 
tion” 26) , and “nematic or orientational coupling”27). All such mechanisms are 
viewed as corrections to the basic reptation picture, and usually serve to weaken the 
rigid tube constraint and enhance relaxation for chains of non-infinite length. Each 
phenomenological idea has been formulated in multiple manners by different work- 
ers, with empirical parameters of sometimes vague microscopic meaning which 
enter as adjustable constants for fitting data. The question of whether such elabora- 
tions are physically reasonable, and have “explained” the behaviors not properly 
described by pure reptation, is a subjective matter. The similarity of the viscoelasti- 
city of melts of chains, rings, and microgels appears particularly difficult to recon- 
cile within a reptation framework’). 

Pure reptation is a highly nontrivial statement at the level of the N-body dynamics 
of a tagged chain. Despite several  attempt^^^-^'), it has never been derived from fun- 
damental principles, and hence it is difficult to a priori know its range of validity or 
limitations. Moreover, due to its highly phenomenological character, descriptions of 
entanglement at the level of the time-dependent intermolecular forces cannot be 
addressed. Moreover, prediction of the influence of liquid structure on dynamics is 
not attainable or requires extra assumptions (e. g., reptation + scaling ansatz for solu- 
t i o n ~ ~ ’ ~ ) ) .  Computer simulations can at present only treat lightly entangled fluids 
which are inadequate for definitively testing the reptation hypothesis at the chain 
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trajectory l e ~ e l ’ ~ ’ ~ ’ ) .  Clever experiments based on birefringence, dichroism, or neu- 
tron reflectivity have attempted to detect anisotropic motions of labeled 

Unfortunately, since both isotropic and anisotropic motions produce 
measurable signals, conclusions concerning the importance of reptative motion 
involve quantitative data analysis and model fitting, and are thereby difficult to 
unambiguously inter~ret~’-~~).  Visual microscopy experiments3’) in solution are also 
subject to a number of potentially complicating features. 

The recent interesting phenomenological approaches by Herman17), and Douglas 
and Hubbard”), emphasize the importance of many chain, non-reptative cooperative 
isotropic motions. They challenge the common assumption that the dominant contri- 
bution to stress is of single chain origin. The Douglas and Hubbard theory is built on 
the concept of “dynamically correlated motion of clusters of chains”. Novel predic- 
tions are made for the dependence of transport coefficients and response functions 
on polymer fractal and spatial dimensions’8). 

Over the past eight years, we have developed, and widely applied, a novel micro- 
scopic statistical dynamical theory of entangled macromolecular A long 
term goal is to provide a unified approach to treat all the systems described above 
within a common theoretical framework. By “microscopic”, we mean constructing a 
theory formulated at the level of segmental intermolecular forces from which 
observable dynamical properties can be deduced. This philosophy stands in strong 
contrast to essentially all other phenomenological attempts to describe entangled 
dynamics based on ansatzes about chain motion and topological constraints. A guid- 
ing (but speculative) idea is that entanglement effects may emerge as a natural con- 
sequence of the unique equilibrium structural correlations of fluids composed of 
macromolecules, such as the self-similiar, architecture-dependent intra- and inter- 
molecular correlations on intermediate length scales. In particular, intermolecular 
pair correlations must possess a “correlation hole” of spatial range of order macro- 
molecular size due to the combined constraints of polymer connectivity and inter- 
molecular excluded volume As is done for other slow dynamics pro- 
blem?’) such as caging”) and glass formation”) in colloidal and atomic fluids, criti- 
cal phenomenas3* 54), diffusion in disordered media and fracton dynamics5’), and 
some aspects of biopolymer dynamics56), the goal is to approximately compute the 
dynamical consequences of structural constraints as encoded in ensemble-averaged 
fluctuating force time correlations, or memory functions, which describe the statisti- 
cally-averaged influence of many body caging on the motion of single macromole- 
cules. 

Major theoretical progress in describing the equilibrium structure of macromole- 
cular fluids has occurred over the past decade based on generalizations of nonpertur- 
bative integral equation methods57). The most developed and widely applied 
approach is the “Polymer Reference Interaction Site Model” (PRISM) theory of 
Curro and Schweizers7), which is based on the small molecule RISM theory of 
Chandler and AndersenS8). A prediction of PRISM theory for the intermolecular car- 
bon-carbon radial distribution function in a polyethylene melts9) is shown in Fig. 1. 
As in any dense liquid, there is system-specific structure on local scales. However, 
strong solvation shells are not present due to the inherent thermal conformational 
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Geometrically, ideal polymer chains are low density fractal objects in the sense that 
the single coil density is of order NIR; - N-'I2. This feature implies copious inter- 
penetration, or "entanglement", of = N ' I2 different chains in a 3-dimensional spheri- 
cal volume of radius R, . There also exists an of order N'" spatially correlated "con- 
tacts" between a pair of entangled chains. Based on the known monomer volume 
and chain statistics of polyethylene, these geometric features imply roughly 100 
mutually entangled chains in a high molecular weight melt of N = 10000. 
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The general behavior of the numerical results in Fig. 1 are qualitatively well 
described by the analytic predictions of PRISM theory based on a simplified Gaus- 
sian thread model of polymer chains57v60): 

Here, r, - @$)-I is the (nonuniversal) density fluctuation screening length, p is the 
segmental number density, g is the statistical segment length, and r, = R,/2“* is the 
universal correlation hole length scale. This behavior of g(r) is analogous to a fluid 
near a critical point where local packing is unaffected as the correlation length 
diverges (r, + 00 as N + a). The obvious difference is that an entangled polymer 
melt is not near a thermodynamic critical point since the collective density fluctua- 
tions are noncritical and very small. However, entanglement is a phenomenon asso- 
ciated with the excluded volume forces between segments on different chains. Thus, 
g(r) is the relevant structural property required to describe interchain forces. On 
rather general physical grounds one might then expect that such long range spatial 
correlations would induce highly cooperative motions which could be the origin of 
slow entangled dynamics. The unentangled-entangled crossover degree of polymeri- 
zation, Ne,  would roughly correspond to when the correlation hole regime in g(r) 
emerges. Alternatively, for long highly entangled chains the crossover length scale 
r, (or a time scale t,) would roughly correspond to when segments have been dis- 
placed a distance where the self-similiar interchain packing correlations emerge. 
Strong renormalization of the N-dependences of the conformational relaxation time 
and transport coefficients would be associated with the correlation hole length <, - 
N’”a, while intermediate time anomalous diffusion and power law stress and dielec- 
tric relaxation would emerge due to the self-similiar packing which controls the fluc- 
tuating interchain forces in the fluid. 

The qualitative physical scenario sketched above is what the polymer mode-coup- 
ling (PMC) theory attempts to mathematically capture36). It is based on the presump- 
tion of isotropic, correlated many segment motions which are the dynamical conse- 
quence of the spatially long range intermolecular correlations between interpenetrat- 
ing, fractal-like macromolecules in a dense fluid state. Such a viewpoint is in strong 
contrast with the purely dynamical “topological entanglement” perspective2. ’). 
However, it has much in common with our modem understanding of other slow 
dynamics problems such as critical phenomena, fracton dynamics, caging in simple 
fluids, and the glass transitions&5s). It is important to realize that mode-coupling 
theories have led to a microscopic understanding of several fluid dynamical pro- 
blems (e.g., the latter two) where both structure and dynamics are dominated by 
hard core repulsive forces. 

At a technical level, mathematical tractability of PMC theory requires significant 
“pre-averaging” approximations. In particular, an isotropic cage-averaged descrip- 
tion is employed to describe a single macromolecule embedded in a dense polymer 
fluid. N coupled, nonlocal, and non-Markovian linear generalized Langevin equa- 
tions (GLE) are derived to describe the motion of a tagged or probe macromolecule 
influenced by entanglement caging effects. Linearity of the GLE’s ensures analytic 
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tractability, and corresponds to the assumption that the Rouse normal modes3) 
remain “good” even in entangled fluids. Thus, PMC theory may be viewed as a 
form of harmonic effective medium theory which may, or may not, be a literally true 
description of individual macromolecule trajectories. Isotropy-enforcing pre-aver- 
aging does not a priori preclude the theory from describing the experimentally mea- 
surable ensemble-averaged properties of entangled isotropic polymer fluids. How- 
ever, prediction of some physical properties might be compromised by a cage-aver- 
aged theory, and the ability to describe reptation in the anisotropic motion sense is 
not possible within such a theoretical framework. Recent work by Kawasaki29) has 
attempted to combine the PMC approach with reptation concepts as formulated by 
Hess2*). However, this work remains at a tentative, preliminary stage. We suspect 
chain motion in real entangled chain fluids involves significant isotropic and aniso- 
tropic components, so pure reptation and PMC theory perhaps represent limiting 
descriptions. 

This feature article has multiple goals. (i) Present an overview of the fundamental 
physical and mathematical content of PMC theory, including the underlying assump- 
tions and approximations. (ii) Discuss the key qualitative analytic predictions in the 
limit of high molecular weight. (iii) Describe progress in quantitative applications to 
experiments, including analytic and numerical treatments of the very important 
finite size corrections. (iv) Clearly identify the similarities and differences of PMC 
and reptatiodtube theories. (v) Provide suggestions for future experiments and/or 
simulations to probe untested predictions of the theory. 

PMC theory is mathematically demanding, involving techniques unfamiliar to 
most polymer scientists and many physicists. Moreover, it represents a very uncon- 
ventional approach to the entanglement problem. Here, we choose to present the key 
results largely without derivation, but provide new intuitive arguments and interpre- 
tations of the physical content of PMC theory. We hope such a presentation style 
will make PMC theory more accessible to the polymer community, particularly 
experimentalists. The detailed mathematical analysis can be found in the original 
papers3M8), along with a description of equilibrium PRISM theory5’). The presenta- 
tion will largely, but not completely, follow the historical development. 

The remainder of the paper is structured as follows. The general formulation of 
PMC theory for linear chain homopolymer solutions and melts, and the qualitative 
predictions for the coupled GLE’s and memory functions, is given in section 11. 
Large N ,  asymptotic scaling predictions for chain melts and solutions are discussed 
in section 111. Section IV describes the incorporation of the very important finite N 
fluctuation corrections in the theory at a simplified, physically-transparent analytic 
level. Model calculations, and detailed quantitative applications to experimental 
data, are also presented. Generalization to treat tracer diffusion in gels and networks 
is described in section V. A numerical version of PMC theory, which approximately 
treats finite N corrections and the unentangled-entangled crossover, is described in 
section VI. Generalization of PMC theory to entangled fluids composed of interpe- 
netrating fractal architectures is the subject of section VII. Section VIII describes 
recent generalizations to treat the coupling of thermodynamic and entanglement 
constraints in homopolymer blends and self-assembling diblock copolymer melts. 
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The paper concludes in section IX with a discussion of present limitations of the 
theory, open problems, and possible future directions. 

11. General formulation of a statistical dynamical theory 

In the spirit of the classic Rouse, Zimm, and reptation theories’”), the PMC the- 
ory focuses on deriving effective equations-of-motions for a single tagged polymer 
dissolved in a macromolecular fluid matrix. Consider first the simplest case of a 
one-component homopolymer fluid composed of linear chain polymers of identical 
elementary units or “sites”. This case is relevant to melts, and also solutions under 
the standard simplification of representing the solvent molecules as a vacuum or 
increased free volume. Theta and good solvent conditions can be treated, but hydro- 
dynamic interactions are assumed fully screened and thus 

The polymers are modeled as a linear sequence of interaction sites, which in the 
most general case interact intramolecularly and intermolecularly via site-site pair 
potentials of arbitrary form. Rigid constraints, such as a fixed nearest neighbor bond 
length, are not considered. The general theory described below could be taken as the 
starting point to treat local polymer dynamics. However, for the entanglement pro- 
blem we shall adopt the standard coarse-grained Gaussian bead-spring chain 
model3). Very local dynamics (inside a segment scale a) are treated as irreversible 
and characterized by a friction constant, lo, with white noise fluctuating forces in 
the Rouse model3’ spirit. 

A. Projection operator analysis and GLE’s 

The most general approach employs a phase space projection operator scheme 
within a Mori-Zwanzig framework5’) to derive effective generalized Langevin equa- 
tions (GLE) for the N tagged polymer segments36). Since this projection is based on 
the most general single molecule N-body field, intramolecular and intermolecular 
forces are rigorously separated. Further simplification occurs by making the stan- 
dard Brownian overdamped assumption that inertial effects are irrelevant and seg- 
ment velocites relax very rapidly compared to the segment displacements ( r , ( t ) ) ,  a 
= 1,2, .... N. The resulting N coupled GLE’s represent a non-Markovian set of force 
balance equations36) 

Here, w ( r ( t ) ) ]  is the many body potential of mean force which includes the bare 
intrachain pair interactions plus the condensed-phase-induced component, lo is the 
“bare” friction constant describing irreversible frictional processes on the micro- 
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scopic scale andfa(t) is the corresponding white noise random force, F$(t) is the 
projected fluctuating “random force” on the segmental scale where, schematically, 
Q = 1 - P with P a projection operator onto the most general N-body single polymer 
field, and r$ is a tensorial matrix of segmental scale intermolecular fluctuating 
forces which evolve via the projected time evolution operator. The latter quantity 
plays the role of a memory function tensor, and contains all many body information 
about entanglement forces. The product of constraining delta functions implies the 
memory function is also a functional of the entire N-body polymer trajectory, in 
both real and projected dynamical space. The effective caging forces at time t 
require dynamical knowledge at all earlier times. The exact GLE’s are both nonMar- 
kovian and extremely nonlinear, and thus are entirely intractable. 

We believe that the proper description of an anisotropic reptative type motion 
requires retaining the tensorial, N-body nature of the memory function. At present, 
tractable approximations to achieve this are unknown. Thus, a “pre-averaging”, or 
mean field cage, approximation was adopted by Schweizer corresponding to factor- 
izing the forces and constraining delta functions in Eq. (2.1). Physically, this means 
the dependence of the memory function on the instantaneous N-body trajectory of 
the tagged polymer is ignored, which rigorously results in a set of GLE’s of isotropic 
form36) 

where p = (k,T)-’ is the inverse thermal energy. The memory function is now a diag- 
onal tensor, and is not a functional of the instantaneous polymer trajectory. How- 
ever, ray( t )  is an N x N matrix which describes the ensembled-averaged statistical 
correlation between the total force exerted at t = 0 by all the matrix polymers on 
tagged polymer segment a with the corresponding total force exerted on tagged 
polymer segment y at a later time t. Thus, it still contains the full (intractable) many 
body physics. 

Eq. (2.2) remains nonlinear if the potential of mean force is not harmonic. How- 
ever, adopting the standard Flory ideality idea yields a quadratic form, W = (312) 
/ 3 ’ d 2 C a ( t a  - ra+l)2. Eq. (2.2) then becomes 

where Ks = ~ P ’ v - ~  is the entropic spring constant connecting statistical segments, 
and the standard continuum description of the chain has been adopted3). Formally, 
Eq. (2.4) is of a linear, non-Markovian, generalized Rouse form with the bare fric- 
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tion constant replaced by a time-dependent matrix of fluctuating force correlation 
functions Tay(t). Nonlinearity could still be implicitly present if the memory function 
is treated self-consistently, i. e. as a functional of ensemble-averaged correlations 
involving segmental coordinates evolving via the true dynamical evolution operator. 
However, we shall not consider such a case in this paper. Thus, the Rouse normal 
modes3), rp = N-’J:da cos(pndtV) r, with p = 0,1,2, ..... N ,  are employed, which 
describe cooperative polymer motions of a characteristic wavelength ( N / P ) ~ ’ ~ O .  
They remain “good” modes in the sense the GLE’s are diagonalized by them if chain 
end effects are ignored. 

[OF+ l f d r T p ( t  - r ) L  dr dz (’) + Ks($-)2rp(t)  =fp(t) +FF(t)  (2.5) 

rN 

The Rouse mode diagonalization yields exact results in the long chain limit (effec- 
tively periodic boundary conditions are Eqs. (2.4)-(2.6) are also 
directly derivable based on the tagged polymer positions and velocities as the pri- 
mary slow variables, although the definition of the projected fluctuating random 
forces would be formally modified36361’. From a technical point of view, use of a 
linear GLE approach seems nearly unavoidable for the high polymer problem due to 
the analytic intractability of handling N coupled, nonlinear, non-Markovian (colored 
noise) stochastic differential equations. 

The cage-averaging type approximation, and attendant isotropic dynamics 
description, precludes using Eqs. (2.4)-(2.6) to describe a symmetry-broken aniso- 
tropic reptative type motion. However, the latter can only be discussed for the 
motion of a single tagged chain based on a single set of initial conditions. Any 
amount of averaging must destroy anisotropy. That is, averaging over the initial con- 
ditions of a specific tagged polymer, or averaging over all chains in the bulk sample, 
will restore isotropy. The latter situation is what is generally relevant for experi- 
ments. 

The generalized Rouse form also implies a stochastic Gaussian process descrip- 
tion. This feature may restrict the theory from properly describing nonlinear and/or 
spatially-resolved time correlation functions if the true dynamics is not well- 
approximated by a Gaussian process. However, linear time correlation functions of 
experimental interest should be much less sensitive to the Gaussian nature of the 
theory. These are expressable in terms of the normal mode time correlation func- 
tions, Cp(t) = (rp(0) - r,(t)), which follow from Laplace transformation (variable z )  
of Eqs. (2.5) as 

We note that effective Gaussian type GLE theories are common in many areas of 
condensed matter chemistry and physics such as isomerization and chemical reac- 
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tion dynamics, solvation dynamics, vibrational relaxation, and tunneling pro- 
blems6'). For the entangled polymer problem, a Gaussian type approach is obviously 
an uncontrolled approximation, but one might hope it is useful since the tagged 
polymer interacts simultaneously with a very large number of other polymer chains, 
of order N'" for ideal coils. Thus, central limit theorem arguments could be 
invoked, as they often are for chemical dynamics problems involving dipolar forces 
where the solute interacts with a large number of solvent molecules. Alternatively, 
for the problem of electronic states in disordered materials where the wavefunctions 
are strongly localized, progress can be made for (experimentally observable) statisti- 
cally-averaged properties using effective medium type theories based on a deloca- 
lized state description and frequency-dependent self-energies6'). 

An advantage of the linear GLE description of Eq. (2.4) is that it naturally reduces 
to the well known Rouse theory for sufficiently small N and/or polymer density. For 
future reference, we recall some key results of the Rouse theory corresponding to 
@(t) = ray@) = 0 in Eq. (2.4). The simple Langevin equations of motion are3) 

Zero frequency properties such as the self-diffusion constant, D, the shear viscosity 
(presumed of intramolecular stress origin), 7, the relaxation time of normal mode p ,  
zP ,  and the longest relaxation or Rouse time, 7 R ,  are 

In contrast to atomic, molecular or colloidal fluids, Rouse theory assumes interchain 
contributions to the stress are negligible relative to the single polymer contributions. 
On intermediate time scales, 70 + t 4 7 R ,  the intrachain stress relaxation modulus 
G(t), and segmental mean square displacement, follow fractional power laws, while 
the center-of-mass motion is Fickian 

Rouse theory describes rather well experiments and computer simulations in short 
chain unentangled melts. It also is generally assumed to apply at short times/displa- 
cements in entangled polymer fluids'-3), although systematic deviations have been 
experimentally documented'. 22). 

As a simple chain model, pair decomposable hard core interactions between seg- 
ments on different (Gaussian) polymers are adopted. For simplicity, the hard core 
diameter, d, is set equal to the statistical segment length, 6, which in general depends 
on temperature and polymer density in solutions. This coarse-grained model is not 
expected to yield quantitative predictions in an a priori absolute magnitude sense. 
However, it should be capable of predicting relative chemical trends, polymer con- 
centration dependences, and dependences on polymer architecture, N, time, etc. 
Further progress requires the development of an approximate theory of the memory 
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function matrix, ray ( t ) ,  describing segmental scale excluded volume force time cor- 
relations. r a y ( t )  involves 4-body static and dynamic correlations (2 segments each 
on the tagged chain and matrix polymers), and predictions for all observable proper- 
ties follow from it. We describe first an oversimplified model based on dynamic per- 
turbation theory. 

B. Renormalized Rouse theory and entanglement onset 

The Renormalized Rouse (RR) approach developed by Schweizer adopts the sim- 
plest possible approximation for the dynamics of the memory function, and works 
directly at the level of the bare excluded volume forces36). Based on a superposition 
factorization of 4-body time correlation functions, and employing a Fourier repre- 
sentation in terms of a wavevector variable k,  one  obtain^^^.^') 

Here, g(a)  is the intermolecular pair correlation, or radial distribution, function eval- 
uated at the contact distance where the hard core forces act, S(k) = w(k) + ph(k) is 
the collective liquid structure factor, w,,(k) = exp(-@&a - y 1/6) is the partial intra- 
chain structure factor for segments a and y ,  w(k) = N-’C,,o,,(k) is the single chain 
structure factor (normalized so that w(k) = N), p is the number density of polymer 
segments, and j , ( x )  is the first spherical Bessel function. Time-dependent informa- 
tion enters via normalized dynamic structure factors, or propagators, evolving via 
projected dynamics: the intrachain partial dynamic structure factor F$(k, t )  and its 
collective analog Fzll(k, t ) .  Eq. (2.11) provides a direct connection between the 
memory functions and equilibrium structure. The integration over wavevector can 
be interpreted as the contribution associated with dynamical processes on a length 
scale 2 d k ,  which decays in a parallel fashion via single polymer and collective 
liquid motions. 

A schematic illustration of the force correlations, and the length scales which 
enter the memory function, is given in Fig. 2. The strength of the contact excluded 
volume forces exerted on the two tagged polymer segments a and y are quantified 
by the factors of g(a) ,  and these forces are spatially correlated by the intrachain and 
collective correlation functions way and S, respectively. The density fluctuation 
screening length tP is short in a dense fluid, thereby requiring all 4 interacting seg- 
ments to be spatially close at t = 0. Such a 4-body configuration represents an 
“entanglement” in the theory, and is spatially realized for tagged polymer sites 
widely separated along the chain due to the connectivity correlations of random 
walks and the “long range self-contacts” in 3-dimensions. 

Explicit predictions require approximations for the dynamic propagators. The RR 
theory adopts the simplest approach of employing Rouse dynamics. This is in the 
spirit of a short time, or perturbative, approach at the level of the memory functions, 
and is a rough analog of the Enskog theory of simple fluids based on independent 
binary collisions36* 50). For the single chain propagator, a simplification is invoked: 
Fay(k,t) FR(k,t)  = coherent single chain propagator. This approximation is accu- 
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Fig. 2. Schematic illustration of the force correlations exerted by the matrix polymers 
on a tagged tracer chain, and the characteristic length scales which influence the entan- 
glement friction memory functions. Two tracer segments a and p, spatially correlated by 
w up to the tracer size, R,, interact via excluded volume pseudopotentials or direct corre- 
lations, C, with two matrix segments which are spatially correlated via the collective den- 
sity fluctuation structure factor S. The system-specific, N-independent length scales are: 
segment length, G, hard core diameter, d, the screening or mesh length, $, and the 
dynamic entanglement length, b r, 

rate for intermediate and long timenength scales3). In practice, the dynamic Random 
Phase Approximation expression is employed63) 

F ~ ( / c ,  t )  E exp[-k2t/(B&,w(~))] (2.12) 

This form is adequate since it correctly describes the relation between k and t in the 
intermediate (segmental displacement dominated) and Fickian (center-of-mass dis- 
placement dominated) regimes. There are several possible approximations for the 
collective p r o p a g a t 0 2 ~ ~ ~ ) :  (i) literal short time approximation, (ii) Vineyard-type 
approximation F~~~~ F ~ ,  or (iii) an effectively “frozen matrix” approximation of 
Fcoll P 1. Experience in simple liquids suggests the Vineyard approximation reliably 
describes, in a qualitative sense, timekpace collective correlations (“caging”) on 
molecular scales, although it fails in the hydrodynamic regime5’). For the entangled 
polymer problem, R, and the dynamical crossover length scale r, are the relevant 
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“molecular” lengths associated with macromolecular caging, not the kR, 4 1 hydro- 
dynamic scales. For the case where the tagged and matrix polymers have identical 
degrees of polymerization, approximations (ii) and (iii) lead to qualitatively identi- 
cal behavior when employed in Eq. (2.11). Thus, we adopt the “frozen matrix” 
approximation for simplicity, corresponding to the assumption that the Puctuating 
excluded volume force time correlations relax viu collective tugged polymer Rouse 
motions. 

Employing Eqs. (2.11) and (2.12) in Eqs. (2.5) and (2.6) results in an approximate 
theory for the time and p-mode dependent friction. As discussed elsewhere, the p-  
dependence of the memory function does not play a major role in determining most 
of the predictions of RR t h e ~ r y ~ ~ , ~ ~ ) .  Thus, for simplicity the p-dependence is 
ignored here, and RR theory reduces in form to a Rouse theory with an additional 
non-Markovian frictional force 

(2.13) 

where A[(t) is given by Eq. (2.11) with the replacement w,,(k) + o ( k ) .  Interestingly, 
this time dependent memory function displays a regime of fractional power law 
decay: A[(t) - [ o ~ ( ~ o / t ) - 3 / 4  for intermediate time scales T ,  4 t 4 T ~ ,  and hence 
modifies the Rouse dynamics on intermediate length scales a 4 r G R, . t, is a cross- 
over time from bare Rouse to RR dynamics which is discussed below. The strength 
of the additional friction enters via the dimensionless structural parameter I+V = 
pa3 g2(d>S(0), which is proportional to the segmental scale mean square excluded 
volume force exerted by the matrix polymers on a tagged polymer segment. The 
fractional power law, or time fractal, behavior of the memory function arises from 
several physical features of intermediate scale correlations and dynamics: liquid 
homogeniety S(k) S(O), self-similiar correlations o ( k )  - ( k ~ ) - ~ ,  and Brownian 
decay of fluctuating forces as ln(FR(k,t)) - -k2t’”, or ln(FR(k,t)} - -k4t based on 
the Akcasu form of Eq. (2.12). 

There are many consequences of the time-dependent excluded volume force fric- 
t i ~ n ~ ~ ) .  In the long time Markovian regime, the zero frequency part of the RR fric- 
tion constant is proportional to w(N2/Ri) - I+vN‘”. The N-dependent enhancement 
factor is of geometric origin, being proportional to the number of contacts between a 
pair of random coil chains in 3-dimensions, which are dynamically correlated until 
the chains have diffused a distance of order the radius-of-gyration or correlation 
hole length scale. Mathematically, this factor arises from k G R;’ scale contributions 
to the time integral of AC(t) associated with the la - ~ 1 % -  1 contributions of segments 
widely separated in a chemical interval sense. The corresponding RR predictions for 
the longest chain relaxation time, viscosity, and diffusion constant are all modified 
by this factor 

(2.15) 
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where “a” is a property-specific numerical constant of order unity and So S(k=O) .  
Relaxation and diffusion on intermediate time scales, z, 4 t 4 zR, are also slowed 
down. For example, the chain-averaged segmental and center-of-mass displace- 
ments, g(t) = ((r - r(t))2) and gCM(t) = ((RCM - RCM(t))2), respectively, can be deter- 
mined from the Laplace space relations 

(2.15) 

from which one obtains: g(t) - t3/* and gCM - t3’4. For the i > zR Markov regime, 
Rouse-like behavior is recovered but with an effective segment friction constant 
enhanced by a factor proportional to w N ” ~ .  Thus, g(t) - ( t / f i ) ”2  for ZR 4 t 4 ZRR, 

and g(t) - D R R  t for t %- zm. The time dependence of other dynamic properties are 
also modified in the intermediate regime, and the C&t) functions decay in a nonex- 
ponentid manner3@. Qualitatively, the slowing down of g ( t )  and gCM(t) at intermedi- 
ate times can be thought of as arising from a time-dependent friction coefficient, [(t)  
= c0 + 

For large enough N ,  RR theory predicts strong deviations from Rouse dynamics. 
Many of these predictions are in reasonable accord with some Monte Car10 simula- 
tions of lightly entangled  chain^'^'^^). The RR model has also been successfully 
employed by Fatkullin and Kimmich to interpret short and intermediate time 
dynamics of entangled melts as probed by field cycling NMR experiments@). How- 
ever, RR theory does not agree with most experiments on strongly entangled sys- 
tems. This is not unexpected due to the dynamically perturbative nature of this the- 
ory. Nevertheless, the RR model has found use in two different contexts. First, as a 
technical approximation for the projected dynamics entering a mode-coupling the- 
ory of the memory functions36937) as discussed in the section IID. Secondly, as a tool 
to determine conditions for the failure of Rouse theory, which is then employed as a 
criterion for the emergence of entanglement dynamics39242). Such a criterion can be 
implemented in the time domain to estimate the unentangled-entangled crossover 
time scale (length scale), z, (TJ, or implemented at the Markovian effective friction 
level to estimate the critical entanglement degree of polymerization N,. Equating the 
corresponding Rouse and RR contributions to the friction yields the semiquantitative 
crossover criteria39* 42) 

dt’ AC(t’), although such a “pseudo-Markov” perspective is not rigorous. 

(2.16) 
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Using the RR results discussed above yields 

(2.17) 

where the crossover length scale (“tube diameter” in reptation theory) and plateau 
shear modulus, GN, are estimated by evaluating Rouse theory at the predicted cross- 
over time. The key physical quantity is the dimensionless force strength parameter, 
ty = pa3g2(d)S(0), which is determined by local interchain packing and collective 
density fluctuations S(0) = So = ~ F ’ I c  , where IC is the isothermal compressibility. 

The required structural quantities can be theoretically evaluated at various levels 
of chemical realism using PRISM theory42s57). For example, based on the simplest 
Gaussian thread or string model of polymer chains, analytic PRISM theory predicts 
(, - @$)-’ , So - (~$/,/a)~ , g(o) - pa3 - t+u for semidilute, and perhaps concen- 
trated, polymer solutions42). What is remarkable is the power law density depen- 
dence predicted by the microscopic PRISM theory, which agrees with blob scaling 
results2) for the density screening length and So. Using these results in Eqs. (2.17) 
yields42) 

sc - , rc - tp , N~ - ( ~ a ~ ) - ~  , GN - ( ~ 2 ) ~  (2.18) 

which for good solvents (where ,/a - P- ’ ’~)  implies 

GN - p9f4 , N, - p - V 4  , rc - p-314 (2.19) 

in agreement with dynamical scaling Curiously, the prediction that 
the plateau shear modulus is proportional to the cube of the chemical-structure- 
dependent inverse “packing length”, pa2 - R i / V  where V is the spacing filling 
volume of a single polymer, is in complete agreement with the recent comprehensive 
study of entangled melts6’). Predictions for theta solvents, possible complications 
under concentrated solution conditions, and additional comparisons with experi- 
ments and other theoretical approaches have also been discussed42! 

C. Macromolecular mode-mode-coupling theory 

The description of the slow entanglement dynamics in real systems requires going 
beyond the perturbative RR approach. The complex many body physics is contained 
in the memory function matrix, Tay(t), and must somehow be extracted. Mode-coup- 
ling t h e ~ r y ~ @ ’ ~ )  is an approximate attempt to do this based on identifying the rele- 
vant “slow variables”. For hydrodynamic problems, conserved collective variables 
(mass, momentum, energy) are the obvious choices. However, for other problems 
such as local caging in atomic and colloidal liquids, dynamic percolation, and the 
glass transition, the relevant variables are not so obvious. For the polymer problem, 
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the key physical point is that entanglement caging is a process which is expected to 
induce highly cooperative motions of all N segments on a tagged polymer, in strong 
contrast to simple Rouse theory. Thus, to describe conformational and (single chain) 
stress relaxation, and all internal chain modes, it was argued that it is essential to 
keep track of every tagged polymer segment and how it is influenced ("caged") by 
excluded volume interactions with the surrounding polymer matrix3@. This moti- 
vates retaining all N tagged polymer positions as slow variables. In a Fourier field 
variable representation this choice corresponds to 

N 
{ P ; ( t ) )  I P k ( t )  = 1 d a m )  = daexp(*.ra(t)) (2.20) I" 

The collective single polymer density, pk, is also defined above. If one is interested 
in describing only center-of-mass motion, then retaining the scalar collective single 
chain density is adequate, and leads to predictions for the translational diffusion con- 
stant which are virtually identical to those obtained by a full analysis retaining all 
internal modes459 47). 

For the matrix polymers, there are (at least) two possibilities for the slow collec- 
tive variable: (i) total density  fluctuation^'^), or (ii) collective microscopic stress 
variable48). In the Fourier field representation these are 

(2.21) 

where nM is the number of matrix polymers, and all forces (intra- and intermolecu- 
lar) enter the vectorial stress variable the autocorrelation of which is the collective 
wavevector-dependent stress tensor. In the original formulation of Schweizer3@, and 
most of the subsequent PMC work, choice (i) was employed. However, more recent 
analysis by Fuchs and Schweizer4*) has employed choice (ii). There is virtually no 
qualitative difference between the two choices, especially for purposes of deriving 
qualitative predictions in the large N asymptotic limit. However, for analysis of the 
essential finite N  correction^^^), the collective stress variable is preferable since it 
leads most naturally to memory function expressions with parameters directly 
related to experiment. 

To extract the slow, cooperative tagged polymer dynamics induced by interchain 
excluded volume forces, N bilinear variables are constructed which are products of 
the slow tagged chain segment and collective fields. 

or {p;o"_,) a = 1 ,2  ... N (2.22) 

where the superscript "a" on the stress variable refers to its longitudinal component 
(parallel to wavevector k).  If only the center-of-mass motion of the tagged chain is 
of interest, then an adequate, and much simpler, alternative is the single bilinear 
variable 
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(2.23) 

Interchain forces are expressable in terms of these bilinear variables. The mode-cou- 
pling methodology projects the excluded volume forces in the memory function 
matrix ray@) onto these slow product variable(s) in order to approximately extract 
the collective dynamical contributions. Four-point correlations are factorized into 
products of 2-point correlations. For the general problem, the presence of N slow 
variables introduces novel technical complications which are analytically treatable 
based on matrix diagonalization and inversion techniques for Gaussian fractal type 
macromolecular  model^^"^^). For example, the inverse of w,,(k) is a tridiagonal 
matrix for Gaussian linear chains61). Mathematical tractability and physical argu- 
ments motivate the following approximation at the matrix 

w-’(k)wQ(k,t)w-’(k) z d ( k ) F Q ( k ,  t )  (2.24) 

where FQ(k,  t )  is the coherent single chain propagator. This simplification corre- 
sponds to the physical assumption that only coherent single chain motions are effec- 
tive in relaxing the constraining entanglement forces, and the same dynamical pro- 
cesses relax the forces which impede center-of-mass diffusion and conformational 
relaxation. 

Ignoring chain end effects yields the probe chain continuum G L E ’ s ~ ~ )  

(2.25) 

Two new caging forces are predicted to modify the Rouse equations-of-motion in an 
elastic or viscous manner depending on time scale. The first is quantified by a “dif- 
fusional’’ memory function Z(t), and describes a time-delayed, uniform drag on 
each segment. Such a delayed caging force would also arise for simple atomic fluids 
or colloidal suspensions of spherical particles. This contribution is of the same gen- 
eral form as in RR theory, and will be the primary origin of anomalous segmental 
and center-of-mass diffusion. The center-of-mass translational diffusion constant is 
entirely determined by the zero frequency part of Z(t). The truly novel caging force 
is quantified by the “viscoelastic” memory function M ( t ) .  It describes a time- 
delayed force sensitive to the rate of change of the elastic spring forces with time. 
This force strongly modifies conformational and stress relaxation, and ascribes a his- 
tory-dependent penalty for changing polymer shape or orientation. Thus, it produces 
conformational caging or temporary localization. Curiously, in a Markovian limit it 
is of the empirical Cerf “internal friction” form2s66), and also bears a striking 
resemblence to various empirical approaches which have successfully been used to 
fit entangled polymer melt data66). 

Although the general form of the GLE’s do not depend on the different possible 
choices of slow bilinear variables, the memory function expressions are weakly 
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dependent. The original PMC theory employed the collective matrix density and N 
tagged polymer segment densities as slow variables with the 

M ( t )  E (27czpcTy dkk2c02(k) C 2 ( k ) p S ( k ) F Q ( k , t ) F ~ ~ , , ( k , t )  (2.27) 

All the terms in the wavevector integrals were defined when the RR theory was dis- 
cussed except for C ( k ) ,  which is the repulsive force site-site intermolecular direct 
correlation function defined by the PRISM integral equation57) as: h(k) = 
o(k )C(k )S(k ) .  The t = 0 values of the integrands quantify the amplitude or strength 
of dynamical constraints on a length scale 27t/7c. They provide precise connections 
to the equilibrium structure, which quantify the influence of spatial correlations of 
the matrix forces on the polymer motion, and are characterized by both the macro- 
molecular length scale, R,, and local nonuniversal length scales. The much stronger 
weighting (see Fig. 3) of macromolecular scale correlations in M ( t )  compared to 
Z(t) leads to very different consequences of entanglements on translational diffusion 
versus conformational and stress relaxation. 

Temporal decay of the memory functions corresponds to the entanglement relaxa- 
tion process, and proceeds via three parallel, length-scale-dependent mechanisms: 
(i) tagged polymer center-of-mass motion, (ii) tagged polymer internal mode 
dynamics or shape fluctuations, and (iii) collective matrix relaxation. A naive “fro- 
zen matrix” appr~xirnation~~) corresponds to FE,, ( k ,  t )  = 1. These three processes 
might be crudely interpreted as the PMC analogs of probe reptation (a coherent pro- 

Fig. 3. Reduced wavevec- 
tor dependence of the t = 0 
entanglement constraint 
amplitudes in the large N 
asymptotic limit for the dif- 
fusional C (solid line, 
scaled by 1/10) and visco- 
elastic M (long dashes) 
memory functions of Eqs. 
(2.28) and (2.29), respec- 
tively. The corresponding 
asymptotic friction ampli- 
tudes associated with the 
zero-frequency limit of the 
memory functions of the 
diffusional (chain curve) 
and viscoelastic (short- 
dashed) memories are also 
shown as the l- curves 

, 

0 1 2 3 4 5 
q=kR, 
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cess), contour-like fluctuations, and constraint release within the tube model 
approach. Note that the most important decay channel generally depends on N and 
length scale 2R/k. Moreover, transport properties cannot generally be expressed as a 
sum of independent values associated with different decay mechanisms of the entan- 
glement forces. In contrast with phenomenological approaches24), multiple trans- 
port mechanisms at the chain trajectory level are not postulated. Rather, the focus is 
on the statistical correlations of the entanglement forces which are influenced by 
multiple structural length scales and time-dependent decay channels. 

Recent analysis of Fuchs and Schweizer based on the collective stress as the 
matrix slow variable, plus an explicit treatment of the center-of-mass motion, 
yields4@ 

(2.28) 

where the normalized propagator for collective stress relaxation is indicated by the 
subscript “G”. Qualitatively for all N,  and rigorously in the large N Markovian limit, 
these memory functions are very similiar to Eqs. (2.26) and (2.27).  In the intermedi- 
ate wavevector regime, the factor @w(k)/12 + 1 in Eq. (2.26) and IpS(k)/@G(k))] G 
SO, thereby implying the wavevector dependence of the two sets of integrands of 
C(t) and M ( t )  in Eqs. (2 .26)-(2.29)  are identical. As discussed in section IID below, 
the time dependences are also virtually identical, in either the frozen matrix limit or 
in the presence of constraint release. Differences are primarily at the nonuniversal 
prefactor level, and at extremely long times where the long time tail of C(t) differs 
in Eqs. (2 .26)  and (2.28).  However, this last aspect has no real consequences for 
observable properties479 48). 

As emphasized in Fig. 3,  for large N the viscoelastic memory function M ( t )  is 
dominated by contributions on the macromolecular scale, kR, G 1. Its amplitude on 
this scale is proportional to the number of pair contacts between two interpenetrating 
polymers, a geometric factor proportional to N ~ / R ;  - . Such kR, G 1 contribu- 
tions decay very slowly in time. Thus, in the GLE’s of Eq. (2 .25) ,  for N + 1, M ( t )  is 
very large and nearly constant. Based on the crossover analysis of section IIB, 
M ( t  = 0) - pS(0) C2(0) N”2  - @So)-IN”2 - (N/Ne)1/2. The corresponding term in 
the GLE acts an an elastic restoring, or conformational caging, force. Integrating by 
parts yields 

where c, is the initial value of the elastic restoring force exerted on segment a. The 
idea is that in the large N limit the “spring constant” for maintaining a constant chain 
curvature diverges, and hence the corresponding term in the GLE’s can be treated as 
a constraint. Hence, this caging force leads to the prediction of conformational and 
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stress relaxation arrest, the hallmark of entanglement. In the asymptotic large N 
limit, Eq. (2.30) can be qualitatively interpreted as providing a constraint on the 
tagged chain motions which induces highly cooperative N body motions. Isotropic, 
random displacements of two segments can occur, but the remaining N - 2 segments 
must move in a cooperative, deterministic manner in order to satisfy the vectorial 
constraints of constant elastic force or backbone curvature: r,+l + r,-l - 2.ra = c, = 
constant for all a. 

Fig. 4 shows a highly schematic example of the cooperative motions induced by 
the viscoelastic caging force in the large N limit4@. Two segments are displaced by 
an arbitrary amount and direction, and the remaining N - 2 segments move coopera- 
tively to maintain constant local curvature. Visualization at the chain trajectory level 
is more difficult than for the reptation mechanism, and Fig. 4 represents only one of 
many possible collective motions for a small time step. Despite the near conforma- 
tional (chain curvature) localization, segments can still diffuse, but in an anomalous, 
highly constrained fashion determined by the time fractal form of the C memory 
function. This scenario is not unlike reptation where the end segments can randomly 
reorient, but the other segments coherently reptate along their contour and diffusion 
relative to the laboratory fixed axes still occurs but in a much slowed down fashion. 
For a given set of initial conditions, PMC theory does predict anisotropic elementary 
motions in order to satisfy the vectorial constraints in Eq. (2.30). However, displace- 
ments of two segments are allowed to randomly occur, thereby restoring isotropy in 
an average sense. Also note that the local curvature conserving motions do not cor- 
respond to a rigid body motion or rotation which would require the stronger con- 
straints that Ir,(t) - r,(t)l = constant for all ay pairs and all times. PMC theory pre- 
dicts (not assumes) that bonds can stretch and bend, and the coil shape can fluctuate, 
$(nearly) constant local stress and chain backbone curvature is maintained. 

Fig. 4. Schematic example 
of consequences on a discrete 
bead-spring polymer trajec- 
tory of the viscoelastic con- 
straint of constant chain cur- 
vature (Eq. (2.30) with c, = 
0) for pre-terminal relaxation 
times. All beads move in a 
coherent, anisotropic manner 
once the displacements, u 
and u, of two randomly 
selected beads are arbitrarily 
chosen. The size of displace- 
ments and segments are not 
drawn to absolute scale; only 
the relative magnitude and 
direction of segmental displa- 
cements are relevant 
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Many observable properties are expressable in terms of the normal mode time 
correlation functions, Cp(t), which follow from diagonalization of Eqs. (2.25) by the 
Rouse modes and Laplace transformation as37) 

C,(f = 0 )  

(2.31) 

The corresponding p-mode relaxation times are given by 

(2.32) 

Note that for most internal chain modes, the normalized time correlation function is 
independent of normal mode index and hence characteristic length scale. This inter- 
esting property is consistent with the interpretation in terms of a localized conforma- 
tional state, and the physical requirement that a finite fraction of the chain internal 
modes must be simultaneously arrested by entanglement constraints in order that an 
N-independent plateau shear modulus emerges. 

An important caveat is that any mode-coupling theory for any physical problem is 
not valid at arbitrary short times and distances since it is only designed to describe 
collective, slow processes5653). As a simple time domain crossover model, we 
assume that Rouse dynamics holds up to the time z, computed using RR theory in 
section B. Beyond this time, Rouse theory is predicted to fail and PMC theory is 
invoked. A more quantitative numerical approach to this crossover problem is dis- 
cussed in section VI. 

D. Entanglement force memory functions 

For precise predictions the projected dynamic propagators describing entangle- 
ment force relaxation are required. This is a very difficult problem in nonequili- 
brium statistical mechanics which is attacked based on various, usually uncon- 
trolled,  approximation^^^^^). The classic approaches correspond to dynamic pertur- 
bation theory which for our problem would imply Rouse dynamics, or a self-consis- 
tent approach where the projected dynamics is replaced by the full physical 
dynamics. The former approach underestimates friction effects, while outside the 
hydrodynamic regime the latter overestimates the consequences of constraining 
forces. For example, self-consistent mode coupling theory of Gotze et al. predicts an 
“ideal glass transition” upon increasing particle density and stronger local caging”). 
A (power law) divergence of the structural relaxation time associated with the spa- 
tially-resolved collective density fluctuation correlator is predicted. Whether such a 
strong feedback mechanism exists for the entanglement problem at the single chain 
level is certainly not obvious, particularly for the linear Rouse mode time correlation 
functions. Moreover, for the glass problem one is interested in increases of the vis- 
cosity by 13-14 orders of magnitude. In contrast, for the entangled polymer pro- 
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blem the corresponding enhancement (suppression) of the shear viscosity (diffusion 
constant) relative to unentangled Rouse behavior is typically only 4 or 5 (2)  orders 
of magnitude for experimentally accessible degrees of polymerization. Within PMC 
theory, the self-consistent approach has been implemented by Schweizer at the tech- 
nically crudest A dynamic localization transition on the macromolecular 
scale is predicted at very high N ,  the physical significance of which remains unclear. 

Lacking in the general case an a priori argument, the only real justification for 
any specific approximation is the veracity of the results it produces. The approach 
adopted in the original PMC analysis36337), and subsequently shown to produce 
many predictions in accord with is an intermediate type approxi- 
mation. The projected single chain dynamics is approximated by the RR theory 
which accounts for entanglement effects (at the memory function level) in a short 
time manner; the projected collective propagator is assumed to follow the real 
dynamics in a self-consistent It is perhaps worth emphasizing that PMC 
theory employs one set of approximations for the fundamental segmental forces 
which is used to predict the dynamical behavior of all observables over a very wide 
range of length and frequency scales. 

It is interesting to contrast the above approach with very recent theoretical work 
by Verberg, deschepper and Cohed7) concerning the viscosity of (hard core) colloi- 
dal suspensions. Based on kinetic theory and mode-coupling arguments, the relaxa- 
tion time of the excluded volume fluctuating forces for this problem was approxi- 
mated in a short time, Enskog type manner (independent binary collisions) corrected 
only by the strong local static correlations associated with S(k) at high densities. 
When this approximation for the dynamics was employed in a mode-coupling 
expression for the shear viscosity, excellent agreement with experiment was found 
over a wide range of packing fractions from dilute suspensions up to dense liquids. 
Over this range of density, local collective caging processes result in a factor of 
nearly 100 increase of the suspension viscosity. It would seem that the RR approach 
for the polymer problem is an approximation in the same spirit as this non-self-con- 
sistent statistical dynamical approach to hard sphere 

Since RR dynamics is simpler than real entangled dynamics, one can immediately 
draw two conclusions based on its use as an approximation for the projected propa- 
gators. (i) In the N + 00 long chain limit, memory function relaxation is controlled 
entirely by RR probe motions and matrix “constraint release” effects are negligible. 
This feature is in qualitative accord with the reptatiodtube ideas. (ii) The fluctuating 
force memory functions obey “simpler” dynamics (the basis of traditional Brownian 
motion theory5’)), and relax faster than the true single chain entangled dynamics. 
However, at non-infinite N there may be strong corrections, or even a breakdown 
(non-Markovian situation), to this “separation of time scales” behavior. Technically, 
points (i) and (ii) follow for N +- 1 since zRR - N5‘2 but (as discussed in section 
IIIA) the collective density fluctuation and shear stress relaxation times scale as 
T - N 3 .  

The above ideas are mathematically expressed for the coherent single chain pro- 
pagator by using the simple form42363) 
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(2 .33)  

where A((t) is given by the RR expression in Eqs. (2.1 1)-(2.13). The PMC memory 
functions then display three distinct time regimes: z, 4 t 4 zR, zR 6 t 4 TRR , and t 
S- tRR, associated with the RR dynamics. 

The collective density fluctuations are modeled as4') 

(2.34) 

where c, is the polymer density screening length or mesh size, and the dynamic pro- 
pagator decays rapidly (via cooperative diffusion) to a temporary wavevector depen- 
dent plateau which is significantly less than unity (but N-independent). The latter 
relaxes only at very long times corresponding to complete chain disentanglement. 
The original PMC analysis effectively assumedff = 1, a naive frozen matrix approx- 
imation3@. The collective shear stress relaxation function is modeled as4') 

G ( k )  g pa-' ~ S ( k )  FG(k,t)  f :@(f )  (2.35) 

Following the analysis of many w ~ r k e r s ' ~ ' ~ ' ' ~ ~ ) ,  the amplitude of the transient pla- 
teau, and the terminal decay function, are taken as 

so ' 

f: E -exp(-k2rz /36)  so , N;' exp(-k2r: /36)  , @(t)  = exp( - t / sD)  (2.36) 
N, 

where &IN, is the nonuniversal ratio of the shear to bulk modulus and zD is the 
terminal relaxation time. This ratio is independent of polymer concentration in semi- 
dilute good solvents70), and decreases strongly in concentrated and melt states due to 
the suppression of polymer density fluctuations. The wavevector dependence of the 
amplitude factors is of Gaussian form in qualitative accord with prior analyses69). 
The dynamic crossover length r, is a nonuniversal, density-dependent intrinsic 
length scale beyond which elastic transient network like behavior occurs in 
entangled fluids. A simple, k-independent form3. 37,68,69) fo r the terminal relaxation 
function is adopted which is characterized by a single shear stress relaxation time 
70. 

Consider first the behavior of the PMC memory functions in the asymptotic large 
N regime, where two major simplifications occur. (1) Collective constraint release 
processes are not important, and RR single chain dynamics controls the time-depen- 
dence of the memory functions. (2) Local length scales drop out in the sense that 
r J R ,  <,,1Rg, and d R g  --f 0, and are thus irrelevant in the determination of the ampli- 
tude of constraints in the memory functions. Straightforward analysis37341) then 
yields for the time dependence of the diffusional memory function of Eq. (2.28): 
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Z ( t )  - t -9 /16  for tc + t + ZR 

- ( ~ i \ i / ~ ) ~ 1 ~  for t R  + t + zm 
- N ( N 3 / 2 / t ) 5 / 2  for t %- ~ R R  

and for the viscoelastic memory function of Eq. (2.29) 

(2.37) 

(2.38) 

where a and b are N-independent, system-specific prefactors. 
The diffusional memory function displays fractional power law decay over inter- 

mediate time intervals due to the self-similiar nature of the intra- and intermolecular 
correlations, the homogeneity of the liquid on scales larger than r,, and the diffusive 
RR segmental dynamics (shape fluctuations) which determines force relaxation. In 
essence, no well-defined elementary diffusive “jump time” exists. Anomalous seg- 
mental and center-of-mass diffusion is thus predicted. 

The time dependence of the viscoelastic memory function is particularly unusual. 
Out to the longest fluctuating force relaxation time, zRR, the amplitude is nearly fro- 
zen at a value which grows indefinitely with N and is proportional to the number of 
correlated contacts between a pair of interpenetrating random coils in 3-dimensions. 
It is this leading contribution which generates conformational localization and a 
shear stress plateau. Dynamic polymer shape fluctuations generate a weak, finite 
size decay of M ( t ) ,  which remarkably is of the so-called von Schweidler form famil- 
iar from glassy dynamics5*). Physically, such a weak decay describes the early and 
intermediate stages of entanglement force relaxation via sub-R, scale motions (shape 
fluctuations) of the tagged polymer. The final long time tail arises from the pre- 
sumed diffusive decay of the force correlations for kR, < 1 due to probe center-of- 
mass translation. 

Finally, we point out that although the very long time tails of the memory func- 
tions are “integrable” and produce negligible contributions in the Markovian limit of 
zero frequency, they can have non-negligible consequences for the low frequency 
domain response functions. However, they are “cuttoff’ by constraint release pro- 
cesses (@(t )  in Eq. (2.36)) which on the relevant length scales are wavevector-inde- 
pendent. That is, the memory functions have the form t-’ exp(-th,) for long times t 
+ ~ R R .  

111. Asymptotic predictions for chain solutions and melts 

The asymptotic predictions of PMC theory follow directly from the memory func- 
tions, GLE’s, and the entanglement onset model described in section 11. The most 
basic results are summarized in this section. 
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A. Transport coeficients and terminal relaxation times 

Transport coefficients and relaxation times are determined by the zero frequency 
(Markovian) limit of the memory functions. In analogy with dynamic critical phe- 
n ~ m e n a ~ ~ ' ~ ~ ) ,  their asymptotic large N-dependences are deducable based on simple 
power counting arguments, i. e. nondimensionalization of the wavevector integrals 
in the memory functions by the macromolecular size R,. The results are: C(z = 0) - Nand M(z = 0) - N'. Although R, scale contributions control the qualitative form 
of the Markovian limit of both memory functions, recall that the viscoelastic caging 
forces are much less sensitive to sub-R, correlations than the diffusional memory 
C(t). The relative importance to the Markovianfriction of contributions on the scale 
k are also shown in Fig. 3. 

The predictions for self-diffusion, terminal relaxation time, shear viscosity, and 
compliance, Je ,  based on the original collective density slow variable choice and the 
naive frozen matrix approximation are37,3943): 

The N-scaling laws are identical to reptation theory2). Note that PMC predictions 
obey the Fick's law type relation, Dz, - Ri, as expected since a common relaxation 
process controls the diffusional and viscoelastic memory functions4'). A hand-wav- 
ing derivation of these results follows from the fact that there are of order N'" corre- 
lated contacts between a pair of entangled random coils in 3-dimensions, and the 
strength of the hard core force is proportional to g(a). Since the entanglement fric- 
tion is proportional to a force-force time correlation, the net frictional enhancement 
might be argued to scale as {g(a)N1'2)2. This argument immediately yields the 
above expression for D, and the relaxation time and shear viscosity follow from the 
Fick's law relation. Generalization to arbitrary spatial dimension, d,  is easily 
achieved with the 

ProD = N - ' [ l +  b (g (d )NO}*] - ' ,  8 = 2 - ( d / 2 )  (3.2) 

Thus, entanglement effects are predicted to become irrelevant for d > 4. This result 
clearly shows the different physical content of PMC theory compared to the coop- 
erative cluster dynamics theory of Douglas and Hubbard18) where Rouse behavior is 
recovered only in the limit d + 03. 

Since the prefactors are predicted by PMC theory, property-dependent crossover 
degrees of polymerization are also determined and given by: ND - N, - [g(a)]-', N,, 
- [g(a)y]-'. Based on the PRISM theory results for Gaussian thread chains dis- 
cussed in section IIB, one obtains the prediction that all crossover degrees of poly- 
merization scale as @o')-~. In good solvents, this P-~" law is in good agreement 
with reptation plus scaling theory234), while in theta solvents there are differences4'). 
Indeed, the concentration scaling of transport coefficients in theta solvents remains 
rather poorly understood, and there are conflicting predictions within both reptatiod 
tube approaches and alternative theories4943). 
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The corresponding results based on the recent PMC analysis of Fuchs and 
Schweizer which relax the naive frozen matrix assumption are48) 

where the subscript “R’  refers to the Rouse results. The N-dependence of these pre- 
dictions are identical to the original PMC results37) and reptation theory. The pre- 
dicted “Stokes-Einstein ratio” of 3/16 is remarkably close to the corresponding tube 
model value of 5/24. However, the material and density-dependent prefactors differ 
in some respects from those in Eq. (3.1). The experimentally defined N ,  enters 
directly, and an entanglement strength parameter a enters as a fundamental material 
and concentration-dependent quantity, in contrast to reptation theory where it takes 
on the universal value of a = 3219. As discussed in section IV, this feature plays an 
important role when finite N corrections are considered. 

Based on the PRISM theory results for thread chains discussed in section IIB 
(accurate for semidilute solutions), one obtains the prediction that a is independent 
of polymer density, and hence all crossover degrees of polymerization are propor- 
tional to N, - @a3)-* in complete agreement with the original PMC analysis of Eqs. 
(3.1). The corresponding polymer concentration dependences in theta (0 - pa) and 
good (a - p-”*) solutions were derived by Schweizer and S ~ a m e l ~ ~ )  

Theta IJ TD 
- - N3p5 - (PIP*)’& , D - p-2N-2 , - - N3p2 
T O  70 

-!- - N3p7I2 - (P/P*)’~~N‘/~ , D - p-5/4N-2 - N3p5I4 Good (3.5) 

where p* - N/Ri is the semidilute crossover concentration. These results agree with 
reptatiodscaling behavior in good solvents, but there are significant differences in 
theta solvents43). Whether Eq. (3.5) applies to concentrated and/or theta solutions is 
subtle due to the possible inadequacy of the Gaussian thread or string models 
employed in PRISM theory to obtain the equilibrium properties. 

TO TO 

B. Anomalous diffusion 

In the long chain limit, based on the RR projected dynamics, PMC theory predicts 
there are 5 distinct time regimes: early times t 4 zc (Rouse dynamics), three inter- 
mediate regimes: tc + t < tR, tR + t < zRR, tRR 4 t 4 zD, and the terminal Marko- 
vian regime of free diffusion t @- tD. Whether these distinct regimes are observable 
for finite N is a subtle issue. 
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Based on either slow variable choice, PMC theory predictions for the time depen- 
dence of the center-of-mass and segmental (chain-averaged) mean square displace- 
ments in the large N limit are37,39): 

P & I ( ( R C M ( ~ )  -&vl(0))2) - t / N  for t % zc 

- t9 / I6 /N for tc 4 t 4 t~ 

- t 3 / 4 / N 1 1 / s  for TR 4 t 4 tm 

- t / N 2  for t 9 ZRR (3.6) 

The time scaling exponents for anomalous segmental diffusion in the first (widest) 
intermediate regime are in close, but not exact, agreement with the reptatiodtube 
values of 1/2 and 1/4, respectively. However, in the final intermediate regime, zR 4 t 
G zD, reptation predicts t’ and t”* laws for CM and segmental diffusion, while PMC 
theory predicts this regime is bifurated with different exponents. Analytic results for 
segmental diffusion in the final intermediate regime, zRR + t + TD, are not easily 
derived due to the possible importance of both time-dependent memory functions 
M ( t )  and C ( t ) .  Existing computer simulations on lightly entangled chains cannot dis- 
tinguish between the PMC and reptation predictions, and the later intermediate 
regimes are very difficult to observe’4331). 

C. Finite frequency response functions 

Spatially-unresolved (k  = 0) response functions are expressable in terms of the 
linear normal mode time correlation functions. The (single chain) stress relaxation 
function is given by37) 

which places heavy emphasis on the broad spectrum of internal chain normal mode 
contributions 1 4 p G N .  The intermediate time domain predictions of PMC theory 
are given by40,41,47,48) 
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where ti are N-independent system-specific times. The first line describes the entan- 
glement formation process via a fractional inverse power law approach to a transient 
plateau with an exponent and N-dependent amplitude determined by anomalous seg- 
mental diffusion. As discussed in section VI, this contribution is not expected to be 
observable due to overlap with short time Rouse contributions. The plateau decays 
weakly in the characteristic 1 - at” von Schweidler manner”), with an exponent and 
N-dependent amplitude determined by the viscoelastic memory function. Physically, 
this weak decay corresponds to the disentanglement associated with the relaxation 
of constraining forces via polymer shape, or internal mode, fluctuations. The mathe- 
matical form of Eq. (3.9) bears a striking similiarity to mode-coupling theory predic- 
tions for the glass transition problem5’). However, the PMC result is not of a pre- 
cisely “dynamical scaling law form” as found from the self-consistent mode-coup- 
ling theory of the glass transition5’). Moreover, the underlying physics of the entan- 
glement and glass formation problems are entirely different. For example, one con- 
sequence is that the time exponents are nonuniversal for the glass formation pro- 
blem, but are predicted to be universal for entangled polymer dynamics. Essentially 
identical PMC predictions are obtained for the bond vector orientation function, B(t)  
= (b - b(t)), where b connects nearest neighbor bonded segments40*41947*48). 

It is important to appreciate that PMC theory has predicted, not assumed, a funda- 
mental hallmark of entanglement dynamics: the near arrest of conformational and 
stress relaxation with the attendant rubbery network response, but continued mass 
transport in a slowed down, anomalous diffusion fashion. In this respect, PMC and 
reptatiodtube theory seem similiar, although PMC theory invokes highly coopera- 
tive, but non-reptative, motions at the polymer trajectory level (see Fig. 4). 

Eq. (3.9) has immediate consequences for pre-terminal ( t  4 zD) frequency domain 
measurements of storage and loss shear stress moduli. Based on an experimentally- 
motivated modification of Eq. (3.9a) which describes the early time decay onto the 
plateau as following a t-”’ Rouse law, one can 

(3.10a) 

Here, wmin is the frequency at the loss modulus minimum separating Rouse-like 
from entangled dynamics, and tan6 is the ratio of loss to storage moduli. The pre- 
dicted N and frequency scaling laws for the shear stress loss modulus are in excellent 
accord with experiments. For example, many years ago Ferry” found that the mini- 
mum value of the loss tangent scaled as an inverse power law with N with an expo- 
nent of a .7-0 .8 .  Winter and coworkers”) have recently emphasized that even for 
ultra high molecular weight melts the pre-terminal loss modulus is a power law, 
w-’, over 3-4 orders of magnitude of frequency with A 0.18-0.23. This scaling 
behavior is in excellent accord with PMC theory, but very far from the simple repta- 
tiodtube theory273) law of ma.’. Winter has constructed a successful phenomenolo- 
gical model based on a self-similiar distribution of relaxation timesz2). For the pre- 
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terminal regime, this model corresponds in the time domain to a 1 -at" type decay 
of G(t), where n = 0.22 f 0.02 based on data fits for different polymers. PMC theory 
provides a fundamental theoretical basis for this self-similiar von Schweidler type 
behavior, and predicts exponents in very good accord with experiment. The physical 
origin within PMC theory is clear: continuous disentanglement (enhanced dissipa- 
tion) associated with the relaxation of the viscoelastic memory function via polymer 
shape fluctuations. This process is not connected to the anomalous non-reptation 
scaling of the terminal time and viscosity, e.g., N3.4 , since our present analysis is 
based on asymptotic PMC theory which predicts the classic N3 law. This feature is 
also in strong contrast to phenomenological extended tube m ~ d e l ~ ~ * ~ ~ ~ ~ ~ ~ ~ , ~ ~ * ~ ~ )  
which invoke a direct connection, and do not provide a fundamental basis for a 
power law response of the form 

An illuminating relationship between PMC theory and the reptatiodtube model 
for viscoelastic properties can be made by invoking an additional approximation. If 
one assumes M ( t )  decays only via probe center-ofmss translation, i.e. if one 
ignores all internal mode shape fluctuation contributions to the single chain dynamic 
propagator so that FR(k,t) = exp(-k2DRRt), then Eq. (2.28) for M(t)  on intermediate 
time scales is dramatically modified. For kR, > 1 and t < t R R  one obtains 

M ( t )  - f i  - a& t'l2 * G"(o) - ( N 3 ~ ) - 1 ' 2  (3.11) 

This prediction for the pre-terminal loss modulus is identical to the pure reptatiod 
tube theory In a sense this seems consistent, since assuming within PMC 
theory that only coherent probe center-of-mass motion can relax the entanglement 
forces is roughly akin to the tube model assumption that disentanglement only 
occurs via the coherent single chain reptative motion. However, this assumption 
misses the dominant mechanism for entanglement relaxation associated with probe 
shape fluctuations which are the origin of the greatly enhanced dissipation and much 
shallower slope of the loss modulus. This assumption would also radically change 
the power law time dependence of the Z(t) memory function, and hence the PMC 
predictions for center-of-mass and segmental anomalous diffusion and dielectric 
relaxation (see below). However, ignoring the coil shape fluctuations dues not 
change the asymptotic N-scaling law for the viscosity determined by the Markovian 
limit of the memory functions. 

Predictions for the end-to-end vector time correlation function, (R(0) - R(t))  = 
16&,dd C,(t), which is generally identified with the measured dielectric response, 
are given in the intermediate time domain by47348) 

where zj are N-independent, system-specific times. The von Schweidler fractional 
time dependence52) is again predicted, but with exponents and N-dependent ampli- 
tudes significantly different than for stress relaxation. The reason for this is dielectric 
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response is dominated by the large scale motions (small p modes), in strong contrast 
with G(t).  It is the fractional power law dependence of the diffusional memory func- 
tion, Z(t),  which plays a central role, not M(t)  as was true for the stress relaxation 
modulus. The terminal dielectric relaxation time is related to the observable stress 
relaxation time as zdi G btD, 

The pre-terminal relaxation frequency domain predictions for the dielectric loss 
b G 2-2.6. 

are47, 48) 

(3.13) 

The predicted exponents of the W A  frequency scaling law are again much smaller 
than the reptation value of A = 0.5 (which is identical to the G"(w) case). Moreover, 
the magnitude of the PMC theory exponents, A = 0.28-0.38, is in agreement with 
dielectric measurements of Adachi, Kotada and coworkers2'). The fact that the 
dielectric loss exponents (frequency and N scalings) are significantly larger than 
their shear stress counterparts, implies the dielectric loss is considerably narrower 
than the stress loss modulus. This result is also in agreement with experiment2'). 

We again emphasize that the PMC prediction of non-reptation frequency power 
laws is not connected with the anomalous non-reptation scaling with N of the stress 
or dielectric relaxation time. Recent dielectric probe experiments2') in heavily 
entangled nonpolar matrices appear to have dramatically confirmed the decoupling 
of the non-reptative N and frequency scalings. A classic N 3  law was observed for 
the probe dielectric relaxation time, but the loss modulus was still very broad and 
qualitatively identical to the one-component melt behavior. The authors also con- 
cluded that collective matrix relaxation, or constraint release (ignored in our present 
asymptotic analysis), is the physical origin of the anomalous N-scaling of the ter- 
minal relaxation time2". This idea is supported by recent PMC work described in 
section IV. 

Predictions for other dynamic response functions, such as nonexponential decay 
of C, ( t ) ,  and field cycling NMR measurements of the spin-lattice relaxation time 
T, (o ) ,  can also be addressed. 

D. Spatially-resolved correlation functions 

Spatially-resolved experimental probes of entangled dynamics have recently been 
developed. Neutron Spin Echo (NSE) is a time domain spectroscopy which mea- 
sures the coherent, single chain dynamic structure factor at relatively short times as 
a function of wavevector7'). Pulsed-field-gradient nuclear magnetic resonance 
(PFG-NMR) probes the incoherent single segment dynamic structure factor on (late) 
intermediate and long time/length scales74). The relevant time correlation functions 
are 
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(3.14) 

For a stochastic Gaussian process (as invoked for tractability reasons by PMC the- 
ory), the simple second cumulant expansion forms apply47) 

(3.15) 

Thus, PMC theory predictions follow from the segmental diffusion results described 
in section IILB. Recent incoherent experiments seem to support the Gaussian wave- 
vector dependen~e~~) .  Time dependences of an apparent diffusion coefficient have 
then been defined 

(3.16) 

In contrast, reptation theory strongly non-Gaussian forms (power law k 
and t dependences), in apparent disagreement with PFG-NMR  experiment^^^). How- 
ever, as emphasized by Fatkullin and Kimmich, more careful analysis, and data at 
larger k and smaller times, are required to draw definitive conclusions, although 
these authors also conclude reptation theory is in poor agreement with their experi- 
m e n t ~ ~ ~ ) .  

Coherent NSE experiments by Richter and coworkers have observed distinctive 
k-dependent crossovers from Rouse to entangled response, including near plateau 
behavior73! Unfortunately, the data is restricted to short times and is often rather 
noisy. Thus, disparate theoretical approaches (tube-based and non-tube theories) 
have been shown to provide good fits to the data'5728'69973*76). We believe this fact 
renders existing NSE data (and also computer simulations) inadequate for purposes 
of definitively testing the fundamental validity of reptatiodtube and alternative the- 
ories. It is particularly significant to note that the stochastic, non-tube theory of 
Chatterjee and L ~ r i n g ~ ~ )  is in very good agreement with NSE data, despite the fact 
that the calculation is based on a Gaussian approximation to the coherent structure 
factor. The latter aspect implies no rigorous plateau is present (since segments never 
literally localize in space), and terminal relaxation is highly k-de~endent~~) .  These 
features are in contradiction with reptation theory', '). Unfortunately, experimental 
limitations preclude NSE spectroscopy from probing the long time regime. 

PMC theory predictions for the coherent dynamic structure factor are qualitatively 
similiar to the stochastic dynamics approach47377). Prior applications of the RR the- 
ory to study entanglement onset, and the p-dependence of the Rouse mode relaxa- 
tion times, have been favorably compared4') at a qualitative level with NSE mea- 
su remen t~~~) .  We caution that the linear nature of the GLE's may be inadequate for 
describing spatially resolved dynamic structure factors, and alternative approaches 
within the Mori-Zwanzig framework are presently under study. 
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IV. Finite N corrections in solutions and melts 

As sketched in the Introduction, there are many discrepancies between the sim- 
plest version of reptatiodtube theory and experiments in solutions, melts, and gels. 
As discussed in section 111, many of the pre-terminal finite frequency anomalies 
appear to be qualitatively resolved by PMC theory. However, the N-dependence of 
many of the transport coefficients and relaxation times remains a mystery. The 
anomalies appear to be very different in solution (or gel) and melt states, and also 
for translational. diffusion versus shear viscosity and chain relaxation times. We 
believe a fundamental, non-phenomenological approach is required to convincingly 
understand all of these anomalies within a common theoretical framework based on 
a minimum number of new parameters. Here we describe a recent attempt by Fuchs 
and Schweizer to analytically formulate and apply such a theory within the PMC 
framework4’). The finite size dynamical corrections are connected with physically- 
meaningful equilibrium structural and dynamic properties. 

A. Constraint porosity and self-consistent constraint release 

The extended tube-based approaches invoke additional non-reptative relaxation 
or transport mechanisms at the chain trajectory level in a generally statistically inde- 
pendent fashion. The various non-asymptotic anomalies in diffusion and viscosity 
are generally treated on a case-by-case basis, employing distinct ad hoc assump- 
tions. In strong contrast, within microscopic PMC theory the fluctuating force mem- 
ory functions are the fundamental objects for all dynamic properties. The finite N 
weakening of these entanglement force time correlations via either amplitude or 
“porosity” of constraints, or accelerated relaxation due to collective “self-consistent 
constraint release”, was discussed as points (1) and (2) in section IID. A schematic 
of the relevant length scales which are important for finite size corrections is shown 
in Fig. 2. 

The most general form of the zero frequency memory functions, which determine 
the entanglement corrections to the transport coefficients and relaxation times, fol- 
lows from Eqs. (2.29) and (2.34)-(2.36). The self-consistent equation for the ter- 
minal chain relaxation time for N > N, is4’) 

exp (- k2</36) 1 
k2(1 + k2c:) 
P(C0  + 7;’ + 

7D - N 3  
70 Ne 

~ = a-’ --K,(N/N,,  a, 6 r P / r c )  

In the second line, AC is the RR theory friction constant given by Eqs. (2.11)- 
(2.13), and the (large N) equilibrium k = 0 PRISM relation5’) -pC& = 1 has been 
utilized. The final expression in Eq. (4.1) has been written in a form designed to dis- 
play the large N asymptotic result arising from power law counting based on the cor- 
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relation hole length scale t, = R,/2“2, which includes the entanglement strength 
parameter a of Eq. (3.4). The large N result is multiplied by a function K,  which 
depends on reduced degree of polymerization and nonuniversal intrinsic length 
scales: the physical and entanglement mesh lengths i$ and r,, respectively. This 
function describes the finite size “constraint porosity” corrections to the amplitudes 
on a length scale 27cA via the length scale ratio 6 = sP/rc which is effectively set 
equal to zero in the reptatiodtube theory. This correction function also depends on 
the terminal relaxation time associated with the self-consistently determined “con- 
straint release” effect. The latter correction is controlled by the time scale ratio TRR/ 

to - (NJN)’” for very long chains4’). However, as shown below, this ratio is appar- 
ently not generally small for experimental degrees of polymerization. The implicitly 
defined function K,  approaches unity in the N/Ne + 00 limit. 

The shear viscosity is given in terms of its Rouse value by4’) 

Because the viscosity and conformational disentanglement process are dominated 
by macromolecular scale dynamical correlations (kRg of order unity in Eq. (4.1); see 
Fig. 3 ) ,  the porosity corrections are predicted to play very little role for viscoelastic 
properties. Thus, deviations from the N 3  law will be dominated by the self-consis- 
tent constraint release process which is sensitive only to reduced degree of polymer- 
ization NIN,, and not polymer concentration explicitly. One thereby expects devia- 
tions from the N 3  law will emerge in a nearly identical fashion under all solution 
and melt conditions, a trend consistent with experimental observations’). 

The entanglement friction constant enhancement, -1 + D,/D, is given by4*) 

Again, the asymptotic result is explicitly displayed, and the correction function KZ 
is implicitly defined. As emphasized in Fig. 3, self-diffusion is much more sensitive 
to entanglement force correlations (via the amplitude factors) on smaller length 
scales (higher k )  than the viscoelastic memory function. Thus, PMC theory predicts 
the non-diffusive collective constraint release process will have a much smaller 
effect on self and tracer diffusion than for the viscosity and chain relaxation time. 
However, even in the frozen matrix limit, a condition realizable in tracer experi- 
ments, the asymptotic behavior is not necessarily recovered under experimentally 
realizable conditions due to the constraint porosity effects associated with finite 
screening and entanglement mesh length scales. Since the latter are dependent on 
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chemical structure, concentration and solvent quality, in contrast with the finite size 
viscosity corrections a range of possible apparent scaling laws are expected to 
emerge. 

Both constraint porosity and constraint release corrections reduce friction, and 
hence speed up motion, in a manner which is enhanced as the chains become shorter. 
Thus, if apparent N-scaling laws emerge one generally expects the effective expo- 
nents will be larger than the asymptotic values. This effect is not described by pos- 
tulating alternative processes at the chain trajectory level. Rather, it arises from addi- 
tional relaxation channels and/or weakening of the spatially-resolved entanglement 
constraints by dynamic and static meshes, as described at the fundamental level of 
the entanglement force time correlations. As a matter of principle, constraint poros- 
ity and constraint release effects are neither additive nor separable. Thus, the net dif- 
fusion constant cannot be expressed as a contribution from different transport 
mechansims as done in phenomenological tube model approaches. 

Explicit expressions for the dielectric relaxation time, and the effective friction 
constant for the tracer diffusion problem (chemically identical tracer degree of poly- 
merization N not equal to matrix chain length P ) ,  have also been derived4*). 

B. Predicted trends and model calculations 

Predictions expressed as a function of NIN, require specification of the two 
dimensionless material parameters of clear physical meaning: a and 6 = c&/rc. The 
latter ratio parameter can be obtained by direct experimental measurements. Esti- 
mates for melts and solutions can be made based on experimental properties such as 
those given in the Tab. 1. One finds for the nearly incompressible melt state, 6 
0.03 0.02. However, in good solvents much larger values are obtained 6 0.3 f 

Tab. 1. Materials parameters of the different polymer melt systems studied and the 
three polystyrene solutions of 13, 18, and 40 wt.-%. Listed are experimental values for 
the entanglement degree of polymerization (based on monomer mass) and crossover 
length65) (at T =  413 K), N and b = r,, and the “packing length” p = @a2)-’ tp = melt 
density screening The inverse interaction strength parameter, a, and length 
scale ratio parameter, 6, determined by fits of the theory to experiment are also listed 

I PBD PBDh PDMS PEO PI PS PS(13) PS(18) PS(40) 

34 44 162 50 74 173 1250 923 407 
44 34 79 38 62 77 
2.3 1.8 4.1 1.9 3.2 4.0 
4.9a) 4.3‘) 2.8b’ 2.6b) 2.2b’ 2.2b) 4.0a’ 2.8b’ 2Sa’ 
3.3b’ 3Sd’ 2.8b) 2.8b’ 
0.01 0.03 0.0 0.05 0.05 0.05 0.4 0.3 0.4 

a) From viscosity. 
b, From diffusion. 
‘) From viscosity and diffusion. 
dl From dielectric relaxation time. 
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0.1, consistent with simulation studies of semidilute (lightly) entangled solutions78). 
Based on experiments and scaling theory, 6 is expected to be nonuniversal but con- 
centration independent in semidilute solutions70). Even larger values of 6 are 
expected in theta solvents, which increase with dilution, since the density screening 
length increases more rapidily with p than the corresponding entanglement mesh 
size under theta  condition^'^). 

The force strength parameter a requires estimation from theory or simulation. 
Reptation theory predicts a = 3219 G 3.5 corresponding to AD = 3 in Eq. (3.4). Esti- 
mates based on analytic and numerical PRISM theory suggest melt values in the 
range a 2-4, and somewhat smaller values (larger (F2>lp) in semidilute and con- 
centrated solutions4*). 

The above a priori parameter estimates are used as guides to explore the nature of 
the finite size corrections predicted by PMC theory. We begin with the effect of self- 
consistent constraint release on the viscosity. Representative results are shown in 
Fig. 5. Only (seemingly) unrealistically large values of 6 significantly modify the 
pure constraint release (6 = 0) behavior. Although Eq. (4.1) does not predict a rigor- 
ous power law except in the asymptotic - N 3  limit, an excellent effective power 
law over two orders of magnitude in N does emerge with typical exponents in the 
range of 3.4 f 0.1. The PMC theory conclusion that the physical mechanism of the 
“3.4 law” is constraint release is apparently in strong disagreement with essentially 
all the diverse reptatiodtube approaches based on “contour  fluctuation^"^^), 
  rep ton^"'^), “tube dilatiodplastization”26), “non-Fickian motion of chain ends”71) 
or other phenomenological concepts. However, matrix constraint release as the key 
physical mechanism is consistent with: (a) the recent tracer dielectric measurements 

0 1 2 3 
log,,(”+) 

Fig. 5. Ratios of shear viscosity to Rouse viscosity for different physically-relevant 
values of the entanglement strength parameter a and length scale ratio 6 = c,,/rc. Bold 
lines denote results neglecting constraint porosity for different a, and thin lines are for 
fixed a with 6 increasin from left to right. Lines of the same style are associated with a 
unique value of a. A N power law is shown for comparison. The asymptotic limiting 
behavior, 1, - n2 where n = Nme, is drawn as a thin dotted line for a = 2 or 1, = 6 

!. 
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of Adachi et aL2O), (b) the experimental insensitivity of the viscosity exponent to 
polymer c~ncentration"~), and (c) a recent computer simulation study of Termo- 
nia79). 

The extremely slow approach of the viscosity to its asymptotic N 3  law occurs 
because PMC theory predicts the leading correction is of the form: q - N 3 [  1 - c ( N J  
N)' /4] ,  where c = (413)a'" . Even for values of NINe = 1000, the reduced viscosity is 
only roughly 70% of what is expected based on asymptotic analysis4@. This beha- 
vior is quite different than contour fluctuation and related tube-based approaches 
which predict a result of the formz3) q - N 3 [ l  - U ( N , / N ) ~ / ~ ] ~  , where (NeIN)'l2 is the 
control variable for finite size corrections. This difference is directly related to the 
idea that the (projected) fluctuating forces decay on the RR time scale. 

The effect of constraint porosity can be most clearly seen for the problem of tracer 
diffusion of chains in a matrix of much longer chains P % N ,  i.e. the effectively fro- 
zen matrix limit. Model calculations for the tracer diffusion constant as a function of 
N are shown in Fig. 6 for variable 6 and two extreme choices of a (3 for melts, and 
0.5 which is relevant, perhaps, for solutions). In agreement with experiments"), for 
the melt-like case a very rapid, smooth crossover from the Rouse law to the asymp- 
totic PMC (and reptation) scaling is found for small values of 6 appropriate to the 
melt. However, for the second solution-like case, a non-asymptotic scaling regime 
emerges which persists out to NINe 50-100.  The tracer diffusion constant lies 
appreciably above its asymptote. Apparent tracer diffusion exponents, D, - N-", in 
the range v = 2.3-2.8 seem possible. Crossover to the true N-2 asymptote occurs at 
much larger NINe than in the melt case. 

The above predictions are in general accord with tracer measurements in both 
semidilute and concentrated good solvent solutions"), the understanding of which 
has remained a mystery2'). The underlying physical mechanism which generates 
non-melt-like scaling in solutions has no analog in any extended reptatiodtube 
approaches we are aware of. Moreover, the PMC mechanism of constraint porosity 

Fig. 6. Dimensionless tra- 
cer diffusion coefficients 
in dynamically frozen 
matrices. Two sets of 
curves are shown corre- 
sponding to different 
values of the asymptotic 
prefactor, A,, and corre- 
sponding to the upper or 
lower horizontal scale. 
Increasing steepness in 
the intermediate N region 
occurs with increasing 6 = 
&/rc = 0.01,0.05,0.1, 

-1 0 1 2 3 

0.2,0.3, and 0.5, respec- 

with arbitrary prefactors 
are shown for comparison 

tively. Three power laws -1 0 1 2 3 4 

log 1 ,(N/N,) 
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does not seem closely related to the qualitative “entropic barrier” ideas of Muthuku- 
mar and B a ~ m g a r t n e r ~ ~ ~ ~ ~ ) .  The latter focus on the crossover case where the mesh 
size is comparable to the tracer radius-of-gyration. This condition is definitely not 
true for most solution conditions where R&, 9 1. The non-reptation diffusion con- 
stant exponents also do not have the same physical origin as the shear viscosity 3.4 
exponent within PMC theory. This conclusion is in strong contrast with the pre- 
sumed connection in solutions (but not melts) suggested by Rubinstein and Obu- 
l ~ h o v ~ ~ ) .  It appears that a microscopic approach relating liquid structure and friction 
is required to properly identify the large finite size corrections arising from spatial 
correlations of the matrix entanglement constraints. Chemical structure, solution 
density, and solvent quality dependences are expected for these  correction^^^). 

An example of model calculations relevant to the tracer diffusion and constraint 
release problem is shown in Fig. 7 for solution-like parameters. The predicted beha- 
vior is in qualitative agreement with experiments, and also with the various distinct, 
but tube-based, constraint release ideas of Graessley4), K l e i t ~ ~ ~ ) ,  and others. How- 
ever, PMC theory does not predict a simple additive form for the tracer diffusion 
constant as do phenomenological tube theories. For example, the Graessley result is 
Q, - N ,  N-* [ 1 + ucr N,’NP”] where a,, is an empirical parameter4’. For the solu- 
tion case shown in Fig. 7, constraint porosity effects are also not negligible, although 
they become so under melt-like  condition^^^). Further complications and diversity of 
possible experimental behaviors are expected when the tracer and matrix are not 
chemically identical. 

Fig. 7. Tracer diffusion coefficients in a polymer solution as a function of reduced 
matrix degree of polymerization for different degrees of tracer entanglement N/Ne. 
loglo(N/Ne) = 0, 0.4, 0.8, 1.2, 1.6, and 2 from top to bottom, and the solution-like para- 
meters a = 3,6 = 0.3, do = 18 are employed. Self diffusion constants Ds (circles and long 
dashed), the asymptotic value D‘ (short horizontal dashed) for P + a, and a P-2.8 power 
law, are also shown 
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Model calculations for the dependence of self and tracer dielectric times on 
matrix molecular weight have been performed, and qualitative agreement of the pre- 
dicted trends with experiments is found4’). 

In summary, it appears PMC theory with self-consistent constraint release and 
(multiple) porosity corrections at the level of the entanglement force dynamic corre- 
lations is able to account for all the puzzling non-asymptotic behaviors of transport 
coefficient and relaxation time scalings in melts and solutions. Description of diffu- 
sion and viscoelastic “anomalies” has been achieved in a unified manner based on 
structural parameters of clear microscopic meaning. The physical origin of the 
strong finite size corrections are predicted to be very different for translational diffu- 
sion versus shear viscosity and conformational relaxation. The key aspect of the the- 
ory is its spatial and temporal resolution of the amplitude and relaxation of entangle- 
ment forces. Phenomenological guesses for alternative real space motions are not 
invoked, although this also represents a limitation in the sense that an intuitive pic- 
ture at the chain trajectory level is not readily deduced. We now turn to a discussion 
of quantitative applications to specific experimental studies. 

C. Experimental comparisons 

Quantitative applications of PMC theory to viscosity, self and tracer diffusion, 
and dielectric relaxation in entangled solutions and melts have been recently carried 
out by Fuchs and Schweizer4’). Here we summarize some of this work. Relevant 
material properties are collected in Tab. 1. 

Study of the reduced melt viscosity versus reduced degree of polymerization high- 
lights the effects of self-consistent constraint release. Only one fit parameter enters, 
the inverse entanglement force strength a, since constraint porosity has little conse- 
quences on viscosity as discussed above. Fig. 8 shows data for polybutadiene (PBD) 
meltss6) out to ultra high molecular weights. PMC theory describes the data quite 
well based on the reasonable value of a = 7.7. A second fit is also shown which 
incorporates corrections of the data for the monomeric friction constant as discussed 
by RooversS7) and O’Connor and Bal171). Quantitative agreement is obtained, with a 
even closer to the reptation theory value of 3. As more clearly seen in the inset, note 
that the asymptotic N 3  scaling is not yet exhibited by the data or PMC theory even 
though NIN, > 1000. 

Of special interest is the PMC theory prediction of a close connection between 
center-of-mass and conformationaYstress relaxation dynamics. The combined diffu- 
sion and viscosity measurements of Pearson and coworkerss8) on the same hydro- 
genated PBD (PBDh) sample provide an excellent test of the theory. Fig. 9 shows 
the data and the PMC results. The viscosity fit fixes the nonuniversal parameter a, 
and therefore the constraint release contribution to D and 7. A value of a = 5.2 yields 
the best fit, which is reassuringly close to that extracted from the PBD analysis in 
Fig. 8. The experimental apparent power law q - N3.47 is again well predicted by 
PMC theory, and explained as a finite size crossover effect due to the self-consistent 
constraint release mechanism. 

A slightly smaller value of a = 4.3 provides the best simultaneous fit of PMC the- 
ory to the self-diffusion and viscosity data of PBDh. The self-diffusion coefficient 
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4 - 0  1 2  3 4 

3 -  

-- a = 4.9 (2.4 6,) 

0 1 2 3 4 

~OS,,(N/N,) 

Fig. 8. Viscosity of PBD melt8@ reduced by its Rouse value; the solid circles are the 
experimental data. The solid line (chain curve) is a one-parameter PMC theory fit of the 
raws6) (local friction c o r r e ~ t e d ” ~ ~ ~ ) )  data. The thin dotted line is the asymptote for the 
second fit. The inset shows a logarithmic plot of the viscosity divided by the asymptotic 
scaling law factor (vertically shifted by a factor of 10) versus reduced degree of polymer- 
ization. The lines correspond to the same fits shown in the main figure. A vertical bar 
denotes the error bar reported in ref.86) 

0 1 2 3 

Fig. 9. Reduced self-diffusion 
constant and shear viscosity versus 
reduced molecular weight for a 
hydrogenated polybutadiene melt 
(PBDh)88). The solid lines are 
PMC theory simultaneous fits of D 
and with a common value of a = 
4.3, and a 6 = 0.03 from the diffu- 
sion fit. The dotted lines are the 
predicted asymptotic behaviors for 
the a = 4.3 fit. The chain curves 
show the best independent fits of 
the two data sets leading to slightly 
different values of fit parameters. 
The N2.4 power law is shown for 
comparison 
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“overshoots” the large N asymptote, due primarily to constraint release since con- 
straint porosity corrections are small in dense melts. Thus, based on the data com- 
parisons and PMC theory we conclude that in dense melts constraint release is the 
dominant finite size effect, in agreement with our general arguments given in section 
B. 

The dielectric relaxation time, z,, has also been studied4”. Model calculations 
show for melt-like parameters a power law scaling of z, - N3.4’0.’ is predicted in an 
intermediate molecular weight window of 3 < NINe < 100. Fig. 10 shows a quantita- 
tive comparison with polyisoprene (PI) melt data2” where 6 = 0.05 was a priori fixed 
at a typical melt value. PMC predictions for two choices of a are shown, with a = 
3.5 corresponding to a best fit value, while a = 2.2 was independently determined 
(although with large uncertainties due to experimental error bars) from fits to PI 
melt self-diffusion data (see Tab. 1 and Fig. 11).  Good agreement between theory 
and experiment is found with a falling in the a priori expected range. We conclude 
that the non-reptation scaling with N of the dielectric relaxation time is also due to 
self-consistent constraint release effects. 

Fig. 10. Dielectric 
relaxation times for 
polyiso rene (PI) 

molecular weight. A 
melt-like value of 6 = 
0.05 is a priori selected, 
and theoretical results 
for two values of a are 
shown 

melts 20P versus reduced 

0 1 2 

lOS,,(N/N,) 

Applications to tracer and self diffusion in other systems (see Tab. 1 )  have also 
been carried out. A simultaneous fit to melt self-difision data on PBDg9’, PBDhX8) 
PIs9), polydimethylsiloxane (PDMS)90), polyethyleneoxide (PEO)90’, and poly- 
styrene (PS)91) is shown in Fig. 11. As theoretically expected, the data do not fall on 
a single master curve since finite size corrections depend (perhaps weakly in melts) 
on the nonuniversal structural parameters a and 6. Nevertheless, a good overall fit is 
obtained with parameters in precisely the range estimated a priori for melts. Small 
overshooting, or enhancement, of self-diffusion relative to the asymptotic behavior 
is again found due almost entirely to constraint release corrections. Examples of fits 
to individual self-diffusion data sets are shown in Fig. 12 and discussed at length 
e1sewhe1-e~~). 

Application to the tracer diffusion data of Green and KramergO) in entangled PS 
melts is shown in Fig. 13 based on a 2-parameter fitting procedure4’). Semi-quantita- 
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Fig. 11. Self-diffusion 
constant data for several 
polymer melts versus 
molecular weight. A 
common best fit of all 
the data is shown, 
which is not sensitive to 
the porosity parameter 
in the range 0 < 6 < 
0.07. The asymptotes, 
Rouse and reptation- 
like, are shown with 
prefactors correspond- 
ing to the fit 

Fig. 12. Independent 2-parameter fits 
of PMC theory to the self-diffusion ver- 
sus reduced molecular weight data for 
polydimethylsiloxane (PDMS)90), poly- 
(ethylene oxide) (PEO)90), polybuta- 
diene (PBD)89)melts. A power law of N -  
2.4 is compared to the PDMS data. The 
predicted asymptotes are shown as long 
dashed lines. The dot-dash curve is a fit 
to the PBD data using the same value of 
a = 4.9 obtained from the best fit to the 
viscosity data 

tive agreement is obtained, although of somewhat poorer quality than fits based on 
tube-based models of constraint release for tracer diffusion4v85). 

Fig. 14 shows comparisons of theory with self and tracer diffusion constants in 
PS good solvent solutions. The three concentrations studied by Nemoto et a1.81) span 
the range from semidilute to concentrated. Although the measured shear viscosities 
obeyed the same N3.5i0.1 law observed in the melt, neither the self nor tracer diffu- 
sion constants exhibit N-2 behavior even out to NINe E 70. Rather, Dself - N-2.7*0.1 
and D, - N-2.5ko.1 , which is particularly puzzling given the nearly perfect N-2 law 
seen for tracer diffusion in melts. 
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Fig. 13. Tracer diffu- 
sion coeffients for poly- 
styrene melts as a func- 
tion of reduced matrix 
molecular weight and for $ 
the indicated different z 

n tracer degrees of pol \ 

merization. The dat$') is 
shown as solid circles, 
and the best fit PMC 
results by solid curves; 
the relevant parameters 
are a = 3 (a priori fixed), 

The corresponding self- 
diffusion constants are 
indicated by the dashed 
chain curve 

o) z 
0 - 

6 = 0.07, and 10 = 1.58. 

h 
L 
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0 Self 13wt% 

\ 
\ 

Fig. 14. Self (open symbols; P = A') and tracer (filled symbols) polystyrene diffusion 
constants for three concentrations of polystyrene solutions in the good solvent dibutyl 
phthalate"). The experimentally reported power law N-*. is indicated by the long 
dashed line. A common fit (2 independent parameters are varied; a = 2.8 and P = 10N are 
chosen a priori) to the six self (chain curve) and tracer (solid line) data sets for the three 
concentrations is shown. The predicted asymptotic behavior is shown as the short dashed 

In the PMC fits of Fig. 14, an independently-determined value of a = 2.8 was 
employed based on an analysis of the corresponding viscosity data48). The two para- 
meters 6 and AD were freely varied to simuZtuneousZy fit the tracer and self diffusion 
data at uZZ three solution concentrations. Excellent agreement is found. The rather 
large (compared to the melt) value of the prefactor AD in Eq. (3.4) required for a 
good fit is not entirely understood at present, but may reflect limitations in modeling 
real two component polymer-solvent mixtures with our effective one-component 

curve 
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description. Independent fits for each concentration have also been carried out, and 
provide a marginally better des~r ip t ion~~) .  The individual fit parameters are listed in 
Tab. 1 .  For tracer diffusion in the P B N regime, constraint release is irrelevant and 
the anomalous apparent exponent is a consequence solely of constraint porosity cor- 
rections. The extracted value of 6 = 0.30 is in good agreement with estimates based 
on direct measurements of the density screening length (mesh) and entanglement 
crossover length in solution, and  simulation^^^) of lightly entangled semidilute solu- 
tions. For self-diffusion, constraint release further enhances translational motion, 
resulting in larger apparent scaling exponents. 

In summary, it appears PMC theory with strong finite N corrections provides a 
unified and consistent description of experimental data for self and tracer diffusion, 
shear viscosity, and dielectric relaxation time in entangled polymer melts and solu- 
tions. To the best of our knowledge, this represents the first theory to achieve this 
level of understanding. 

Predictions for new experiments to more fully test the PMC theory of nonasymp- 
totic dynamical effects have been advanced48). The key idea is to manipulate the 
three fundamental length scales: polymer density (concentration) screening length 
<, , entanglement mesh length r, , and tracer radius-of-gyration R,. These nonuniver- 
sal structural parameters have a clear physical meaning, are directly measurable, and 
depend on chemical structure, polymer concentration, temperature, solvent quality, 
and external pressure. Several specific fruitful areas for more experiments to test 
novel aspects of the PMC theory can be identified. These include: (i) self and tracer 
diffusion in good solvents in the unexplored 40- 100% polymer concentration 
regime, (ii) diffusion measurements in theta solvents where the important length 
scale ratio 6 = <,/r, is larger and more concentration dependent than in good sol- 
vents; enhanced porosity corrections and larger effective N-scaling exponents are 
thus predicted, (iii) more transport coefficient studies on different polymer-solvent 
systems since 6 is chemical structure specific, and (iv) combined self-diffusion and 
shear viscosity measurements on the same samples in both melts and solutions; such 
data places severe constraints on our unified theoretical treatment of constraint 
release and porosity. 

D. Finite frequency effects and non-Markovian relaxation 

Self-consistent constraint release affects the memory functions only for times of 
order and exceeding their longest relaxation time. Thus, all t < t R R  predictions for 
the time and frequency dependence of observables based on the frozen matrix ideali- 
zation (@( t )  = 1 in Eqs. (2.34) and (2.35)) should not be affected. However, con- 
straint release is expected to have two important implications for nonzero, but very 
low, frequencies. 

( I )  Based on the viscosity predictions described in this section, it is clear self-con- 
sistent constraint release always reduces by a non-negligible amount the terminal 
relaxation time relative to its value under (hypothetical) frozen matrix conditions. A 
zero frequency consequence is that the asymptotic P,I - N 3  law is experimentally 
inaccessible in one-component polymer solutions and melts. This prediction implies 
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that for experimentally accessible degrees of polymerization there is no real time 
scale separation between the fluctuating force memory function decay and the phy- 
sical terminal relaxation time of stress and single chain conformation. Thus, for the 
relevant values of N a “non-Markovian” situation applies, where chain motions and 
fluctuating force time correlations relax on comparable time scales. This lack of 
time scale separation implies that most of stress relaxation is due to decay of the 
viscoelastic memory function M(t )  via single chain shape fluctuations (internal 
modes), and not center-of-mass diffusion as would be true in the idealized, but inac- 
cessible, N + 00 limit. In addition, one expects the “anomalous” non-reptation t < 
TRR laws discussed in section IIIB and IIIC, and their frequency domain analogs 
(which are in good agreement with several experiments), will persist up to the 
experimentally-observable terminal relaxation time zD, and thereby control labora- 
tory measurements of stress and dielectric loss moduli, segmental displacements, 
and incoherent dynamic structure factors. The asymptotic analytic predictions in 
section I11 for the last (third) intermediate time regime, zRR 4 t + zD , are thus not 
expected to be observable for chains of experimentally relevant length. 

( 2 )  Under all practical situations, the long time tails of the memory functions, 
which emerge only for t > 5RR under frozen matrix conditions due to the presumed 
diffusive decay of the fluctuating forces on kR, < 1 scales, will be “cut off’ by the 
constraint release process. This feature can have significant consequences for fre- 
quency domain measurements in the terminal regime of cotD < 1. For example, in 
the absence of self-consistent constraint release the Laplace transform of the visco- 
elastic memory function in the low frequency regime is of the form 

(4.4) 

The zero frequency Markovian limit is well-behaved (the tail is integrable), but a 
nonanalytic correction in the frequency domain does appear. Although of negligible 
consequence in the formal N + 00 limit, the very weak N-”4 damping of its ampli- 
tude implies significant consequences for experimentally relevant values of N/Ne are 
likely. This conclusion is verified in numerical studies discussed in section VI. It is 
found that utD < 1 stress moduli are of excessive breadth, in disagreement with 
experiment. However, constraint release effectively removes the long time tail, and 
hence its incorrect low frequency consequences. 

V. Tracer diffusion in gels and networks 
The diffusion of tracer polymers through amorphous media is of great interest in 

physical and biological science and technologyg3). The original reptatiodtube theory 
was formulated for motion of a chain in a crosslinked Gel electrophor- 
esis is a powerful, but still not well understood, method to characterize biopoly- 
mers9*). The unique aspect of PMC theory is that it provides connections between 
tracer dynamics and the diversity of possible gel structures, gel-solvent-tracer inter- 
actions, and tracer conformation. The constraint release mechanism is inoperative, 
so the prime physical issue is the role of constraint porosity. 
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A. General formulation and asymptotic predictions 

Gels generally possess a fractal structure characterized by a mass scaling expo- 
nent DF, and a pore or mesh size tg. Gel formation by crosslinking of polymer solu- 
tions is expected to yield fractal exponents in the range DF = 5/3 - 2. Simple models 
for the gel density correlations are 

The second form has been shown to fit data quite well93’, and accounts for both 
annealed gel density fluctuations and quenched inhomogenities associated with 
crosslinking. The characteristic length scale of the quenched disorder, rx, , is gener- 
ally much larger than t,. In the effective medium PMC spirit, quenched and 
annealed disorder are treated in the memory functions solely via S(k).  In contrast to 
“hard” silica-like gels94’, “soft” gels formed by lightly crosslinking polymer solu- 
tions will display a quenched in elastic mesh length, r,, in analogy with their 
entangled solution precursors. Typical values of the constraint porosity parameter, 
6 = tg / rc ,  are expected to be comparable to solution values, unless a “strangulation 
regime” applies due to a very high degree of c r~ss l ink ing~~) .  

The nature of tracer conformation in a fractal gel medium is a complex, nonuni- 
versa1 question which remains poorly understood theoretically and experimen- 

depend on degree of polymerization range, gel density, degree of crosslinking, etce- 
tera. As a simple model, the following form is adopted for the tracer structure factor 

tally83393’. The polymer mass scaling exponent defined by R, - N ”  = “Idp, may 

w(k)  = N(l + cV k2Ri)-dF’2 

where dF is the tracer fractal dimension, and c ,  is chosen to reproduce the exact large 
k self-similiar power law behavior4@. 

Based on the above simple structure factor models, the generalization of Eq. (4.3) 
to the tracer-gel problem in the frozen matrix limit yields 

(5.3) 

where d is the space dimension and the correction function K, is precisely defined 
elsewhere48). Simple Rouse dynamics (no hydrodynamic interactions) has been 
adopted for the “bare” unentangled diffusion. The parameter A, is proportional to 
the mean square force exerted by the gel (mediated by the solvent) on a tracer seg- 
ment in analogy with Eq. (3.4). This strength parameter is not easily predicted. We 
expect it to be highly variable since the typical system is a ternary gel-solvent-tracer 
mixture, and specific attractive or repulsive effective interactions between the tracer 
and gel strands are possible. 

In the asymptotic large tracer limit (Rs B r,, t,), the correction function Kg --* 1, 
and De - NK with IC = 5 - (2/dF)d. This asymptotic result is independent of gel frac- 



Polymer-mode-coupling theory of the slow ... 1083 

tal dimension since for such a large tracer the gel appears statistically homogeneous. 
Examples of possible asymptotic behaviors are: D - N-2 in 3-dimensions for ideal 
coil tracers, and, curiously, D - N-2 in 2-dimensions for swollen tracer chains where 
dF = 413. The latter prediction is in excellent agreement with 2-d computer simula- 
tions by Slater and Wu of self-avoiding walk (SAW) chains in a dense obstacle 
net96). Interestingly, the N-’ “reptation law” occurs by accident for the d = 2 case, 
and does not agree with the proper reptation prediction for swollen coils in d = 2: 
D,, - REIN3 - N-3’2. 

B. Model calculations and experimental comparisons 

In the most common experimental situation, the correction function Kg in Eq. 
(5.3) is not unity. It quantifies the constraint porosity effects associated with finite 
gel pore size and dynamic entanglement length. Apparent exponents which are lar- 
ger than the asymptotic values are expected, in analogy with the entangled solution 
problem. In contrast to phenomenological “entropic barrier” s2783) and “enthalpic 
trap” 97) approaches, Eq. (5.3) describes not only an intermediate N anomalous trans- 
port regime, but also the low and high N limiting cases and crossovers. 

Fig. 15 shows model calculations of Df‘ based on Eq. (5.3) for specific choices of 
tracer and gel fractal dimension, interaction strength parameter A,, and a fixed 6. 
Gel mesh length is denoted by reporting the degree of polymerization of a tracer 
with a radius-of-gyration such that 5, = R, (N). There are several noteworthy trends. 
(i) Deviations from the bare Rouse behavior emerge for R,/( ,  < 1, but asymptotic 
behavior (K ,  + 1) does not appear up to very high tracer degrees of polymerization. 
(ii) Apparent intermediate power laws appear with varying exponents, D“ - N-Y 
with y = 2.3-2.8, depending on system-specific parameters. This is a particularly 
dramatic effect since the true asymptotic molecular weight dependence for the tracer 
fractal dimension employed in Fig. 15 is D - N-’.4,  which is even weaker than 
reptation-like scaling. (iii) The steepest molecular weight dependences fall in a 
range where the tracer R,  significantly exceeds the gel pore size 5,. This finding 
appears to disagree with entropic barrier ideasszs s3), where maximal non-asymptotic 
behavior is centered around R,  5,. (iv) An upper bound to the effective exponents 
can be deduced from the small tracer size limit of Eq. (5.3). For RgI(,  G 1 ,  it follows 
that for large asymptotic prefactors A,, and/or large pore sizes, an upper bound is 
obtained as D“ - N-’, 8 = 5 - (2/dF) (d  - DF).  For the case of Fig. 15 this estimate is 

. (v) Anomalous, non-asymptotic exponents are not directly associated 
with the dominance of alternative (postulated) real space motional mechanisms, but 
rather with modifications of the spatially resolved entanglement constraints due to 
tracer-gel interactions and structure. 

have been recently carried out4’). Here, we 
only discuss measurements by Hoagland and coworkers9*) of the low field gel elec- 
trophoresis mobility, p = ND“. Polystyrenesulfonate (PSS) diffusing in crosslinked 
polyacrylamide (PAA) entangled solutions was studied at three gel concentrations c 
(gel weight percent). The data is shown in Fig. 16, along with fits of PMC theory. 
The calculations employed the swollen coil exponents for tracer and gel, dF = DF = 

D“ - N-3.4 

Applications to several data 
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Fig. 15. Tracer diffu- 
sion constants (normal- 
ized by the Rouse 
value) versus tracer 
degree of polymeriza- 
tion in gels with various 
pore sizes 5, chosen to 
equal the tracer R, for 
N/N, = 10,50, 100,500, 
1000; the curves are 
monotonically lower 
with increasing N N e .  
Good solvent conditions 
are chosen, and the tra- 
cer-gel interaction 
strength parameter is I ,  
= 100 and 20 in frames 
(a) and (b), respectively. 
The thick solid lines are 
for the “soft polymer 
gel” case discussed in 
the text with a fixed, 
dense solution-like 
value of 6 = sP/rc = 0.3. 
The chain curves corre- 
spond to a “hard gel”- 
model as discussed else- 
where4*). The thin line 
labeled N-U511g is the 
asymptotic behavior 
which applies only 
beyond N/N, 2 1 OX. The 
maximal intermediate 
slope is shown as the 
thin dotted line 

513, and d was a priori fixed at a solution-like value of 0.3. Least square fits of the 
PMC theory Eq. (5.3) to each gel concentration data set were carried out based on 
variable gel-tracer interaction strength parameter A, and gel pore size lg. The near 
constancy of the extracted gel-tracer interaction parameter seems physically sensi- 
ble. Gel pore sizes are reported in Fig. 16 by stating the PSS degree of polymeriza- 
tion N giving R,, , ,  (N) = rg. The physically expected decrease of gel pore size with 
increasing gel density is observed, and is in reasonable agreement4@ with the depen- 
dence expected for semidilute good polymer solutions’). 

Given the uncertainty about structural parameters in the complex polymer-sol- 
vent-gel environment, the agreement of theory with the data in Fig. 16 is quite satis- 
fying. We again note that the steepest region of the mobility versus molecular weight 
curve lies in a region where RgIC, 4 1, contrary to expectations based on the entro- 
pic barrier The effective N scaling exponent of the mobility is much lar- 
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l h  = D, = 5/3 
c = 0.03 - c = 0.05 

4 C =  0.07 
C =  0.03 

CJb= 0.3 . 
L '  

Fig. 16. Low field mobilities of polystyrenesulfonate (PSS) tracers in three polyacryl- 
amide (PAA) gels9*) of different concentrations c (gel weight percent) as a function of 
degree of polymerization. The full lines are the PMC fits based on the soft gel model 
under good solvent conditions with the parameters indicated. Gel pore sizes, eg, are 
expressed by stating the degree of polymerization, N ,  of a PSS tracer with identical 
radius-of-gyration. The vertical lines denote the tracer degrees of polymerization where 
R, (N) = c,(c). The parameter 6 = cP/rc = cp/b = 0.3 was fixed a priori based on prior 
solution studies 

ger than the reptation value of -1. Future theory-experiment comparisons for tracer 
diffusion would be greatly facilitated by the availability of more experimental infor- 
mation concerning the gel structure factor, tracer conformations, and polymer-gel 
interactions. Controlled manipulation of physiochemical properties to rationally 
vary the key structural parameters 6,  a, and I ,  could also allow more penetrating 
tests of the PMC theory of strong finite size corrections and structure-dynamics con- 
nections in gels. 

VI. Numerical polymer mode coupling theory 

Mode-coupling theories are not valid at very short times or distances since they 
are constructed to treat collective dynamical processess which require a finite time 
to emerge from many microscopic  collision^^^^^). In prior sections a simple analytic 
time domain approach to treat the bare/mode-coupled crossover was adopted: Rouse 
dynamics for t < T~ and mode-coupled dynamics for 6 > rSc . The crossover time was 
estimated using the RR theory. This simple model is not adequate for truly quantita- 
tive numerical studies. The purpose of the latter is to more precisely quantify prefac- 
tors and finite N corrections, and predict (not assume) the nature of the crossover 
from Rouse to entangled dynamics. Practical questions relevant to experimental 
(and simulation) systems include the breadth of the crossover connecting different 
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(asymptotically distinct) time and frequency regimes, and apparent time, frequency, 
and N scaling exponents. 

Numerical work performed to date40s41377) has been based on the original version 
of PMC theory3% a literal (naive) frozen matrix approximation with collective den- 
sity fluctuations as a slow variable, i.e. S(k,t) = S(k) = S(O)/[l+ (k&J2]. Thus, self- 
consistent constraint release and dynamic mesh porosity  correction^^^) are ignored. 
Numerical results based on this level of PMC theory should be useful for studying 
the Rouse/mode-coupling crossover, the influence of probe shape fluctuations in the 
pre-terminal relaxation regime, finite size modification of anomalous diffusion time 
scaling exponents, and smearing of well-defined intermediate time regimes due to 
broad crossover effects. However, finite size deviations from the N 3  law, or non- 
asymptotic self and tracer diffusion scaling exponents, are not expected to be prop- 
erly captured. These expectations are borne out in the numerical results discussed 
below and elsewhere77). 

A. Numerical crossover model 

The general problem of describing the crossover between unentangled Rouse and 
entangled dynamics is a very difficult one. Indeed, its analog for caging dynamics in 
simple liquids remains largely u n s ~ l v e d ~ ~ - ~ ~ ) .  Oversimplified crossover schemes 
must be invoked based on physical sensibility and mathematical convenience. Sza- 
me1 and Schweizer have considered two numerical crossover models40x41377). The 
first scheme simply turns off the PMC memory functions at short times t < z, via a 
“switching function”, thereby enforcing Rouse dynamics over the appropriate short 
time and distance scales. This procedure is sensible in the time domain, but yields 
negative values of loss moduli in the frequency domain. We do not believe this 
implies any fundamental difficulty, rather only that frequency domain response 
functions are very sensitive to the crossover model. 

The second method investigated was to introduce a crossover in normal mode 
space. The memory function is required to be Rouse-like for short wavelength nor- 
mal modes (high p index), thereby indirectly, and more approximately, introducing a 
crossover in the timeheal space domain. A similiar procedure has been employed by 
des C l o i z e a u ~ ~ ~ )  within the reptatiodtube framework. The precise implementation 
introduces a switching function, ~(p) ,  at the fundamental level of the PMC memory 
functions. This function varies from unity to zero as the normal mode index p 
increases, i.e., I‘’(t) + ,y(p)r’(t) in Eq. (2.31), and applies for the calculation of all 
dynamical observables. 

Two specific, minimum parameter switching functions have been studied corre- 
sponding to exponential and step function crossovers40~41) 

where function H- ( x )  = l(0) for x < 0 ( x  > 0).  The empirical parameter ,Ij is a pure 
number which adjusts the absolute strength of the mode-coupling memory functions. 
The parameter N ,  determines (roughly) the spatial scale, r,  ON,"^, beyond which 



Polymer-mode-coupling theory of the slow ... 1087 

mode-coupled dynamics applies. The absolute magnitude of N, is not a priori calcul- 
able. However, based on the RR crossover theory of section IIB, and the PRISM 
predictions for Gaussian string polymer fluids, we estimate its solution density @) 
dependence a priori using the results discussed above Eq. (2.18): 

Here, pm(om) is the melt density (segment length), and Nc,melt is a system-specific 
degree of polymerization in the melt state the chemical structure dependence of 
which can also be estimated based on the RR crossover theory42) of section IIB. The 
parameters A and Nc,melt are determined by requiring the PMC theory predictions for 
the crossover degrees of polymerization for the melt self-diffusion coefficient (No) 
and shear viscosity (N,,) take on specified values, as suggested by experiment or 
simulation. The self-diffusion crossover degree of polymerization is defined by the 
condition DID, = 112. The crossover N,, is defined from the intersection of the extra- 
polated small (Rouse) and high (entangled) N theoretical predictions for the shear 
viscosity. The density dependence of all properties are predictable based on Eq. 
(6.2) and the use of PRISM theory (or other sources) for the equilibrium informa- 
tion. 

For the specific numerical results discussed below, Szamel and Schweizer have 
employed string PRISM theory42960), a reduced melt density of pmo3 = 0.5 (corre- 
sponding to a melt screening length Cp GZ 2a), a Lorentzian single polymer structure 
factor o ( k ) ,  the Akcasu form of Eq. (2.33), and an upper wavevector cuttoff of 6’ 
in the PMC memory functions. Theta solutions of 20% and 60% polymer volume 
fraction are modeled using values of pmo3 = 0.1 and 0.3, respectively. For simplicity, 
the diffusion constant and viscosity crossover degrees of polymerization are set 
equal: No = N,, = 70, which is a reasonable segmental value based on melt experi- 
m e n t ~ ’ ’ ~ ~ )  or  simulation^^^). Results are shown using crossover model 1, although 
preliminary studies using model 2 yield predictions which are not very sensitive to 
the switching function. The numerical details of performing the required normal 
mode sums, integrals, and Fourier and Laplace transforms are described else- 
where77). 

B. Model calculations and experimental comparisons 

The fundamental quantities are the memory functions. Representative results in 
the time domain are shown in Figs. 17a and 17b. Although the various analytically 
predicted asymptotic regimes are somewhat visible for larger N, they are consider- 
ably smeared by rather broad crossovers. Moreover, the approximate power law 
regimes are characterized by N-dependent effective exponents. Note that significant 
decay of the viscoelastic memory function occurs at “intermediate” times I % TRR in 
the von Schweidler manner of Eq. (2.38). The finite size mechanism is dynamical 
polymer shape fluctuations which are effective for kR, > 1 scale contributions to 
M(t) .  This initial, self-similiar decay occurs well before the long time t-3‘2 tail 
emerges corresponding to the final decay of viscoelastic entanglement forces via 
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probe center-of-mass diffusion. For example, for the NINc I 140 case, M ( t )  decays 
by nearly a factor of 100 before the long time tail regime becomes dominant. 
Although such intermediate time decay via internal mode fluctuations is not effec- 
tive in relaxing M ( t )  in the N + Q) limit, for experimentally accessible N it is very 
important since M ( t )  can be reduced to nearly insignificant magnitude via the shape 
fluctuation mechanism. 

1 oo 

1 0-1 
n 
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I I  

\ 
iz 
n 
c, 
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-1 
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-2 
0 

1 o7 lo1’ 
t h o  

Fig. 17. Logarithmic 
plots of the normalized 
(a) diffusional and (b) 
viscoelastic memory 
functions as a function 
of reduced time, where 
here zo = p$co is the 
elementary Rouse 
model time scale. 
Numerical results are 
for melt-like conditions 
and are shown for N = 
10’ (short dashed), lo3 
(intermediate dashed), 
lo4 (long dashed), and 
lo5 (solid curve). A 
dash-dot line of slope 
-312 is shown in (b), 
and a dash-dot (solid) 
line of slope -712 
(-9116) is indicated 
in (a) 

Results for the Rouse-normalized self-diffusion coefficient and shear viscosity are 
shown in Figs. 18 and 19, respectively. For self-diffusion, the asymptotic N-’ scaling 
is recovered at very large N ,  but there is a significant “overshooting” regime where 
effective power laws of N-’, 0 4 2.2 0.1, emerge at intermediate molecular 
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Fig. 18. Self-diffusion 
constant normalized by 
its Rouse value as a 
function of degree of 

70 and the melt-like 
density (solid curve), cI 
60% solution (long 
dashed), and 20% solu- - 

cases. A dash-dot line - 
of slope -1 is also - 

- polymerization for ND = p: - - 
- ? - 

- - tion (short dashed) - 

shown 1 o - ~  I I I 1 1 1 1 1 1  I I I l l l l l l  I I l l l l l l J  

lo1 1 o2 1 o3 1 o4 
N 

Fig. 19. Shear viscos- 
ity divided by the 
reduced density in arbi- 
trary units as a function 
of degree of polymeri- 
zation for Nv = 70 and 
melt-like (solid curve), 
60% solution (long 
dashed), and 20% solu- 
tion (dash-dot) cases. 
The short dash curve 
represents the extrapo- 
lated Rouse behavior. A 
solid line of slope 3.5 is 
also shown 
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weights. Moreover, 0 tends to weakly decrease upon dilution of the melt, contrary to 
experimental behavior. As expected, the deviations from asymptotic behavior are 
significantly less than the predictions for solution tracer diffusion obtained in section 
IV which accounted for entanglement mesh porosity and constraint release. 

300, the viscosity follows a N3.5  scaling law nearly independent of 
polymer density. Although in apparent accord with experiment, this agreement 
appears to be for incorrect physical reasons. The terminal relaxation time, defined 
from the maximum of G"(w) as zD = 2x/o,,,, is found to scale very nearly as N'. 
This is expected based on the results of section IV since self-consistent constraint 
release is not taken into account in the numerical studies. Thus, the origin of the 
N3.5 law for the viscosity in Fig. 19 is a spurious dependence of the overall ampli- 
tude of G'(o) and G"(o), and hence the plateau modulus, on degree of polymeriza- 

Out to NIN,, 
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tion. Over the experimentally relevant range of N studied in Fig. 19, it is found that 
GN - (and hence J,  - N4'.4 for the compliance) for NIN,, = 20- 100, although in 
the asymptotic N + 00 limit the plateau modulus and creep compliance do approach 
limiting, N-independent values77). As demonstrated below, this defect of the cross- 
over model affects the storage and loss moduli in an identical manner, and only as 
an overall scale factor. Thus, predictions for the normalized moduli, their frequency 
dependence as a function of N, and their polymer density dependence at fixed N ,  are 
not perturbed by this defect of the numerical crossover model. The polymer density 
dependence of both ND and N,,, and the large N values of D and v ,  are all found to be 
in close agreement with the analytic scaling laws discussed in section IIIA (see Eqs. 
(3.5)). 

Center-of-mass and (chain-averaged) segmental mean square displacements are 
shown in Fig. 20. Broad crossovers between the analytically predicted regimes are 
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Fig. 20. Dimension- 
10' 1 o3 1 o5 1 o7 1 o9 less center-of-mass (a) 

and chain-averaged seg- 
mental (b) displace- 
ments as a function of 
reduced time for three 
reduced values of chain 
length N/ND = 2 (dash- 
dot), 20 (dashed), and 
100 (solid) and the 
melt-like density. The 
circles on the lower 
time axis denote the 
times at which a mean 
square displacement of 
R2 occurs. A solid line 
of slope 9/16 and 9/32 
is shown in part (a) and 
(b), respectively 

t h o  

lo1 lo3 lo5 lo7 10' 
t /TO 
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evident, and the large N scaling exponents are approached from above with increas- 
ing entanglement. The finite size smearing effects seem more noticable for the cen- 
ter-of-mass dynamics. Enhanced diffusion of end segments relative to central parts 
of the chain is predicted by PMC theory (and also Rouse dynamics), but is a much 
smaller effect than for reptatiodtube 

Fig. 21 presents the segmental displacement results in an apparent time-dependent 
diffusion constant format following Eq. (3.16). As discussed in section IIID, this 
plot is relevant to recent PFG-NMR measurement~~~~’~) .  For the experimentally rele- 
vant cases (N/Ne < loo), power law behavior over one or two orders of magnitude in 
time occurs, although the effective exponent depends on the specific time regime 
examined and degree of polymerization. Expressed in the form adopted by the 
experimental studies, D,,,(t) - t-‘, the effective exponent falls in the range A G 0.6 
2 0.1. The latter values appear to be in agreement with  experiment^^^), which often 
seem to be larger than the pure reptation prediction of d = 0.5. Moreover, PMC the- 
ory predicts systematic, although rather weak, trends: A tends to increase as shorter 
time regimes (displacements) are analyzed for fixed N/ND S-1, or if larger N/ND 
melts are examined at fixed th,. For the lightly entangled N/ND = 2 case the beha- 
vior is essentially Rouse-like with A = 1/2. New experiments on a single chemical 
system which systematically varies NIND and the range of thD probed would be 
valuable to more quantitatively test the numerical PMC theory predictions for appar- 
ent time scaling exponents, and also the fundamental question of whether the inco- 
herent scattering function depends on external wavevector in a Gaussian or power 
law fashion. 

Numerical predictions for the stress relaxation loss modulus of melts at various 
degree of entanglement are shown in Fig. 22. A normalized plotting format is 
employed to emphasize the N-dependence of the shape of G”(w). The high fre- 
quency side of the loss maximum G”(w) follows an apparent power law with an 

Fig. 21. Dimension- 
less, apparent time- 
dependent diffusion 
constant as a function of 
reduced time under 
melt-like conditions and 
for N/N, = 2 (short 
dashed), 10 (dashed), 20 
(long dashed) and 100 
(solid). Here, Do = 
@lo)-’ is a free segment 
diffusion constant and 
T~ = R21D is a character- 
istic diffusion relaxation 
time 
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exponent which decreases rather remarkably weakly with N. Moreover, even for the 
most strongly entangled case (N/N,, = 300) the apparent scaling exponent is small, 
roughly G”(o) - These 
PMC predictions are in excellent agreement with recent experimental studies of 
polybutadiene and polystyrene melts by Winter and coworkers”), and the asympto- 
tic PMC analytic results of section 111. Thus, the numerical studies again emphasize 
that dynamic polymer shape fluctuations are very effective at relaxing entanglement 
constraints, i.e., M(t ) ,  for the finite N systems of experimental relevance, indepen- 
dent of the question of the non-asymptotic scaling of the longest relaxation time zD 
with N. 

which is very far from the pure reptation law of 
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Fig. 22. Normalized 
stress relaxation loss 
moduli versus reduced 
frequency under melt- 
like conditions for N/N,  
= 20 (short dashed), 50 
(dashed), 100 (long 
dashed), and 300 
(solid). A solid line of 
slope -114 is also shown 
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Model  calculation^^^) also reveal effective N-dependent scaling laws for other fea- 
tures of the stress moduli. For example, over the remarkably broad range NIN,, = 
20- 1 000, nearly perfect power law scaling is predicted for: tansmin = Gp/G”(wmin) - G”(wmax)IG”(wmi,,) - N-0.78, and GplG”(w,,,) S 4.5 -No. Here, the plateau mod- 
ulus is defined as the storage modulus evaluated at the frequency where the loss 
modulus goes through a minimum, G,, = G’(wmin). These N-scaling laws are in excel- 
lent agreement with many old and recent experimental studies’222), thereby demon- 
strating that numerical PMC theory can accurately predict the relative N-dependence 
of moduli. The location of the maximum and mimimum of the loss modulus over 
the range NIN,, = 20-300 follow the power laws: w,,, - N-3.1 and wmin - N-’I4. 
The predicted exponents correspond to a significantly weaker dependence than 
found experimentally: w,,, - N-3.5 and urnin - N-0.8*0.2 , although the rather shal- 
low frequency minimum is difficult to accurately measure’x22). We believe the poorer 
agreement between the numerical PMC theory calculations and experiment for w,,, 
is due to the neglect of the constraint release mechanism. 

The dependence of the terminal relaxation time, plateau modulus, and other prop- 
erties on reduced polymer density po3 found from the numerical calculations are in 
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good accord with the analytic results discussed in sections I1 and 111. This is not sur- 
prising since Eq. (6.2) and the same PRISM determined equilibrium input was 
employed. Excellent superposition behavior was also found77). That is, when com- 
pared at fixed N/N,,, and plotted in reduced variable format, the G”(o) and G’(w) 
curves for different reduced polymer densities (solutions) collapse almost perfectly 
onto a master curve, consistent with experimental behavior’). 

After calibration of the crossover function in Eq. (6. I), a zero f i t  parameter com- 
parison of theory and experiments for G‘, G”, and the loss tangent of a 2.54 million 
molecular weight polystyrene melt22) is shown in Figs. 23 and 24. The calculations 
employ the experimentally relevant value of N/N,, = 80. There are no adjustments 

Fig. 23. Comparison 
of PMC predictions 
(curves) and experiment 
(open symbols) for the 
normalized loss and sto- 
rage moduli as a func- 
tion of reduced fre- 
quency for a high mole- 
cular wei ht polysty- 
rene me&. The PMc 
curves are obtained 
based on the melt-like 
reduced density and N/ 
N,, = 80 appropriate for 
a M = 2.54 x lo6 poly- 
styrene sample with a 
viscosity crossover 
mass of M, E 32000 

Fig. 24. 
but for the loss tangent 

Same as Fig. 24 
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made in the comparisons except to use the reduced variable format. Overall, remark- 
able agreement between theory and experiment is found over SJ orders of magni- 
tude in frequency, which demonstrates the ability of the theory to correctly capture 
the moduli frequency dependence. 

As recently emphasized by Winter2*’, viscoelastic data at high frequencies w > 
wmin show effective power law behavior but with an apparent exponent, 
roughly. This behavior is not in agreement with the unentangled Rouse law of 
Such a failure of Rouse theory to describe G(t) in the “pre-entanglement” regime is 
ubiquitous, having been consistently observed over many years in many different 
materials. There appears to be a degree of nonuniversality, with exponents spanning 
the range of a .55 -0 .8  being reported’). Clearly, Rouse dynamics is significantly 
perturbed by the “entanglement formation” processes. Qualitatively, our numerical 
PMC calculations appear to capture this phenomenon, and for the case in Fig. 23, an 
apparent scaling law of zw0.* is found. We also caution that our predictions are 
expected to be less reliable for this shorter time feature due to its enhanced sensitiv- 
ity to the crossover model employed. Nevertheless, the trend of a considerably larger 
exponent than the Rouse value is consistently found, and presumably reflects an 
accelerated self-similiar approach to an elastic state. 

Dielectric relaxation has also been numerically s t ~ d i e d ~ l , ~ ~ )  based on the assump- 
tion it probes the end-to-end vector time correlation function R(t).  Fig. 25 shows the 
dielectric loss function in the terminal regime is much narrower than its viscoelastic 
analog, in quulitutive agreement with experiments2” and the analytic PMC results in 
section 111. 

- I 1 1 1 1 1 1 1 1  [ I 11111,  I I 1 , 1 1 1 1 ,  I I111111 I 1 I 1 1 1 1 , 1 ,  I I Im Fig. 25. Comparison 
- - of the viscoelastic 

- (short-dashed), “dielec- 
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shifted to agree with the 
-6 viscoelastic counterpart 

lo-* 10 at the peak in order to 
W T  compare spectral shapes 

0 

There remain several problems with numerical PMC theory for viscoelastic (and 
possibly dielectric) properties. (1) As discussed above, a spurious, common N- 
dependence of the absolute magnitude of moduli amplitudes is predicted for experi- 
mentally accessible degrees of polymerization. (2) The terminal relaxation time 
incorrectly scales very nearly as the N 3  law. (3) The storage and loss moduli are too 
broad at low frequencies o < w,,, (see Fig. 23), in a manner which appears to wor- 
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sen as N decreases. For example, the overall breadth of the relaxation spectrum is 
often characterized by the product Gp J,,  where J ,  is the zero frequency limit of 
G‘(o).  Values of G,J, E 4.5 are found numerically, which significantly exceed typi- 
cal experimental values1T475) of ~ 2 . 4 - 3 .  

Problems (2) and (3) clearly arise from the neglect of self-consistent constraint 
release which, as demonstrated in section IV, decreases the terminal time in an N- 
dependent manner such that a N3.4 law emerges, and cuts off the long time tail of the 
viscoelastic memory function M ( t )  which is the origin of the excessive broadening 
of the low frequency response (see Eq. (4.4)). At the expense of considerable addi- 
tional effort, self-consistent constraint release can be incorporated in the numerical 
PMC approach, and this represents an important future direction. The origin of pro- 
blem (1) is less clear, but may be associated with our crude p-space crossover model, 
and/or the fact that emergence of an N-independent plateau modulus requires 
M(t = 0) - (N/N,)”* + 1. Future work is required to attain a clear understanding of 
this issue. 

Other dynamic properties can be investigated using numerical PMC theory77). 
These include the nonexponential decay of the normal mode autocorrelations Cp(t )  
and their effective relaxation times zp ,  coherent and incoherent dynamic structure 
factors, the frequency-dependent spin-lattice relaxation time T,(o),  and creep com- 
pliance moduli J e ( o ) .  

VII. Entangled fractal macromolecules 

Sufficiently dense fluids of large, interpenetrating fractal-like macromolecules 
invariably display slow dynamics. Global architectures such as chains, rings, star- 
branched, combs, rods, and even non-fractal microgels or “rubber balls” all display 
characteristic “entanglement” effects. Recent work by Antonietti and coworkers9) 
has emphasized that observable entanglement features are often surprisingly weakly 
sensitive to global architecture and the details of connectivity. In particular, melts of 
chains, rings, and microgel rubber balls display striking similiar entangled viscoelas- 
tic behavior. Such observations may suggest there exist rather generic aspects of the 
entangled dynamics phenomena, contrary to the case-by-case architecture-specific 
spirit of tube-based phenomenological approaches233). Such a possibility has moti- 
vated Fuchs and S ~ h w e i z e r ~ ~ )  to generalize and apply the PMC approach to a class 
of simple Gaussian fractal macromolecules which have been thoroughly studied in 
their unentangled, Rouse limit by M ~ t h u k u m a r ~ ~ )  and Catesloo). Additional motiva- 
tion is purely theoretical, and in the spirit of renormalization group and mode-coup- 
ling studies of dynamic critical phenomena and fracton  dynamic^^^-^^). Elucidation 
of the predictions of PMC theory as a general function of spatial, d, and polymer 
mass fractal, dF, dimensions may perhaps shed light on the question of what an 
entanglement is and how it is relaxed. 

The Gaussian fractal model captures only the self-similiar nature of macromole- 
cular density distribution, and not the details of connectivity. Special architectures 
such as stars and rods display distinctive entanglement behavior due to branching, 
or chain rigidity and translation-rotation coupling, respectively. Such systems are 



1096 K. S. Schweizer, M. Fuchs, G. Szamel, M. Guenza, H. Tang 

presumably not amenable to a treatment based on a Gaussian fractal macromolecule 
composed of statistically equivalent sites, and the isotropic cage-averaged PMC 
dynamical theory4’). 

A. Basic theoretical aspects 

size-mass scaling relation and structure factor 
The intramolecular structure of a single, ideal Gaussian fractal is specified by its 

N N 

o ( k )  = N-’  exp(-k202 la - yI2’/6) G (7.2) 
a,y= I (1  + c,k2021V2”)1’(2v) 

where the constant c, is the same as discussed below Eq. (5.2). The approximate 
equality in Eq. (7.2) is a convenient interpolation formula which retains all impor- 
tant aspects of fractal macromolecular structure. The Markovian dynamical proper- 
ties of unentangled fluids of such Gaussian fractals at the Rouse theory level 

100) 

Frequency scaling laws for response functions have also been worked outg9’ loo). The 
Rouse coherent dynamic structure factor can be adequately described with the sim- 
ple form of Eq. (2.12). 

The RR, PMC, and equilibrium PRISM theories at the thread model level have all 
been generalized to treat Gaussian fractals47). The nontrivial mathematical analysis 
required to generalize the effective continuum GLE’s of Eq. (2.25), and their 
(approximate) diagonalization by normal modes, has been carefully worked out. The 
questions of slow bilinear variable choice and memory functions have been treated 
at the simplest, original level of PMC which ignores self-consistent con- 
straint release and constraint porosity corrections. Thus, only the large N,  asymptotic 
analytic behavior can be reliably investigated. Although predictions have been 
derived for the polymer solution density dependence in good and theta solvents47), 
here we focus only on results for melt-like conditions. 

In qualitative terms, modifications of the PMC predictions for entangled 
dynamics due to variable fractal architecture and spatial dimension arise from two 
distinct physical effects, one global and one local. (i) The number of contacts 
between a pair of interpenetrating fractals is proportional to the geometric factor No,  
where 0 = 2 - dv. For dF < dl2 this number is not significant and PMC theory pre- 
dicts entanglements effects are irrelevant and Rouse dynamics remains valid. (ii) 
The strength of interchain excluded volume forces is controlled by local segmental 
scale packing in the dense fluid which depends on dimensionalities and is predicted 
by PRISM theory. For the dv < 2 entangled case, effects (i) and (ii) strongly com- 
pete. That is, as the fractal dimension increases and/or spatial dimension decreases, 
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PMC theory for self-diffu- 
sion, No, and viscosity, N,,, 
based on Eq. (7.6) 

the number of global contacts between a pair of interpenetrating macromolecules, 
and hence the geometric aspects of entanglement coupling, are enhanced. However, 
for these same conditions the densification of the macromolecule causes the inter- 
molecular pair correlation function at the contact, g(a), to strongly decrease even 
under the experimentally relevant constant pressure or isothermal compressibility 
condition47). Since the former geometric effect is N-dependent and controls the long 
range intermolecular correlation hole, but g(a) is an intrinsic N-independent measure 
of the strength of intermolecular excluded volume forces, consideration (i) will dom- 
inate or “win” in the (hypothetical) N + limit for interpenetrating macromole- 
cules. However, for experimentally accessible values of N ,  subtle behavior can 
emerge due to this competition. For finite frequency response functions, power law 
scaling exponents will also be sensitive to the precise self-similiar nature of the 
macromolecule and the intermediate scale packing correlations. 

B. Asymptotic predictions and model calculations 

Fig. 26 presents model calculations of the crossover degree of polymerization sig- 
naling the breakdown of Rouse theory and entanglement onset, as a function of 
polymer fractal dimension in d = 3. The fractal macromolecular analogs of the two 
RR crossover criteria of Eqs. (2.16) are utilized47). A crossover N,‘ is calculated from 
the Markovian condition that A[ = a[’, with the numerical prefactor “a” chosen so 
that the value obtained for dF = 2 linear chains is N,‘ 35, as found in melt computer 
simulation A second measure of crossover, Nc, is computed using the 
time domain relation for z, and the fractal-generalized Rouse connection between 
time and displacement. Analytic string PRISM theory6’) is employed to compute the 
interaction parameter I,M= pdg2(a)So which is proportional to the segmental scale 
mean square excluded volume force exerted by the matrix polymers on a tagged seg- 
ment. To make a “fair” comparison, a calibration procedure was adopted whereby 
the coarse-grained density pa3 is chosen to ensure a value of dimensionless liquid 
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density fluctuations, S(0) = SO, which is independent of fractal dimension, thereby 
crudely mimicking the expected constant pressure equilibrium behavior47). 

Nonmonotonic variation of the crossover N’s with fractal dimension is predicted 
arising from the monotonic variation of the equilibrium parameters for different dF. 
However, both estimates of a crossover degree of polymerization are rather close to 
each other, and vary by less than a factor of 3 as a function of fractal dimension. 
This behavior reflects the subtle competition of the two physical factors discussed 
above. Moreover, this prediction seems in qualitative accord with experiments6, ’) on 
melts of polystyrene chains (dF = 2), rings (dF G 2.5 has been suggested based on 
heuristic theoretical arguments”’) and lattice model simulations’02)), and dense 
“microgel-like’’ systems (dF = 3), in the sense that entangled behavior emerges for 
degrees of polymerization which vary only by roughly a factor of 2 or 3. Note that a 
dF = 3 = d interpenetrating fractal model is not a faithful description of the non-frac- 
tal crosslinked “rubber  ball^"^), but is the best one can do based on the simple fractal 
macromolecular model adopted. Although both “spherical microgels” are dense in 
the sense R, - N”3,  the fractal macromolecule is a porous structure with a fuzzy 
surface since o ( k )  - k-3 for intermediate scales 6’ 4 k 4 R;‘ ,  while the nonfractal 
“rubber balls” are not porous and show a o ( k )  - k4 Porod scattering regime indica- 
tive of a sharply defined surface’). 

In the N + 03 asymptotic limit, PMC theory scaling predictions for the terminal 
relaxation time and transport coefficients for dv < 2 are given by47) 

where N ,  is determined from the RR crossover theory, and g(a) is also a function of 
fractal and spatial dimensionalities. The entanglement enhancement of the effective 
friction constant per segment again is proportional to [g(a)NZ4”]*, the square of the 
product of the local strength of intermolecular hard core forces times the geometric 
factor quantifying the number of contacts between a pair of interpenetrating macro- 
molecules. Note that larger exponents are predicted for more compact fractal archi- 
tectures: D - N - ~ ,  N - ~ . ~  , N-3 and q - N 3 ,  N3.4 ,  N3.67 as dF increases from 2 (chains) 
to 2.5 (rings) to 3. However, the “Stokes-Einstein” ratio, DrD/R;, is found to be 
nearly constant in 3-dimen~ions~~),  increasing monotonically by a factor of less than 
three as the macromolecule fractal dimension increases from 2 to 3. This is a nontri- 
vial result which originates from the common mechanism for entanglement force 
relaxation at the memory function level which controls both center-of-mass diffu- 
sion and conformational dynamics and stress relaxation. 

It is interesting to contrast the PMC predictions of Eq. (7.4) with the analogs 
based on a reptatiodtube approach. If the Gaussian fractals can be crudely thought 
of as linear flexible polymers, then the most naive generalization of the tube model 
ansatz predicts for all spatial dimensions 

(7.5) 
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Curiously, this result (accidentally) agrees with Eq. (7.4) in d = 3 only for the dF = 2 
ideal chain case. PMC theory also predicts a significant dependence of the entangle- 
ment friction on spatial dimension. For example, in a d = 2 melt of self--avoiding 
random coils (dF = 4/3), PMC predicts tD - N3.5 and D - N-2, the latter in acciden- 
tal agreement with the d = 3 reptation result. This case is directly relevant to recent 
simulations of self-avoiding chains in a dense 2-d obstacle netg6). 

To address real systems, the Rouse-entangled crossover and possible strong finite 
N corrections must be taken into account. The latter analysis has not yet been carried 
out for the general fractal polymer problem. However, as a crude approach a naive 
crossover model can be adopted where the bare and large N results are simply 
added47) 

4-2dv 5-2dv 
_-  DR 

-I+($-) -=I+($)  D ’ V R  

The crossover degrees of polymerization can be computed based on the RR, PMC, 
and PRISM generalizations to the fractal macromolecule The resulting 
values ford  = 3 are included in Fig. 26. More compact fractal macromolecules fol- 
low Rouse-like self-diffusion up to higher N values again reflecting the subtle com- 
petition between “prefactor”, g(a) , and “geometric” (number of contacts N2-3”) con- 
tributions to the center-of-mass friction. On the other hand, the viscosity crossover 
and N, are similiar. 

Model calculations for the N-dependence of D and q for the chain, ring, and 
microgel-like values of fractal dimension are shown in Figs. 27 and 28. For self-dif- 
fusion, in the experimentally accessible window of NIND < 100, the differences in 
reduced diffusion constant is less than half a decade and “curve crossings” occur. 
Only for very high molecular weights do the enhanced large N-scaling exponents for 
the more compact macromolecules dominate over the reduced prefactor g(a). Simi- 
lar trends are also found for the shear viscosity, with dominance of the geometric N- 

Fig. 27. Logarithmic 
plot of the reduced self- 
diffusion coeffients ver- 
sus degree of polymeri- 
zation for several fractal 
dimensions in d = 3. 
The vertical lines mark 
the crossover degrees of 
polymerization, N o ,  
from Fig. 26 

0 

K- g -1 
0 
7 

Is) 
0 - 

-2 

-3 
1 .o 2.0 3.0 4.0 



1 1 0 0  K. S. Schweizer, M. Fuchs, G.  Szamel, M. Guenza, H. Tang 

8.0 

6.0 
h 

% 
1- 
xm 4.0 

E 

-% n 2.0 
E 

2 
Is, 
0 0.0 - 

1 .o 2.0 3.0 4.0 

log,,(N) 

Fig. 28. Logarithmic 
plot of the reduced 
shear viscosities versus 
degree of polymeriza- 
tion for several fractal 
dimensions in d = 3 .  
The vertical lines mark 
the crossover degrees of 
polymerization, N7, 
from Fig. 26 

scaling factor being delayed until even larger degrees of polymerization than found 
for translational diffusion. These model calculations would seem to be in rough qua- 
litative agreement with shear viscosity measurements on polystyrene chain, ring, 
and microgel melts6”). The results in Fig. 27 also suggest there is a regime (where 
viscosity scales approximately as N3.5 )  where the self-diffusion constant of dF = 3 
entangled macromolecules can be an order of magnitude smaller than its linear chain 
counterpart, even though their shear viscosities are nearly identical. 

Predictions for a host of intermediate frequency and time properties as a general 
function of space and fractal dimensions have been derived4’). Here, we summarize 
a few of these results, emphasizing the dependence on fractal dimension in the most 
experimentally relevant range dF = 2-3 in d = 3. 

Anomalous mean square segmental diffusion in the first (broadest) intermediate 
time regime is predicted to follow the power law 

The intermediate time segmental (and center-of-mass) diffusion is increasingly slo- 
wed as the macromolecule becomes more compact. For example, in 3-dimensions 
Eq. (7.7) yields: r9‘32 (dF = 2), r2’’*l (dF = 2.5), and t8’125 (dF = 3) .  

Predictions for the viscoelastic loss modulus in the pre-terminal intermediate fre- 
quency regime are 

Interestingly, in the broadest (first) intermediate regime a nearly universal power 
law exponent is predicted, x = 0.2 2 0.05, for 2 < dF < 3. In the final intermediate 
regime, the apparent exponent increases significantly (less dissipation) as the macro- 



Polymer-mode-coupling theory of the slow ... 1101 

molecules become more compact: x = 1/4 (dF = 2) ,  x = 419 (dF = 2.5), and 315 (dF = 
3) .  The N-dependence of the viscoelastic response of the minimum dissipation state 
follow the scaling laws 

wmin - N-Y , c"(wmin) - tand,i, - N - Y / ( ' + ~ " )  , 
2(2 - dv)(l + 2v)Z 

(1 + 2v) + (2 - dv)(v(d + 2) - 1) Y =  (7.9) 

Enhanced N-dependence of the loss tangent and frequency minimum are predicted 
with increasing fractal dimension. For example, in d = 3 one obtains for ideal Gaus- 
sian coils ~" (w, , )  - cog - N - ~ ' ' ~  , whereas G"(omin) - 02; - N-lol7 is found for 
dF = 3.  These predictions for the viscoelastic response are possibly testable by sys- 
tematic experiments on melts of rings, or perhaps (more speculatively) on entangled 
microgels'). Model calculations of finite frequency viscoelastic moduli have been 
presented elsewhere47). 

We believe the predictions of PMC theory for entangled fractal macromolecular 
fluids do reveal a generality to the entanglement phenomenon for certain architec- 
tures which supports recent suggestions of Antonietti and coworkers'). More precise 
comparison with experiments may require the proper treatment of the finite size cor- 
rections and/or the numerical aspects discussed in sections IV and VI. A thorough 
experimental study of the viscoelastic, diffusion, and equilibrium structural proper- 
ties of highly entangled polymer ring melts would seem the best experimental sys- 
tem to test the theory. Finally, neglect of certain connectivity aspects is no doubt 
inadequate for some architectures such as highly branched polymers and rigid rods, 
although a promising microscopic statistical dynamical approach for rods has been 
recently developed by Szamello3). Finally, we note that a convincing PMC theory 
treatment of the non-fractal, microgel "rubber balls" also remains to be achieved. 

VIII. Blends and block copolymers 

The collective dynamics of any binary AB mixture, atomic or macromolecular, 
undergoes critical slowing down as a second order phase transition is a p p r ~ a c h e d ~ ~ ) .  
The reason is the emergence of low amplitude, long wavelength concentration fluc- 
tuations, which diverge at a critical point. The real space picture is physical cluster- 
ing of like species, corresponding to the formation of diffuse interfaces between A 
and B species and domains or droplets of like species. Properties such as the collec- 
tive diffusion constant, shear viscosity, and low frequency viscoelastic response all 
show anomalous critical behavior. Rheological anomalies and slowing down of col- 
lective dynamics are also expected and observed in self-assembling block copoly- 
mer fluids"), where much larger amplitude concentration fluctuations emerge near 
the order-disorder transition (ODT) corresponding to microphase separation of A 
and B species on afinite length scale commensurate with macromolecular size, R, . 

There is another question. Is there an influence of long wavelength concentration 
fluctuations and thermodynamically-driven physical clustering on the single poly- 
mer translational diffusion and conformational relaxation? For polymers the answer 
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may depend on whether the chains are entangled or not. Since PMC theory envisions 
entanglement dynamics as having a structural origin (long range correlation hole), 
one might anticipate that entangled polymer dynamics will be strongly perturbed by 
long wavelength concentration fluctuations, but unentangled polymers may not, or 
at least be much less, affected. Since the polymer size and microdomain length 
scales are nearly identical for diblock copolymers, one expects much larger effects 
in entangled copolymers than for the corresponding blends. The highly segregated 
diblock copolymer problem may also be related to slow dynamics in confined poly- 
mer fluids, and tethered chain systems such as polymer brushes. 

Recent diffusion and viscoelastic experiments on symmetric diblock copoly- 
mers12, ‘04-’06) and binary blendsIo7’ Io8) seem to qualitatively agree with the above 
scenario. Theoretical work by Tang, Schweizer and Guenzaw6) for entangled fluids 
based on the simplest original version of the PMC approach36), and by Genz and 
V i l g i ~ ’ ~ ~ )  using PMC theory for the unentangled case, are also in accord with this 
scenario. The basic physical idea is schematically illustrated in Fig. 29 for the case 
of a diblock copolymer fluid. Effective forces, correlated in space and time, are 
exerted by the surrounding multicomponent matrix on two tagged chain segments 
which are mediated by intrachain and collective (density and concentration) fluctua- 
tions. The polymer-matrix interactions can be of two origins: the hard core excluded 
volume force which dominates entanglement in one-component melts, and the “tail” 
(generally attractive) forces between species which control the enthalpy of mixing 
and are traditionally quantified as a single net AB interaction or ,y parameter. Antici- 
pating the conclusions deduced below, since x is constrained to be of order N-’ in 
the homogeneous phase of interest its direct contribution to friction is generally 
small for high molecular weight entangled fluids, and to a good approximation can 
be ignored entirely. This conclusion is supported by the PMC analysis of Genz and 
Vilgis for unentangled blends and diblock fluids which was based on a bare Rouse 
description of memory function dynamicslog). The only caveat appears to be for 
blends extremely close to the critical point where the k = 0 divergence of concentra- 
tion fluctuations can induce nonintegrable, long time tails in the viscoelastic mem- 

matrix matrix 

tracer tracer 

Fig. 29. Illustration of the force correlations in RR and PMC theory for multicomponent 
systems. The case of an AB diblock copolymer fluid is shown, where F denotes an effec- 
tive repulsive force, w is the intrachain correlation, and Sp and S, are the matrix collective 
density (short range) and concentration (long range) fluctuations, respectively 
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ory function associated with the x forces. Such long time tails may (or may not) 
have observable consequences for shear viscosity and low frequency moduli extre- 
mely close to a critical point”’). 

Despite its direct dynamical insignificance for entangled polymers, x controls the 
local and macromolecular scale equilibrium physical clustering and (micro)domain 
formation. The latter provides constraints on the ability of the hard core entangle- 
ment forces to relax. Since PMC theory describes entanglement force relaxation 
using the RR model, generalization of the Renormalized Rouse approach is the cru- 
cial technical task required to treat entangled blends and diblock fluids. 

Although algebraically complicated, generalizations to binary AB polymer fluids 
(blends or diblocks) of the RR and PMC approaches can be achievedw6). Published 
work has considered mainly the simplest possible model with the maximum number 
of symmetries. The A and B chains are taken to obey ideal Gaussian statistics, with 
A and B sites of identical hard core diameter and segment length B, bare friction 
constant lo, and equimolar composition of @ = 0.5 (blends) or f = 0.5 (diblocks). The 
A and B species are distinguished only by a weak interchain tail potential associated 
with an effective x parameter. 

In this section the central novel features which emerge from RR and PMC theory 
for symmetric models of entangled blends and block copolymers in the dense melt 
state are sketched. We focus primarily on the mathematically simplest property, the 
center-of-mass self-diffusion constant D. The technical simplifications appropriate 
for large N and melt density conditions, i.e. neglect of constraint release and poros- 
ity corrections within the naive frozen matrix framework of the original PMC for- 
m ~ l a t i o n ~ ~ ) ,  are employed. Generalizations to treat tracer diffusion, chain dynamics, 
the unentangled-entangled crossover, matrix constraint release and porosity, friction 
constant and chain length asymmetries, and the effects of solvent dilution have been 
partially worked outw6. lo’) and represent directions of work in progress”’). We 
believe that generalization of PMC theory to multicomponent, phase separating 
fluids presents an exciting opportunity to test the unique ability of a microscopic 
theory to provide precise connections between structure and dynamics. Liquid-state 
integral equation theories (PRISM) of the structure, thermodynamics, and phase 
behavior of blends and block copolymers provide crucial input, and have been 
extensively reviewed recently5’). 

A. Theory of self-diffusion 

Consider first the composition-dependent self diffusion constant, Dp, of species 
“p” in a binary AB homopolymer mixture45). For entangled systems the effective 
friction coefficient, [p,  is the bare monomeric contribution plus the time integral of 
the correlation of the segmental scale intermolecular excluded forces exerted on the 
probe center-of-mass. The latter is computed based on the PMC approach, where 
there are two slow bilinear variables associated with the product of the single probe 
polymer density and the collective density of species M = A, B of the surrounding 
matrix. For polymer alloys close to a phase separation transition, the latter collective 
variables are expected to be particularly slow, and neglect of matrix constraint 
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release is especially appropriate. For simplicity, constraint porosity corrections are 
also ignored. The resulting PMC theory expressions based on these simplifications 
are43 

In the first line of Eq. (8.2) the subscripts refer to the species type (A or B), and the 
terms in large braces represent the “medium-induced potential of mean force” 
between segments on the probe chain due to interactions with the surrounding blend 
matrix. The second line follows from the weakness of the x parameter forces, and 
the reduction of equilibrium structural properties to a homopolymer reference melt 
(denoted by subscript “0”) in the x + 0 limit. It is identical to the corresponding 
homopolymer expression except the probe RR dynamics must be evaluated in the 
presence of both total density and concentration fluctuations. 

The single chain RR propagator is evaluated using Eq. (2.33). The appropriate 
RR effective friction constant is the blend generalization of Eq. (2.11)-(2.13) and is 
given by45’ 

m 

= + p - 1 ~ 4 p 1 m d t 1  dkk2j:(ka){4g;(o)So + [Agp(o)]2S,(k)}~R(k,t) 

- ioPg;(4Sofi{l + A J p >  (8.4) 

In the second line of Eq. (8.4), the two terms in braces describe the contributions of 
density (short range) and concentration (long range) fluctuation mediated excluded 
volume forces, respectively. The former are identical to the pure one-component 
entangled melt case and are blend composition independent. As indicated in Fig. 29, 
concentration fluctuations are spatially correlated over large distances, and hence 
can induce dynamical correlations of the tagged polymer segments which are widely 
separated in space. Droplet formation enters the force time correlations via local 
physical clustering of like segments, as quantified by the positive contact value of 
AgA = gAA - gAB or AgB = gBB - gAB, and the concentration fluctuation structure 
factor S,(k). For compositionally symmetric blends AgA = AgB = Ag. However, for 
compositionally asymmetric mixtures there are distinct measures of minority and 
majority species local clustering. In PRISM theory for symmetric chain models, the 
random phase approximation (RPA) form applies: l/S,(k) = (o(1 - @)w(k)}-’ - 2x, 
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where @ is the volume-fraction of A segments. x is fluctuation-renormalized, 
increases nearly linearly with TI, and depends parabolically (in an N-dependent 
manner) on blend compo~it ion~~.  I l l ) .  

The final proportionality in Eq. (8.4) implicitly defines the species-dependent 
function Jp = Jp (T, N, @, p) as the ratio of the concentration-fluctuation-mediated to 
density-fluctuation-mediated friction constants. By symmetry, .IA(@) = JB( 1 - @). A 
numerical (fudge) factor ''Z' has been introduced to emphasize the inability to a 
priori compute the absolute magnitude of the friction. In practice, such a (N-inde- 
pendent) numerical factor is fixed by comparison with experimental data. The lead- 
ing factor in Eq. (8.4) is the pure entangled melt contribution. Using Eqs. (8.1)- 
(8.4) yields for entungled blends 

where Do is defined as the self-diffusion constant of a reference homopolymer melt 
unaffected by concentration fluctuations + 0 limit). The factor (1 + Up) also 
represents the enhancement of the longest single chain terminal relaxation time of 
species p, tD,+,, due to slowing down of the entanglement force time correlations 
associated with concentration fluctuations. For the symmetric model, this connection 
follows since PMC theory predicts a "Fick's law" type r e l a t i ~ n ~ ~ . " ~ ) ,  tD,p - Rg/DP. 

The analysis for diblock copolymers proceeds in a formally identical manneraq4@. 
Since the A and B segments are chemically bonded in a diblock, there is only a sin- 
gle self-diffusion constant, D. For the highly symmetric AB model of present inter- 
est, Eqs. (8.1)-(8.5) again apply for a f = 112 compositionally symmetric diblock 
copolymer fluid where 2Ag = + gBB - 2gAB. The only difference with respect to 
the blend case is that the equilibrium quantities describing concentration fluctuations 
and physical clustering, Ag and S,(k), are strongly modified. This is because micro- 
domain scale phase separation occurs on a length scale D* = 2dk* z 3R,, in con- 
trast to macroscale phase separation at k = 0. k* represents the wavevector of max- 
imum instability where S,(k) has a sharp peak. The RPA form is S,(k) = ( F ( k )  - 
2x)-I, where F(k) is a combination of single copolymer partial struc- 
ture factors and obeys F(k*) - N-I. 

In contrast with blends where S,(k = 0) + 00 at the critical point or along a spino- 
dal, in diblock fluids the finite wavevector concentration fluctuations destroy all 
mean field spinodal and critical divergences"23 ' I3 ) .  The analytic PRISM theory of 
David and S~hweizer"~) has been employed to describe the fluctuation renormaliza- 
tion effect on x and S,(k). Guenza and Schweizer have recently demonstrated that 
this microscopic liquid state theory provides predictions in excellent agreement with 
disordered phase experiments in melts and  solution^"^). In addition, for symmetric 
diblock melts near and above the order-disorder transition (ODT), PRISM theory 
predictions are (accidentally) in good qualitative accord with the field theoretic 
approach of Fredrickson and Helfand113). Empirical estimation of the ODT within 
the globally isotropic PRISM description can be done rather accurately as discussed 
el~ewhere"~). 
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B. Analytic predictions and model calculations for blends 

Analytic predictions have been derived by Tang and S ~ h w e i z e r ~ ~ )  for the two 
blend self-diffusion constants based on Eqs. (8.1)-(8.4) plus the known depen- 
dences of Ag and S,(k) on T, N, and @. Here we consider the chain length symmetric 
case NA = NB = N, although generalization is ~traightforward~~). Only two results are 
required for a qualitative understanding of the basic predictions of PMC theory for 
self-diffusion in blends. (i) On the macromolecular scale, the concentration fluctua- 
tion structure factor is proportional to N, and tends to a (integrable) k-* divergence at 
k = 0 as the blend approaches its spinodal at 2@( 1 - @)xsN = I ,  where xs is the value 
of the chi-parameter at the spinodal. Explicitly one has: 

2Nd1 - @) , where 2 4 1  - @)xsN = 1 (8.6) 
S'(k) = (kRs)2 + 2 4  1 - @)N(xs - x) 

(ii) The local clustering functions are identically zero in the high temperature limit 
where x = 0. As the blend is cooled, clustering of like segments grows monotoni- 
cally, and in compositionally asymmetric mixtures is much larger for the minority 
species than the majority species. The qualitative form, for blend compositions @p 

far above the semidilute crossover concentration and reduced total densities of order 
NO. is43 

where @A = @ and @B = 1 - @. Note that the degree of local clustering is a finite size 
effect proportional to the ratio of the density screening length, &, - @a3)-', to 
radius-of-gyration length scales. Moreover, clustering of species p increases mono- 
tonically as its volume fraction decreases. 

Based on the above results, one can conclude that on the R, length scale which 
controls the N-dependent entanglement friction contributions, the product (Agp)2S, 
and the function Jp in Eq. (8.4) are of order No, and quantitatively increase as the 
blend approaches phase separation. Thus, concentration fluctuations decrease the 
self-diffusion constant as the entangled blend approaches its spinodal. However, at 
fixed thermodynamic state the N-scaling law is not modified. This prediction is con- 
sistent with experimental o b s e r v a t i ~ n ' ~ ~ ~ ' ~ ~ )  of the D - N-2 scaling law in some 
polymer blends far from phase separation. However, since J quantitatively increases 
as x + xs, experiments which isothermally approach phase separation by increasing 
degree of polymerization may detect apparent N-scaling laws for D with effective 
exponents larger than the pure homopolymer value. 

Model calculations of JA(@) = JB (1 - 4) as a function of blend composition at 
faed thermodynamic state along the spinodal and binodal curves, and also at fixed 
values of positive and negative values of xN corresponding to a constant tempera- 
ture experiment, are shown in Fig. 30. The vertical scale is not absolute; estimates 
of the required nonuniversal prefactors suggest the maximum enhancement of the 
entanglement friction due to concentration fluctuations may be quite modest45). This 
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Fig. 30. Concentra- 
tion-fluctuation friction 
contribution for species 
A as a function of its 
volume fraction at the 
spinodal, binodal, and 
three fixed values of 
xN. The vertical scale is 
not in absolute units 

Q 

conclusion also implies negligible effects for unentangled blends may be common, 
in apparent accord with experimenta1116) and computer ~imulation' '~) studies of short 
chain blends near a critical point. 

There are several other notable trends deducable from Fig. 30. (i) For experiments 
carried out at the critical point k N  = 2) ,  the reduced diffusion constant DID, is a 
minimum at the critical composition, and is an asymmetrically concave upward 
function of @. (ii) Even at fixed thermodynamic state the reduction of D by concen- 
tration fluctuations still decreases upon moving away from the critical composition. 
(iii) As expected based on the local clustering asymmetry in Eq. (8.7), suppression 
of the minority species diffusion constant by concentration fluctuations is larger 
than for the majority species. (iv) Diffusion suppression turns on rapidly as the phase 
boundary is approached, e.g., J increases by roughly an order of magnitude as xN 
increases from 1 to 2.  (v) Substantial diffusion constant suppression is possible in 
negative x, miscible or "specific interaction" mixtures. For the idealized symmetric 
model considered, all the above trends also apply to the conformational relaxation 
time and single polymer contribution to the stress. 

Self-diffusion experiments in entangled blends are typically carried out on chemi- 
cally complex materials characterized by strong structural asymmetries, composi- 
tion-dependent bare monomeric friction constants and glass transition temperatures, 
and asymmetries in degree of po lymer i za t i~n '~~~  lo8). These features make direct 
comparisons with the theoretical predictions difficult, although some observations 
concerning the composition and N-dependence of D in blends are in qualitative 
accord with the predicted theoretical trends45). Experiments employing isotopic 
blends would be the optimum systems to test the theoretical predictions not only 
because of their chemical simplicity, but their very low value of x would allow the 
most heavily entangled miscible mixtures to be studied. Computer simulation of 
entangled, symmetric binary blends close to the critical point would also be very 
valuable for testing the PMC theory. 
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C. Analytic predictions, model calculations, and comparison with experiments for 
symmetric diblock copolymers 

For diblock copolymers near and below the ODT, the scattering function S,(k) is 
strongly peaked at S* = S,(k*), thereby allowing a dominant one-wavevector 
appro~imation"~~ 'I4) S,(k) - (S*)'" 6(k - k*), to be employed for semiquantitative 
analysis. Based on this, and Eqs. (8.4), the key factor J - [Ag(o)/{,I2 (S*N)1'2. Ana- 
lytic scaling law predictions based on PMC theory then follow from the known 
dependence of S* and Ag on N and thermodynamic state variables. The general 
equilibrium calculations based on PRISM theory with fluctuation corrections, analy- 
tic results for limiting cases, and determination of an effective ODT temperature, 
ToDT, are discussed e l s e ~ h e r e ' ' ~ ~ ' ' ~ )  . A r epresentative example of theorykmall angle 
scattering experiment corn par is or^'^^) is shown in Fig. 3 1. Analytic analysis yields 
the re~ults"~):  S* - N (T 8- TODT), S* - N4I3 (T = TODT), and S* - N 2  (T 4 TODT). 

The latter fluctuation-saturation, or low T ground state, prediction is a novel conse- 
quence of PRISM theory and its enthalpically-driven feedback mechanism for con- 
centration-fluctuation stabilization of a globally isotropic low temperature phase114). 
The local clustering function is given by44946) 

which properly vanishes as x + 0, and where x = xs - (2S*)-' with xs equal to the 
mean field critical value (10.495 for f = U2). Combining these results yields: Ag - 
N-'I2 (T 8- TODT) in agreement with the blend case, Ag - N-'I3 (T = TODT), and Ag - N o  (T 4 TODT). The low temperature "intrinsic" result is physically sensible for a 
highly segregated liquid composed of nearly pure A and B microdomains. The cor- 

Fig. 31. Best fit"') 
(cp/a = 0.14) of 
PRISM theory (full 
line) to experimental 
inverse peak scatter- 
ing intensity as a 
function of reduced 
inverse temperature 
for a symmetric PEP- 
PEE (polyethylene- 
propylene-polyethyl- 
ethylene) polyolefin 
melt of N =  791. The 
inset shows PRISM 
model calculations 
for the local cluster- 
ing function forf= 
0.5, cPlo = 0.3 
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responding frictional enhancement factor J grows as the diblock is cooled and obeys 
the qualitative power laws: J - -No (T+ ToDT), N1I2 (T = ToDT), and N3I2 
(T G TODT). Thus, the entangled homopolymer and blend law of D - N-2 is pre- 
dicted far from the ODT. However, new scaling laws emerge at and below the ODT 
D - N-5’2 at T = TODT, and D - N-’12 for T G TODT. 

Following Lodge and  coworker^'^^^'^^), the ratio DID, in Eq. (8 .5)  is employed to 
quantify diffusion suppression by microdomain formation. For viscoelastic or 
dielectric relaxation experiments, the relevant conformational relaxation time ratio 
is z/zo z (DOID) (RgIRg,o)2. The fundamental prediction of PMC theory based on 
PRISM input is the existence of three distinct dynamical regimes46). (1) Far from the 
ODT the concentration fluctuations have little or no effect, i.e., DID, 1 and nearly 
T-independent. This regime is qualitatively similiar to the entangled blend case. (2) 
As the ODT is approached, and somewhat below it, DID, decreases rapidly due to 
enhanced physical clustering and microdomain formation, and a strong thermal 
dependence of diffusion suppression emerges. The precise magnitude and form of 
DID, as a function of reduced temperature TODTIT is not expected to be universal 
since it is influenced by system-specific equilibrium structure and entanglement 
characteristics of the blocks. (3) Well below the ODT, DID, approaches its minimum 
(nonuniversal) value proportional to N-312, which is T-independent due to the satura- 
tion of concentration fluctuations and microdomain coarsening at low T. 

The predicted three regime scenario described above is in excellent qualitative 
accord with recent experiments on lamallae-forming diblock meltslo6). It also seems 
at least consistent with the “thermally activated” (reptative) and T-independent 
“entropic” (arm-retraction) interpretation of Lodge and coworkers’06). Of course, 
PMC theory focuses on the ensemble-averaged friction, and not the precise nature 
of copolymer trajectories, which severely limits the deduction of an intuitive real 
space picture. Within PMC theory the fundamental physical effect is the thermody- 
namic driving force to keep the A and B segments segregated prolongs relaxation of 
the entanglement friction forces, thereby slowing down copolymer diffusion and 
conformational relaxation. 

Model calculations of J and DID, which exhibit the three limiting regimes, and 
crossovers between them, are shown in Fig. 32. A melt-like screening length of (#s 
= 0.3 and a numerical prefactor of 1 = 0.07 (see below) were employed. At inter- 
mediate temperatures the reduced diffusion constant decreases in an approximately 
exponential manner, consistent with the “thermally-activated” interpretationIo6). 

The PMC theory has also been quantitatively applied by Guenza, Tang and 
S c h w e i ~ e r ~ . ~ ~ )  to several tracer and self-diffusion experiments of Lodge and co- 
w o r k e r ~ ’ ~ ~ ~  Consider first the self-diffusion case for four well entangled, f n 1/2 
PEP-PEE (polyethylenepropylene-polyethylethylene) polyolefin melts. The first 
comparison is for two quenched (globally isotropic) materials105): PEP-PEE1 (N = 
562 based on Msegment = 56 gImol) and PEP-PEE2 (N = 895). PEP-PEE1 is far above 
its ODT of 4 1  “C, and thus presumed to obey simple homopolymer dynamics unaf- 
fected by long range concentration fluctuations. PEP-PEE2 has a ToDT = 96 “C. The 
data is shown in the top panel of Fig. 33, along with an estimate of what D for PEP- 
PEE2 would be if concentration fluctuation effects were negligible. The latter esti- 
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mate falls above the data, and increasingly so (up to nearly a factor of 10) as the 
material becomes more segregated. A best fit of the theory to the PEP-PEE2 data is 
also shown, where the numerical factor 2. and screening length were varied. The 
resultant value of &la = 0.3 is sensible for a melt, and the predicted temperature 
dependence is in excellent agreement with the datalo5). 

A much more severe test of the theory is the most recent experimental data for 
shear oriented PEP-PEE materials lo@. This study included PEP-PEE2 plus two 
higher molecular weight samples, PEP-PEE3 ( N  = 1450) and PEP-PEE4 (N  = 
1 970). The “parallel” self-diffusion constant data versus reduced temperature is 
shown in the lower panel of Fig. 33. The measured anisotropy of the diffusion con- 
stants were surprisingly small for these lamallae forming systems, and is ignored in 
our PMC theory based on isotropic dynamics. PMC predictions are also shown 
based on exactly the same values of A and tp la  extracted from the analysis of 
quenched PEP-PEE2 data. We emphasize these results are not a f i t .  The agreement 
of experiment and theory is very good4@. 

Recent experiments have also probed entangled tracer PEP-PEE diffusion in the 
highly segregated (TODT zz 500 “C) PEP-PEE4 matrixlo6). The corresponding tracer 
values of DID, were found to be temperature-independent, and 
0.004 (PEP-PEW), 0.020 + 0.05 (PEP-PEE2), and 0.6 0.1 (PEP-PEEI). Although 
quantitative generalization of PMC theory for tracer diffusion is technically 
involved”’), semiquantitative analysis is very simple46). Since the T-dependence of 

s 0.012 
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Fig. 33. Top panel: 
Comparison of the best 
fit theory (full lines) and 
experimental datalo5) 
for the quenched sample 
of PEP-PEE2 discussed 
in the text. Data for 
PEP-PEEl, and the esti- 
mated entangled result 
in the absence of con- 
centration fluctuations 
(dashed curve), are also 
shown. Bottom panel: 
Comparison of theory 
(with same i and <,,la 
values as in top panel) 
with the normalized par- 
allel diffusion constant 
data of the shear-ali ned 

discussed in the text 
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DIDo arises solely from the matrix concentration fluctuations, S*, one can immedi- 
ately conclude T-independence is predicted for DID, in PEP-PEE4 where T 6 T O D ~  
Moreover, for entangled diblock tracers shorter (NJ than the chemically and compo- 
sitionally identical matrix diblocks (N), the qualitative dependence of DIDo on tracer 
degree of polymerization follows from a simple power counting analysis of the 
known dependence on Nt of Ag(a) and o ( k )  in Eq. (8.4). The result is J - (Nt1N)7". 
Equivalently, the reduced tracer diffusion constant can be expressed in terms of the 
corresponding self-diffusion ratio as4@ 

Thus, based on this result and the experimental value of (DoID)self = 90 2 30 for 
PEP-PEE4, one obtains the predictions: (DID,), 0.17 r 0.05 (PEP-PEE2) and (DI 
Do), = 0.5 -+ 0.1 (PEP-PEEl), which are in remarkable agreement with the experi- 
mental values quoted above. For a PEP-PEE3 tracer, not studied experimentally, the 
theory predicts (DIDo), = 0.035 -+ 0.012. Physically, the reduced diffusion constant 
suppression for shorter tracers is due to the smaller frictional penalty required to 
dynamically transport A (B) tracer segments through the B (A) matrix microdo- 
mains. 
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The PMC theory of diblock copolymer diffusion can be extended to treat the con- 
sequences of copolymer composition [anisotropic diffusion is of far less concern 
(irrelevant) for cylindrical (spherical) microphases], block bare friction constant 
asymmetry, chain stretching, dilution by neutral solvent, and matrix constraint 
release' lo). Homopolymer and diblock tracer diffusion can also be 
addressed44346* 'lo). The full PMC theory can be generalized to finite frequen- 
~ ies '~ ' .  'lo), thereby allowing treatment of concentration fluctuation effects on early 
time (anomalous) diffusion, the unentangled-entangled crossover, and internal nor- 
mal mode dynamics and shear stress moduli. All these extensions are presently 
underway. We do caution, however, that the cage-averaged isotropic dynamics 
approach is expected to eventually fail, perhaps at very high degrees of segregation 
and/or for situations of strongly spatially-dependent local friction. 

IX. Future directions and open problems 

This article has summarized the significant progress made over the last eight years 
in formulating and applying the first microscopic liquid-state theory of entangled 
polymer dynamics in solutions, melts, gels, and multicomponent materials. Recent 
theoretical generalizations, and detailed applications to experiments, in areas such 
as (i) finite N corrections to transport coefficients and frequency-dependent response 
functions in linear chain solutions, melts and gels40941748,77), (ii) fractal macromole- 
cular  architecture^^^), and (iii) self and tracer diffusion in polymer blends and 
diblock copolymersw6), are particularly noteworthy. These novel developments 
establish the power and promise of the PMC approach for: (i) providing a micro- 
scopic understanding of long-standing experimental puzzles, (ii) establishing univer- 
sal and system-specific links between the entanglement forces, polymer and liquid 
structure, and intermediate and long time dynamics, (iii) for making new predictions 
testable by experiment and/or simulation. 

Treatment of a number of new systems and phenomena seem within reach in the 
near future based on extensions of the existing PMC theory. These include: (i) analy- 
tic and numerical finite N corrections for entanglement dynamics of non-chain archi- 
tectures, (ii) tracer diffusion in mixed systems of chains, rings, and/or microgels'18), 
(iii) chain dynamics, and friction constant asymmetry and collective constraint 
release effects, in multicomponent entangled fluids, and (iv) the influence of poly- 
dispersity on dynamics. In the somewhat longer term, progress based on the PMC 
approach, possibly in conjunction with field theoretic and/or other statistical dyna- 
mica1 methods, should be possible for problems such as: anisotropic diffusion in 
block copolymer microphases, entangled alloy collective rheological response, local 
and glassy polymer dynamics, mixtures of colloids and polymers, semidilute and 
concentrated polyelectrolyte solutions including excluded volume and dielectric 
friction, associating entangled polymer fluids such as ionomers and hydrogen- 
bonded materials, and hydrodynamic effects in solution. 

On the other hand, there remain many systems and physical phenomena which 
may require fundamental theoretical advances and/or significant modifications of 
the existing PMC approach. Open problems in this category include: (i) entangle- 
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ment dynamics of rigid rods, branched polymers (with their exponentially slow 
dynamics), non-fractal microgels or “rubber balls”, and dendrimers, (ii) the influ- 
ence of quenched physical or chemical disorder, (iii) spatially resolved, nonlinear 
time-correlation functions such as the incoherent and coherent single polymer 
dynamic structure factors, and (iv) nonlinear rheological phenomena. Technical sim- 
plifications of the present effective-medium-like PMC theory which may require 
strong modification in order to treat some of these problems include: the isotropic 
cage-averaged description, static and dynamic equivalent site approximation, 
neglect of explicitly anisotropic motions such as reptation and arm retraction, an 
effective linear GLE approach which retains the integrity of Rouse modes, and 
neglect of strong coupling “self-consistent” feedback effects at the level of the mem- 
ory functions. We remain optimistic that progress can be made on these difficult 
theoretical issues. 

Finally, a more fundamental understanding of entangled dynamics would emerge 
from a theory formulated at the level of two interacting chains. Such 2-chain dyna- 
mica1 information is not explicitly contained in the present PMC approach, nor the 
Rouse or reptatiodtube theories, which all represent single chain “mean-field-like” 
approaches. The latter level of description is entirely adequate for predicting all 
dynamical properties of a single macromolecule dissolved in a condensed phase. 
However, knowledge of the effective two chain dynamics in the liquid is required to 
address questions such as the collective intermolecular contributions to stress, 
dielectric relaxation, and other dynamical response functions in solutions, melts and 
multicomponent polymer alloys. For simple atomic, colloidal and molecular fluids, 
or any liquid near a critical point, such collective contributions are well known to be 
of central importance. 

Formally, the statistical dynamical approach described here and in the original 
PMC paper3@ can be generalized to derive nonlinear GLE’s for two tagged polymers 
in a condensed phase. Results of the form of Eqs. (2.1) and (2.2) are obtained, but 
with two essential  modification^"^). First, the time-delayed memory function contri- 
butions for each chain involve the positions of all the segments of both tagged 
macromolecules. Second, the 2-chain potential of mean force contains the standard 
intramolecular (Gaussian spring) part, plus an effective interchain pair interaction 
given by -kT ln{g(r)). Due to the universal correlation hole effect, the latter contains 
a spatially long range contribution of a screened Coulomb form, and hence is of a 
highly nonlinear mathematical form. Physically, the existence of Coulombic-like 
forces on intermediate length scales (a 6 r < Rg) between all pairs of segments on 
the two tagged polymers is expected to induce strong spatial correlations of their 
relative dynamical motions’ 19). The development of a tractable microscopic theory 
at the two chain level which simultaneously takes into account both the long range 
interchain potential of mean force, and the non-Markovian, nonlocal influences of 
the surrounding matrix polymers on the two tagged chains, remains a challenging 
theoretical task. 
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